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Abstract16

A parameterised non-intrusive reduced order model (P-NIROM) based on17

proper orthogonal decomposition (POD) and machine learning methods has18

been firstly developed for model reduction of pollutant transport equations.19

Our motivation is to provide rapid response urban air pollution predictions20

and controls. The varying parameters in the P-NIROM are pollutant sources.21

The training data sets are obtained from the high fidelity modelling solutions22

(called snapshots) for selected parameters (pollutant sources, here) over the23

parameter space RP . From these training data sets, the machine learning24

method is used to generate the relationship between the reduced solutions25

and inputs (pollutant sources) over RP . Furthermore a set of of hyper-26

surface functions associated with each POD basis function is constructed for27

representing the fluid dynamics over the reduced space. The accuracy of28

the P-NIROM is highly dependent on the quality of the training set, here29

obtained from the high fidelity model. Over existing machine learning meth-30

ods, the P-NIROM algorithm proposed here has the advantages that (1) it is31

combined with NIROM, thus providing rapid and reasonably accurate solu-32

tions; and (2) it is a robust and efficient approach for representation of any33

parametrised partial differential equations as the model parameters/inputs34
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vary. In this study, we demonstrate the way how to implement the P-NIROM35

for the pollutant transport equation (but not limited to due to its robust-36

ness). Its predictive capability is illustrated in a three-dimensional (3-D)37

simulation of power plant plumes over a large region in China, where the38

varying parameters are the emission intensity at three locations. Results in-39

dicate that in comparison to the high fidelity model, the CPU cost is reduced40

by factor up to five orders of magnitude while reasonable accuracy remains.41

Keywords: Machine learning, Finite Element, Proper orthogonal42

decomposition, Reduced order modelling, air pollution.43

1. Introduction44

Pollution in cities has a strong impact on the health of communities and45

affects global warming with dire consequences to humanity. The dynamic46

and pollutant transport processes involve a wide range of scales. The highly47

disparate scale poses a formidable challenge for atmospheric and air pollution48

modelling. In recent years, the spatial resolution in operation air pollution49

models has been increased significantly, thus improving predictive capability.50

However, this unavoidably leads to an increase in computational cost [1].51

Our motivation is to develop numerical tools for rapid responses/predictions52

of pollutants without sacrificing solution accuracy, especially in emergency53

situations.54

Reduced-order models (ROMs) have become important to many fields55

as they offer the potential to simulate dynamical systems with considerably56

reduced computational cost in comparison to high fidelity models [2, 3, 4, 5].57

Recently, reduced order methods have been applied to studies of air pollution58

[6, 7, 8, 9]. Existing ROMs can be classified into two categories: intrusive59

and non-intrusive approaches in the sense that whether the implementation60

of ROMs requires knowledge of the details of original numerical source codes61

[10]. The intrusive reduced order methods have been widely used in many62

fields [11, 12, 13, 14, 15, 16, 17, 18]. More recently, the non-intrusive methods63

have became popular since they are less dependent on complex dynamic64

systems and are therefore easy to implement even when the numerical source65

code is not available. Existing non-intrusive methods used for generating66

ROMs are POD in combination with radial basis function (RBF), Smolyak67

sparse grid and artificial neural networks etc.[19, 20, 21, 22, 23, 24]. The68

applications of NIROMs can be found in the work of [25, 26, 27, 28].69
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More recently, Wang et al. introduced a deep learning technique to70

NIROMs and applied it to fluid problems [29]. Deep learning technologies71

represent the most recent progress in artificial neural networks [30], and have72

been applied to a number of areas such as speech recognition [31], image73

recognition [32], medical science [33], self-driving cars [34], language under-74

standing [35] etc.75

In this work, we have developed a Parameterised NIROM (P-NIROM)76

based on machine learning techniques for parameterised pollutant transport77

problems. The input parameters are the emission intensity of pollutants re-78

leased at different source locations. The P-NIROM enables rapid simulations79

and controls of the impact of pollutant sources without excessive computa-80

tional costs. Given a set of selected pollutant sources Qtr over the parame-81

terised space RP , the training data sets (also called solution snapshots) can82

be obtained by running the high fidelity model. From the snapshot solutions,83

the corresponding reduced basis functions are calculated using singular value84

decomposition (SVD)/POD. The reduced basis functions are used for con-85

structing the reduced space. The original high fidelity model can be projected86

onto the reduced space, which is several orders of magnitude smaller than the87

dimensional size of the high fidelity full model, thus significantly reducing the88

computational cost. For any unseen emission intensity of pollutant sources89

Q ∈ RP , the P-NIROM is constructed using the machine learning methods.90

From the training solution snapshots, a Gaussian process is used for generat-91

ing the snapshots and POD basis functions for the unseen pollutant sources92

Q. Furthermore, the relationship (P-NIROM) between the reduced solutions93

and the inputs (the pollutant emission intensities) can be obtained using the94

machine learning techniques. Finally, the solutions from the P-NIROM are95

projected back the full space.96

The P-NIROM is a robust and efficient numerical tool for rapid prediction97

of pollutants released from different sources and assessment of their impact on98

specified cities/locations. In this work, we have been successfully applied the99

P-NIROM to air pollution simulations over a large region in China which100

covers 55 cities including Beijing. The efficiency and accuracy of the P-101

NIROM have been evaluated by comparing the results with those from the102

high fidelity full model.103

The remainder of this article is arranged as follows. The pollutant trans-104

port equation and its discretisation are described in section 2. In section 3,105

the details of forming the P-NIROM using POD and machine learning meth-106

ods are provided. Section 4 presents a numerical experiment of simulating107
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the spatial and temporary distribution of pollutants released from 100 power108

plants in China. Conclusions are drawn in section 5.109

2. Pollutant transport equation and its discretisation110

The dispersion of the tracer concentration (c) is modelled by:

∂c

∂t
+ u · ∇c+∇ · (κ∇c)−Q = 0, (1)

where u is the velocity vector, Q is a source term and κ the diffusivity. In
general, the discretised form of (1) at each time level n (where a time interval
of ∆t is set during the simulation period) can be written:

M(µ)cn = sn(µ, cn−1), (2)

where M is the full numerical operator with varying input parameter µ,111

cn = (cn1 . . . , c
n
j , . . . , c

n
N )T (1 ≤ j ≤ N , N is the number of nodes in the112

computational domain), ss includes the source term, boundary conditions113

and the variable solutions from the previous time level. In this study, the114

varying input parameters in air pollutant problems are set to be the pollutant115

sources, µ = Q = (Q1, . . . , Qs, . . . , QS) (here, S is the number of pollutant116

sources).117

2.1. Parameterised reduced order transport equation118

In this work, the POD approach in combination with machine learning
techniques is used for model reduction. POD has proven to be a powerful
tool for circumventing the intensive computational burden in large complex
numerical simulations. POD is capable of representing large complex dy-
namical systems using a few number of optimal basis functions. In POD
reduced order modelling, the tracer concentration in (2) can be expressed as
an expansion of the POD basis functions Φ = (Φ1, . . . ,Φm, . . . ,ΦM):

cn = Φcr,n, (3)

where cr,n = (cr,n1 . . . , cr,nm , . . . , cr,nM )T (1 ≤ m ≤ M) ∈ RM is the reduced state
variable vector (the superscript r indicates the variable associated with the
reduced order model) to be determined over the reduced space. The POD
basis functions are constructed from a collection of snapshots that are taken
from the high fidelity model solution (2) for the selected training pollutant
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sources. Using SVD, a set of orthogonal basis functions {Φm} can be obtained
in an optimal way. The POD basis functions can represent the dynamics of
snapshot solutions. The loss of information due to the truncation of the POD
expansion set to M vectors can be quantified by the following ratio,

E =

∑M

j=1 λ
2
j

∑I

j=1 λ
2
j

, (4)

where λ denotes eigenvalues, and I is the total number of eigenvectors (here119

equivalent to the number of solution snapshots used for generating the POD120

basis functions). The value ofE will tend to 1 asM is increased to the value I,121

this would imply no loss of information. A few number of leading eigenvectors122

can represent most of dynamical energy within the solution snapshots.123

Projecting (2) from the N dimensional space onto the M dimensional
reduced space (M << N ), yields:

ΦTM(µ)cn = ΦT sn(µ, cn−1). (5)

The parameterised reduced order model can thus be written as:

Mr(µ)cr,n = sr,n(µ, cr,n−1), (6)

where Mr
t0,tj

= ΦTM(µ) is the model operator over the reduced space, cr,n =124

ΦTcn and sr,n = ΦT sn(µ, cr,n−1).125

Equations (3) and (6) can be used for efficient air pollution operational126

prediction where the CPU time can be reduced by several orders of magni-127

tude. In this work, the parameter set µ in (6) consists of the pollutant source128

inputs. A recently developed NIROM [29] is extended to construct the pa-129

rameterised reduced order model in (6). The P-NIROM based on the machine130

learning techniques described below is capable of predicting problems with131

unseen or different parameters (for example, unseen pollutant sources). It is132

also non-intrusive and independent of the original source code.133

3. Construction of P-NIROM based on POD and machine learning134

methods135

The parameterised reduced order model (6) is re-written for the variable
crm associated with each POD basis function Φm over the reduced space in a
general form:

cr,nm = Fm(µ, c
r,n−1), m ∈ (1, . . . ,M). (7)
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In non-intrusive reduced order modelling, one searches a set of functions136

Fm to represent the dynamics in (7). In this work, we introduce the Gaussian137

process regression (GPR) [36] and deep learning learning methods [29] to138

construct the relationship functions Fm to represent the fluid dynamics of139

system (6) for any unseen input parameter µ = Q ∈ RP .140

3.1. Gaussian process regression for calculation of POD coefficient and snap-141

shot solutions for any input over the parameter space142

In GPR, the relationship between the input µ = Q (here, the pollutant
source) and the corresponding output cn at each time level n ∈ (1, 2, . . . , Ttr)
can be expressed as follows [36]:

cn(Q) = gn(Q) + ǫ(Q), (8)

where, ǫ = G(0, σn) is the Gaussian distribution with zero mean and variance143

σn.144

In GPR, it is assumed that the function gn(Q) has a Gaussian distribution
(with zero mean, here):

gn(Q) ∼ G (0, kn(Q,Q′)) , (9)

where the covariance function kn(Q,Q′) represents the dependency between
the function values at two different input points Q and Q′, that is,

cov (gn(Q), gn(Q′)) = kn(Q,Q′) = σwnexp(−
1

2l
|Q−Q′|), (10)

where, l is the length scale and σwn is the variance. The correlation between
the functions gn(Q) and gn(Q′) is dependent on the distance between the
two input points. Given a set of training input-output pairs {Qtr,i, c

n
tr,i}, i ∈

(1, . . . , Ntr) (where, Ntr is the number of training points), one aims to predict
the pollutant concentration cn in (8) for any new inputQ. The joint Gaussian
distribution of the training and predicted outputs (cntr and cn) for the training
and new inputs (Qtr and Q) respectively can be written:

[

cntr
cn

]

=

[

gn(Qtr)
gn(Q)

]

∼ N

(

0

[

Kn(Qtr,Qtr) KnT (Q,Qtr)
Kn(Q,Qtr) Kn(Q,Q)

])

, (11)
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where, Kn(Qtr,Qtr) is the covariance matrix between all training points and
is written below:

Kn(Qtr,Qtr) =











kn(Qtr,1,Qtr,1) kn(Qtr,1,Qtr,2) . . . kn(Qtr,1,Qtr,Ntr
)

kn(Qtr,2,Qtr,1) kn(Qtr,2,Qtr,2) . . . kn(Qtr,2,Qtr,Ntr
)

...
...

. . .
...

kn(Qtr,Ntr
,Qtr,1) kn(Qtr,Ntr

,Qtr,Ntr
) . . . kn(Qtr,Ntr

,Qtr,Ntr
)











,

(12)
and the matrices

Kn(Qtr,Q) =
[

kn(Qtr,1,Q) kn(Qtr,2,Q) . . . kn(Qtr,Ntr
,Q)

]

, (13)

Kn(Q,Q) = kn(Q,Q). (14)

Given a set of the training inputs (here, the pollutant sources) µtr =145

Qtr = (Qtr,1, . . . , Qtr,S) over the parameter space RP , the snapshot solutions146

ctr = (c1tr, . . . , c
n
tr, . . . , c

Nt

tr ) can be obtained by running the high fidelity model147

(2) during the training simulation period [0, Ttr].148

For efficient calculations, one can project cntr from the high dimensional
full space onto the reduced space:

c
r,n
tr = ΦTcntr, (15)

For any given input parameter (pollution source Q), the probability of the
prediction of the reduced variable cr is:

cr,n|cr,ntr ∼ N (Kn
∗K

n−1
tr c

r,n
tr , Kn

∗∗ −Kn
∗K

n−1
tr KnT

∗ ), (16)

where, Kn
∗ = Kn(Q,Qtr), K

n
∗∗ = Kn(Q,Q) and Kn

tr = Kn(Qtr,Qtr). The
best estimate of cr,n is the mean of the Gaussian distribution:

c̄r,n = Kn
∗K

n−1
tr c

n,r
tr . (17)

3.2. Deep learning method for construction of P-NIROM and calculation of149

reduced solutions for any input over the parameter space150

In this section, an alternative method for calculation of reduced solutions151

for any given input is introduced. A Recurrent Neural Network (RNN) using152

the Long Short Term Memory (LSTM) architecture is used to construct the153

P-NIROM (7). Compared to traditional RNNs, the LSTM has a special154

7



memory block in the hidden layer of the recurrent neural network, allowing155

information to persist. This type of network has cyclic connections, which156

makes the network a powerful method to model temporal data since it has an157

internal memory system to deal with temporal sequence inputs. A memory158

cell is composed of four main elements: an input gate, a neuron with a self-159

recurrent connection (a connection to itself), a forget gate and an output160

gate.161

The input gate of each memory block controls the information transmit-162

ting from the input activations into the memory cell and the output gate163

controls the information transmitting from the memory cell activations into164

other nodes. The forget gate decides what information is to be deleted from165

the memory cell state [29].166

The LSTM technique is utilised to construct the set of functions (hyper-167

surfaces) Fm in (7). In the LSTM network, the input is the reduced solution168

cr,n−1 = (cr,n−1
1 , ..., cr,n−1

M ) at the previous time level n − 1 while the output169

is the reduced solution cr,nm associated with the mth POD basis function Φm170

(m ∈ (1, . . . ,M)). The relationship function (hyper-surface Fm) between the171

input cr,n−1 and output cr,nm can be obtained using the following equations:172

In = ̺(Wicc
r,n−1 +Wihh

n−1 +WiCeCen−1 + bi),

fn = ̺(Wfcc
r,n−1 +Wfhh

n−1 +WfCeCen−1 + br),

on = ̺(Wocc
r,n−1 +Wohh

n−1 +WoCeCen + bo),

Cen = rn ⊙ Cen−1 + in ⊙ Cei(WCecc
r,n−1 +WCehh

n−1 + bCe), (18)

hn = on ⊙ Ceo(Cen),

cr,nm = ζ(Wrhh
n + br),

where I, f and o denote the input, forget and output gate vectors respec-173

tively, Ce is the cell activation vector, b is the bias vector, ̺ is the activation174

function, W denotes the weight matrices (e.g. Wic is the weight matrix from175

the input gate to the input), ⊙ is the element wise product of the vectors, Ceo176

and Cei are the cell output and cell input activation functions respectively177

and ζ is the network output activation function.178

After obtaining the function Fm, it can then be used to predict the POD179

coefficients at current time level n. The offline calculation of snapshots at180

the training stage and the online procedure for constructing and resolving181

the P-NIROM can be algorithmically summarised in Figure 1. The details182

of the offline and on-line calculations are further given in Algorithm 1 and 2183
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respectively.184

185

Algorithm 1: Offline Calculations

(1) Select a set of training inputs (here the emission intensity) Qtr,i ∈ RP ,
where, i ∈ (1, . . . , Ntr) ;

(2) Given the input Qtr,i, generate the solution snapshots by running the
high fidelity full model during the training period [0, Ttr]
for i = 1 to Ntr do

for n = 1 to Ttr do
Solving Equation (2):
M(Qtr,i)c

n = sn(Qtr,i, c
n−1)

endfor
endfor

(3) Calculate the POD basis functions using SVD.

9



Figure 1: The figure displayed above shows the online and offline procedures of construct-
ing and resolving the P-NIROM for any given parameter µ ∈ RP .
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Algorithm 2: Online Calculation

(1) Using GPR, for any given unseen input µ = Q (here the pollutant
emission intensity), calculate the snapshot solutions

(i) Calculate the covariance matrices between the given unseen (Q)
and training (Qtr) points in (12) - (14);

(ii) For the given unseen emission intensity Q, calculate the
probability of the prediction of the tracer variable cr in (16) over
the reduced space;

(iii) Calculate the best estimate of solutions over the reduced space
using (17), then project back the full space.

(2) Using LSTM, construct the set of P-NIROMs and calculate reduced
solutions for any input over the parameter space;

(i) Using (18), construct the set of P-NIROMs Fm (m ∈ (1, . . . ,M))
for the associated POD basis function Φm;

(ii) Calculate the solutions at time level n using the P-NIROM.

(a) Give the reduced solution cr,n−1 at the previous time level
n− 1;

(b) Calculate the solution cr,n = (cr,n1 , . . . , cr,nm , . . . , cr,nM ) at time
level n over the reduced space
for m = 1 to M do

cr,nm = Fm(µ, c
r,n−1)

endfor

(c) Obtain the solution cn(µ) at the current time level n by
projecting cr,n(µ) onto the full space via:

cn(µ) =
M
∑

m=1

cr,nm Φm

186
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4. Regional pollutant dispersion in China187

To demonstrate the capability of the new P-NIROM based on machine188

learning techniques, it has been applied to a realistic case in China where189

the SO2 emissions from power plants disperse through the atmosphere in190

time. The SO2 emission intensity at the power plant locations was obtained191

from the Regional Emission inventory in ASia (REAS 2.1) data developed192

by National Institute of Environmental Sciences of Japan. The simulated193

domain covers the whole Shanxi-Hebei-Shandong-Henan region of China with194

an area encompassing 1090km × 1060km, and there are about 100 power195

plants in this area [37].196

Using adaptive mesh techniques, the 2D top adaptive mesh (20 km above197

the sea level) is first constructed to ensure a high resolution of 2.5 km around198

the power plan points within a radius of 6 km. The 3D unstructured mesh199

with 61479 nodes is then obtained by extending the 2D top mesh onto the200

terrain surface, with 11 terrain-following layers, where 7 vertical layers are201

within 1 km above the terrain. The pollutant SO2 sources around the power202

plants are released into the atmosphere at the hight of 200m above the203

terrain.204

In the study, the simulation started at 00:00 UTC on the 10 January205

2013 and ran through to the 15 January 2013. A time interval of ∆t = 0.5 hr206

was used. Assuming that the mixing layer height is 600m and the turbulent207

horizontal diffusivity is 100m2/s while the vertical eddy diffusivity is param-208

eterised based on a scheme by Byun and Dennis [38]. The meteorological209

fields are provided by the mesoscale meteorological model WRF (v3.5) [39].210

In this case, the varying input parameter, µ = Q, is the emission intensity211

of pollutant sources at locations ξ1, ξ2 and ξ3 (see Table 1). The emission212

intensity of pollutant sources is ranged from 0 to 5000 g s−1. A set of training213

pollutant sources µtr = Qtr at three locations is listed in Table 1. The214

solution snapshots ctr with the training parameters were obtained by running215

the high fidelity model (Fluidity [40]) and stored at equally spaced time216

intervals (3 hrs) during the simulation period (5 days).217

To illustrate the capability of the P-NIROM based on machine learning218

techniques, an unseen test case, the emission intensity of pollutant sources219

µ = Q = (2400, 2400, 5000) g s−1, was given at locations ξ1, ξ2 and ξ3 re-220

spectively (T1 in Table 1). Following the online procedure shown in Figure221

1, using the GPR, the solution snapshots (the distribution of pollutants at222

every 3 hrs) for the given unseen pollutant sources were calculated from the223

12



Table 1: The emission intensity (g s−1) of SO2 at locations ξ1 (x=540,y=752)km, ξ2
(x=603, y=670)km and ξ3 (x=753, y=679)km. A1 − A28 are the training cases while
T1 − T2 are the unseen cases used for evaluating the predictive capability of the new
P-NIROM.
Cases ξ1 ξ2 ξ3 cases ξ1 ξ2 ξ3 cases ξ1 ξ2 ξ3
A1 1047 1678 1160 A11 4267 2500 2500 A21 1440 1140 3570
A2 0 0 0 A12 2500 732 2500 A22 1250 1250 1250
A3 5000 5000 5000 A13 2500 4267 2500 A23 3750 3750 3750
A4 2500 2500 2500 A14 2500 2500 732 A24 0 5000 5000
A5 0 2500 2500 A15 2500 2500 4267 A25 1250 5000 5000
A6 5000 2500 2500 A16 534 589 910 A26 5000 5000 0
A7 2500 5000 2500 A17 600 639 1580 A27 5000 0 0
A8 2500 2500 0 A18 181 1061 1356 A28 2500 0 2500
A9 2500 2500 5000 A19 428 1881 329
A10 732 2500 2500 A20 1300 1380 3000
T1 2400 2400 5000 T2 5500 6000 6000

training solutions for the selected training parameters (28 training parameter224

sets in Table 1).225

Figure 2 shows the singular values and a logarithmic scale of singular226

values. From the calculation in (4), the sharp decrease of singular values227

suggests that the first 36 leading POD basis functions can capture 99% of228

dynamical energy within the solution snapshots. In this study, two cases of229

6 and 36 POD basis functions were chosen to construct the P-NIROM. The230

larger the number of POD basis functions chosen, the higher the accuracy of231

P-NIROM. Figure 4 provides some of the first 36 leading basis functions. It232

can be seen that the first leading basis function captures a large part of the233

spatial distribution of pollutant concentration solutions, while the remaining234

basis functions represent the details of pollutant distributions of different235

regions.236

A comparison of coefficients for the POD basis functions between using237

the standard ROM and machine learning ROM (based on LSTM and GPR)238

is provided in Figure 3. It is clearly seen that the POD coefficients are in239

very close agreement with each other. Compared to the standard ROM,240

the machine learning ROM has a wider range of application areas, espe-241

cially where observational data is concerned, for example, data assimilation,242

data reduction by condensing the information into the required dynamical243

13



0 5 10 15 20 25 30 35
NUMBER OF POD BASES

0

50000

1e+05

1.5e+05

2e+05

S
IN

G
U

L
A

R
 V

A
L

U
E

S

0 5 10 15 20 25 30 35
NUMBER OF POD BASES

3.5

4

4.5

5

5.5

L
O

G
A

R
IT

H
M

IC
 S

IN
G

U
L

A
R

 V
A

L
U

E
S

(a) Singular values (b) Logarithmic scale of singular values

Figure 2: The singular values and logarithmic scale of singular values.

features.244

Figure 5 presents the spatial distribution of pollutant solutions at time245

levels t = 30 hrs and t = 105 hrs, as calculated by the fidelity model and P-246

NIROM with 6 and 36 POD basis functions. It is illustrated that P-NIROM247

with 6 POD basis captures most of the details of pollutant distribution at248

time level t = 105 hrs, but fails at time level t = 30 hrs. With an increased249

number of 36 POD basis functions, the P-NIROM has performed well at re-250

solving the flow dynamics and evolution of power plant plumes (see Figure251

5(e) and (d)). This is further highlighted in Figure 6 which shows the solu-252

tions from different angles. Further comparison is provided in Figure 7 which253

illustrates the evolution of pollutant concentrations predicted by the fidelity254

model and P-NIROM at the location (x = 379, y = 786) km. We can see255

that the P-NIROM with 6 and 36 POD basis function is in close agreement256

with the high fidelity model at this location.257

An error analysis of P-NIROM has been carried out. Visual inspection of258

Figure 8 shows the spatial distribution of absolution errors of pollutant so-259

lutions between the high fidelity model and P-NIROM. It is visually evident260

that the accuracy of P-NIROM solutions is improved by increasing the num-261

ber of retained POD basis functions from 6 to 36. Figure 9 illustrates the262

RMSE and correlation coefficients of pollutant solutions between the high263

fidelity model and P-NIROM with 36 POD basis functions. The correlation264

coefficients achieve results above 80%− 90%. This again demonstrates that265

the P-NIROM is in good agreement with the high fidelity full model.266

To further investigate the predictive ability of the P-NIROM, another267
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(a) First POD coefficient (b) Second POD coefficient

Figure 3: The first and second POD coefficients obtained from the standard ROM and
machine learning ROM (the black solid line: standard ROM, the red dash line: LSTM-
ROM, and the blue dot line: GPR-ROM.

unseen cases (T2 ) was set up, where the emission intensities of pollutants268

at three source locations (µ = Q = (5500, 6000, 6000) g s−1, see Table1) were269

given beyond the range of the training data (0, 5000) g s−1. The pollutant270

solutions (at time level t = 24 hrs) from the high fidelity full model and271

P-NIROM are shown in Figures 10 (a) and (b) respectively while the cor-272

responding absolute error is illustrated in Figure 10 (d). A comparison of273

results between the high fidelity full model and P-NIROMs at a particular274

location (x = 599, y = 569) km is provided in Figures 10 (c). As shown in275

the figures, the predictive ability of the P-NIROM in cases T2 is acceptable276

although the given test data goes beyond the range of the training data.277
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(a) 1st basis function (b) 2nd basis function

(c) 3rd basis functions (d) 4th basis functions

(e) 31st basis functions (f) 36th basis functions

Figure 4: Some of the first 36 leading POD basis functions
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(a) High fidelity model (b) High fidelity model

(c) P-NIROM (6 basis functions) (d) P-NIROM (6 basis functions)

(e) P-NIROM (36 basis functions) (f) P-NIROM (36 basis functions)

t = 30 hrs t = 105 hrs

Figure 5: Case T1 (ξ1 = 2400, ξ2 = 2400, ξ3 = 5000) g s−1: the comparison of pollutant
concentration solutions at time levels t = 30 hrs (left panel) and t = 105 hrs (right panel)
between the high fidelity model and P-NIROM with 6 and 36 POD basis functions.
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(a) Full model

(b) P-NIROM with 36 basis functions

Figure 6: Case T1 (ξ1 = 2400, ξ2 = 2400, ξ3 = 5000) g s−1: the comparison of pollutant
results at time levels t = 30 hrs between the high fidelity full model and P-NIROM with
36 basis functions from different angles. 18
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Figure 7: Case T1 (ξ1 = 2400, ξ2 = 2400, ξ3 = 5000) g s−1: the evolution of pollutant
concentration solutions predicted by the high fidelity model and P-NIROM at a specified
location x = 378 km, y = 786 km.
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(a) Error of P-NIROM with 6 POD, t = 30hrs (b) Error of P-NIROM with 6 POD, t = 105hrs

(c) Error of P-NIROM with 36 POD, t = 30hrs (d) Error of P-NIROM with 36 POD, t = 105hrs

Figure 8: Case T1 (ξ1 = 2400, ξ2 = 2400, ξ3 = 5000) g s−1: the spatial distribution of
absolute errors between the high fidelity model and P-NIROM which is constructed with
6 and 36 POD basis functions.
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Figure 9: Case T1 (ξ1 = 2400, ξ2 = 2400, ξ3 = 5000) g s−1: the RMSE and correlation
coefficients of pollutant concentration solutions between the high fidelity model and P-
NIROM with 36 POD basis functions.
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(a) High fidelity model (b) P-NIROM
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(c) Solutions at a location: x = 599 km, y = 569 km (d) Error

Figure 10: Case T2 (ξ1 = 5500, ξ2 = 6000, ξ3 = 6000) g s−1: comparison of pollutant
concentration solutions between the high fidelity full model and P-NIROM with 36 basis
functions: (a) and (b) the spatial solution at time level t = 102 hrs from the high fidelity
model and P-NIROM respectively; (c) the evolution of pollutant concentration solutions
at a location: x = 599 km, y = 569 km; and (d) the spatial error at time level t = 102 hrs.
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4.1. Computational efficiency278

This section provides a comparison of the online computational CPU cost279

required by the high fidelity full model and P-NIROM. The specifications of280

the machine for simulations were: 12 cores with a frequency of 3.33GHz281

(Intel R© Xeon(R) CPU X5680 @3.33GHz × 12) and a 62.9GB memory. One282

core was used for the simulations since the cases were simulated in serial.283

Table 2 lists the online CPU cost required for running the high fidelity model284

and P-NIROM. The offline cost (see Figure 1) at the training stage is not285

listed in this table. It can be seen that using the P-NIROM, the CPU time is286

reduced by five order of magnitude in comparison to the high fidelity model.287

Table 2: Online CPU cost required for running the high fidelity model and P-NIROM
during one time step.

Cases Model assembling and projection interpolation total
solving

Test Full model 616.9 0 0 696.59
case NIROM 0 0.003 0.001 0.004

288

5. Conclusions289

This article has presented a new P-NIROM for predictive modelling of290

pollutant transport phenomena. The machine learning techniques in com-291

bination with POD are used for constructing the P-NIROM. First, at the292

training stage, for the selected input parameters µtr ∈ RP , the solution snap-293

shots (serving as training datasets) and POD basis functions are obtained294

by running the high fidelity model. From the training data sets, for any295

given input parameters µ ∈ RP , using the machine learning technique a set296

of hyper-surface functions (P-NIROMs) is constructed to represent the dy-297

namics of pollutant transport over the reduced space. The P-NIROM is then298

used for calculating the reduced solutions (POD coefficients) for the given µ299

(the emission intensity). The unique combination of the P-NIROM and ma-300

chine learning techniques enables rapid and reasonably accurate simulations.301

The P-NIROM techniques developed here are robust and can be used for a302

large number of disciplines not least of pollutant flow based disciplines.303

The P-NIROM has been applied to a realistic case in China involving304

plumes released from over 100 power plants. The varying input parameter is305
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the emission intensity of pollutant sources. A comparison of pollutant solu-306

tions between the high fidelity model and P-NIROM has been undertaken.307

The P-NIROM with 36 POD basis functions exhibits an overall good agree-308

ment with the high fidelity model. The online computation cost required by309

the P-NIROM is reduced by several orders of magnitude in comparison to310

the high fidelity model.311

Compared to existing P-NIROM techniques (for example, based on ra-312

dial basis functions), the P-NIROM based on machine learning methods pro-313

vides a wider range of application areas, for example, uncertainty analysis in314

both data and modelling results, real-time interactive use, data management315

(real-time data monitoring/analysis), data assimilation and better-informed316

decision making. In particular, the machine learning techniques with ROM317

can be used for data selection and data reduction by condensing the infor-318

mation into the desired number of features and recovering the original data319

from the reduced feature set.320
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