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 

Abstract—This paper employs the gradient theory to study 

the elastic properties and deformability of red blood cell (RBC) 

membrane using the first-order Cauchy-Born rule as an 

atomistic-continuum hyperelastic constitutive model that 

directly incorporates the microstructure of the spectrin 

network. The well–known Cauchy–Born rule is extended to 

account for a three-dimensional (3D) reference configuration. 

Using the strain energy density function and the deformation 

gradient tensor, the elastic properties of the RBC membrane 

were predicted by minimizing the potential energy in the 

representative cell. This extended formulation was then coupled 

with the meshfree method for numerical modeling of the finite 

deformation of the RBC membrane by simulating the optical 

tweezer experiment using a self–written MATLAB code. The 

results obtained provide new insight into the elastic properties 

and deformability of RBC membrane. In addition, the proposed 

method performs better when compared with those found in 

literature in terms of prediction accuracy and computation 

efficiency. 

 
Index Terms—Red blood cells, Cauchy–Born rule, elastic 

properties, finite deformation, meshfree method, Optical 

tweezers experiment 

 

I. INTRODUCTION 

LOOD is a bodily fluid in animals that delivers 

necessary substances such as nutrients and oxygen to 

the cells and transports metabolic waste products away from 

the same cells. It is a special fluid, which can be viewed as a 

suspension of red blood cells (RBCs) or erythrocytes, white 

blood cells (WBCs) or leukocytes, platelets and blood 

plasma in a Newtonian fluid. The RBCs alone account for 

more than 99 % of the particulate matter in blood and about 

40–45 % of the blood by volume. The RBCs are biconcave,  
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non-nucleated elastic particles with diameter and thickness 

of about 8 µm and 10 nm, respectively. Their elastic and 

mechanical properties are essential for sustaining cell 

functions. Changes in these properties may eventually lead 

to the manifestation of various blood related hereditary and 

non-hereditary diseases.  

Recent studies have revealed that the deformability of the 

red blood cell (RBC) membrane can be assessed 

experimentally, using atomic force microscopy (AFM), 

micropipette aspiration technique, optical tweezers, and 

microfluidic experiments  [1]–[4], and numerically, through 

microscopic, continuum or atomistic–continuum models [5]–

[8]. Over the years, the optical tweezers experiment has 

become a powerful tool for carrying out important 

biomechanical characterization. 

In this study, we carried out numerical simulations to 

investigate the elastic properties as well as the finite 

deformation behavior of RBC membrane. In order to map 

the cell structure in the reference configuration to that in the 

current deformed configuration directly, the standard 

Cauchy–Born rule was employed. By using a 3D framework, 

the in-vivo three-dimensional deformation of RBC 

membrane can be fully captured. Since this current study 

involves large deformation, the use of meshfree method is 

justified due to limitations of mesh-based method [9], [10]. 

The displacement field comprises of only three nodal 

displacement degree of freedom because meshfree 

approximations possess intrinsic non-local properties, 

leading to real rotation-free approximation hence 

displacements are the only nodal freedoms present [11].  

II. HYPERELASTIC CONSTITUTIVE MODEL 

The Cauchy–Born rule [12] establishes a connection 

between the deformation of the lattice vector of an atomistic 

system and that of a continuum displacement field, and plays 

an important role in the development of continuum 

constitutive models of atomic lattices. In this section, we 

describe a hyperelastic constitutive model that is derived 

from the first-order Cauchy–Born rule by using the coarse-

grained Helmholtz free energy density to describe the atomic 

interactions. 
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Fig  1.  Representative cell of the RBC membrane 

Considering a representative cell that is composed of six 

spectrin links I–J (J = 1,…, 6) as shown in Fig 1 above, the 

deformation of each spectrin links can be approximated 

using the Cauchy-Born rule, as follows, 

,IJ IJ r F R                 (1) 

where
iJ i JF e eF = , 

IJR  and 
IJr denotes the first-order 

deformation gradient tensor, the undeformed and deformed 

spectrin link length between junction complexes I and J, 

respectively.  

The strain energy density in this representative cell can be 

expressed in terms of energy contributions from the in-plane 

energy, bending energy, surface and volume conservation 

energy terms [13], as 
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where ak , vk , and bk are the area, volume constraint and 

bending coefficients, and 
I denotes the area of the 

representative cell calculated as 23 2L . For more details, 

interested readers are referred to the following literature and 

the references cited therein [7], [14], [15]. 

III. ELASTIC PROPERTIES OF RBC MEMBRANE 

In order to determine the elastic properties of RBC 

membrane, we assume that the elastic deformation of an 

infinitesimal RBC membrane patch from an initially 

undeformed planar sheet (Fig 2a) to a deformed planar sheet 

(Fig 2b) embedded in a 3D space is a simple shear 

deformation. This shear deformation can be described using 

the four geometrical parameters
1 2 3, , , and     , whose 

deformation map and gradient can be expressed as follows, 

1 1 1

2 2 2 1 1

3 3 3

x X

x X X

x X



  





 



 ,            (3) 

1

1 2

3

0 0

0

0 0



 



 
  

 
 
  

x
F

X

.             (4) 

The optimal values of the geometrical parameters in (3) 

and (4) can be obtained by minimizing the strain energy 

density using the Newton’s method.  

 
Fig  2.  Simple shear deformation of an infinitesimal patch on the RBC 

membrane surface (a) reference configuration, (b) current configuration 

Once the minimization step is completed, the first-order 

Piola–Kirchhoff stress tensor P and the tangent modulus, 

MFF are the first- and second-order derivative of the strain 

energy density with respected to F, respectively can be 

calculated using, 
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The Young’s modulus E, Poisson’s ratio v , shear modulus 

µh, area compression modulus K, and bending modulus B of 

the RBC membrane can be obtained using the expressions 

below: 

2

1111 1122 2222

1122 2222

2222 1122

2222 1122

2

2222 1122

( / ),

/ ,

0.5 ( ),

0.5 ( ),

0.5 ( ),

FF FF

FF FF

FF FF

h

FF FF

FF FF

E

v

K

B





 



  

  

  

M M M

M M

M M

M M

M M

        (6) 

where  is an elastic length scale, taken as 0.28 μm [16]. 

The microstructure parameter set used in the study are as 

follows: initial equilibrium spectrin length L = 87 nm, 

persistence length p = 8.5 nm, maximum spectrin extension 

length 
maxL  = 238 nm, number of triangular face on RBC 

membrane surface Nf = 41192, bending coefficient 
bk = 2.77 

× 10-19 J, and temperature T = 300 K.  

Using the models given in (6) and the algorithm described 

above, we computed the elastic properties of the RBC 

membrane as shown in Table I below. 
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IV. ATOMISTIC-CONTINUUM MESHFREE METHOD 

Based on the constitutive relations in section II, a 

computational scheme can be established to perform the 

numerical simulation of RBC membrane deformation. The 

meshfree method is a computational technique that has some 

excellent advantages over the classical finite element 

method. In particular, meshfree approximations have non-

local properties, and satisfy the higher order continuity 

requirement [10]. The intrinsic non-local property of 

meshfree interpolation leads to real rotation-free 

approximation, and displacements can thus be used as the 

only nodal freedoms [11]. Improved moving least squares 

(IMLS) approximation [24] is used to construct the meshfree 

interpolation and can be combined with the Ritz 

minimization procedure to form the IMLS-Ritz meshfree 

method. 

In the computation, we considered the RBC as a body that 

initially occupies a region 0  and deforms to a new 

configuration t . The deformation of a material particle 
0X  at a time t is described by ( , )tx X  through the 

mapping functions ϕ as  

( , ) = ( , ) +t tx X u X X              (7) 

where u  is the displacement of this material particle. The 

first-order deformation gradients F can therefore be defined 

as 

,     , 1,2,3.i i
ij ij

j j

x u
F i j
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 
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        (8) 

or  
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                            (9) 

where 
ij is the kronecker delta property. 

The displacements relative to the undeformed cell 

configuration are approximated as   

1
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  u Φ u                (10) 

where u denotes the nodal parameter, 
IΦ

~
 the meshfree 

interpolation (or shape) function derived using the IMLS 

approximation at the Ith node and NP is the total number of 

nodes covered by the compact support domain. By treating 

the RBC membrane as a 2D surface embedded in a 3D 

space, all nodes have three degree of freedom. The 3D 

IMLS shape function with linear basis and circular support 

domain were employed. 

The first-order deformation gradients F corresponding to 

the displacement step above are approximated by using (9) 

and (10) above, as 
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where 
KIΦ ,

~
 (K = 1,2,3) is the first-order derivative of the 

meshfree shape function with respect to the reference 

configuration. 

The total energy of the system can be calculated as: 
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where 
0( ) ( )W hWF F  is the strain energy density 

function adopted in order to incorporate the effect of 

membrane thickness h, 
0

P
t represent the first-order stress 

tractions on the surface of the domain. Contribution from 

body force term was neglected. The Ritz parameters are 

determined (or adjusted) such that δΠ = 0. For simulations 

in this section, contributions from area and volume 

conservation energy were ignored for the sake of simplicity.  

Upon discretizing (8) above using the well-known 

meshfree and finite elasticity framework, the resulting 

incremental system equations can be written as  

 ,n 1 n 1 n 1   K u f                      (13) 

where 
n 1u  contains the nodal parameters of all meshfree 

nodes. 
n 1K  and 

n 1f  represents the global stiffness matrix 

and non-equilibrium force vector, and they are given by  
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where 
nP denotes assembled stress vector at the time t  when 

the stress components are known and L is an assembled 

differential operator matrix with respect to the undeformed 

cell configuration,  

TABLE I 

VALUES OF ELASTIC PROPERTIES OF RBC MEMBRANE IN COMPARISON WITH 

THOSE IN LITERATURE FOR DIFFERENT VALUE OF 
ak  AND 

vk . 

Elastic 

Properties 

(units) 

a vk k    

ξ = 0 ξ = [100 (150) 300]  References 

E (μN/m) 22.13 21.42 (19.31) 17.31 22.11 (ξ = 0) [17],  

13.80 – 18.40 [18],  

19.0 – 33.0 [1]. 

v 0.33 0.46 (0.45) 0.44 0.33 (ξ = 0 ) [17],  

~ 0.50 [19],  

0.49 [20]. 

µh (μN/m) 7.98 7.49 (6.70) 6.00 8.30 (ξ = 0) [17], 

5.50 – 8.70 [21]. 

K (μN/m) 15.96 20.14 (17.65) 15.55 16.60 (ξ = 0) [17], 

12.10 – 18.7 [21]. 

B ( 19   10 J ) 6.26 5.87 (5.25) 4.71 2.0 – 7.0 [22],  

 ~ 9.0 [23]. 
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        (16) 

The stiffness matrix in (14) and the internal force vector in 

(15) are integrated using the Gauss quadrature integration 

techniques while the external force vector in (15) was 

computed using the direct nodal force application technique. 

 In the present study, a simple technique is used to ensure 

that the solution converges to the minimum point. This was 

achieved by replacing 
n 1K  with ,n 1  K I where   is a 

positive number that is slightly larger than the magnitude of 

the most negative eigenvalue of 
n 1K , and I is an identity 

matrix. After a few cycles of replacements, 
n 1K  becomes 

positive definite and the standard Newton method continues. 

V. FINITE DEFORMATION OF THE RBC MEMBRANE 

Using the present meshfree method, we have studied the 

finite deformation behavior of the RBC membrane. This was 

achieved by simulating the optical tweezers techniques, in 

which two silica beads trapped by laser beams are attached 

to left and right ends of the cell. The trapped cell was 

stretched by fixing one of the beads and pulling the other in 

an axial, as illustrated in Fig 3.  

 
Fig  3.  Optical tweezer experiment setup and computational configuration 

adopted in this study.  

The axial (DA) and transverse (DT) diameters of the 

stretched cell, corresponding to the applied stretching force 

were recorded. The total stretching force, +F within the 

range 0 180 pN was applied to 
vN N  vertices of the 

problem domain with the largest x-coordinates in the 

positive x-direction, then a corresponding equal but opposite 

force, –F was exerted on 
vN N  vertices with the smallest 

x-coordinates in the negative x-directions. The value of 

was taken to be 0.05 which represents the number of nodes 

in contact with the attached silica beads. The simulations for 

each given stretching force within the force range were 

performed lambda (λ) times, where λ correspond to the 

maximum number of loading steps adopted. The external 

force vector 
ext

n 1f  is assembled from the total stretching 

forces, +F and –F. 

Within each loading step, iteration was performed until 

the solution converges, after which the next loading step 

starts. At the end of the final loading steps, the undeformed 

RBC geometry was updated to obtain the final deformed 

geometry. The deformed axial diameter, DA was then 

computed as 
max min ,x x where maxx is the maximum x 

coordinate among the N
vertices, and 

minx is the minimum 

among N
vertices. Also, the deformed transverse diameter, 

DT was obtained using the expression 

2 2

1...2 max ( ) ( ) ,  
vj N j jy z  where  

jy  and 
jz  are coordinate 

value of each vertices in y and z directions, and 
vN  

represents the total number of meshfree nodes discretized on 

the problem domain as shown in Fig 4 below.  

 
Fig  4.  Full geometry of RBC membrane (problem domain) showing 

meshfree node distributions and triangular meshes as visualization aid. 
 

This simulation was performed using 162 meshfree nodes, 

quadrilateral background cell for numerical integration, 

cubic spline weight function, meshfree scaling 

parameter
max 1.462d  , 17 loading step and RBC membrane 

parameter set: RBC diameter
0 7.82D  µm, 87L = nm, 

8.5p   nm, 
max 238L  nm, temperature T = 300 K, and 

assumed membrane thickness t = 12 nm. 

Fig 5 below shows the comparison between our current 

meshfree simulation, spectrin level modeling, quasi-

continuum meshfree simulation as well as the optical 

tweezer experiment. From the plotted figure, the 

performance of the newly implemented approach is 

obviously better as the obtained values for stretched axial 

and transverse diameters for each stretching force are very 

close to those observed in the experiment. 
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Fig  5.  Axial and transverse diameter of RBC membrane as a function of 

stretching force in comparison with optical tweezer experiment [25], quasi-

continuum meshfree simulations [8] and spectrin level modeling [17]. 
 

VI. CONCLUSION 

The elastic properties and deformability of the RBC 

membrane were studied in this paper using a gradient theory 

based on the standard Cauchy–Born rule. The elastic moduli 

of the RBC membrane were obtained using the strain energy 

density function and deformation gradient tensor by 

minimizing the energy in the representative cell. An 

atomistic-continuum meshfree method was also implemented 

to study the three-dimensional finite deformation of the RBC 

membrane by simulating the optical tweezers experiment. 

Results obtained from this study were presented in 

comparison with those in literature and we conclude that the 

present approach gives reasonable predictions for both the 

elastic properties and RBC membrane deformability. 

Furthermore, since the proposed meshfree analysis with 

fewer nodes on the problem domain give better predictions 

than previous numerical studies, we conclude that the 

current approach is computationally efficient. 
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