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The ability to measure the bulk dynamic behavior of soft materials with combined time and frequency
resolution is instrumental for improving our fundamental understanding of connections between the
microstructural dynamics and the macroscopic mechanical response. Current state-of-the-art techniques
are often limited by a compromise between resolution in the time and frequency domains, mainly due to the
use of elementary input signals that have not been designed for fast time-evolving systems such as materials
undergoing gelation, curing, or self-healing. In this work, we develop an optimized and robust excitation
signal for time-resolved mechanical spectroscopy through the introduction of joint frequency- and amplitude-
modulated exponential chirps. Inspired by the biosonar signals of bats and dolphins, we optimize the signal
profile to maximize the signal-to-noise ratio while minimizing spectral leakage with a carefully designed
modulation of the envelope of the chirp, obtained using a cosine-tapered window function. A combined
experimental and numerical investigation reveals that there exists an optimal range of window profiles
(around 10% of the total signal length) that minimizes the error with respect to standard single-frequency
sweep techniques. The minimum error is set by the noise floor of the instrument, suggesting that the accuracy
of an optimally windowed-chirp (OWCh) sequence is directly comparable to that achievable with a standard
frequency sweep, while the acquisition time can be reduced by up to 2 orders of magnitude, for comparable
spectral content. Finally, we demonstrate the ability of this optimized signal to provide time- and frequency-
resolved rheometric data by studying the fast gelation process of an acid-induced protein gel using repeated
OWCh pulse sequences. The use of optimally windowed chirps enables a robust time-resolved rheological
characterization of a wide range of soft materials undergoing rapid mutation and has the potential to become
an invaluable rheometric tool for researchers across different disciplines.
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L. INTRODUCTION

Many soft materials that are of interest for industrial
[1-3] or biomedical [4,5] applications often undergo
microstructural changes during their synthesis or assembly
as a result of chemical, thermal, or mechanical processes.
Examples include gelation of polymer [6-8], protein
[9-12], and colloidal gels [13-15] as well as jamming of
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glasses [16—18]. These transient processes are responsible
for establishing the final material properties of the system,
and the ability to follow their time evolution is essential in
the quest to relate changes in the underlying material
microstructure to the corresponding rheological response
at the macroscopic scale [2,7,19]. Establishing and quanti-
fying such connections is also of crucial importance in the
development and design of the next generation of soft
materials, such as disordered colloidal aggregates [19],
bioinspired hydrogels [20], mechanical metamaterials [21],
and jammed granular solids [22].

Of particular interest in this regard is the development
and evolution of the linear viscoelastic response—i.e., the
mechanical relaxation spectrum of a material prior to any
damage or plastic deformation being imposed on the initial
state of the microstructural components. This response can
be fully characterized by the knowledge of the relaxation
modulus G(t) or analogously the complex modulus G* (w),
whose real and imaginary parts correspond, respectively, to
the elastic storage modulus G’(w) and the viscous loss
modulus G”(w) [23].

Measuring the material properties for time-evolving
systems undergoing structural changes is intrinsically
challenging due to the time constraint imposed by the
characteristic mutation time of the sample under inves-
tigation [24]. While several techniques are currently avail-
able to obtain detailed quantitative information about the
microscopic dynamics of mutating systems, e.g., scatter-
ing-based techniques [25-29], confocal microscopy [30],
nuclear magnetic resonance [31,32], image correlation
microscopy [33,34], ultrasonic echography [35], and
AFM-based spectroscopy [36], macroscopic dynamic
mechanical properties are particularly challenging to mea-
sure with enough time and frequency resolution [7]. This
challenge is partially due to the scales at which mechanical
forces and deformations are applied, which usually con-
fines the range of frequencies accessible to a maximum of
100 Hz (with state-of-the-art instruments) and requires
experimental timescales on the order of hundreds of
seconds to obtain sufficient frequency resolution [2,7].
However, this limitation arises, in part, due to the waveform
of the excitation signals currently employed in standard
rheometric techniques. Single-tone harmonic signals were
established as the canonical tool of mechanical material
characterization in the middle of the past century [37], and,
since then, they have not been redesigned or optimized, as
has been the case in other fields (e.g., acoustic measure-
ments [38] or radar systems [39]), to achieve enhanced
levels of resolution in both the time and frequency domains.

Standard test protocols for measuring the linear visco-
elastic spectra of soft materials are typically based on
periodic signals consisting of sine steps of constant
frequency and amplitude [see Fig. 1(a)]. These can either
be combined sequentially as in frequency sweeps [7] or be
additively superposed for a discrete number of frequencies,

such as in multiwave techniques [40]. Both of these
methods present disadvantages when used with time-
evolving or mutating systems. A sequence of single-tone
inputs usually requires the longest total measuring time
compared to other signals [41], even when limiting the
number of frequencies to a small discrete set, as in discrete
frequency sweeps [24]. The additive superposition arising
from multiwave methods, on the other hand, can easily
generate a signal with a total strain exceeding the linear
viscoelastic limit of the test material, especially if many
frequencies are summed together to increase the spectral
content of the measured signal. Different types of signal
that have been proposed to replace these standard ones
include white noise [42] and step strain experiments, i.e.,
Heaviside-type excitations [43].

To produce harmonic test protocols with the time and
frequency resolution necessary for studying mutating
systems, we start from a different type of signal that has
long been used for radar [39], sonar [44], and acoustic [38]
measurements, called the sine sweep or chirp. Chirps are
frequency-modulated deterministic signals; i.e., their fre-
quency is a continuously varying function of time [see, e.g.,
Fig. 1(b)]. Heyes et al. [45], and more recently Ghiringhelli
et al. [46], Curtis et al. [47], and Rouyer and Poulesquen
[48], use chirp signals to measure the viscoelastic spectra of
different materials, claiming this method to be an optimal
Fourier rheometry (OFR) technique [46,47]. However, a
rigorous investigation of high-resolution data on a model
polymer network reveals that the measurement precision
can be severely compromised especially when using short-
duration chirp signals. An example of this issue can be seen
in Fig. 1(c), in which we show the viscoelastic moduli of a
semidilute poly(isobutylene) (PIB) solution (see the com-
position in Appendix A) measured with a standard fre-
quency sweep (black lines) and with the OFR technique
(red symbols). The moduli measured using a 14 s OFR
chirp signal are affected by significant local fluctuations
that can compromise the accurate determination of real
material properties and the computation of the linear
viscoelastic spectrum. Such oscillations are a consequence
of fluctuations in the power spectrum of the input signal,
known as Fresnel ripples in signal processing [49], and,
therefore, they are not material-dependent features.

However, despite this issue, chirps have several features
that are cardinal for the development of an optimal
excitation signal for mechanical spectroscopy. First, their
crest factor, i.e., the ratio of the peak to the root-mean-
square value of the waveform amplitude, is very low and
comparable to that of a sine wave (1.45 instead of 1.414)
[50,51]. This parameter is very important, because it allows
us to constrain the amplitude of the signal within the linear
range of the material response without sacrificing the
corresponding spectral content (in contrast to multiwave
techniques [24,40]). Second, as becomes clearer in Sec. IT A,
chirps can be designed to give a better signal-to-noise ratio
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FIG. 1. (a) Example of a single-tone sine input: sinusoidal strain
with constant amplitude y, and frequency w. (b) Example of an
exponential sine sweep or chirp: sinusoidal strain with constant
amplitude and modulated frequency [see Eq. (2)]. (¢) Comparison of
measured viscoelastic moduli for a reference PIB solution (see
Appendix A for details) obtained by a classical discrete frequency
sweep (G', solid line; G”, dashed line) with 30 points per decade
(total experimental acquisition time greater than 30 min) and with
the application of only one chirp signal (G’, red solid line and filled
circle; G”, red dashed line and circle) as described by Eq. (2) with
T=14s, w; =0.3 rad/s, w, = 30 rad/s, and TB = 66 at the
same input strain amplitude y, = 6%.

(SNR) than white-noise signals, because their power spectral
density is inversely proportional to the frequency [41,50,51].
This improvement is essential in mechanical spectroscopy,
where force and torque measurements are corrupted by
transducer noise primarily at lower frequencies. Finally, the
waveform can be made periodic with both the initial and
final values of the signal equal to zero [51,52]. This feature is
another important aspect for mechanical measurements,
because it improves the numerical estimation of the signal
power spectrum [51], but also because accumulated defor-
mation or stress compounded from repeated tests could
potentially affect the microstructure evolution and connec-
tivity. As a consequence of these features, chirps are widely
used as excitation signals in a range of different applications
[38,39,44], but they also commonly arise in nature from
birdsong [53] to gravitational waves [54], and, most notably,
they are the signal forms used by both bats and dolphins for
echolocation [55,56].

Inspired by these nearly optimal signals, we address the
issues affecting the performance of chirps in mechanical
spectroscopy by carefully designing their amplitude modu-
lation to maximize the SNR while minimizing the
unwanted spectral ripples. Combining experiments and
detailed simulations on a model polymer solution, we
show that it is possible to define an optimized chirp signal
that reduces the residual error in estimation of the linear
viscoelastic spectrum by almost 2 orders of magnitude
compared to a constant amplitude sine sweep. This opti-
mally windowed chirp (OWCh) allows us to determine the
relaxation spectrum with essentially the same precision of
the current discrete frequency sweep standard while dra-
matically reducing the total test duration. By applying the
OWCh signal to a mutating protein gel undergoing gelat-
ion, we further show how time-resolved mechanical spec-
troscopy allows us to capture the evolution in the material
viscoelastic properties of the gel in detail within a single
experiment.

II. EXPERIMENTAL INVESTIGATION

A. Chirp signal construction

For a generic signal x(7) = xq sin[¢(7)], the phase ¢(7)
is related to the instantaneous (angular) frequency by
w(t) = d¢(t)/dt, where w(t) has units of rad/s. While
classical sine waves maintain a constant frequency at any
point in time, chirp signals are designed so that their
instantaneous frequency is continuously changing; hence,
they are also commonly referred to as sine sweeps [50,57].
We are particularly interested in exponential chirps, i.e.,
sine sweeps with constant amplitude and frequency that
increases exponentially in time following a relationship of

the form
w, t/T
1) = e . 1
o() = (22) ()

Here, T is the total length of the signal and w; and w, are,
respectively, the initial (f = 0) and final (r = T) angular
frequencies attained by the input signal. Integrating Eq. (1)
and imposing that there be no initial phase shift
[#(t = 0) = 0], we can derive an expression for the expo-
nential chirp signal for any given values of w|, w,, and T:

x(1) = xg sin {ﬁ {exp (log(wz/a)l)%) - 1] }
(2)

A few previous studies have used this waveform x(z) as a
strain input y () to an unknown material [see Fig. 1(b)] from
which one can obtain the output stress signal o(z) either
experimentally, using a commercial rheometer [47,48], or
numerically, by integrating the appropriate set of equations
of motion [45,46]. By taking the discrete Fourier transform
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(DFT) of y(¢) and o(t), one can compute the complex
modulus G*(w) of the bulk material under investigation:

G* () = —— (3)

where (%) indicates the Fourier transform. The elastic
and loss moduli G’ and G”, respectively, can subse-
quently be extracted as the real and imaginary part of the
complex modulus, i.e., G'(w) = Re{G*(w)} and G"(w) =
Im{G*(w)}.

More generally, if we consider the viscoelastic material
being tested as a dynamical system with an unknown
impulse response [commonly defined by the Boltzmann
memory function M(t) = dG(t)/dt in the time domain],
then the process that we just described effectively corre-
sponds to the identification of the system’s linear transfer
function [G*(w) in the frequency domain]. Consequently,
determining the most appropriate experimental excitation
signal to achieve both time and frequency resolution in
mechanical spectroscopy is equivalent to determining the
fastest way to identify the transfer function of a mechanical
system which, in the case of soft materials, is usually
overdamped and characterized by a continuous power
spectrum. Using nonlinear chirp signals, such as the
exponential chirp in Eq. (2), has advantages compared to
other types of excitations especially in terms of the SNR
achievable at low frequencies. In fact, exponential chirps
have a pink frequency spectrum [50]; that is, their power
spectral density (per unit frequency) is inversely propor-
tional to the frequency itself, leading to a constant power
per unit octave (i.e., per fixed frequency interval [@;, ;]
such that @, = 2w;). This feature of the chirp power
spectral density is very important in all measurements
where the noise floor dominates at lower frequencies and
the possibility of exceeding the linear region of the system
is of concern. An exponential chirp sequence is thus
particularly well suited to mechanical spectroscopy of soft
materials (as well as airborne and acoustical measure-
ments), because it allows us to maintain a sufficient SNR
even at small @ without dangerously increasing the power
input [50] and, hence, exceeding the linear viscoelastic
limit of the material.

It can be seen from Eq. (3) that, when using a broadband
excitation signal, a consistent determination of the fre-
quency response of a system directly depends upon the
accurate determination of the power spectral density of
both the input and output signals. These, in turn, are known
to greatly depend on the time-bandwidth constant of the
signal (T'B), defined as the product of the length of the
chirp and its nominal bandwidth, such that 7B = T(w, —
1)/ (27) [49,58]. The main artifact that decreases the
accuracy of the spectral estimation is related to the
appearance of sidelobes in the chirp power spectrum.
These ripples result from the DFT of the inherent

rectangular envelope of the chirp defined in Eq. (2)
[51,52]. In fact, imposing a chirp with a constant
amplitude mathematically corresponds to multiplying
the frequency-modulated signal with a normalized square
wave of length 7. When one takes the DFT of this
product, the result is given by the convolution of the two
Fourier transforms, and, therefore, the sidelobes present
in the spectrum of the envelope produce similar ripples in
the frequency spectrum of the chirp. Another source of
spectral leakage is related to the absence of periodicity
that arises if x(0) # x(7) [51] (or, equivalently, if the
signal does not contain an integer number of periods), a
condition experimentally very hard to achieve but that
can, in theory, be avoided by carefully adjusting the
length of the signal.

The magnitude of these ripples in the Fourier domain can
be decreased by designing chirps with large values of the
time-bandwidth constant, i.e., 7B > 100 [59]. Since the
frequency range accessible in mechanical instruments is
limited, working with large values of 7B implies using
longer chirps and, therefore, compromising the time (or
frequency) resolution for a fast-mutating system. On the
other hand, working with shorter signals (7B < 100)
usually yields significant oscillations in the viscoelastic
spectra as shown in Fig. 1(c) for the reference PIB solution.
The discrete (red) symbols are the results obtained from
Eq. (3), using the input strain chirp in Eq. (2) with o, =
0.3 rad/s, w, = 30 rad/s, yo = 0.06, and T = 14 s. The
corresponding time-bandwidth constant is 7B ~ 66. Using
a single chirp signal, we can reduce the experimental test
duration required to measure the viscoelastic response of
the material by almost 2 orders of magnitude when
compared to classical frequency sweeps [solid and dashed
black lines in Fig. 1(c)], but the estimates of the viscoelastic
moduli thus obtained are substantially affected by spectral
leakage, as the oscillations observed in both G’ and G” in
Fig. 1(c) clearly show.

In order to develop a truly optimized excitation signal for
mechanical spectroscopy of soft materials, we therefore
need to ensure that chirp sequences can be used even when
the experimental conditions are not ideal, especially for
short input durations or small time-bandwidth constants.
The natural timescale that sets how short the input signal
should be depends on the characteristic mutation time of
the material of interest 7,,, = (dIn g/dt)~' (where g is any
property of interest, e.g., |G*|) [24]. We can construct a
dimensionless number given by the ratio of the signal
length to the characteristic mutation timescale of the
material itself, i.e., a mutation number N, = T/7m,
[60]. To have a reliable time resolution, we require
N < 1, and a conservative value for the critical mutation
number that guarantees such a condition, at least for
gelation processes, appears to be N, < Ny = 0.15
[24,47]. This constraint sets the maximum length of the
input signal for any given value of 7.
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B. Windowed chirp

Several signal-processing techniques are known to
improve the accuracy of the spectral estimates of different
input signals, the most common being prewhitening and
tapering [61]. Their effectiveness, however, strongly depends
on the specific application for which the signal is used and
the type of frequency response expected. Since our main
objective is to reduce spectral leakage and ultimately obtain a
smooth transfer function for the material in Fourier space,
there are two main issues that must be tackled: the presence
of sidelobes projected from the square envelope defining the
amplitude of the chirp and any additional spectral leakage
due to the absence of periodicity.

To address both these concerns, we take inspiration
from sonar signals that have been optimized and
improved over thousands of years: specifically, the
biosonar signals used by bats and dolphins for echolo-
cation [55,56]. Most of the pressure waves emitted by
these animals are frequency-modulated signals, remark-
ably close to logarithmic sweeps; however, they also
feature an amplitude modulation that depends on the
specific target [62]. From a mathematical point of view,
amplitude modulation can be achieved by using an
appropriate function to prescribe the envelope of the
excitation signal, commonly referred to as a window
function w(r) [61]. Windowing is widely used in signal
processing as a way to select and analyze a portion of a
longer recorded signal, the main advantage being that
the specific function can be designed to smoothly vary
between zero (outside of the window) and unity (usually
at the center of the window). This envelope restores a
general periodicity, which reduces part of the spectral
leakage and also allows control of the magnitude of the
sidelobes in the spectral domain (known as sidelobe
level). In its original form [Eq. (2)], the chirp signal has
an envelope defined by a square wave known as a
rectangular window, or Dirichlet window, w(z) =1 for
0 <t <T. This window is a discontinuous function,
and, as a consequence, it is characterized by the

|

highest sidelobe level when compared to other window
functions [63].

Choosing the appropriate window is a matter that has
generated a considerable body of work, since different
applications have different requirements in terms of win-
dow performance [61,63]. Here, we propose to modify the
original frequency-modulated, constant-amplitude chirp by
using a particular cosine-tapered function (also called a
Tukey window [64]) defined as

cos’[Z (7 = 5)l. 755,
w(t) =< 1, I<k<1-%, (4
cos?E(£—1+%)], £>1-1%,

where r is a dimensionless tapering parameter that allows
us to tune how rapidly the amplitude is modulated within
the length of the signal 7.

This window has two interesting limits: For r =0 it
effectively becomes a rectangular window, while for r = 1
it corresponds to the well-known Hann window that is
characterized by C! continuity [63]. Values of r greater than
unity are equivalent to using a Hann window with a lower
maximum amplitude. For r > 0, the Tukey window has
smaller sidelobe levels in the Fourier domain than the
rectangular window, and the functional form also guaran-
tees that the signal is always zero at both ends, thus
ensuring periodicity while introducing side ripples with
smaller amplitude. Additionally, although with this choice
we fix the shape of the tapering function, we also maintain
an important degree of freedom thanks to the presence of
the parameter r, that allows us to explore effects of the
extent of tapering on both the input and output signal power
spectrum. Additional discussion about the importance of
the specific window shape is given in Appendix B.

If we apply the Tukey window in Eq. (4) to the original
chirp signal introduced in Eq. (2), we obtain a windowed
chirp that has the following form:

cos?[£ ( — D] sin{ gty lexp (log(@n /@) §) — 11}, §<5,

(1) = x4 sin {log(;’,' I Jexp (log(an/ay) £) — 1}}, rotol-t, (5)

cos?[E (£ —1+1%)] sin{ oL

log(wy /1)

Equation (5) can be implemented into the arbitrary
wave function of a commercial strain-controlled rheometer
(ARES-G2, TA Instruments), and the strain signal directly
generated by the motor using such a command with
a digital sampling frequency f, = 500 Hz is plotted in
Fig. 2(a) for r = 50% (solid blue line) and for r = 0 (solid

lexp (log(@n/@) §) — 11} $21-3.

|
grey line), i.e., constant amplitude. All of the other
parameters characterizing the chirp signal are the same
as in Fig. 1(b), namely, w; = 0.3 rad/s, w, = 30 rad/s,

=0.06, and T =14 s (TB ~66). A waiting time of
t,, = | s is also imposed before applying any chirp input;
this wait is necessary only from a signal-conditioning
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FIG. 2. Data presented are from experiments on the reference PIB solution. All chirp signals have the following parameters:
@, = 0.3 rad/s, @, = 30 rad/s, yo = 0.06, and T = 14 s (T'B ~ 66) but different degrees of tapering, i.e., different values of r. (a) Sine
sweep in strain y(#) (as proposed by Ghiringhelli ez al. [46]) with constant signal amplitude r = 0 (grey line). The enclosing dashed line
emphasizes the square nature of the signal envelope. Superposed is a windowed chirp with » = 50% (blue line) together with its tapered
envelope (dark blue dashed line). Both signals begin at time #,, = 1 s as described in the text. (b) Single-sided amplitude spectrum of the
strain signal for the same values of the tapering parameter r as in (a): r = 0 (grey solid line and square) and » = 50% (blue dashed line and
circle). (c) Measured stress response as a function of the time corresponding to the input signals of (a): » = 0 (grey line) and r = 50% (blue
line). (d) Single-sided amplitude spectrum of the stress signals shown in (c). Data from the measured stress (r = 0, grey solid line and
square; r = 50%, blue dashed line and circle) are compared to the error-free spectrum (r = 0, black solid line; r = 50%, black dashed line)
obtained in the frequency domain by multiplying the theoretical transfer function from the fractional Maxwell model, i.e., the complex
modulus G*(w) of the material, and the DFT of the experimental strain input. (¢) Comparison of the viscoelastic moduli G*(w) =
G'(w) + iG”(w) obtained by a classical frequency sweep (G’, black solid line; G”, black dashed line) with the results obtained from a
windowed chirp with different tapering parameters: r = 0 (G’, grey solid line and filled square; G”, grey dashed line and open square),
r = 10% (G’, red solid line and filled triangle; G”, red dashed line and open triangle), and » = 50% (G, blue solid line and filled circle; G”,
blue dashed line and open circle). The inset shows tan §(w) = G”"(w)/G'(®) (the same color code and symbols as in the main graph).

perspective in order to guarantee the strain output from the by a dashed line with the same color code. From this plot,
sensor is zero at the beginning of the signal and does not ~ we can see more directly how the Tukey window guaran-
have any implication from a theoretical standpoint. The  tees that the chirp signal is zero both at the beginning and
shape of the envelope of each signal is also shown, marked  at the end while smoothly modulating its amplitude from
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zero to a fixed maximum value, which is here set to be

The effect of this amplitude modulation on the Fourier
transform of the chirp signal is highlighted in Fig. 2(b),
where the amplitude spectra (i.e., the square root of the
power spectrum) of both the signals plotted in Fig. 2(a) are
shown (the same color code applies). While the spectrum of
the chirp with w(r) =1 is strongly affected by ringing
across the entire frequency range, the windowed chirp has a
much smoother transform with no visible ringing artifacts.
However, it is important to notice also that, while the
amplitude spectrum for r = 0 oscillates around an ideal
pink spectral response [with |#(w)|~ @~'/?] across the
entire signal bandwidth, as soon as r > 0, a portion of the
power spectrum is affected by the reduced amplitude of
the signal. This reduction in the signal strength influences
the lowest and highest frequencies excited during the
window rise and fall times, respectively. As a consequence,
windowing affects an increasingly wider range of frequen-
cies for large values of the tapering parameter, yielding
inherently different power spectra for each value of r.

The measured shear stress response o(¢) of the reference
PIB solution to the strain input signals shown in Fig. 2(a)
are plotted in Fig. 2(c) with their corresponding amplitude
spectra in Fig. 2(d). Similarly to the strain input signal, the
shear stress measured as a response of the windowed chirp
is also forced to be zero at both the beginning and the end of
the time interval 7. By contrast, the stress measured as a
response to the chirp with r = 0 is clearly nonzero at the
end of the signal. The corresponding amplitude spectra
computed directly from the DFT of o(¢) and plotted in
Fig. 2(d) also show the presence of sidelobes as observed in
the strain input.

From the DFT of the strain and stress signals, we can also
compute the elastic and loss moduli via Eq. (3), following
the procedure detailed in Appendix A. The results are
shown in Fig. 2(e). The black lines indicate reference
values measured using a classical frequency sweep [the
solid line is G'(w), and the dashed line is G” (w)], while the
symbols represent the results from different windowed
chirps [closed symbols for G'(w) and open symbols for
G"(w)]. This figure clearly highlights how the suppression
of sidelobes in the Fourier transform of both output (stress)
and input (strain) signals also dramatically reduces the
oscillations in the computed moduli with respect to the case
of a nonwindowed chirp. The inset shows the same data
presented in terms of the phase angle tan § = G”/G’, which
is an important parameter to follow when studying gelation
[65,66], as we explain in more detail in Sec. IV. This
representation is also more sensitive to the presence of
ripples in the power spectrum, as the ratio of two quantities
can magnify the influence of oscillations. A visual inspec-
tion of each signal shows that the application of an
amplitude modulation is extremely efficient in suppressing
spectral leakage, as a comparison with results from the

classical frequency sweep (solid black line) shows.
However, we can also see that there remain differences
between the values obtained with » = 10% and r = 50%,
suggesting that not all values of the tapering parameter give
the same level of enhancement. It is therefore compelling to
explore how to determine the value of r that provides the
best estimate of the viscoelastic spectrum.

C. Optimization of windowed chirps

In order to determine the optimal value of the tapering
parameter, we conducted a systematic series of experiments
on the PIB solution, testing windowed chirps with increasing
values of r in the range 0 < r < 5. Each sequence of tests is
preceded and followed by a frequency sweep at the same
amplitude with, respectively, 5 and 30 data points per
decade. These sweeps are used to ensure that there is no
significant change in the viscoelastic spectrum of the
reference material during the tests. After postprocessing
the data collected from the rheometer (see Appendix A),
we compute the storage and loss moduli using Eq. (3). In
order to quantify the differences between the moduli
measured with the classical discrete frequency sweep and
those determined with the windowed chirps, we then
compute the root-mean-square (rms) error between the
two estimates of the relaxation spectrum over all the
frequencies available:

eq(r) = rg}s{log {M} } (6)

sweep (Cot>

eo-mlafEE iyl o

thus obtaining a single value of the error for each contri-
bution to the complex modulus and for each value of 7 in one
series of tests. To match the frequencies at which the moduli
are computed when using a chirp signal with those of the
frequency sweep, we perform a cubic spline interpolation of
the discrete frequency sweep data set that is obtained with 30
points per decade. The experiments are repeated at least
6 times, and the values of the error obtained for each r,
averaged over all the experiments, are shown with dark gray
circles in Figs. 3(a) and 3(b) for the elastic and loss moduli,
respectively. The error bars represent one standard deviation.

The observed trends are robust for both contributions to
the complex modulus: There is an initial region for small
values of the tapering parameter (r < 1%) that can be
approximated by an exponential decay of the form &~
exp(—200r) as evidenced by the dashed black line. For
larger values of r, the decrease is less pronounced until the
error reaches an intermediate minimum plateau. Finally, for
r > 15%, the error begins to increase quadratically, as
highlighted by the dotted black line. These tests thus show
that there is a range of values of the tapering parameter,
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FIG. 3. Summary and comparison of experiments and numeri-
cal simulations on the reference PIB solution. The plots show the
rms error in the determined storage modulus (a) and loss modulus
(b), defined in Egs. (6) and (7), as a function of the tapering
parameter r. Black circles (g5, filled circle; €57, open circle)
show the experimental results averaged over six different real-
izations. Error bars correspond to one standard deviation. Blue
squares (g, filled; €57, open) are the results from numerical
simulations without noise, while green diamonds (g4, filled; &5,
open) show the trend from simulations when Gaussian noise is
added to the stress signal in order to mimic experimental
conditions. The dashed line is an exponential fitting to the data
for r < 1%, while the dotted line shows the quadratic divergence
of the error for r > 15%.

for r € [6, 15]%, that minimizes the error obtained in the
viscoelastic spectrum measured with a windowed chirp and
reduces it by almost 2 orders of magnitude with respect to
the case of a nonwindowed chirp. The magnitude of this
improvement brings the difference between results for a
classical frequency sweep and a windowed chirp within
the range of experimental accuracy that can be obtained
with single-tone frequency sweeps. We therefore con-
clude that an OWCh signal can indeed be used to measure
the linear viscoelastic response of any soft material with
the same level of accuracy as a classical frequency sweep
[67] while reducing by several orders of magnitude the
total test duration required. An analogous optimization

procedure is also performed on a micellar solution, and
the corresponding results are in good agreement with the
results for the PIB solution (see Appendix C for addi-
tional discussion).

While this experimental investigation alone is sufficient
for determining the optimal range of values for the tapering
parameter, it does not provide sufficient insights to under-
stand why we observe this trend in the estimation error.
Having a theoretical framework or numerical tool to
perform the same type of tests and compare the results
to experimental data offers the additional benefit of gaining
new insights into, and understanding in more depth, the
performance of windowed-chirp signals within the specific
context of mechanical spectroscopy.

III. NUMERICAL INVESTIGATION

A. Constitutive equation for PIB solution

The first step in performing any analytical or numerical
analysis of our OWCh protocol is to determine an appro-
priate constitutive equation for the PIB solution.
The dependence of G’ and G” on w, as first shown in
Fig. 1(c), is characteristic of a viscoelastic fluid; at low
frequencies, the loss modulus is higher than the elastic
storage modulus, and, therefore, the material is expected to
flow for any nonzero applied stress (with lim{tan 6} — oo
for w — 0). The simplest viscoelastic model that captures
such a behavior is the Maxwell model, and its mechanical
analog consists of a dashpot of viscosity # in series with a
spring of shear modulus G [23]. The Maxwell model is
sufficient for simple viscoelastic liquids characterized by a
single timescale that corresponds to the relaxation time of
the material 7 = /G = 1/w,. The model predicts that the
storage and loss moduli should increase, respectively,
quadratically and linearly at low frequencies (0 < 1/7).
However, very few viscoelastic liquids can be quantita-
tively described by the Maxwell model with the exception
of micellar solutions (see Appendix C for an example). The
majority of real viscoelastic fluids, including the PIB
solution used in this study, have a polydisperse micro-
structure and a broad relaxation spectrum governed by
Rouse-Zimm dynamics. This difference is reflected in the
frequency response, which features different power-law
regimes than those predicted by the Maxwell model. In
order to capture the presence of multiple relaxation modes,
one can use a generalized Maxwell model, obtained by
combining several Maxwell models in parallel, but this
model increases the number of fitting parameters substan-
tially and does not convey any additional microstructural
insight [68]. More recently, several researchers have
considered the fractional Maxwell model (FMM) [69],
which consists of two fractional or “spring-pot” elements
arranged in series, to capture these multiple relaxation
modes using a very small number of fitting parameters.
A fractional element, first introduced in the context of
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viscoelasticity by Scott-Blair [70], is a mechanical element
characterized by the following constitutive equation:

a

d

olt) = V(1) (8)
where 0 < a < 1 and the parameter V, which sets the scale
of the stress, is sometimes called a quasiproperty, since its
units are Pas® [71]. The fractional derivative represented in
Eq. (8) has a precise mathematical definition and can
therefore be appropriately computed, e.g., using a Caputo
derivative [72]. As explained in more detail in Ref. [71], a
spring-pot element has both an elastic and a viscous nature,
the balance of which depends on the value of a. In fact,
in the limit of @ = 0, one recovers the classical elastic
response of a Hookean spring (with V — G), while for
a = 1, Eq. (8) is equivalent to the constitutive equation for
a Newtonian fluid (with V — 7). For this reason, the
mechanical analog of a fractional element is also called
a spring-pot. If we indicate the quasiproperties of the two
elements in the model with (V,a) and (G, /), then the
constitutive equation for the FMM can be written as [71]

a—f a
a0 = 6 n(0) - S o). ©)

where we assume a > f# without the loss of generality.
By taking the Fourier transform of Eq. (9), one can easily
obtain an analytic expression for the complex modulus
G*(w) of the fractional Maxwell model (i.e., its transfer
function) (see Ref. [73] for more details). The expressions
for G'(w) and G"(w) can easily be fitted to the exper-
imental data to determine the values of the four constitutive
parameters. For the PIB solution, the fitting procedure
yields the following values: a=1, V=7 = 18 Pas,
B =0.36, and G = 50 Pas®3 (see also Appendix A).
Interestingly, one of the elements is effectively a classical
viscous dashpot, indicating that the terminal response
corresponds to a viscous liquid with lim G” (@) — nw for
@ — 0. This correspondence also simplifies Eq. (9) con-
siderably from the point of view of numerical integration
procedures. In fact, analyzing the behavior of a FMM
analytically for a windowed-chirp strain input is quite
complex and does not provide a closed-form expression
that can be computed without any numerical assistance.
Therefore, it is actually simpler to study the system
response by directly integrating Eq. (9) with a strain input
given by Eq. (5).

B. Numerical simulations of windowed chirps

To better understand trends in the error as a function of
the tapering parameter, we perform a series of simulations
using the fractional Maxwell model. Simulations are set up
to accurately integrate Eq. (9) so that the numerical error is
smaller than the error due to spectral leakage. To this end,

we use a generalized backward differentiation formula with
a time step h =2 x 107% s, as determined by comparing
results with increasingly smaller time steps. To reduce
truncation errors and thanks to the fact that a = 1, the
analytical expression for the strain rate y(z) is directly
implemented as the input instead of the strain y(r). The
resulting stress signal is calculated for the same values of
the tapering parameter used in the experiments and then
down-sampled by cubic spline interpolation to obtain a
signal with the same sampling frequency used in the
experiments (f; = 500 Hz). Each data set of strain and
stress thus obtained is processed with the procedure used
for the experimental data (see Appendix A) to obtain values
of G’ and G”. Analogously to the experiments, an average
error for each viscoelastic modulus is obtained using
Egs. (6) and (7), where the values corresponding to a
frequency sweep are directly calculated from the analytical
expressions for G*(w) (see Ref. [73]).

The results of this analysis are shown with light blue
squares in Figs. 3(a) and 3(b) for the storage and loss
moduli, respectively. The trends closely approximate the
experimental ones for values of the tapering parameter up
to about 6%, that is, until the beginning of the optimal range
of r. However, while the experiments show a plateau in the
magnitude of the rms error followed by a subsequent
quadratic increase, numerical simulations display a con-
tinuously decreasing error in both G’ and G”, with a
minimum being obtained for r = 100%, corresponding
to a full Hann window. This trend is consistent with the
observation that the Hann window has lower sidelobes than
any of the other tapered cosine windows (0 < r < 1) while
retaining the benefit of general periodicity (thanks to the
signal having the same zero value at both ends). This result
can be further appreciated by comparing the amplitude
spectrum of the stress signal as computed by taking the
DFT of the measured data versus the “ideal” spectrum
computed as |G*(w)7(w)|, where G*(w) is the complex
modulus analytically derived for the FMM. As Fig. 2(d)
highlights, the decrease in spectral leakage for increasing r
is evident from the improvement of the estimate of the ideal
spectrum (solid and dashed lines). If there were no extrinsic
factors to account for when considering the optimi-
zation problem, our numerical simulations show that
the best window would be a Tukey window with r =
100% (or Hann window).

Nonetheless, the experiments clearly show that this is not
the case when performing measurements with real rheo-
metric instrumentation, which should not come as a
surprise. In fact, while numerical simulations are free of
any noise in either the strain input or in the stress output
signal (the numerical integration errors in the stress signal
being small enough not to interfere with the error analysis
pursued here), the recorded experimental signals are not
noise-free. In particular, the shear stress signal measured by
the force rebalance transducer of the rheometer has its own
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transfer function and frequency characteristics. Even when
left unperturbed, small ambient vibrations are detected by
the sensor transducer, which is clearly evident especially
when looking at signal traces acquired without any applied
deformation (that is, imposing zero strain).

To test this hypothesis, we analyze the stress signals
obtained from measurements performed in the initial
waiting time during which the strain is maintained at zero.
Taking the root-mean-square error of the signal for
0<rt<t,, we determine a noise level close to 0.03 Pa.
We therefore add a Gaussian white noise with this standard
deviation to the stress signals computed numerically and
repeat the postprocessing protocol to obtain the new
estimation of the viscoelastic moduli and their associated
errors. The results, obtained using the same noise vector for
all stress signals, are shown in Figs. 3(a) and 3(b) with
(green) squares. The trends are now much closer to the ones
observed experimentally, thus confirming that the mini-
mum plateau value of the rms error and the subsequent
power-law increase for large values of the tapering param-
eter are both due to the presence of a non-negligible noise
floor in the shear stress transducer (which decreases the
SNR of the output signal). This analysis explains why, in
the presence of noise, the optimal window corresponds to
an intermediate value of the tapering parameter. Although
spectral leakage is decreased, as r increases, the power
spectrum of the input signal also decreases for a progres-
sively wider range of frequencies at both ends of the
spectrum, thus deteriorating the SNR of the output signal.
Additional considerations regarding the trends in the rms
error and the choice of the tapering function form are given
in Appendix B.

So far, we have used viscoelastic fluids that are
inherently stable over time (with 7, — o0), and thus
constant material properties, in order to optimize the
experimental procedure. In the next section, we proceed
to show how an optimally windowed chirp can be used to
monitor the viscoelastic properties of a mutating system
by looking at the gelation dynamics of an acid-induced
protein gel [9-12].

IV. APPLICATION TO A MUTATING SYSTEM

Time-resolved mechanical spectroscopy is crucial when
studying systems such as gels undergoing a liquid-to-solid
transition. The principal feature characterizing a liquid-to-
solid transition is knowledge of the gel point (GP), i.e., the
point in time when the material microstructure percolates to
form a sample-spanning network. In many systems, the
self-similarity of the gel structure results in a characteristic
broad distribution of relaxation modes that is reflected in a
power-law dependence of both viscoelastic moduli on
the angular frequency such that G’ ~@w® and G” ~ 0,
where 0 < a <1 [74]. As a consequence, their ratio
tan 5 = G”"(w)/G'(w), or, equivalently, the phase angle &
between the stress and the strain signal, is independent of

angular frequency [65,66,74-76]. A gel that shows this
type of viscoelastic response is also referred to as a critical
gel. Being able to accurately resolve the GP is therefore
strongly dependent on the ability to have enough frequency
resolution in the linear viscoelastic power spectrum at any
point in time while still maintaining a small mutation
number.

Casein gels are protein gels composed of sodium casein-
ate and deionized water. Their gelation can be induced by
adding glucono-d-lactone (GDL), which spontaneously
hydrolyzes in solution decreasing the pH. As soon as
the solution isoelectric point is reached, agglomeration is
induced, and the caseinate proteins form an elastic sample-
spanning network. The time at which gelation is initiated
and the rate of mutation depend on the GDL content [77].
Here, we present results for one specific composition with
the expected characteristic mutation time 7, ~ 120 s (see
Appendix A for more details). Before gelation begins, the
solution is essentially a low-viscosity Newtonian fluid and
can easily be transferred to the rheometer for measurements
without any residual memory of loading history.

To quantify the casein gelation process with the ARES-
G2 rheometer, we monitor the acid-induced agglomeration
of the colloidal proteins with a sequence of continuous
OWCh signals. Immediately after preparation, the mixture
is poured into a double-gap Couette cell geometry, which is
prealigned and set in advance at a temperature of 25 °C. The
rotor is then lowered to the working gap, and the exper-
imental procedure, already prepared in the rheometer
software, is initiated. The procedure consists of applying
repeated OWCh signals over a duration of about 6 h. The
force transducers are zeroed at the beginning of the
experiment, while the strain is zeroed before each signal
by imposing y = 0 for a waiting time #,, = 1 s. Given the
estimated value of z,,, we use chirp signals with the
same length and frequency range used for the initial
optimization process, i.e., T = 14 s, w; = 0.3 rad/s, and
@, = 30 rad/s, corresponding to 7B ~ 66. The maximum
strain is set to yo = 0.01, and the tapering parameter
r = 10% for all chirps. At each time step, we apply a
single OWCh signal, and each chirp pulse allows us to
obtain the viscoelastic spectrum of the mutating casein gel
over two decades of the angular frequency while main-
taining a mutation number much smaller than unity
(Nyw = T /7 = 0.12). The resulting strain and stress
signals from the rheometer are exported at the end of
the experiment and processed separately. The gelation
dynamics are presented in Figs. 4(a)-4(d), where the first
column [Figs. 4(a) and 4(b)] shows the evolution of the
material behavior over time, while the second column
[Figs. 4(c) and 4(d)] shows its dependence on the angular
frequency for a few characteristic values of elapsed times.

In Fig. 4(a), the storage and loss moduli measured at
@ = 10 rad/s are plotted as a function of the time, starting
from the first input chirp. This figure is constructed by
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FIG. 4. Time- and frequency-resolved gelation of a casein gel obtained using an OWCh sequence with r = 10%, T = 14 s,
w; = 0.3 rad/s, w, =30 rad/s, TB = 66, t,, = 1 s, and yy = 1%. (a) Evolution of the viscoelastic moduli (G, line; G”, dashed line)
as a function of the gelation time for one selected test frequency (w = 10 rad/s). (b) Phase angle § as a function of the time for different
frequencies: w = 0.3 rad/s (grey line), = 10 rad/s (brown line), and @ = 20 rad/s (black line). At the gel point (indicated by the pink
right pointing triangle), all three frequencies pass through a single value of o, because the phase angle is independent of frequency
[65,66,74]. (¢) Viscoelastic moduli (G’, closed symbols; G”, open symbols) and (d) phase angle as a function of frequency at different times
during gelation: ¢ = 1.21 h (blue filled circle), £ = 1.31 h (violet filled square), 1 = 7, = 1.46h (pink right pointing triangle), and
t = 5.25 h (red filled diamond). Symbols and colors correspond to the points indicated in (a) and (b). At the gel point, the phase angle is
invariant with the frequency (pink right pointing triangle), while before and after there is a more pronounced dependence of 6 on . The solid
lines in (c) and (d) correspond to the model prediction obtained by assuming a mechanical model composed of a single fractional element as
described in Sec. IV (the same color code applies). (e) and (f) show, respectively, the evolution in the gel strength and average relaxation
exponent as a function of time. The respective values at the gel point are indicated with the same symbol (pink right pointing triangle).

selecting the values of G’ and G” obtained for w =
10 rad/s from all of the individual chirp signals and
corresponds to a typical gelation test protocol. The data
show that the mixture remains essentially Newtonian for
about 1 h after the experiment is started, with values of both
moduli below the noise level of the instrument (gray data).
During this time, the pH of the mixture is slowly decreas-
ing towards the isoelectric point. As soon as agglomeration
is induced and the proteins begin to form an elastic
network, both the storage and loss moduli monotonically
increase over time. There is a fast initial change over many
decades in modulus that happens within the first half hour
from the beginning of the gelation process, followed by a
subsequent slower evolution towards a steady state. The
representation in Fig. 4(a) is equivalent to that obtained by
conventional rheometric gelation experiments performed

with a time sweep at a single constant w. Although for
clarity only one frequency is shown here, using the OWCh
protocol, we actually have access to all frequencies
between @y, = 27/T = 0.45 rad/s and @y = @ =
30 rad/s at an interval Aw = 2x/T, that is, more than
70 frequencies for this specific experiment. Attempting to
obtain the same results with classical time sweeps would
dramatically decrease the number and range of frequencies
accessible.

In Fig. 4(b), we present the evolution of the phase angle
é(w) = tan"'[G"(w)/G'(w)] over time for three of the
frequencies available. As in Fig. 4(a), there is an initial
period where the torque signal is below the noise floor
of the instrument. Then, after approximately 1 h, a network
begins to form, which is always dominated by elasti-
city, since § < #/4 or, equivalently, G’ > G” at all times.
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Based on the magnitude of the measured loss modulus, we
can also deduce that viscous dissipation in the solvent is
negligible, as its contribution to G, = 5, @ is bounded
within the range [0.3 x 1073,0.3] Pa, suggesting that the
viscoelastic dissipation we measure is dominated by the
interactions between the protein network and the surround-
ing fluid matrix. The GP can be clearly identified as the
point in time (highlighted by a pink triangle at 7, = 1.46 h)
at which the curves at three different frequencies collapse,
denoting the existence of a unique value of the phase angle
0, independent of w. The other curves at different frequen-
cies are not shown here for clarity, but they all lie between
the gray and the black bounding curves and also collapse
at the GP.

In order to show more directly the frequency dependence
of the viscoelastic moduli, in Fig. 4(c), we plot G’ and G” as
a function of the angular frequency at four different times
during gelation, highlighted with matching symbols and
colors in Figs. 4(a) and 4(b). In Fig. 4(d), the same data are
presented in terms of the phase angle o. Figure 4(c) shows
more directly that at all times, and for all the frequencies
probed, this composition of the casein gel is dominated by
elasticity with G’ > G”. In addition, the OWCh sequencing
protocol allows us to detect a unique characteristic of this
material, which cannot be discerned by looking simply at
the transient evolution of the moduli at one frequency: The
measured storage and loss moduli are very close to a single
power law throughout the gelation process, not only at the
exact gel point. To quantify how closely the spectrum
represents that of a critical gel, we look directly at the
functional dependence of the phase angle on the angular
frequency in Fig. 4(d). Thanks to the high time-frequency
resolution of the OWCh signal, we are able to distinguish a
clear point in time (pink triangle at # = 7, = 1.46 h) when
the phase angle is a constant (6, = 0.34 + 0.01) and which,
within the experimental error and sensitivity, uniquely
identifies the GP. Before and after this critical point in
time, the functional form of &(w) switches from a pregel
form (monotonically decreasing with frequency) to a
postgel form (monotonically increasing with ®); these
characteristics have been previously reported for different
mutating systems [47] and are considered a hallmark of the
sol-to-gel transition. Keshavarz [78] showed that the casein
gel studied in the present work is characterized by a simple
power-law behavior even many hours after passing through
the gelation point. Herein, we clearly see that, just prior to
and after the GP, the phase angle changes by less than 10%
over the entire range of frequencies tested (about 2 orders of
magnitude), thus confirming that the gel remains close to a
critical gel even post-GP, which constrains the data sets for
both G’ and G” to be described simultaneously, with the
value of § uniquely identified by the power-law exponent a.

The frequency resolution achieved using OWCh signals
not only allows us to follow the evolution of the viscoelastic
spectrum measured experimentally, but also gives us an

opportunity to monitor how the material properties evolve
over time once an appropriate constitutive model is
selected. Since this particular protein gel is always very
close to a critical gel, we model its evolution using a single
mechanical fractional element with two time-evolving
quasiproperties [V(7),a()] [12]. The relaxation modulus
(or impulse response) of a single fractional element can be
analytically derived [69] and is given by

G(1) = —F(l\/— 3 (10)

where I'(s) is the Gamma function of the argument s. If we
take the analytical Fourier transform of G(¢), we obtain an
expression for the complex modulus (or transfer function)
of the fractional element G*(w) = G'(w) + iG"(w) with

G'(w) = Vw* cos <ga), (11)
G"(0) = Ve sin (g a> (12)
Using these expressions, we can then deduce that
az?z%tan‘l <g—/,/) (13)
V= \/Glz(w)w:“ Gw). (14)

Equation (13) clearly shows that the power-law exponent @
is uniquely related to the value of the phase angle &,
as anticipated above. From Eqgs. (13) and (14), we can
easily calculate values of the model parameters for each
frequency available and obtain a single unique average
value at each time by averaging over all the frequencies
tested [V(z), &(t)]. We can then plot their evolution over the
entire duration of the experiment as shown in Figs. 4(e)
and 4(f) for the average gel strength V() and the exponent
a(t), respectively. Using Egs. (11) and (12), together with
the definition of & and the values of [V(z), &(f)] estimated
from the experimental data at the corresponding times, we
can directly compare the model with the experimental data.
The viscoelastic moduli and the phase angle thus calculated
are plotted with solid lines (using the same color code) in
Figs. 4(c) and 4(d), respectively.

This example illustrates the ability of the OWCh pro-
tocol to resolve the gelation process of a mutating sample
with optimized time and frequency resolution while guar-
anteeing a small mutation number and an imposed sample
strain that always remains within the linear regime. The
information attainable with this technique opens new
possibilities to resolve macroscopic gelation dynamics of
a wide range of systems with a simple experimental
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protocol that can be performed on a commercially available
rheometer without the use of any additional hardware.

V. SUMMARY

Time-resolved mechanical spectroscopy is very impor-
tant in the quest to relate microscopic dynamics to the bulk
material behavior of soft materials. Such connections are
fundamental to improving our understanding of a large
number of soft materials currently employed in different
industrial, biological, and medical applications and will
become even more essential in the development of the next
generation of soft materials, with microstructural compo-
nents designed to achieve specific macroscopic properties.

In this work, we have addressed the issue of defining and
optimizing the input signal for time-resolved mechanical
spectroscopy. Based on the requirements specific to
mechanical measurements, we have identified the potential
of frequency-modulated exponential chirp signals. These
sequences are inherently affected by spectral leakage when
working with small time-bandwidth constants. Inspired by
the biosonar signals that bats and dolphins use for echo-
location, we have tackled the issue of spectral leakage by
designing a suitable modulation of the signal envelope
using a Tukey window function, with an adjustable time
width defined by a dimensionless parameter r. Using a
stable reference PIB solution, we performed an optimiza-
tion procedure that enabled us to identify an optimum range
of values (6 <r <15%) for which the error in the
estimation of the viscoelastic moduli (defined with respect
to the complex modulus measured by standard frequency
sweeps) is decreased by almost 2 orders of magnitude.
A comparison with detailed numerical simulations of the
same material, using a fractional Maxwell model being
sheared with the same windowed-chirp protocol, clearly
shows that this optimal range is set by the extrinsic noise
floor that is inevitably present in any experimental pro-
cedure. These experiments and computations highlight how
using an optimally windowed chirp enables us to measure
the linear viscoelastic spectrum with the same accuracy as a
classical frequency sweep while dramatically reducing the
total measurement time by a factor of about 10%. This
improvement enables us to study the evolution in the
viscoelastic response of time-evolving systems such as
gels and thixotropic pastes.

To illustrate this enhanced resolution, we used a
sequence of OWCh signals to follow the gelation of an
acid-induced protein solution with a characteristic mutation
time of about 120 s. The length of the signals was chosen to
guarantee a mutation number much smaller than unity. An
analysis of the output stress and input strain time sequences
allowed us to measure the viscoelastic moduli over two
decades in frequency during the entire duration of the
gelation process. The resulting information allows us to
clearly discern the gel point and analyze the time evolution
of the material properties within the framework of a critical

gel model that can be represented with a single fractional
spring-pot element.

The OWCh framework constructed in this work is a
powerful tool that will enable researchers across disciplines
to study the mechanical macroscopic behavior of soft
materials with both time and frequency resolution using
current state-of-the-art rheometers, even with rapidly
mutating systems. The signal characteristics can be adapted
to different materials and instruments that are able to
generate a strain- or stress-controlled arbitrary perturbation
and can work in any frequency range accessible by the
instrument. The ability to perform time-resolved mechani-
cal spectroscopy at the macroscale, coupled with time-
resolved microscopic probes such as velocimetry [35,79],
light scattering [80], and neutron scattering [29,81], opens
novel possibilities for identifying the connection between
the underlying microstructural dynamics and the bulk
behavior that characterizes soft materials.
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APPENDIX A: MATERIALS AND METHODS

In order to develop and test the OWCh protocol, we
employed several different soft materials. The majority of
initial experiments used to optimize the method were carried
out on two reference fluids with a well-defined viscoelastic
spectrum: (i) a semidilute polymer solution of 8.5 wt % poly
(isobutylene) in hexadecane (both supplied by Sigma
Aldrich), referred to as a PIB solution in the main text,
and (ii) a surfactant-counterion solution of cetylpyridinium
chloride (CPyCl), sodium salicylate (NaSal), and sodium
chloride (NaCl) in deionized water with CPyCl: NaSal : NaCl
concentrations of 100:60:33 mM, referred to as a micellar
solution (CPyCl and NaSal supplied by Alfa Aesar, reagent
grade NaCl purchased from Sigma Aldrich). The storage and
loss moduli of the PIB solution measured with a standard
frequency sweep are shown in Fig. 1(c) by the black solid and
dashed lines, respectively. The storage modulus G’ is lower
than the loss modulus G” for frequencies below the crossover
frequency w,. = 30 rad/s, meaning that in the limit of small
deformation rates the material flows similarly to a viscous
fluid. However, for frequencies with @ > w,, the material
becomes increasingly elastic, and G’ becomes greater than
G". This type of linear viscoelastic response is prototypical of
many complex fluids as well as a mutating system in its pregel
state, i.e., before gelation has occurred. As discussed in
Sec. Il A, such a behavior can be very well described by a
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FIG. 5. Fitting of the elastic and loss modulus measured with a
classical frequency sweep (G, filled circle; G”, circle). This is the
same data as in Fig. 1, determined with 30 points per decade but
plotted with only ten points per decade for clarity. The super-
posed magenta lines (G’, line; G”, dashed line) are best fits of the
analytical expressions for the moduli based on the fractional
Maxwell model presented in Sec. III A, which give a =1,
V=n=18 Pas, f =0.36,and G = 50 Pa $936_ The inset shows
the mechanical analog for the FMM, where one of the elements
becomes effectively a classical viscous dashpot since a = 1.

FMM. Figure 5 shows a comparison of the experimental
data obtained using a classical frequency sweep and the
analytical predictions for the viscoelastic moduli using
the FMM with the following fitting parameters: a = 1,
V =5 =18 Pas, # = 0.36, and G = 50 Pas®3°,

The PIB solution was designed to emulate the character-
istics of a NIST standard reference material (SRM1490),
even though this sample is no longer readily available or
supported [67]. It is very stable over time and does not
evaporate even after several days of experiments, making it
an ideal candidate to test different signal sequences without
incurring errors related to slow changes in composition.
The aqueous micellar solution, on the other hand, is more
volatile, and, therefore, each sample was used for no longer
than 40 min each time, as determined by initial exploratory
tests. The viscoelastic spectrum for this material is dis-
cussed in more detail in Appendix C.

A third material was also tested using the optimized
signal to provide an example of time-resolved mechanical
spectroscopy on a mutating system, in this case an acid-
induced protein gel [10]. The gel was prepared by dis-
solving caseinate powder (Firmenich) at 4 wt% in deion-
ized water. Homogeneous gelation was induced by
dissolving 1% wt glucono-d-lactone (GDL, Firmenich)
into the protein solution. Gelation does not begin immedi-
ately after dissolution, leaving time to transfer this initially
Newtonian mixture to the rheometer in its liquid state with
no memory of its loading history.

All measurements were carried out on a strain-
controlled ARES-G2 rheometer (TA Instruments).

The PIB solution was tested with a 50 mm diameter, 1°
stainless-steel cone, the bottom plate being directly con-
nected to a Peltier stage, allowing for precise control of the
sample temperature that is maintained at 25 °C during all
experiments. The micellar solution was tested using a
40 mm, 2° stainless-steel cone and the same lower Peltier
plate. This cone was equipped with a solvent trap that is
filled with water during the experiments and the sample
enclosed by the solvent trap cover to minimize evaporation.
The casein gel was tested in a double-gap concentric
cylinder geometry with a 32-mm-diameter recessed end
bob and a 34-mm-diameter cup, both constructed from
anodized aluminum. Double-gap geometries have the larg-
est surface area in contact with the fluid and, therefore, result
in a larger torque signal throughout the gelation process.

All the experimental data acquired with the ARES-G2
rheometer for different chirp sequences were exported and
postprocessed separately in MATLAB. The signals, measured
in time with an acquisition frequency f, = 500 Hz for all
the experiments presented in this work, were first checked
for any dc bias in the baseline average value due to either the
initial motor position or an inaccurate zeroing of the torque
transducer, then shifted to correct for such bias whenever
necessary. After several experimental and numerical trials,
this procedure was found to be essential in order to obtain the
most accurate values of the viscoelastic moduli. We later
found that a similar suggestion had been reported by Tukey
and co-workers [82]. Before being processed via the in-built
FFT functions, each signal was also cut to eliminate the
initial waiting time #,, and then zero padded after the last data
point to extend the signal to the closest power of 2 to improve
the performance of FFT algorithms. Time-dependent data
generated with highly resolved numerical simulations were
also down-sampled to the same acquisition frequency and
processed using the exact same functions written for the
experimental data, the only difference being the unnecessary
step of checking for possible biases.

Based on the files written for the analysis of the data
presented in this work, we have developed a MATLAB
graphical user interface (GUI) to facilitate the application
of the OWCh technique. The GUI has two main sections:
one to generate the signal in the time domain that is then
used as an input in the rheometer and one to perform the
steps for postprocessing the measured data and extract the
linear viscoelastic response G*(w) = G'(w) + iG" ().
The GUI is free and available upon request [83].

APPENDIX B: ERROR ANALYSIS

In order to achieve a more quantitative analysis of the
rms error as a function of the tapering parameter r
presented in Sec. I C, we provide here estimates for the
error based on simple scaling arguments. To show the
effect of the window shape, we also consider an extended
family of Tukey windows by assuming that the trigono-
metric term defining the amplitude modulation in Eq. (4)
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can be elevated to any integer power n. Although not
commonly used, in the limit of » = 100% such windows
correspond to the well-characterized family of sine and
cosine window functions [63]. In the following, we refer to
them as Tukey windows with degree n; e.g., the original
Tukey window introduced in Sec. II B is of degree 2.

As discussed previously, in an ideal system with zero
noise (in the output signal), the error in the measured
modulus decreases by tapering the input signal due to a
lower level of spectral leakage. However, real rheometric
systems have a certain noise level in their stress signal,
which leads to a corresponding noise level present in the
Fourier domain, &,4j(@). As the tapering of the strain
signal increases, the amplitude of the raw strain and the
resulting stress signal decreases and ultimately becomes
comparable to the noise level. It is known that the
corresponding error from noise in the measurements scales
as [51]

(B1)

1 5. -
€noise(a)) ‘ UDOISG((H>

“SNR(0) |G (0)7(@)

While low levels of tapering (small values of r) reduce
the spectral leakage (and its corresponding error) with a
negligible effect on the SNR, for higher tapering levels
(large values of r), the reduction in the power of the input
signal leads to a significant increase in the noise-to-signal
ratio [or, equivalently, a substantial decrease in the SNR,
as evident from Eq. (B1)]. As shown in Figs. 6(a)
and 6(b), the amplitude of the strain signal decreases
dramatically as the tapering ratio r approaches unity, which
is true for Tukey windows of any degree, although it is
more accentuated for larger values of n. One can clearly
observe this fact by comparing the corresponding Tukey
windows, at similar r values, in Figs. 6(a) and 6(b) for
n =1 and n = 4, respectively.

To characterize this adverse effect of tapering at large
values of r, we use the stationary phase method [84,85] and
find the following estimate for the Fourier transform of a
windowed-chirp signal:

() ~y9\V21

w(t, r) B2
V(/T)log(w,/wy) (B2

where t, = Tlog(w/w,)/log(w,/®;). Combining Eqgs. (B1)
and (B2), it is evident that the error is maximum when the
window function and the complex modulus are both mini-
mum. Thus, we can analyze the error close to the lowest
frequency @ = @, for which 7, = 0. Again, by using the
method of stationary phase and expanding the integrand to
the first nonzero order, we find the following asymptotes for
the Fourier transform of the strain signal:

~ T\ " -\ —(n+1)/2
o =rar (2) (Toniog2) " py

where n corresponds to the degree of the Tukey window. The
prefactor a(n) isequal to v/27/2, 1,v/2x/2,2, and 3+/27/2
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FIG. 6. The window function w(t) is plotted for Tukey windows
with (a) n = 1 and (b) n = 4. The different blue, green, magenta,
and red colors correspond to r = 50% (blue line), r = 100%
(green line), r = 150% (magenta line), and r = 200% (red line),
respectively. (c) The computed errors for the complex modulus,
from numerical simulations, are plotted versus the tapering
parameter r for different Tukey windows: n = 1 (green dot filled
circle), n =2 (blue dot filled circle), n» =3 (magenta dot
filled circle), and n = 4 (red dot filled circle). The corresponding
solid lines show the error predictions from Eq. (B4) with ¢; = 0.3
and ¢, = 0.126. The gray line represents the case of n = 0.

for integer values of n from 0 to 4, respectively. This scaling
for 7(w,), along with the scaling suggested in Eq. (B1),
suggests that the maximum error due to the noise in the
signal scales as 6,0ic (@1)/G* ()7 (®;), which grows with
the tapering ratio in a power-law manner ~r". However, the
average error is calculated for a combination of data points
that are both in and out of the tapered zone. Consequently,
we propose that the average error is the following linear
superposition of error for the internal points (which, similar
to the n = 0 case, are not tapered by the window) and the
points at the start and end of the signal (that are tapered by a
Tukey window with degree n):

o = ¢y ( ; G"S(eg:);io) K/\g—i +— (ln) (cziﬂ) ’ A<n+1)/2] :
(B4)

where A = Tw, log(w,/w,), N is the number of points in
the frequency domain over which the average error is
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calculated, and ¢y and ¢, are two fitting constants of the
order of unity. It is important to emphasize that the proposed
formula captures only the error due to the noise level in the
stress signal and does not include the contributions due to the
spectral leakage. However, at large values of r, the error due
to spectral leakage is minimal, and the average error is
dominated by the transducer noise in the stress signal (as
supported by our numerical simulations in Sec. III). In this
limit, as the proposed formula suggests, the average error
increases with the tapering parameter in a power-law
manner € ~ r".

In order to check the proposed prediction, we perform
additional numerical simulations following the procedure
described in Sec. III. We change the degree of the applied
Tukey windows and perform tests with window families at
four different values of n =1, 2, 3, 4. Figure 6(c) shows
the computed values of the rms error in the amplitude of
the complex modulus €5. as a function of the tapering
parameter r for different degrees of Tukey windows. It is
evident that, at large values of the tapering ratio (r > 0.1),
the error scales as r".

The proposed formula for the average error [Eq. (B4)] is
fitted to the data, and, for all tested families of Tukey
windows with different values of n, the predicted error
[Eq. (B4) with ¢; = 0.3 and ¢, = 0.126] matches well with
the computed rms errors from the numerical simulations at
large values of r (r > 10%).

This analysis further supports the conclusions drawn
from Sec. III that, at large values of r, the background noise
in the measured signal can induce significant errors that
grow with the tapering parameter r. It also shows that such
errors increase in a polynomial manner with the degree of
the window function n. By contrast, at small values of the
tapering parameter (r < 10%), the error is dominated by
spectral leakage and decreases with increases in the
tapering ratio. At intermediate values of r € [6, 15]%, these
two contributions to the noise both play a role and constrain
the maximum reduction in noise that can be achieved via
the OWCh protocol. We note that a more accurate analysis
of the transducer noise and transfer function can be pursued
to help deconvolve its effect and possibly extend the
optimal range of the tapering parameter to larger values
(see Dullaert and Mewis [86] and Vermant et al. [87] for a
direct example of how to characterize and model the
transducer transfer function). Finally, we note that the
comparison of different Tukey windows shown in Fig. 6(c)
highlights that using a degree n = 2 is advantageous. In
fact, while the initial decrease in the error is comparable to
that of higher degrees (with n = 1 having the highest values
of &5~ for the same r), the subsequent divergence is the least
pronounced and thus provides the widest range of r for
maximum noise reduction.

APPENDIX C: MICELLAR SOLUTION

As mentioned in Sec. II C, the experimental procedure
used to determine the optimal value of the tapering

parameter was employed on both the PIB solution and
also on the aqueous micellar solution. The viscoelastic
moduli as measured with a conventional discrete frequency
sweep are shown in Fig. 7(a) in black. As explained in
Sec. NI A, the micellar solution is almost perfectly
described by a simple single-mode Maxwell model (with
G=38Pa and 7 =75n/G =1.19s) over the range of
frequencies of interest. Figure 7(a) also shows the values
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FIG. 7. (a) Viscoelastic moduli of the CPyClI micellar solution.
Reference values (G, line; G”, dashed line) are measured with a
sequence of sine steps at different frequencies. A comparison
between results measured using optimally windowed chirps
(r = 10%) with two different time-bandwidth products obtained
by changing only the length of the signal 7: TB = 8.6 (G, blue
filled triangle; G”, blue triangle) and TB = 107 (G’, green filled
square; G”, green square). The frequency range is kept constant
with w; = 3 rad/s and @, = 30 rad/s to guarantee a consistent
comparison between chirps of different durations. Results ob-
tained using a separate optimally windowed chirp (r = 10%) with
the frequency range adjusted to the length of the signal (7' = 14 s,
w; = 0.3 rad/s, w, = 30 rad/s, and TB = 66) are also reported
with circles (G’, red filled circle; G”, red circle). The nominal strain
for all signals (sine steps and chirps) is y, = 6%. (b) Trends of the
error for the magnitude of the complex modulus as a function of
varying time-bandwidth constant 7B for an optimally windowed
chirp with r = 10%. Results for both the PIB solution (dot filled
circle) and the micellar solution (dash filled star) are shown.
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of G’ and G” obtained using two different windowed
chirps, both of them with r = 10% but with two different
values of the time-bandwidth constant. In order to system-
atically compare the results, the moduli are shown only
within the frequency range that is resolvable with the
smallest TB tested, i.e., TB = 8.6. The chirps were
designed to span one decade in frequency with
w, =3 rad/s, w, = 30 rad/s for any time-bandwidth con-
stant; this way, the shortest signal can be imposed as fast as
T =2n/w, ~2s. The other signals are then adjusted,
increasing their length while maintaining the same fre-
quency bandwidth, thus changing the value of TB. We can
clearly see from Fig. 7(b) that using a larger value of the
time-bandwidth constant is beneficial in terms of reducing
spectral leakage even when using an optimal amount of
tapering. Separate tests (not shown here) demonstrated that
this effect is even more pronounced if the window function
is not optimized, in which case one would need to have
TB > 100 to reach a comparable level of accuracy. In fact,
from Fig. 7(b), we can see that the error in the magnitude of
the complex modulus [defined analogously to the error for
G’ and G” given by Egs. (6) and (7)] reaches a minimum
plateau as soon as TB > 10 when using OWCh sequences,
allowing us to extend the use of windowed chirps to very
short signals (with 7'~2 s) that would otherwise give
unreliable estimations of the moduli. We note that for
values of the time-bandwidth constant in the range [10,
100] it is almost impossible to obtain an estimate of the
relaxation spectrum over multiple frequencies using a
sequence of individual sine steps while maintaining a
sufficiently low mutation number.

As anticipated, both the PIB solution and the micellar
solution show the same trends in reduction of error with
increasing 7B as highlighted in Fig. 7(b). However, since
the complex modulus of the micellar fluid is much smaller
in magnitude compared to that of the PIB solution, the
smaller SNR means that the minimum error attainable
using an optimally windowed chirp on the micellar solution
is not as low as that for the PIB solution, which is also the
case for classical frequency sweeps, since the precision of
both techniques is lower for smaller SNR.
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