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Abstract

It is important to account for inherent variability in the material properties in the design and analysis of engineering
structures. These properties are typically not homogeneous, but vary across the spatial coordinates within a
structure, as well as from specimen to specimen. This form of uncertainty is commonly modelled using random
fields within the Stochastic Finite Element Method. Simulation within this framework can be complicated by the
dependence of a random field’s correlation function upon the geometry of the domain over which it is defined. In
this paper, a new method is proposed for simulating random fields over a general two-dimension curved surface,
represented as a finite element mesh. The covariance function is parametrised using the geodesic distance, evaluated
using the solution to the ‘discrete geodesic problem,” and a point discretisation approach is subsequently applied
in order to sample the random field at the nodes of the model. The major contribution of the present work is the
development of a methodology for simulating random fields over curved surfaces of arbitrary geometry, with a
focus upon non-intrusive application to industrial finite element models using ‘off the shelf” commercial software.
In order to demonstrate the potential impact of the the proposed approach, the algorithm is applied in an uncertainty
quantification case study concerning vibration and buckling of an industrial composite aircraft wing model.

Keywords: Stochastic finite element, random field, Monte Carlo Simulation, uncertainty quantification, aircraft
wing

1. Introduction

The design of engineering structures is a complex and multidisciplinary problem in which efficient designs
are sought, while ensuring that undesirable phenomena such as material failure do not occur under the loads
encountered by the structure. In practice, all properties and processes are subject to uncertainty, and it is impossible
to guarantee precise values for the parameters which govern such behaviour. Furthermore, material properties are
not homogeneous, but can vary across different spatial coordinates within a structure. Spatially-varying uncertainty
such as this may be modelled within the framework of the Stochastic Finite Element Method [1, 2, 3], in which
uncertain properties are defined as random fields, and are propagated through structural models discretised by
a finite element mesh. Simulating random fields within this framework is complicated by the definition of the
correlation function of the random field, which is dependent upon the geometry of the spatial domain over which
it is defined. This dependence will be the focus of the present work.

A wide range of approaches may be used to characterise random fields [2, 3]. In point discretisation methods,
the random field is sampled at discrete locations in the spatial domain. For example, random fields may be evaluated
at finite element midpoints [4], or alternatively at the Gauss integration points in order to directly integrate the
variability into element stiffness and mass matrices [5]. Random fields may also be interpolated within each element
based upon values at discrete locations. For example, polynomial shape functions are used to interpolate nodal field
values in the shape function method [6], whereas Optimal Linear Expansion [7] makes use of a Kriging interpolation
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approach. Rather than sampling point-wise field values, it is also possible to use average values taken across each
element [8]. Additionally, it is common to approximate random fields as a series expansion of spatially-dependent
deterministic functions multiplied by random coefficients. Orthogonal Series Expansion [9] uses a random sum
of orthogonal polynomials, whereas Karhunen-Loéve Expansion [1] (KLE) instead approximates the field using
eigenvalues and eigenfunctions of the covariance function. These eigenvalues and eigenfunctions used in KLE must
be obtained through solution of the Fredholm integral eigenvalue problem. Closed-form solutions exist for some
covariance functions defined over simple geometries [1]. In other cases, a variety of methods exist for numerical
solution of the Fredholm integral [10], including the Nystrom method in which the eigenvalue problem is discretised
using numerical integration, and the Galerkin and collocation methods in which eigenfunctions are approximated
using basis functions and the resulting residuals are minimised. Also of note, is the spectral representation method
[11, 12], in which cosine series formulae are used to target correlation structures prescribed as Spectral Density
Functions, and sample realisations are generated using the Fast Fourier Transform technique.

Limited work to date has demonstrated the simulation of random fields over curved, non-rectangular domains.
In many of these examples the models have simple geometries such as cylinders, in which the dependence upon the
geometry may readily be prescribed explicitly through the choice of coordinate system, correlation function, and
boundary conditions. For example, random fields were used to model geometric imperfections in cylindrical shell
structures in [13], and geometric and boundary imperfections in cylindrical shells with cut-outs in [14]. In both
cases the geometry was accounted for by parametrising the covariance function with respect to the circumferential
direction using polar coordinates, and by imposing periodic boundary conditions. Monte Carlo Simulation of finite
element models composed of triangular shells was undertaken in [15], with uncertainty in modulus, Poisson’s
ratio and thickness defined using the spectral representation method. Example applications were presented based
upon a curved roof idealised as a cylindrical panel, and a hyperboloid geometry, however, the dependence of the
correlation function upon the domain geometry was not explicitly discussed. The same method was extended to
include geometric imperfections in [16], and applied to both a cylindrical panel and an axially compressed cylinder.
In the latter example, a separable correlation structure was prescribed with respect to axial and circumferential
directions, thereby explicitly accounting for the geometry. More recent effort towards experimental measurement,
and stochastic simulation of geometric imperfections in cylindrical shells may be found in [17, 18, 19].

The simulation of random fields over complex domains is also often achieved through discretisation of the
domain using the finite element mesh, and approximating the Karhunen-Loé¢ve eigenfunctions as a weighted sum
of local basis functions defined on element domains. Such an approach enables these complex nonlinear functions
to be approximated using low order, piecewise-continuous functions [10]. A commonly used approach is a
Galerkin projection onto a basis defined by the finite element shape functions, which was first proposed in [1], and
demonstrated upon a flat domain with curved boundary. Practical implications of using this projection technique
in conjunction with commercial finite element codes were discussed in [20], and the resulting formulation applied
to three demonstrative problems including a flat rectangular plate, flat plate with holes, and flat idealisation of an
aircraft wing. An alternative finite element KLE method was proposed in [21], in which Lagrange polynomials
were chosen to form the local basis, thus enabling the field to be evaluated at the Gauss integration points of each
element, in order to non-intrusively integrate the variability into commercial finite element software ABAQUS.
This approach was demonstrated upon flat domains representing a quarter-circle tube wall, and a retaining wall
structure. A similar method using Lagrange polynomials to interpolate random fields within finite elements was
proposed in [22], and applied to example domains such as a quarter-circular tube and corrugated panel.

Another noteworthy class of methods used to simulate random fields over complex domains is based upon the
principle of generating an initial set of samples over a simpler bounding domain, and discarding realisations in
unwanted regions. Such an approach can in some cases circumvent the need to sample over complex domains. A
“finite cell” method was proposed in [10], and applied to a square domain with a circular cut-out. In this example,
the limits of the Fredholm integral solved in the Karhunen-Loeéve Expansion are taken on the square bounding
domain, and the integrand is assumed to be discontinuous at the boundaries of the physical domain defined at the
cut-out. A ‘domain independence’ property was theorised in [23], which implied that the realisations of a random
field approximated using KLE are independent of the domain geometry. This property relies upon the assumption
that one of the domains in question is a subset of the second, and that the covariance function is unmodified under
the change of domain. This property was exploited in order to model random fields on geometries defined as
cut-outs from larger bounding domains. Demonstration problems included a square plate with circular cut-out and
angle bracket with multiple cut-outs. A similar approach was presented in [24], in which Legendre polynomials
were used to approximate random fields on the bounding domain.



Recently, an information-theoretic method for simulating elasticity tensors as random fields was proposed in
[25], and demonstrated upon spherical and cylindrical domains in R3. In this approach, direction-dependent
correlation length like parameters are prescribed via a diffusion field, and random field sample realisations are
generated through solution of the resulting stochastic differential equation using the Galerkin method with a finite
element basis. For the example geometries, it was possible to target specified spectral density functions using
the correct choice of coordinate system and bounds. A similar sampling method was applied to the simulation of
nonlinear strain energy functions as non-Gaussian random fields over complex domains in [26]. This approach
was demonstrated upon a complex artery wall geometry, using a local coordinate system which varies spatially
within the structure to follow the axial, circumferential, and through-thickness directions. This method relies upon
targeting a covariance function through numerical experiments, rather than an explicit a priori definition. In [27], a
diffusion maps metric was used to parametrise the covariance function of Gaussian processes, in order to account
for intrinsic correlation structures occurring in large time-dependent datasets, which are insufficiently captured
using a Euclidean metric. Also of note is the investigation in [28], in which it was found that the mathematical
structure of a random field can be significantly altered through large geometrical transformations of the spatial
domain, such as those induced during manufacturing processes.

Despite significant progress on the topic, there has been a relatively low uptake in the application of the
stochastic finite element method to real-world engineering problems in the decades since its advent. Although
many sophisticated methods have been developed for the simulation of random fields, these methods have typically
only been demonstrated upon simple example geometries such as cylinders or spheres, or flat plates with non-
rectangular boundaries wherein correlation functions may readily be defined using standard metrics such as the
Euclidean distance. To the knowledge of the authors, there is no existing work in which the dependence of the
correlation function upon the geometry of an arbitrary, curved, two-dimensional surface is discussed and defined
explicitly. Furthermore, there is no existing guidance on how random fields parametrised using such a correlation
function, may be simulated using commercial finite element software.

In this paper, an algorithm is proposed for simulating random fields defined over a general two-dimensional
surface, discretised using a finite element mesh. The proposed algorithm is based upon parametrising the correlation
function using the geodesic distance, which is estimated by solving the ‘discrete geodesic problem’ [29]. The
correlation function is evaluated at the nodes of the model, and as such, this approach can be considered an
extension of the point discretisation methods. The main contribution of the present work is to address two
challenges associated with the practical application of random field methods to industrial finite element models:

 Explicit definition of a correlation function defined over an arbitrary curved geometry.
* Non-intrusive simulation of random fields using commercial, ‘off the shelf finite element software.

This paper is intended to serve as a simple guide for simulating random fields in existing industrial models, and as
such, it is assumed throughout that the user is unable to modify the finite element mesh, and does not have access to
the finite element shape functions. In order to demonstrate the potential impact, the proposed method is applied in
an uncertainty quantification case study on an industrial composite aircraft wing model, using commercial software
package MSC Nastran.

The paper is structured as follows. In Section 2, the concept of a random field is introduced, and in Section
3 the proposed method for simulating random fields on curved meshes is presented. The method is demonstrated
upon three example geometries in Section 4. Finally, the aircraft wing case study is presented in Section 5.

2. Random fields background

A random field, H (z, 0), is defined as a collection of random variables indexed by spatial parameter € €2,
where (2 defines the geometry of the spatial domain, and § € © is an outcome taken from sample space ©. At a
given spatial coordinate, H (x, 6) is a random variable which defines the spread in H at xy. For a given outcome,
H(x,0y) defines a realisation of the field, which is a deterministic function in . A Gaussian random field
may be defined entirely by its mean function, p(x) = E[H (z, 0)], variance 0?(x) = E[(H (z,0) — p(x))?], and
autocorrelation function p(x, ') = E[(H (x, 0)—u(x))(H(2',0)—pn(x"))]/o(x)o(x’). The field is homogeneous
if the mean and variance are constant, and the autocorrelation is parametrised completely by the difference @ — x’
[2]. A commonly used correlation function may be defined as the exponential form

p(x, x') = exp(—|lz — @'||/c) (1)



where || o || denotes a distance norm, and c is the correlation length. Parametrising the correlation function using
the distance yields the physical intuition that the field is strongly correlated for nearby points at which it is likely to
take similar values, and weakly correlated at points which are far apart, for which it is likely the field will differ.
The correlation length dictates the typical length-scale across which variations occur. For a flat rectangular domain
such as that shown in Fig. 1a, with & = {z, y}, two possible exponential correlation functions may be defined as

p(z,x') = exp(—|z — 2’| /ca) exp(—|y — /| /cy) (2)
p(x, ') = exp(—+/(z — 2')> + (y — ¥/)?/c) 3)

The L norm used in Eq. (2), also known as the ‘taxicab’ norm, is often used for mathematical convenience as it
enables a two-dimensional correlation function to be separated into the product of two one-dimensional functions.
The Ly norm used in Eq. (3), also known as the Euclidean norm, may be a more realistic measure of the physical
correlation between points. These norms are illustrated in Fig. 1a.

X = ', )

(a) Flat rectangular domain

(b) Curved domain

Figure 1: Distance norms on flat and curved spatial domains

While the distance norms used in Eqs. (2-3) may be used to define the correlation between points on a flat
domain, they cannot give an accurate measure of this correlation over a curved surface such as that shown in Fig.
1b. The geodesic distance, defined as the arc-length of the shortest path between points & and ', is a reasonable
alternative measure which may be used in the exponent of Eq. (1). While closed-form expressions for this distance
exist for simple geometries, it is necessary to use numerical algorithms to determine this distance for a general
surface. Such an algorithm is introduced in the subsequent section.

3. Simulating random fields on curved domains
3.1. Overview

A method is now presented for simulating random fields across curved spatial domains. The algorithm is
non-intrusive, and may be applied as a black box in order to generate samples across any two-dimensional surface,
provided that this surface is discretised using a triangulated mesh. The approach is therefore a useful tool for
uncertainty quantification using pre-defined finite element models in commercial, ‘off the shelf” software. The
geodesic algorithm used to define the covariance is introduced in Section 3.2, and point discretisation simulation
approach is described in Section 3.3, before a summary is presented in Section 3.4.

3.2. The discrete geodesic problem

As discussed previously, the correlation function of a random field is often parametrised using the distance
between points. On a curved surface, the shortest distance between points is known as the geodesic distance, and
is illustrated in Fig. 1b. In this section, a class of algorithms for determining the shortest path between points on
a finite element mesh is introduced. Such an algorithm was first proposed for non-convex geometries by Mitchell,
Mount and Papadimitriou [29], which used a ‘continuous Dijkstra’s’ algorithm to propagate shortest paths over a



surface. In this paper, the implementation of [29] proposed in [30] is used. The implementation is not discussed in
detail due to the black-box nature of its use, however, significant features are outlined in this section.

The fundamental concept exploited by the algorithm is that the shortest path between two points on an unfolded
mesh is given by a straight line on an ‘flattened’ mesh, as illustrated in Fig. 2. The shortest path may change
direction at ‘saddle vertices’ in non-convex geometries. Paths are propagated through the structure based upon
an analogy with a ray of light emanating from the source node, in order to determine a window of possible paths
through a sequence of edges, as illustrated in Fig. 3. The resulting windows behave as the nodes in Dijkstra’s
algorithm [31] for determining shortest paths on a graph, with the exception that the distance from the source to a
particular edge interval is defined using a function rather than a unique value. Once the paths have been propagated
through the mesh, the shortest path from source to destination node is retrieved as a sequence of edges, from which
the geodesic distance is determined using the Euclidean metric on the flattened mesh.

Shortest path on surface

Shortest path on flattened mesh

N7

‘flattened’ mesh

Figure 3: Propagation of paths from source over a sequence of edges in a ‘flattened’ mesh, reproduced from [29]

In order to demonstrate performance of the algorithm in determining shortest paths around non-convex features,
two examples are shown in Fig. 4 corresponding to a plate with circular hole, and a plate with curved boundaries.
In both cases the algorithm determines a path around the circumference of the domain boundary, rather than cutting
across the regions in which the domain is undefined. The proposed method therefore accurately models the effects
of such features upon the field covariance.

3.3. Simulation using point discretisation methods

In practical applications, random fields must be discretised such that they may be sampled as finite-dimension
random variables. In point discretisation methods [2], the random field is evaluated at a discrete number of points
in the spatial domain as a correlated random variable. For example, a homogeneous random field may be modelled
at IV nodes of a finite element model using a N-variate Gaussian random vector I:I(F)) which is distributed as

(H(8) — u)/o ~N(O,R) )
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Figure 4: Two examples of shortest paths across non-convex domains

where ¢ and o are the mean and standard deviation, and R is an N x N correlation matrix with components
Rij = p(wi, ;) (5)

where p is the autocorrelation function and x; and x; are the coordinates of the i and j™ nodes respectively.

A correlated Gaussian random variable may be simulated by exploiting an orthogonal decomposition of the
covariance matrix based upon principal components. Let \; and ¢, be eigenvalues and eigenvectors of an N x N
symmetric and positive semi-definite correlation matrix R. The eigenvalues may be arranged into a diagonal matrix
A = diag (A, A2, ..., A\n), and the eigenvectors arranged columnwise into matrix ® = {©;,¥5,...,@x}, in
order to give rise to an orthogonal decomposition in the form

R =®A®T (6)

Given this decomposition, the set of correlated Gaussian random variables may be simulated using the affine
transformation
H=/+0c®AY?u (7)

where u is a vector of N independent and identically distributed Gaussian random variables. It should be noted
that this sampling procedure is reliant upon the assumption that the covariance matrix is positive semi-definite. In
some cases of non-convex geometry, such as the examples shown in Fig. 4, covariance matrices were found to have
small, negative eigenvalues. In such cases the algorithm must be modified to retain only the positive eigenvalues
and their corresponding eigenvectors, in which case Eq. (7) becomes

H=y+0®rA) up (8)
where ®r = {1, ., PN, }» Ar = diag (A1, A2,..., Any), ug is an vector of N Gaussian-distributed

variables, and Ny, is the total number of positive eigenvalues.

It should be noted that the above approach is limited to simulating Gaussian random fields. If required, the
method may readily be extended to simulating non-Gaussian fields as a translation processes, defined using a
nonlinear transformation of an underlying Gaussian random field of the form [32, 33]

Z(:mw) = g(Y(w,w)) = F_I[CI)(Y(:[:,(,J))] )]

where Z (x, w) is anon-Gaussian random field with marginal Cumulative Distribution Function (CDF), F', ® denotes
the standard Gaussian CDF, Y (z,w) is an underlying Gaussian field, and g denotes a nonlinear "memoryless"
transformation. Care must taken to ensure that the correlation structure of transformed field matches the target
correlation function. This matching is often undertaken through iteratively updating the correlation structure of the
underlying Gaussian random field [32, 33, 34, 35].

3.4. Simulation algorithm summary
In previous sections, individual components of the proposed method have been introduced. An overview of the
complete approach is shown in Algorithm 1.



Algorithm 1 Curved-domain random field simulation approach

1: Use discrete geodesic algorithm to determine the length of the shortest path between each pair of nodes,
d(l‘i,l‘j) Vi, j € {1,...,]\7}.
2: Evaluate covariance matrix using geodesic distance between each pair of nodes, R;; = exp(—d(z;,z;)/c).
3: Determine eigenvalues and eigenvectors of the covariance matrix,
A = diag (A, A, An) @ = {01, 00,.. i }
4: Retain Ny positive eigenvalues and corresponding eigenvectors,
AR = dlag (Ala A27 SRR AJVR)’ ®r = {8017 P2y SONR}
5: Generate a set of Vg, independent and identically distributed Gaussian samples,
u={ug,ug,...,ung}, u;~N(01)Vi.
6: Project onto N-variate correlated Gaussian variable to give sample value at each node, v = ® RA}{ ‘u.
7: Shift and scale sample properties in accordance with the required mean and standard deviation, H = ov + p.
8: Approximate element properties as average value of adjoining nodes.

The proposed method is advantageous in that it is relatively simple to implement, and relies entirely upon
distinct black-box components. The method may be used in conjunction with commercially available finite element
software, and there is no need to evaluate potentially expensive integrals, such as those required by the Galerkin
method [1]. The discrete geodesic algorithm used in Step 1 is central to the approach. For a given mesh, this step
needs only to be undertaken once, as the obtained data on geodesic distances may be re-used to generate samples
for a variety of different correlation structures. The major limitation of the proposed method is that it may only be
used to simulate stationary random fields, whose covariance is parametrised solely by the distance between points.

In Step 8, element properties are taken as an average of nodal values. It should be noted that this choice has
been made for the sake of simplicity, and the algorithm may readily be modified to determine element properties
using a variety of methods. The midpoint method [4] may be used, if in Step 1 distances are determined between
element midpoints rather than the nodes, or variability may be explicitly integrated into stiffness matrices if the field
is evaluated at the element Gauss points [5]. Sampled field values may also be interpolated within each elements
using the shape function method [6].

3.5. Computational cost

The primary aim of the present work is to address the parametrisation of the correlation function in surfaces
of arbitrary geometry. For the sake of completeness, significant aspects of the computational cost of the proposed
sampling method are discussed in this section, alongside suggestions for potential improvements. This discussion
focusses upon the scaling of the required computation time with the number of nodes, as this can often be large in
complex three-dimensional finite element models.

The computational efficiency of the presented method is limited by the algorithm used to evaluate the geodesic
distance between all nodes in the mesh. In the original work by Mitchell, Mount and Papadimitriou (MMP) [29],
the distance between a single source node and all destination nodes was achieved with a theoretical complexity
O(n?logn). Chen and Han (CH) [36] later proposed an alternative algorithm with theoretical complexity O(n?),
however, it was subsequently found to be outperformed by the MMP algorithm in practice [30]. In order to evaluate
the covariance matrix, it is necessary to determine the distance between all nodes in the mesh. Assuming either
the MMP or CH algorithms are applied sequentially using each node as a source, the required distances may be
determined with complexity O(n?3logn) and O(n?) respectively [37]. It should be emphasised that although this
distance calculation is the most computationally expensive aspect of the method, this step need only be undertaken
once for a given mesh, and data may be re-used in other simulations with different correlation structures. Recently,
fast wavefront propagation [38], as well as a heat flow method [39], have been shown to achieve substantial
reductions in the required computational expense compared with both MMP and CH algorithms.

The computation time required for the eigen-decomposition used in the proposed simulation of the random field
is known to increase significantly with the matrix size, with complexity O(n3) when using Cholesky factorisation
of symmetric, positive-definite matrices. Circulant embedding methods [40] were shown to achieve this eigen-
decomposition with complexity O(n log n) by utilising the Fast Fourier Transform technique, however, this approach
assumes that the field is simulated at regular grid points, and as such is not applicable to the complex geometries
discussed in this paper. The generalised fast multi-pole method [41, 42] was shown to solve the matrix eigenvalue
problem resulting from finite element discretisation of Karhunen-Loe¢ve Expansions using a Krylov subspace



eigensolver with a complexity O(nlogn). To further reduce computation time, covariance matrices may be
approximated using H matrices [43, 44], a sparse hierarchical format wherein a matrix is partitioned into sub-
blocks, with sub-blocks having low contribution to the system approximated using low-rank matrices. Such a
technique has been shown to achieve the decomposition in approximately linear time [45].

It should be remarked that in practice, the mesh density required for structural calculations is unlikely to be
identical to that required to accurately discretise the random field. The approach outlined in Algorithm 1 assumes
analysis is undertaken for an existing model, and only a structural mesh exists. In such a situation, simulating
the random field using the structural mesh is a pragmatic solution which enables analysis to be undertaken at all.
In an ideal application, a separate mesh would be used to simulate the random field, with an appropriate density
based upon the correlation length of the field. In such a case it would be possible to simulate random fields with
high correlation lengths using relatively few nodes, thereby creating an additional means to reduce the computation
time [46, 3, 21]. A convergence study may be undertaken using an appropriate error measure in order to identify
a suitable mesh density. Error measures are typically defined [2, 10] as spatial integrals and statistical moments
of the point-wise approximation error, e (x,0) = H(ax,0) — H(x, ), given by the difference between the exact
random field value, H, and its discretisation, H. One such measure is the error variance, defined as [2, 10]

€o(x) = Var[H(x,0) — H(x,0)]/Var[H (x, §)] (10)

Such error measures are difficult to calculate in general, as it is difficult to evaluate exact point-wise random field
value H over complex surfaces without discretising the geometry to some extent. By assuming the random field is
stationary and homogeneous, and exploiting the independence of random variables u; from Algorithm 1, Eq. (10)
may be expressed as

o(x) = 1= i)\ (11)

Noting that ¢;(x) is the i eigenvector of the correlation matrix, which is defined only at the nodes of the model,
it may be seen that Eq. (11) is only exact at the nodes. Should a global error measure be required, it is typical to
integrate the error variance across the entire spatial domain [2, 10], however, this may be difficult to evaluate in an
arbitrary geometry. Using the proposed discretisation, an alternative measure may be the average of Eq. (11) taken
across all nodes, or the maximum nodal variance error given by é, = sup,cq |€-(€)].

4. Simulation on example domain geometries

In order to demonstrate the flexibility of the proposed method, the approach outlined in Algorithm 1 is applied
to three example mesh geometries. The first example is a relatively simple support bracket geometry with multiple
bolt holes. A torus is chosen as a second example, with more complicated geometry upon which shortest paths are
more difficult to calculate analytically, as some of the geodesics are unbounded. Finally, an aircraft model is used
to demonstrate application of the method to an arbitrary, complex geometry. The number of nodes and elements
used in each example are detailed in Table 1.

It should be emphasised that these examples are chosen in order to demonstrate the flexibility of the algorithm
for simulation over two-dimensional surfaces of arbitrary geometry, and do not necessarily represent realistic
engineering problems. For example, an aircraft is a complex assembly of many components each of which are
manufactured separately, and as such, in practice it would be necessary to model each of the components as
independent random fields. An example of a more detailed analysis featuring multiple structural components is
presented in Section 5.

It is important to note that the mesh geometry typically represents the manufactured configuration of a structure,
which may not sufficiently describe the underlying random field. A simple example is the flat plate with hole shown
in Figure 4, which would likely be manufactured by cutting a hole from a flat plate, and as such, a Euclidean
metric may better parametrise the underlying random field. The support bracket in Figure 5 has been chosen as
a more complex example which illustrates a similar situation. The Euclidean distance is clearly a poor metric
with which to define correlation globally, as such a metric defines correlation across the effective hypotenuse
between the horizontal and vertical faces. However, the Euclidean distance better describes the correlation in the
locally flat region of the bolt holes. For a curved panel with circular cut-out, the Euclidean distance would not
accurately describe the geometry of the panel prior to cutting, however, as this geometry is undefined in the mesh
it is impossible to prescribe appropriate properties to the cut-out region. When modelling random fields over large
structures with arbitrary geometry there may be hundreds of such features. The method proposed in Algorithm 1



is considered a pragmatic compromise which enables analysis to be undertaken, when such features are relatively
small compared to global dimensions of the component.

Table 1: Number of nodes, elements, and random variables used in modelling random fields on example meshes

Geometry Nodes FElements Random Variables
Support Bracket 905 4900 888
Torus 2450 4900 2450
Aircraft 8757 17510 7741

In Algorithm 1, a random field is simulated as a random sum of eigenvectors of the correlation matrix, weighted
by the corresponding eigenvectors. The first ten eigenvectors are shown for each of the example geometries in Figs.
5 - 7. Resulting random field sample realisations are shown in Fig. 8. In each case, the required number of random
variables is based upon the number of positive eigenvalues of the Npyoges X Npodes correlation matrix. The number
of variables used to generate each of the example field samples is shown in Table 1.
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Figure 5: Example eigenvectors for a support bracket
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5. Aircraft wing case study
5.1. Model definition

In this section, the simulation algorithm described above is applied in an uncertainty study for a composite
aircraft wing. In order to demonstrate the potential impact of the proposed method, analysis is undertaken upon an
industrial finite element model, using commercial finite element software package MSC Nastran.

Existing work modelling random fields in composite material properties has been limited to relatively simple
geometries. For example, early work by Engelstad and Reddy [47] investigated the deflection of a spherical shell,
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Figure 7: Example eigenvectors for an aircraft model

Figure 8: Example sample realisations for example geometries

and postbuckling of a flat plate using a point discretisation method. Karhunen-Loéve Expansion was combined
with a Rayleigh Ritz approach in [48], in order to model free vibration of composite cantilever plates with uncertain
modulus and density. An intrusive formulation for the stochastic finite element stiffness matrices of flat composite
laminates with uncertain out-of-plane stiffness was obtained in [49], and subsequently used in a stress analysis.
A stochastic finite element method for non-Gaussian random fields based upon Optimal Linear Expansion was
presented in [50]. Additionally, a non-intrusive approach was used in [51], in which KLE was combined with
High-Dimensional Model Representations in the aeroelastic analysis of a composite rotor blade idealised as a beam.
To the knowledge of the authors, the present study is the first application of a stochastic finite element framework
to a composite wing model with realistic geometry.

An overview of the model geometry is shown in Fig. 9. The model consists of the skins and spars of a wing
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box with attached landing gear box, including internal ribs and stringers (not pictured in Fig. 9). Also included
are a flexible pylon with point mass engine attached using a cruciform of rigid elements, and a moveable aileron
attached using spring elements. All parts of the wing are modelled as Carbon Fibre Reinforced Polymer (CFRP),
with the exception of the pylon which is assumed to be made from aluminium. The skins, spars and rib covers are
modelled using shell elements with specified lamina properties, whereas the stringers, spar caps and rib caps are
modelled using beam elements with equivalent homogenised laminate properties. The layup of all composite parts
are assumed to be quasi-isotropic.

Aileron

Main wingbox

Rear spar  Landing gear
upper skin

Landing gear  Ribs box lower skin

box upper skin Landing gear

box spar

¥

Inspection holes
Front spar

Main wingbox

lower skin
Point mass engine

attachment

Figure 9: Geometry and significant features of finite element wing model

In the present study, uncertainty is modelled in the longitudinal modulus (E;;), transverse modulus (Es2),
shear modulus (G'12) and Poisson’s ratio (12) of the skins and spars of the main wingbox and landing gear box.
Each of the parts modelled as a random field is highlighted in bold in Fig. 9. All random fields are assumed to
be Gaussian distributed, with mean and coefficient of variation as defined in Table 2. These values are taken from
the experimental studies outlined in [52], with the exception of the Poisson’s ratio whose coefficient of variation
is taken from [53]. In general, such properties are typically cross-correlated. Due to a lack of experimental data
on the correlation between each property, it was conservatively assumed that each of the properties in Table 2 may
be modelled as an independent random field. The use of Gaussian distributions to simulate elastic moduli is often
criticised, as such distributions are unbounded. This choice of distribution was, however, considered acceptable in
this application, as in practice the distribution parameters specified in Table 2 gave rise to negative elastic moduli
with negligible probability. The correlation length is varied across a range of values in each case study. The random
fields are sampled at the nodes of each element.

Table 2: Mean and coefficient of variation of random fields [52, 53]

Eq1 (GPa)  Egp (GPa) Gz (GPa) v

Mean 148.0 10.3 5.93 0.27
COV (%) 4 4.8 29 6

The algorithm proposed in this paper is required to model the random fields in this example application due to
the curved upper and lower surfaces of the wing. The inspection holes in the lower skin are a non-convex feature
which also affect the definition of the random field. Four random fields are modelled in the properties of seven
components, resulting in a total of twenty eight random fields. The total number of variables required to represent
each random field corresponds to the number of positive eigenvalues of the Nyodes X Npodes COVariance matrix.
Example numbers of variables required to model each component are summarised in Table 3 for a correlation
length equal to a third of the wing semi-span. In this example the 28 random fields may be modelled using a total of
460292 random variables. As previously discussed, it may be possible to reduce the required computation time and
number of random variables by using a coarse mesh to sample the field in the higher correlation length examples,
however, such an analysis is beyond the scope of the present work.

Due to the extremely large number of variables, it is only feasible to use Monte Carlo Simulation for uncertainty
propagation. In the subsequent sections, uncertainty quantification case studies are presented for vibration and
buckling of the wing. In both case studies, results are based upon simulation of 2500 sample realisations. An
example realisation of one input random field sample is shown in Fig. 10.
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Table 3: Number of nodes, elements, and random variables required to model each random field

Component Nodes Elements Random Variables
Main wingbox upper skin 4983 4748 4983
Main wingbox lower skin 6339 5648 5750
Front spar 2373 2028 2373
Rear spar 2373 2028 2373
Landing gear box upper skin 451 420 451
Landing gear box lower skin 145 124 145
Landing gear box spar 364 306 364
e 4
=
3
2
1
0
-1
- -2
-3

Figure 10: Example standard Gaussian random field sample defined over wing surface

5.2. Free vibration analysis

In this section, results are presented for free vibration of the wing. Normal modes analysis is undertaken using
SOL 103 in MSC Nastran. Initially, random fields are assumed to have a correlation length equal to a third of the
wing semi-span. Probability Density Functions (PDFs) for the natural frequency of the first 5 modes are shown
in Fig. 11. In order to display trends over the broader number of modes considered in the analysis, the mean
and standard deviation of the natural frequency of the first 20 modes are shown in Fig. 12. In both figures the
frequencies have been normalised using the nominal, deterministic frequency of the first mode.

The Modal Assurance Criterion (MAC) has been used to investigate variations in the mode shapes under the
input uncertainty. In order to determine statistics for the MAC, each mode shape, of each Monte Carlo sample, is
compared with each mode shape of a reference sample using

|¢;1:J d)ref,lc
(D)0 ) (et s Pret. )

where MACE.iI)§ is the ¢ sample of the j™ row and k™ column of the MAC, ¢, ; is the j™ eigenvector of the i

output sample, @, ;, and is the k™ eigenvector of the reference sample. The reference eigenvectors are taken from
an analysis using the mean values of the input random fields. PDFs for the first 5 diagonal entries of the MAC
are shown in Fig. 13, alongside with illustrations of the reference mode-shapes. These plots show the extent to
which mode-shapes vary from the reference sample, with a value of unity indicating identical mode-shapes, and
zero indicating no similarity.

From Fig. 11 it can be seen that the natural frequencies of the first 5 modes approximately follow a Gaussian
distribution, and as such, it is sufficient to understand trends using the mean and standard deviation plots in Fig. 12.
The mean increases in an approximately linear trend with mode number, however, there is no such clear underlying
trend in the standard deviation. Typically, the higher standard deviations correspond to modes dominated by
span-wise bending, whereas lower standard deviations correspond to modes dominated by swaying of the pylon, in
which uncertainty is not modelled. There is very little variation in the mode shapes evident in Figure 13, in which
the MAC varies in the range [0.999 1]. This insignificant level of variability can likely be attributed to the global
nature of the mode shapes, which are insensitive to localised variations in material properties.

2

MACY) = (12)
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Figure 11: Probability Density Functions of normalised natural frequency of first five modes
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Figure 12: Mean and standard deviation of normalised natural frequency of first 25 modes
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Figure 13: Probability Density Functions for MAC of the first 5 vibration modes

A parametric study has been undertaken in order to investigate the effects of varying the correlation length, by
repeating the above analysis across a range of different values. The correlation length is varied from zero, in which
the properties of each finite element are assumed to vary independently of one another, to infinity, in which all of
the elements for a particular part are assumed to be homogeneous. Resulting trends in the mean and coefficient of
variation of the normalised natural frequency of the first 5 modes are shown in Figure 14.

The mean of each natural frequency is insensitive to the value of the correlation length used in the analysis. The
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Figure 14: Mean and coefficient of variation of normalised natural frequency with varying correlation length

coefficient of variation increases with correlation length up to an upper bound defined for an infinite correlation
length, represented as a dotted black line in Figure 14. This upper bound corresponds to homogeneous properties
across all elements in a given random field sample. As the correlation length decreases towards zero, whereby
all elements have independently distributed values, the standard deviation decreases significantly. In this case the
uncertainty averages out across the entire spatial domain for random fields with shorter correlation lengths. In this
instance, it is therefore conservative to model each component using homogenised properties.

5.3. Buckling analysis

In this section, results are presented for buckling analysis of the wing undertaken using SOL 105 in MSC Nastran.
Loads on the wing are determined in a static aeroelastic analysis for a 2.5g pull-up manoeuvre, with aerodynamics
modelled using the doublet lattice panel method. A considerable amount of mode-switching was noted across the
set of raw data output from Nastran. As such, in post-processing it was necessary to sort the buckling load. This
sorting was achieved by grouping together results with the most similar mode-shapes, determined using the MAC
as defined in Eq. (12). The underlying principle is that of allocating results to a mode such that those with the
highest MAC value are given priority, thereby first allocating data to modes for which there is a greater degree of
confidence.

Probability Density Functions for the sorted buckling loads are shown for the first 10 modes in Fig. 15, and
the mean and standard deviation are shown in Figure 16. Additionally, PDFs for the diagonal entries of the MAC
of the sorted eigenvectors are shown for the first 5 modes in Figure 17, alongside images of the reference mode
shapes. As in the previous example, trends in the mean and standard deviation of the buckling load across a range
of correlation lengths are shown in Figure 18.

It can be seen that the PDFs of the individual buckling loads are approximately Gaussian distributed. There
is considerable cross-over of the PDFs associated with the higher modes, which could explain some of the mode-
switching noted in the unsorted output data. In modes 1-6 the mean and standard deviation of the buckling load
increase with parallel trends, however, mode 7 has a considerably lower standard deviation which may be attributed
to the fact that the mode in question involves components in which uncertainty has been neglected. Modes 8-10
have comparable standard deviations.

The PDFs in Fig. 17 show considerable levels of variability in the mode shapes. These changes in the MAC are
continuous, and indicate that the mode shapes vary gradually with variations in properties, rather than undergoing a
discrete mode switch. The variations in MAC for modes 2-5 are much larger than those in the vibration case study,
typically taking values in the range [0.4, 1]. Given that the modes in question relate to localised buckling of panels
between ribs, it is intuitive that the deflected shape should be more sensitive to localised variations in properties,
compared with the vibration modes in Figure 13 which concern deformation of entire wing. This phenomenon
could also give rise to the mode-switching noted in the raw data.

Finally, a similar trend may be noted from the correlation length investigation as in the vibration case study,
in that the standard deviation decreases as the correlation length tends towards zero. This result implies that
although the localised variations in stiffness can give rise to considerable variability in the mode shapes, for smaller
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Figure 15: Probability Density Functions of buckling load factor of first ten modes
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Figure 17: Probability Density Functions for MAC of the first 5 buckling modes

correlation lengths there is an averaging effect across the panels which leads to a reduced level of variability in the
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Figure 18: Mean and coefficient of variation of buckling load of the first five modes, with varying correlation length

buckling load itself.

6. Conclusions

A method has been presented for simulating stationary random fields over curved two-dimensional surfaces.
This method has been developed in order to address the fundamental issue of defining the correlation function on
such surfaces, and its subsequent evaluation in practical applications, as the dependence of this correlation function
upon complex geometries is not trivial to accommodate in practice. A focus was placed upon non-intrusive
simulation of the resulting random field in realistic finite element models, using third party software, in order to
facilitate future usage in industrial applications. Major contributions of this method may be summarised as:

» Parametrisation of the correlation function using the geodesic distance, in order to account for dependence
upon model geometry.

* Practical guidance on evaluating the proposed correlation function on a general meshed surface of arbitrary
geometry through solution of the ‘discrete geodesic problem.’

¢ Definition of a simple methodology for non-intrusive simulation of the resulting random field using ‘off the
shelf’, commercial finite element software, based upon point-discretisation methods.

* Demonstration of potential impact of method through application in an uncertainty quantification case study
for an industrial finite element model of a composite aircraft wing with uncertain material properties.

The above work therefore addresses theoretical aspects of the domain dependence of the correlation function,
develops a methodology for implementing the theory in practice, and demonstrates this methodology in application
to a real-world industrial problem. This method requires only a one-off application of a black-box algorithm for a
given mesh, does not require the evaluation of expensive multi-dimensional integrals, or access to finite-element
shape functions. The proposed method has been designed to be easy to apply to any finite element shell model,
using any software. This approach will therefore be beneficial for future use as a simple tool for simulating random
fields in pre-existing, industrial finite element models.
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