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SUMMARY 

 

In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they pass 

through the microcapillaries and the spleen. In this paper, we examine the effects of Plasmodium 

falciparum infection and maturation on the large deformation behavior of malaria-infected red 

blood cells (iRBCs) by means of a three-dimensional (3D) multiscale meshfree method. We 

numerically simulated the optical tweezers experiment and observed the force-displacement 

response of the iRBC membrane as malaria infection progresses. Our simulation results agree well 

with experimental data and confirm that the deformability of malaria-infected cells decreases 

significantly as malaria infection progresses. 
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1   INTRODUCTION 
 

Malaria is the most important parasitic disease of humans and claims the lives of more children 

worldwide than any other infectious disease. The World Malaria Report 2015 published by the 

World Health Organization (WHO) revealed that, in the year 2015 alone, around 214 million new 

cases of malaria infection and ~438,000 malaria deaths occurred worldwide [1]. Despite the huge 

progress recorded in the past few years, the recurrent development of antimalarial drug resistance 

remains a significant source of concern for all. Of all the known malaria parasites, Plasmodium 

falciparum (P. falciparum), which is a protozoan parasite transmitted by the female Anopheles 

mosquito, has been identified as the most prevalent and lethal malaria parasite affecting humans 

[2]. After invading the healthy RBCs, the merozoites develop through the ring (Pf-rRBC), 

trophozoite (Pf-tRBC) and schizont (Pf-sRBC) stages with varying properties and degrees of 

influence on the cell properties. The product of this dynamic invasion process is the bursting of the 

RBCs resulting in anemia, chills, and fever [3]. Other notable effects of infection include increased 

membrane shear modulus, cell viscosity and cytoadherence [4].  

 

Noteworthy numerical studies into the effect of malaria infection on RBC membrane include the 

works by Dupin et al. [5] using a 3D lattice Boltzmann model, Hosseini and Feng [6] by means of 

smoothed particle hydrodynamics (SPH) method and dissipative particle dynamics (DPD) method 

by Fedosov et al. [7]. In a bid to predict the large deformation behaviors of the iRBC membrane 

more precisely and elucidate their stiffening mechanism, a nonlinear 3D multiscale RBC membrane 

model is proposed in this study. The developed 3D multiscale RBC multiscale model, based on the 

2D atomistic-continuum model presented in Ref. [8], is computationally efficient and able to 

capture the atomistic scale behavior of RBC membrane more accurately. This approach has been 

successfully applied to study the biomechanical behavior of healthy RBC membrane [9–12]. 
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2   MULTISCALE MESHFREE COMPUTATIONAL FRAMEWORK 
 

2.1 Multiscale hyperelastic constitutive model 
 

In this section, we describe the development of a hyperelastic constitutive model that is derived 

from the first-order Cauchy–Born rule by using the coarse-grained Helmholtz free energy to 

describe the membrane atomic interactions. The Cauchy–Born rule establishes a connection 

between the deformation of the lattice vector of an atomistic system and that of a continuum 

displacement field, and plays an important role in the development of continuum constitutive 

models of atomic lattices. Considering a representative microstructure that is composed of six 

spectrin links  1 6( , , )I J J  as shown in Fig. 1 above, the deformation of each spectrin links 

can be approximated using the Cauchy-Born rule, as follows, 

IJ IJ
r Grad R ,      (1) 

where 
iJ i J

Grad e eGrad , 
IJ
R  and 

IJ
r  denotes the first-order deformation gradient tensor, the 

undeformed and deformed spectrin link length between junction complexes I and J, respectively.  

 
Figure 1: Representative microstructure of the RBC membrane 

In our current derivation, the strain energy density function 
0
W  at a junction complex I of the RBC 

membrane representative microstructure is defined using the coarse-grained Helmholtz free energy 

[8,9,13] at this point, which is obtained as a summation of membrane in-plane and bending 

energies, and expressed as 

6 6 61 1

2 3
0 0

1 1 1

( ) ( ) ( )
WLC IJ Bending

J kI

h
W W U C UGrad r A ,  (2) 

where   h represents RBC membrane thickness and 
I

 is the average area per junction complex in 

the reference configuration, calculated using 23 2
i
L . The first-order Piola-Kirchhoff stress tensor 

P and the tangent modulus matrix M corresponding to the first- and second-order derivative of 

the strain energy density with respect to Grad , respectively can be calculated using, 

 and   

2 2
0 0 0 0

2 2

T

IJ IJ IJ

IJ IJ

W W W Wr r r
P M

Grad Grad r Grad GradGrad r
.     (3)      

2.2 Nonlinear meshfree computational framework 

 

A nonlinear three-dimensional (3D) multiscale meshfree method based on the improved moving 

least-squares (IMLS) approximation and Ritz minimization scheme, is employed to investigate the 

effect of malaria infection on the large deformation behavior of iRBC membrane. The current 

approach is well able to overcome the inherent limitations of mesh-based methods since it satisfies 

the higher order continuity requirements, circumvent mesh distortion, increased computation cost 
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due to remeshing process and owing to the nonlocal intrinsic properties of meshfree methods, 

displacements are the only nodal degree of freedom. We refer readers who are interested in the 

derivation and numerical computation procedure of the expressions in (1)–(3) above as well as the 

meshfree development and implementation to the following literature and the references cited 

therein [8,9,14,15]. 

2.3 Numerical simulation procedure 

 

The full biconcave geometry of the RBC membrane was used for all numerical simulations in this 

study since the precise shapes of the various infection stages are unknown. This geometry was first 

discretized with 162
m
n  meshfree nodes (Figure 2) and 766 quadrilateral background cells with 

four (4) Gauss points in two directions. Stretching forces from 0 195 pN was applied to the ends 

of the cell and pulled. The variation of healthy and infected RBC membrane deformed axial 
a
d  and 

transverse 
t
d  diameters are computed and plotted against increasing stretching force. The sets of 

RBC membrane microstructure parameters presented in Table I are dependent on the condition of 

the cell membrane and we opined that the as malaria parasite develops, the equilibrium spectrin 

link length increases and the persistence length decreases. Other simulation parameters are defined 

irrespective of the RBC condition. They include the physiological temperature, 300 K 27°C( )T , 

membrane thickness, 12 nmh  and the RBC membrane bending coefficient, 192 77 10  J.
b
k . 

Results obtained from our numerical simulations are presented in comparison with experimental 

results reported in Ref. [16]. 

 
Figure 2:  Discretization of iRBC membrane surface with 162 meshfree nodes 

3  RESULTS AND CONCLUSIONS 

 

Figure 3 shows the relationship between the variation in RBC membrane axial and transverse 

diameters and applied stretching force as malaria infection progresses in comparison with 

experimental data. The obtained result compares well with experimental result. We observe that as 

the malaria parasite develop, the deformability of the iRBC membrane decreases similar to the 

experiment reported in Ref. [16]. Our findings reveal that the increased stiffening of RBC 

membrane may be primarily due to the rearrangement and changes in the microstructure of the 

membrane underlying spectrin network rather than change in RBC membrane shape or formation 

of nanoscale knobs on the membrane surface. 

Table I Values of microstructure parameters for healthy RBC and iRBC membrane 

Cell condition / 
infection stage 

RBC membrane microstructure parameters 

Equilibrium 
spectrin length, L 

(nm) 

Persistence length, 
p (nm) 

Maximum contour 

length, 
max
L (nm) 

RBC diameter 
(µm) 

hRBC 87.0 8.5 238 7.820 
Pf-rRBC 134.85 7.5 238 7.480 
Pf-tRBC 139.2 6.0 238 7.260 
Pf-sRBC 160.95 4.0 238 7.219 
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Figure 3:  Variation of (a) axial diameter and (b) transverse diameters of healthy, Pf-rRBC, Pf tRBC and Pf-sRBC 

membrane in comparison with experimental data [16]. 
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