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Abstract. This paper demonstrates the use of ethyl lactate and ethanol as green and safe 

solvents to extract phytonutrients such as carotenes and tocols from crude palm olein (CPO) 

before they are lost during oil refining process. The effects of mixing time (10-40 min), 

temperature (10-30
o
C) and proportion of CPO (20-60%) were studied in terms of the extraction 

of individual carotenes (α- and β-carotene) and tocols (α-tocopherol/T, α-, γ- and δ-

tocotrienol/T3) in a temperature-controlled mixer-settler system. The optimal extraction 

conditions were found at 20
o
C, 10 min of mixing, 50% of CPO using 3:2 v/v ethyl lactate/ 

ethanol as the solvents. After four stages of extraction, 42.2% of carotenes, 86.7% of tocols 

and 44.4% of oil were recovered into an oil concentrate of 717.5 mg/L of carotenes and 1496.2 

mg/L of tocols. 

1. Introduction 

Crude palm oil contains 500-700 ppm of carotenoids with approximately 35% α-carotene and 56% β-

carotene [1]. They are important as a supplement of vitamin A as well as a natural antioxidant to fight 

against several degenerative diseases including cardiovascular diseases, cancers and macular 

degeneration [2]. In crude palm oil, there is also 600-1000 ppm of tocols (commonly known as 

vitamin E), with 21.3% of tocopherol (T) and 78.7% of tocotrienol (T3) [3]. As compared to T, T3 

was reported to be more effective due to its unsaturated chain, which facilitates cell penetration and is 

highly antioxidative. T3 was reported to regulate cholesterol level, to prevent cancers, stroke and fats 

accumulation in liver [4]. T is commonly found in many other vegetable oils while palm and rice bran 

oil are among the richest natural sources of T3. 

During physical oil refining process, carotenes are first partially removed by adsorption on activated 

bleaching earth, followed by high temperature steam deodorization which destroys the chromogenic 

properties of the remaining carotenes to produce a light yellow palm oil. Even though tocols are more 

thermally stable than carotenes, near to 50% of the tocols will be stripped off along with free fatty 

acids (FFA), sterols and squalene into palm fatty acid distillate (PFAD) during deodorization step. 

Thus, there is a need to recover these phytonutrients from crude palm oil before further refining 

process. 

As both the extracted carotenes and tocols will be used as food fortifiers, the use of non-toxic, non-

corrosive and non-carcinogenic solvents which are safe for human consumption is crucial. When most 

of the commonly used petrochemical solvents are known to pose certain degree of toxicity, ethyl 
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lactate is a suitable candidate solvent because it is novel, green and safe. It is produced from the 

carbohydrate feedstocks from the corn and soybean industries and it presents naturally in foods such 

as wine, beer, chicken and fruits. It is also non-ozone depleting, non-hazardous air polluting and it is 

biodegradable into harmless compounds such as CO2 and water. The US Environmental Protection 

Agency (USEPA) approved the solvent as a Significant New Alternatives Policy Program (SNAP) 

solvent while US Food and Drug Administration (USFDA) has approved its direct use in food and 

pharmaceutical products [5]. Ethyl lactate exerts polarity in the range of acetonitrile and n-hexane. It is 

capable to form intra- and inter-molecular hydrogen bonding. Also, it has the ability to form Van der 

Waals interactions in oils [6]. As a result, ethyl lactate can dissolve in both aqueous and hydrocarbon 

environments and it is capable to extract compounds of a wide range of polarity. Ethyl lactate has been 

reported to extract various nutraceutical compounds mostly from solid matrix [7]. Limited papers 

reported its potential to recover compounds directly from oil sample [8], [9]. 

The aim of this study is to investigate the potential of ethyl lactate and ethanol as safe and green 

solvents to extract carotenes and tocols from CPO via simple multistage mixing-settling process. 

Commercially, there is no technology available to date to recover these phytonutrients before palm oil 

refining process. Hence, this study provides the experimental results which can be used for future pilot 

scale recovery tests. 

2. Material and methods 

2.1. Samples and reagents 

(S)-(-)-ethyl lactate (99% purity) and ethanol (99.5% purity) were obtained from Merck. Standards 

such as α-carotene (98% purity) was purchased from Fluka, β-carotene (99.4% purity) and α-T (100.9% 

purity) came from Calbiochem. α-, γ- and δ-T3 (97% purity) were bought from Davos Life Science 

(Singapore). Acetonitrile (HPLC grade) and dichloromethane (99.8% purity) were obtained from 

Labscan. 2-propanol (HPLC grade) came from Fisher while n-hexane (HPLC grade) from Merck. 

Crude palm oil (Elaeis guineensis/tenera) was centrifuged at 7500 rpm for 15 min in order to collect 

the upper olein phase for use in the extraction experiment. 

2.2. Extraction process 

In the temperature controlled mixer-settler system, a total volume of 250 mL solution composed of 

CPO, ethyl lactate and ethanol was prepared into the vessel. The proportion of CPO, ethyl lactate and 

ethanol vary for each run. The temperature of the solution was controlled at 10-30
o
C using an oil 

jacket controlled by the circulating bath (Lab Companion, Model RW-0525G). The solution was 

mixed at 360 rpm using a four-bladed stirrer for 10-40 min. After that, the mixture was left to settle for 

an hour with the temperature being controlled throughout. Lastly, the volume of the upper (oil) and 

lower (solvent) phases were measured and collected for analysis. Reversed- and normal-phase high 

performance liquid chromatography (HPLC) was employed to determine the concentration of 

carotenes and tocols, respectively, in both the oil and solvent phase. All the experiments were repeated 

and the average values were reported. 

The process performance was evaluated mainly based on the enrichment factor, percentage recovery 

and percentage of oil recovery as defined by equation (1)-(4). 

Enrichment factor =
mass of carotenes or tocols extracted (mg)/volume of oil extracted (mL)into solvent phase

mass of carotenes or tocols (mg)/volume of oil (mL)present in feed
                                 

     (1) 

Percentage recovery (%) =
mass of carotenes or tocols extracted (mg)

mass of carotenes or tocols present in feed (mg)
× 100%                              (2) 

Total recovery (%) =
total mass of carotenes and tocols extracted (mg)

total mass of carotenes and tocols present in feed (mg)
× 100%                               (3) 

Percentage oil recovery (%) =
volume of oil extracted (mL)

volume of oil present in feed (mL)
× 100%                                            (4) 
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2.3. High performance liquid chromatography (HPLC) 

An Agilent 1260 Infinity Series HPLC system was used along with a quarternary pump, an 

autosampler, a variable wavelength detector (VWD) and ChemStation software for system control and 

data collection. Carotenes (α- and β-carotene) separation was carried out in a Purospher STAR RP-18 

encapped column (5μm; 4.6 x 250 mm) maintained at 30
o
C. The mobile phase consists of 85% 

acetonitrile and 15% dichloromethane at 1.5 mL/min. The detector was set at 450 nm and the total run 

time was 25 min. Tocols (α-T, α-, γ- and δ-T3) separation was achieved in a Zorbax Rx-SIL column 

(5μm; 4.6 x 250 mm) maintained at 30
o
C. The mobile phase consists of 99% of n-hexane and 1% of 2-

propanol at 0.8 mL/min. The detector was set at 292 nm and the total run time was 15 min.  

3. Results and discussion 

3.1. The use of ethanol as co-solvent 

Table 1, 2 and 3 present the results of extraction when operated at 20
o
C, 25 min of mixing and 50% of 

CPO at a total capacity of 250 mL. When ethyl lactate was used as the sole solvent, the total carotenes 

were concentrated by 0.92 while the total tocols were concentrated by 2.25 (table 1). Tocols exert 

greater affinity towards ethyl lactate because they are more polar than carotenes due to the presence of 

hydroxyl group and unsaturated side chain. Even though ethyl lactate exerts polarity in the range of 

acetonitrile and hexane, it tends towards polar solvent. Therefore, compounds of higher polarity are 

more readily extracted. Similarly, the enrichment factor improved from 1.69 to 3.02 in the order of α-

T, α-T3, γ-T3 and δ-T3 with increasing polarity. Since β-carotene was more concentrated than α-

carotene, β-carotene is more polar than α-carotene. A total recovery of 13.5% was achieved including 

both carotenes (7.6%) and tocols (18.6%) in a single stage system. The oil recovery was 8.2%. 

 

Table 1. The concentration of each carotenes and tocols in feed, solvent and oil phase (after solvent 

removal) when 100% of ethyl lactate was used as the solvent. 

Concentration (mg/L) Feed Solvent Oil Enrichment factor 

α-carotene 311.4 286.2 313.4 0.91 

β-carotene 461.2 426.9 463.9 0.92 

Total carotenes 772.6 713.1 777.3 0.92 

α-T  242.9 409.5 227.8 1.69 

α-T3 222.4 465.5 200.3 2.06 

γ-T3 326.2 859.7 277.9 2.61 

δ-T3 85.4 261.3 69.5 3.02 

Total tocols 877.0 1996.0 775.4 2.25 

 

After mixing and settling of a solution made up of 125 mL of CPO and 125 mL of ethyl lactate, 78 mL 

of the solvent phase was collected. It was only 62.5% of the initial volume of ethyl lactate introduced 

into the vessel. Ethyl lactate diffused and retained in the oil phase due to the formation of Van der 

Waals interactions. In order to create a better two-phase system with stronger immiscibility, ethanol, 

which is strongly polar, green and safe, was introduced as a co-solvent. The addition of ethanol aims 

to refrain ethyl lactate from diffusing into the oil phase. [10] reported that more β-carotene was 

extracted from carrots powder with increasing amount of ethanol as a co-solvent in ethyl lactate. 

Therefore, ethanol was chosen to improve the overall performance. 40% of ethanol was used with 60% 

of ethyl lactate as the mixed solvents because ethanol was found to form another individual top phase 

as the volume goes beyond 50%. This was due to the density differences of ethanol (789 kg/m
3
), CPO 

(888 kg/m
3
) and ethyl lactate (1034 kg/m

3
). In the presence of 40% ethanol, the volume of solvent 

phase improved to 89 mL, which was 71.2% from the initial volume (125 mL) of solvents added. 

After ethanol addition, the enrichment factor of carotenes and tocols improved to 0.96 and 2.68, 

respectively (table 2). Again, the extraction of tocols was much better due to their polarity difference. 

Similar results were reported by [11] as more T dissolved in ethanol than carotenoids. Even though the 



4

1234567890 ‘’“”

SDGT 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 989 (2018) 012005  doi :10.1088/1742-6596/989/1/012005

 

 

 

 

 

 

oil recovery increased to 11.0%, the total recovery improved to 21.4% with carotenes and tocols 

recovery increased to 10.5% and 29.3%, respectively 

 

Table 2. The concentration of each carotenes and tocols in feed, solvent and oil phase (after solvent 

removal) when 40% ethanol + 60% ethyl lactate (3:2 v/v ethyl lactate/ethanol) was used as the 

premixed solvents. 

Concentration (mg/L) Feed Solvent Oil Enrichment factor 

α-carotene 243.8 199.9 249.3 0.81 

β-carotene 402.1 419.3 400.0 1.04 

Total carotenes 645.9 619.2 649.2 0.96 

α-T  239.5 531.2 203.5 2.21 

α-T3 271.8 657.0 224.3 2.42 

γ-T3 363.6 1087.0 274.4 2.99 

δ-T3 89.8 306.2 63.1 3.41 

Total tocols 964.6 2581.5 765.5 2.68 

 

In table 3, 100% ethanol was used as the solvent for extraction. The enrichment factor of tocols was 

further improved to 2.76 but it dropped drastically to 0.56 for carotenes. Since ethanol is a strongly 

polar solvent, it is not suitable to be used alone to recover carotenes, which are non-polar in nature. 6.1% 

of carotenes and 30.2% of tocols were recovered with a total recovery of 20.1%. The oil recovery was 

10.7%. Apart from carotenes, the extraction performance of 100% ethanol was comparable to the 

results as obtained by using 40% of ethanol and 60% of ethyl lactate in table 2. Therefore, 40% 

ethanol and 60% ethyl lactate (equivalent to 3:2 v/v ethyl lactate/ethanol) were used in the subsequent 

extraction experiments to improve the yield. 

 

Table 3. The concentration of each carotenes and tocols in feed, solvent and oil phase (after solvent 

removal) when 100% of ethanol was used as the solvent. 

Concentration (mg/L) Feed Solvent Oil Enrichment factor 

α-carotene 275.4 146.5 291.0 0.53 

β-carotene 342.4 199.4 359.0 0.59 

Total carotenes 617.7 345.9 650.0 0.56 

α-T  212.0 474.5 178.5 2.21 

α-T3 200.3 497.2 162.1 2.53 

γ-T3 330.6 1017.1 245.3 3.05 

δ-T3 87.7 320.6 59.7 3.66 

Total tocols 830.5 2309.3 645.6 2.76 

3.2. The effect of mixing time 

Table 4 shows the enrichment factors and recoveries as obtained after 10, 25 and 40 min of mixing at 

20
o
C and 50% of CPO using 3:2 v/v ethyl lactate/ethanol as the solvents. As the mixing time increased 

from 10 to 25 min, the enrichment factor and recovery for both carotenes and tocols were improved. A 

longer period of agitation induced higher chances of bringing the solvent and CPO into direct contact 

and hence, there was improved mass transfer into the solvent phase. Further increase in the mixing 

time to 40 min reduced both the enrichment factors and recoveries. The formation of stable emulsion 

after prolonged mixing might affect the extractability negatively [12]. Also, competitive extraction 

might occur when other compounds such as FFA, glycolipids, sterols and squalene [13] in CPO were 

co-extracted. As a result, carotenes and tocols back-diffused into the oil phase after prolonged period 

of mixing. 

The improvement of enrichment factors and recoveries as mixing time increased by 15 min from 10 

min were not pronounced. Mixing time had little effect on the process performance. Therefore, further 

increase of the mixing time by 1.5 times was not necessary.  In the industry, multistage extraction is 
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preferred to improve the overall extraction yield. A short mixing or operating time is desirable to 

reduce the overall operational takt time. Thus, the subsequent experiments were carried out at 10 min 

of mixing.  

 

Table 4. The enrichment factor and recovery of carotenes, tocols and oil when operated at mixing time 

of 10, 25 and 40 min. 

Mixing time (min)  10 25 40 

Enrichment factor 

 

Carotenes 0.88 0.96 0.77 

Tocols 2.56 2.68 2.26 

Recovery (%) Carotenes 10.1 10.5 9.0 

Tocols 28.0 29.3 26.1 

Total 20.3 21.8 18.6 

Oil recovery (%)  11.2 11.2 11.7 

3.3. The effect of temperature 

Figure 1 and 2 illustrate the results of the enrichment factors and recoveries when operated at 10, 20 

and 30
o
C after 10 min mixing of 50% of CPO with 3:2 v/v ethyl lactate/ethanol. Temperature as low 

as 15.2
o
C was reported to be superior to extract α-T from olive oil [9]. Lower operating temperature is 

preferred to avoid thermal decomposition of heat-sensitive compounds such as carotenes and tocols at 

high temperature. However, higher temperature system provides more energy, the kinetics will be 

higher to induce mass transport. In addition, solvents become less viscous for diffusion at higher 

temperature and hence, the diffusivity or rate of diffusion is expected to be enhanced. 

 As the operating temperature of current system reduced from 20 to 10
o
C, there were minimal effects 

on the enrichment factors and recoveries. There was slight reduction for carotenes as the kinetic of 

mass transport was slower at 10
o
C. Longer mixing time might be required to improve the yield. In 

contrast, the performance of tocols extraction remained almost unchanged. Thus, additional cooling 

below normal atmospheric temperature was not necessary.  

 

 

Figure 1. The enrichment factor of carotenes and 

tocols at 10, 20 and 30
o
C. 

 

Figure 2. The percentage recovery of carotenes, 

tocols and oil at 10, 20 and 30
o
C. 

 

As the temperature increased further to 30
o
C, the enrichment factor and recovery of carotenes 

remained almost unchanged while they reduced drastically for tocols. Under such conditions from 10 

to 30
o
C, temperature was not a determining factor to affect the extraction of carotenes. The solvents 

content in the oil phase ranged from 31.2, 32.2 and 42.0% as temperature increased from 10 to 30
o
C. 

The oil recovery was also getting higher at 30
o
C. With increasing temperature, more solvent diffused 

into the oil phase and vice versa. As a result, the selectivity reduced as more oil but less tocols were 

extracted at higher temperature. Similar results were reported by [14] whereby selectivity reduced at 

higher temperature. As there was more oil extracted at higher temperature with no additional carotenes 

and tocols being recovered, 20
o
C was chosen as the optimal temperature with best results. 



6

1234567890 ‘’“”

SDGT 2017 IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 989 (2018) 012005  doi :10.1088/1742-6596/989/1/012005

 

 

 

 

 

 

3.4. The effect of the volume percentage of CPO 

Figure 3 and 4 show the enrichment factor and recovery of carotenes, tocols and oil at 20, 30, 40, 50 

and 60% of CPO when operate at 20
o
C and 10 min of mixing time using 3:2 v/v ethyl lactate/ethanol 

as the solvents. Referring to figure 3, 50% of CPO gave the highest enrichment factors for carotenes 

and tocols at 0.88 and 2.56, respectively. As the volume of CPO was less than 50%, there was lesser 

amount of carotenes and tocols available for extraction and hence, the driving force (concentration 

difference) for mass transfer would be lower. As opposed to tocols, the enrichment factor of carotenes 

remained almost constant near at 0.9. This implied that it was the maximum enrichment factor which 

could be achieved using 3:2 v/v of ethyl lactate/ethanol as the solvents. Any further increase in the 

amount of CPO will not improve the enrichment factor of carotenes. As the volume of CPO increased 

to 60%, the amount of carotenes and tocols increased along with other minor compounds such as FFA, 

glycolipids, squalene aand sterols. Thus, the enrichment factor became lower largely due to 

competitive co-extraction.  

The maximum recovery occurred at the lowest volume percentage of CPO at 20% as shown in figure 4. 

From 60% of CPO, the recovery of carotenes and tocols increased by 33.2 and 62.4%, respectively. 

The total recovery at 20% of CPO reached 55.1% while the recoveries of 36.5% carotenes and 71.6% 

tocols were achieved. The oil recovery increased along with phytonutrients recovery from 4.1 to 38.8% 

as the volume of CPO reduced. Since the volume of solvents increased when CPO reduced, more 

compounds including carotenes, tocols and oil were extracted leading to high recovery. Carotenes and 

tocols were minor components while oil (triglycerides) present in bulk. Therefore, the concentration 

difference was maintained for oil even at the lowest volume of CPO. As a result, more oil was 

extracted causing low enrichment factor with reducing volume of CPO as can be seen in figure 3. 

 

 

Figure 3. The enrichment factor of carotenes and 

tocols at 20, 30, 40, 50 and 60% of CPO. 

 

Figure 4. The percentage recovery of carotenes, 

tocols and oil at 20, 30, 40, 50 and 60
 
% of CPO. 

 

As the remaining treated oil phase is returned to the oil refineries, the increase of the subsequent oil 

throughput due to solvent addition and the recovery of oil into solvent phase are not wanted. As the 

volume of CPO increased, both oil throughput and solvent content in the oil phase increased as 

illustrated in figure 5. As the volume of CPO increased, less oil diffused into the solvent phase, but 

more solvents diffused into the oil phase. The oil throughput should be near to unity while the oil 

recovery should be minimized. Hence, the optimal point was controlled at 50% of CPO when the oil 

throughput is 1.25 with 32.5% of solvents in the oil phase while 11.6% of oil was recovered into the 

solvent phase. Subsequent solvent removal from the oil phase could be carried out before conventional 

oil refining process. However, the presence of these solvents in the oil does not affect the safety of the 

palm oil because they are both food grade and safe for human consumption. At 50% of CPO, the 

highest enrichment factors were achieved at a total recovery of 20.3%. Test at 10% of CPO was also 

investigated, but was not reported here because the oil phase became too little (~11.5 mL) to be 

measured accurately. In addition, the overall operation takt time would increase as only 10% of CPO 

could be treated in a single run with lower enrichment factor for tocols as more oil was recovered. The 
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optimum with the best extraction performance was found at 50% of CPO, 10 min of mixing at 20
o
C 

using 3:2 v/v ethyl lactate/ethanol as the solvents. 

 

 

Figure 5. The oil throughput and solvent content in the oil phase from 20 to 60% of CPO. 

3.5. Multistage extraction 

At 20
o
C, 10 min of mixing and 50% of CPO using 3:2 v/v ethyl lactate/ethanol as the solvents, four 

stages of mixing-settling were carried out. Upon completion of a stage, the solvent phase at the bottom 

was withdrawn, measured and analyzed. Fresh premixed solvents were then added for another cycle of 

mixing-settling. Table 5 is a compilation of the enrichment factors and recoveries in each stage while 

table 6 compiles the cumulative results, including the previous fraction(s) collected. The cumulative 

enrichment factor for carotenes increased while it decreased for tocols along the stages. The 

improvement of the cumulative enrichment factor for carotenes was not obvious because the 

enrichment factor remained close to unity in each stage. Conversely, the cumulative enrichment factor 

for tocols reduced in subsequent stages. This was because the concentration of tocols reduced after 

each extraction cycle and hence, the concentration of the extracted tocols reduced from 2074.1 to 

887.8 mg/L even though higher separation (enrichment factor) was achieved.  

 

Table 5. The enrichment factor and percentage recovery of carotenes, tocols and oil in each stage. 

Stage  1 2 3 4 

Enrichment factor 

 

Carotenes 0.82 0.90 0.98 1.09 

Tocols 2.73 2.68 2.94 3.37 

Recovery (%) Carotenes 10.1 15.3 13.2 12.7 

Tocols 33.5 45.6 39.4 39.3 

Total 21.8 28.3 22.1 19.4 

Oil recovery (%)  12.3  17.1 13.5 11.7 

 

Table 6. The cumulative enrichment factor and percentage recovery of carotenes, tocols and oil over 

stages. 

Stage  1 2 3 4 

Enrichment factor 

 

Carotenes 0.82 0.88 0.92 0.96 

Tocols 2.73 2.34  2.11 1.96 

Recovery (%) Carotenes 10.1 23.8 33.9 42.2 

Tocols 33.5 63.8 78.1 86.7 

Total 21.8 44.0 56.2 64.6 

Oil recovery (%)  12.3  27.3 37.0 44.4 

 

After these four cycles, four parts of solvents were utilized for extraction per part of CPO. This was 

similar to the solvent consumption at 20% of CPO as presented earlier in section 3.4. It was found that 

S
o
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) 
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with the same amount of solvent being consumed per part of CPO, multistage extraction achieved 

higher enrichment factors and recoveries. When single stage was carried out, the percentage oil 

recovery at 38.6% was only slightly lower as compared to multistage at 44.4%. Therefore, multistage 

extraction performed better than single stage system when the same amount of solvent was used. 

4. Conclusions 
The process of carotenes and tocols recovery was optimized at 20

o
C, 50% of CPO, 10 min of mixing 

using 3:2 v/v/ ethyl lactate/ethanol as the solvents. The operation was fast, simple, green and safe 

which can be retrofitted the existing palm oil refining line as a cheaper alternative of red palm oil 

production. It was carried out in a temperature-controlled mixer-settler unit to recover 42.2% of 

carotenes and 86.7% of tocols in CPO enriched by 0.96 and 1.96 for carotenes and tocols, respectively, 

after four extraction cycles. 
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