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rotations and a colour-flavour locked global U(1) symmetry. We compute the perturbative

spectrum of semiclassical fluctuations for the SU(2) theory and show the existence of a

single massless state with a linear phonon dispersion relation and a roton minimum (and
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theory with vanishing self interactions, the semiclassical dispersion relations and location
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1 Introduction

Relativistic field theories in three dimensions consisting of Chern-Simons gauge fields cou-

pled to matter have been conjectured to enjoy a Bose-Fermi/level-rank duality symme-

try [1]. Mounting evidence for the conjecture has appeared in various forms. These include

detailed aspects of correlators [1–5] and S-matrices [6, 7] in large-N vector models coupled

to Chern-Simons gauge fields in the ’t Hooft limit when the theory becomes exactly solvable.

Further, the large-N thermal partition functions have been shown to exhibit Bose-Fermi

duality as the ’t Hooft coupling is varied [1, 8–11]. A crucial role in this is played by the

nontrivial eigenvalue distributions of the holonomy matrix around the Euclidean thermal

circle, and the duality manifests itself in various phases characterized by the large-N eigen-

value distributions. The finite N versions of the duality can be precisely formulated [12],

and include an intricate web of abelian dualities [13–15] with particle-vortex duality as one

of its strands.

In this work, motivated by the goal of understanding the manifestations of Bose-Fermi

duality at finite density, we study the zero temperature ground states of a fundamental

– 1 –
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scalar coupled to Chern-Simons gauge fields in the presence of a chemical potential for parti-

cle number. In particular, we will be mainly interested in finite density ground states in the

(semi-)classical limit which spontaneously break the global U(1)B particle number symme-

try. This is a subtle issue in 2+1 dimensions, as any finite temperature will result in thermal

fluctuations that, by the Coleman-Mermin-Wagner theorem [16, 17], can destroy long-range

order. For this reason, in this paper we limit ourselves to the system at zero temperature.

At non-zero temperature and finite density in the absence of condensates, exact results

at large-N for Chern-Simons theory with a fundamental fermion [18, 19] show nontrivial

agreement at strong ’t Hooft coupling1 with the weakly interacting bosonic counterpart.

In our analysis of the Chern-Simons-scalar system we assume a classical limit i.e.

the Chern-Simons level k is large (but finite), and any other scalar self-couplings taken

to be suitably weak so that the semiclassical description applies. Our main findings are

summarized below:

• We find that the theory with SU(N) gauge group, Chern-Simons level k and non-

zero chemical potential for particle number, exhibits a zero temperature ground state

where the scalar field condenses and all gauge fields acquire noncommuting back-

ground expectation values. This ground state breaks the SU(N) gauge symmetry

completely and spontaneously breaks the global U(1)B particle number symmetry.

While spatial rotations act nontrivially on the background gauge potentials, they

can be undone by a U(1)C subgroup of global SU(N) transformations. Thus gauge

invariant operators acquire rotationally invariant expectation values. The scalar

VEV itself is left invariant by a combination of the flavour U(1)B and global colour

U(1)C rotations.

• For the SU(2) theory, assuming k � 1, we obtain the spectrum of physical fluc-

tuations and their dispersion relations in the Bose condensed ground state. The

fluctuation spectrum exhibits a massless phonon mode with linear dispersion rela-

tion for the frequency ω ∼ cs|k|, for low spatial momenta k, accompanied by a local

maximum and a roton minimum at some finite spatial momentum. Roton-maxon

excitations are well known within the context of superfluidity in 4He [20, 21] and

explain various physical characteristics such as heat capacity and the superfluid crit-

ical velocity. The roton minimum, for instance, lowers the superfluid critical velocity

to below the speed of sound, as can be understood by applying the Landau crite-

rion [20, 21]. In the context of this paper, we understand the appearance of the roton

minimum as a consequence of level crossing of states. In the strict limit k →∞ when

the Chern-Simons fields decouple, the interacting scalar theory has a Bose condensate

with two gapless excitations at zero momentum, one with quadratic and the other

with a linear dispersion relation. At large but finite k, the former acquires a gap at

zero momentum, and the putative intersection between the linear and quadratic dis-

1The ’t Hooft coupling λ is defined in the limit N, k →∞ (k is the Chern-Simons level) where λ ≡ N
k

,

ranging between 0 and 1.
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persion curves is replaced by a roton-maxon pair in the diagonalized spectrum. The

background VEVs for the gauge fields are directly responsible for these features.2

We find that the roton minimum in the phonon dispersion relation persists in the

free scalar theory coupled to Chern-Simons gauge fields (at large k). In this case the

only dimensionful scale is provided by the chemical potential which can be rescaled

to unity and the resulting spectra and dispersion relations acquire a universal form.

• For the general SU(N) case an interesting picture emerges. The N × N matrices

of VEVs for the Chern-Simons gauge fields provide finite dimensional versions of

harmonic oscillator creation and annihilation operators. In particular, they can be

viewed as the noncommuting coordinates of N particles in a disc of fixed radius.

The same matrices have been used to describe the ground state of the quantum

Hall droplet [23, 24]. Fluctuations about the finite density ground state may thus

be viewed as fluctuations of this droplet (in configuration space), carrying spatial

momentum and frequency.

The zero temperature finite density properties of the Chern-Simons-scalar system present

a range of physical phenomena interesting in their own right. Importantly, they provide

predictions for the fermionic dual. The SU(N)k theory with a fundamental scalar is level-

rank dual to the U(k−N)−k,−N theory with a fundamental fermion [12]. In particular, the

free scalar coupled to Chern-Simons fields is dual to the Chern-Simons plus critical fermion

theory [25]. It is clearly of great interest to understand whether features of the spectrum of

the weakly coupled scalar system can be understood from the conjectured fermionic dual

at strong coupling.

This paper is organized as follows. In section 2 we study the Bose condensed ground

state of the SU(2) system in the classical limit. In section 3 we find the spectrum of

quadratic fluctuations after gauge fixing, and identify the phonon-roton branch for different

regimes of parameters. Section 4 is devoted to the generalization of the classical vacuum

structure to general N > 2. Finally we outline a number of questions for future study in

section 5.

2 The SU(2)k theory

We consider Chern-Simons theory with SU(2) gauge group and one scalar flavour trans-

forming in the fundamental representation. Working with an anti-hermitean gauge poten-

tial Aµ,

Aµ = A(a)
µ ta , ta ≡ i

2
σa , a = 1, 2, 3 , (2.1)

where {σa} are the Pauli matrices and {A(a)
µ } are real valued fields, the Chern-Simons

action with (quantized) level k is then,

SCS =
k

4π

∫
d3x εµνρ Tr

(
Aµ∂νAρ +

2

3
AµAνAρ

)
. (2.2)

2Roton-like excitations with very similar origin i.e. constant background gauge fields have been identified

in Yang-Mills-Higgs system at finite density in 3+1 dimensions [22].

– 3 –
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This is the action for both Euclidean (+ + +) and Lorentzian (− + +) signatures. The

Wick rotation from Lorentzian to Euclidean is implemented by the replacement t → −iτ
and A0 → iA0, which together leave SCS invariant. In Lorentzian signature, the complete

action involving Chern-Simons and matter fields has the general form,

S = Smatter + SCS , (2.3)

where, in Lorentzian signature (− + +), for a scalar Φ transforming in the fundamental

representation of SU(2),

Smatter = −
∫
d3x

(
(DµΦ)† (DµΦ) + V (Φ†Φ)

)
, (2.4)

Dµ ≡ ∂µ +Aµ .

The theory possesses a global U(1) symmetry which we refer to as “baryon number”

or U(1)B,

U(1)B : Φ→ eiϑ Φ , (2.5)

generated by a phase rotation of Φ. The corresponding conserved current is

jµB = i
[
(DµΦ)†Φ− Φ†DµΦ

]
. (2.6)

The chemical potential µB is a Lagrange multiplier for the U(1)B charge. In Lorentzian

signature, it therefore appears in the Lagrangian as a time component for a background

U(1)B gauge field:

Dν → Dν + iµB δν,0 . (2.7)

2.1 Classical ground states with µB 6= 0

The coupling of the Chern-Simons fields to the matter sector is controlled by 1/
√
k.3 In

the limit k →∞, the scalar field Φ with µB 6= 0 has the potential:

Vscalar(µB, k →∞) = V (Φ†Φ)− µ2B Φ†Φ . (2.8)

As usual, the effective negative mass squared due to the chemical potential drives the

system to form a Bose condensate for large enough µB. The tree level 3D scalar potential

(at µB = 0) can be taken to be of the form,

V (Φ†Φ) = m2 Φ†Φ + g4(Φ
†Φ)2 + g6 (Φ†Φ)3 , (2.9)

where we have allowed for relevant and marginal operators in the scalar potential. Assum-

ing that the ground state of the theory with µB 6= 0 is static and translation invariant, we

look for vacuum solutions with all terms involving derivatives being set to zero. Antici-

pating a scalar condensate at the classical level,4 we can always choose gauge rotations to

3This can be understood via the rescaling Aµ → Aµ/
√
k, following which the Chern-Simons action is

order 1 in the large k limit.
4The analysis will remain purely classical and at zero temperature at this stage. At finite temperature,

we know that quantum thermal fluctuations in 2+1 dimensions preclude symmetry breaking of continuous

global symmetries.
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take the VEV to be real and of the form,

〈Φ〉 =

(
0

v

)
v ∈ R . (2.10)

We then collectively view all non-derivative terms as potential energy contributions:

VCS+Vscalar =− k

4π
εµνρA(1)

µ A(2)
ν A(3)

ρ −
v2

4

[(
A

(1)
0

)2
+
(
A

(2)
0

)2
+
(
A

(3)
0 −2µB

)2]
+
v2

4

∑
i=1,2

[(
A

(1)
i

)2
+
(
A

(2)
i

)2
+
(
A

(3)
i

)2]
+m2 v2+g4 v

4+g6 v
6 . (2.11)

One consistent extremum is given by v = 0, and all gauge fields also vanishing. This is

the trivial solution. However, this solution cannot dominate the grand canonical ensemble

for generic values of the chemical potential. In particular, the scalar field theory without

Chern-Simons terms (k−1 → 0), and at weak coupling (g4 � m, g6 � 1), develops a

Bose condensate when |µB| > m. This non-trivial phase with v 6= 0 must persist when

the coupling to Chern-Simons gauge fields is turned on. In order to arrive at a static

and translationally invariant ground state, we need to find the minima of the potential

energy function (2.11). We adopt a notation which is appropriate for SU(2) by introducing

three-vectors in the internal “isospin” directions:

Aµ ≡
(
〈A(1)

µ 〉, 〈A(2)
µ 〉, 〈A(3)

µ 〉
)T

ea ≡
(
δa,1, δa,2, δa,3

)T
. (2.12)

In terms of these, the vacuum equations determining the ground state are (here the ‘×’

and ‘·’ symbols denote cross- and dot-products in the internal space):

v2Ay =
k

2π
A0 ×Ax , v2Ax =

k

2π
Ay ×A0 , (2.13)

−v2
(
A0 − 2µBe3

)
=

k

2π
Ax ×Ay , (2.14)

v

2

[(
A0 − 2µBe3

)2 − (Ax)2 − (Ay)
2
]

=
∂V

∂v
. (2.15)

The two equations in (2.13) together imply that A0,Ax and Ay are mutually orthogonal

in the internal isospin directions, and that

|Ax| = |Ay| |A0| =
2πv2

|k|
, sgn [(Ax ×Ay) ·A0] = sgn(k) . (2.16)

Next, by taking a cross-product of eq. (2.14) with A0, we deduce that A0 = 〈A(3)
0 〉e3:

(Ax ×Ay)×A0 = 0 =⇒ A0 × e3 = 0 . (2.17)

Finally, combining equations (2.14) and (2.15), we obtain conditions on the magnitudes of

the background field expectation values:

|Ax|2 = |Ay|2 =
2πv2

|k|

∣∣∣〈A(3)
0 〉 − 2µB

∣∣∣ (2.18)(
〈A(3)

0 〉 − 2µB

)2
− 4πv2

|k|

∣∣∣〈A(3)
0 〉 − 2µB

∣∣∣− 2

v

∂V

∂v
= 0 . (2.19)
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To proceed further, it is useful to work with the (isospin) basis elements

A0 = η
2πv2

|k|
e3 , Ax = a1 e1 + a2 e2 , Ay = η sgn(k)

(
−a2 e1 + a1 e2

)
,

where η = ±1 and a1,2 ∈ R. Using the equations of motion (2.13) and (2.14) we then

find that

η = sgn(µB) , (a1)
2 + (a2)

2 =
4πv2

|k|

(
|µB| −

v2π

|k|

)
, |µB| >

πv2

|k|
. (2.20)

The classical configuration is endowed with a non-zero U(1)B charge density,

〈j0B〉 = sgn(µB)
2πv4

|k|
, (2.21)

with vanishing U(1)B currents. To calculate the scalar VEV we need the form of the tree

level potential. For simplicity we set g6 = 0. With a quartic potential there exists a unique

solution5 for the vacuum expectation value (2.19),

v2 =
|k|
3π

g4|k|
π

+ 2|µB| −

√(
g4|k|
π

+ 2|µB|
)2

− 3(µ2B −m2)

 , (2.22)

which also satisfies the condition (2.20). As expected, the VEV is real only when µ2B > m2,

and in the large k limit when the Chern-Simons gauge fields decouple, v2 ' (µ2B −
m2)/2g4. This is, of course, the scalar VEV in the pure scalar theory in the Bose con-

densed phase. In the massless theory, the scalar VEV is controlled by the dimensionless

combination |πµB/g4k|:

m = 0 : v2 =
|µBk|

2π
f(µ̃) , µ̃ ≡ π|µB|

g4|k|
(2.23)

f(µ̃) =
2

3

(
µ̃−1 + 2−

√
(µ̃−1 + 2)2 − 3

)
,

where f(µ̃) is monotonically increasing with f(0) = 0 and f(∞) ' 2
3 . A noteworthy point

here is that the scalar VEV exists even when g4 technically vanishes. More generally, one

may view the semiclassical limit in which the condensate is well defined as (g4/µB) → 0

and k →∞ such that g4k/µB is kept fixed.

Free energy. For static configurations we can compute the free energy density by eval-

uating the potential energy function on the ground state. In terms of the VEV, the free

energy is,

F = v2

[
g4v

2 +m2 −
(
|µB| −

πv2

k

)2
]
. (2.24)

It is easy to check that (assuming |µB| > m) the function is negative definite. In the mass-

less case, the free energy of the Bose condensed phase is determined by the function f(µ̃):

F |m=0 =
|µ3Bk|

4π

f(µ̃)

µ̃

[
f(µ̃)− µ̃

2
(f(µ̃)− 2)2

]
, (2.25)

5The second root for v2 yields v2 > |µBk|/2π and violates the condition in eq. (2.20).
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Figure 1. The effective potential (free energy density) as a function of the VEV v for µB = 1,

m = 0.5 and g4 = 0.

which is a negative definite, monotonically decreasing function of µ̃. Therefore, in the

semiclassical regime, the nontrivial vacuum dominates over the trivial one with vanishing

VEVs for all fields. For instance, in the massless theory with g4 = 0, the free energy in the

Higgsed phase is

F |m=0,g4=0 = −4
|µ3Bk|
27π

, (2.26)

valid in the semiclassical limit k � 1. Quantum corrections are parametrically suppressed

in this limit. In this case the theory enters the Higgsed phase for any non-zero chemical

potential, while the theory with vanishing chemical potential is conformal. When the mass

is non-zero and the chemical potential is dialed past the classical threshold value µB = m,

following a second order phase transition, the theory enters a Bose condensed Higgs phase.

The symmetric phase is unstable beyond this point. This interpretation is supported by

the plot (figure 1) of the free energy as a function of the VEV v (taking g4 = 0 for

simplicity). The effect of quantum corrections at large k will be to renormalize the mass

in the symmetric phase and change the threshold value of the chemical potential at which

the (second order) phase transition from the symmetric to the Higgsed phase occurs. This

qualitative picture may change for finite k when quantum corrections are large.

2.2 Colour-flavour locked symmetry

We have found a one-parameter family of gauge field solutions parametrised by the vari-

ables (a1, a2), satisfying a constraint (2.20). Any given realization breaks the SU(2) gauge

symmetry completely due to the scalar VEV which also breaks U(1)B. However, the scalar

VEV is left invariant by the diagonal combination of U(1)B and a U(1) subgroup of the

global SU(2) colour rotations:

U(1)B : 〈Φ〉 → eiϑ/2〈Φ〉 U(1)C : Φ→ U(ϑ)Φ , U(ϑ) ≡ eiϑσ3/2 (2.27)

While the gauge fields do not transform under U(1)B, they do transform under the global

U(1)C . The transformation acts on the background gauge fields 〈Ai〉 = 〈A(a)
i 〉ta exactly as

a rotation (R) by a constant angle ϑ in the x-y plane:

U(1)C :

(
〈Ax〉
〈Ay〉

)
→

U(ϑ)〈Ax〉U †(ϑ)

U(ϑ)〈Ay〉U †(ϑ)

 =

(
cosϑ − sinϑ

sinϑ cosϑ

)(
〈Ax〉
〈Ay〉

)
. (2.28)
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Therefore the vacuum gauge configuration is invariant under a global U(1)B+C+R symmetry

which can be viewed as a linear combination of global colour, flavour (or baryon number)

and SO(2) rotations in the x-y plane.

The above observation has an important consequence. It implies that the ground state

does not actually break rotational invariance,6 since the action of rotations can be undone

by a gauge transformation. This is naturally reflected in the expectation values of all

gauge invariant operators built from field strengths. In particular, the expectation values

of single trace operators built from the chromoelectric and chromomagnetic field strengths

are independent of the spatial direction or spatial component in question:

〈Tr (F0i)
2〉 = −2π3v6

|k|3

(
µB −

v2π

|k|

)
, 〈Tr (Fij)

2〉 = −8π2v4

|k|3

(
µB −

v2π

|k|

)2

. (2.29)

3 Spectrum of fluctuations

We now turn to the spectrum of quadratic fluctuations about the classical vacuum config-

uration. In the quantum theory this is reliable at weak coupling i.e. k � 1 and µB � g4.

3.1 The k → ∞ theory

It is useful to first recall the situation when the Chern-Simons fields are decoupled in

the limit k → ∞. In this limit we have a pure scalar field theory with a global O(4) ⊃
SU(2) × U(1)B symmetry. A large enough chemical potential for U(1)B leads to Bose

condensation via the scalar VEV,

k →∞ : v2 =
µ2B −m2

2g4
, (3.1)

and the weak coupling spectrum is readily obtained after diagonalizing the matrix of

quadratic fluctuations. There are four physical excitations corresponding to the four real

scalar degrees of freedom with the following dispersion relations for the frequency ω as a

function of the spatial momentum p, where we have set m = 0 for simplicity:

ω2
I (±) = p2 + 3µ2B ± µB

√
4p2 + 9µ2B , (3.2)

ω2
II (±) = p2 + 2µ2B ± 2µB

√
p2 + µ2B .

Two of these states are gapless.7 Of the two, only one has a linear dispersion relation

at low momentum and corresponds to the phonon mode while the other has a quadratic

dependence on the spatial momentum,

ωI(−) =
|p|√

3
+ . . . , ωII(−) =

p2

2µB
+ . . . (3.3)

6This will be corroborated by the spectrum of physical fluctuations which we extract subsequently.
7The chemical potential picks out a U(1)B ' SO(2) ⊂ O(4) and breaks the symmetry to SO(3) '

SU(2). The scalar condensate spontaneously breaks both the SU(2) and the U(1)B , and the number of

Goldstone bosons is lesser than the number of broken generators, as expected when relativistic invariance

is absent [26, 27].
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The presence of the second gapless mode with quadratic dependence on momentum implies

that the Bose condensed ground state cannot be viewed as a superfluid, due to vanishing

critical velocity according to the Landau criterion [20, 21]. This picture undergoes a qual-

itative change for finite large k.

3.2 Finite, large k

For any finite value of k, the Chern-Simons gauge fields couple to the scalars. However,

since the gauge fields are non-dynamical, the number of physical degrees of freedom remains

unaltered and is given by the number of real scalars. To calculate the semiclassical spectrum

we expand in fluctuations about the gauge and scalar VEVs,

Aµ = 〈Aµ〉+Aµ , Φ = 〈Φ〉+ δΦ , δΦ ≡

(
ϕ1 + iϕ2

ϕ3 + iϕ4

)
, (3.4)

where Aµ and {ϕi} (i = 1, . . . 4) are respectively, the gauge field and matter fluctuations.

Substituting these into the original action (2.2) and (2.4), and expanding to quadratic

order in fluctuations,

L(2) = δΦ†DµDµ δΦ + 〈Φ†〉AµDµδΦ−DµδΦ†Aµ〈Φ〉+ 〈Φ†〉AµAµ〈Φ〉 (3.5)

+
k

4π
εµνλTr (AµDνAλ)− 1

2
ϕj ϕk

〈
∂2V

∂ϕj∂ϕk

〉
.

Here Dµ denotes the covariant derivative with respect to the background gauge field 〈Aµ〉:

DµδΦ ≡ ∂µδΦ + (〈Aµ〉+ iµBδµ,0) δΦ , DµAν ≡ ∂µAν + [〈Aµ〉,Aν ] . (3.6)

The main point to note here is that in the presence of the VEV for both scalars and gauge

fields, all the fluctuations (matter and gauge) couple to each other at quadratic order.

Due to the mixings, the physical degrees of freedom and their dispersion relations are not

immediately obvious. In order to extract these, we first need to gauge-fix the action for

the quadratic fluctuations. The gauge-unfixed action would yield a degenerate matrix with

vanishing determinant. In the presence of background gauge fields and symmetry breaking

scalar VEVs, it is natural to adopt an Rξ gauge which is covariant with respect to the

non-zero background gauge fields:

L(2) → L(2) + Lgf , Lgf =
1

2ξ
Tr
(
DµAµ − ξ〈Φ〉δΦ† + ξδΦ〈Φ†〉

)2
. (3.7)

The Rξ gauge above removes the derivative couplings between the would-be Goldstone

modes and the gauge field fluctuations Aµ, and introduces a non-trivial mass matrix

for them.

The determinant of the gauge-fixed fluctuation matrix then exhibits zeroes with both

ξ-dependent and ξ-independent dispersion relations. The latter correspond to the physical

states of the theory. In fact, these can be isolated by identifying the leading term in the

large-ξ expansion of the determinant of fluctuations at fixed frequency and momentum.
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3.2.1 Physical states

We have checked numerically that the physical states inferred from the procedure above

are indeed ξ-independent. For the SU(2) theory there are precisely four physical states

corresponding to the two complex components of the scalar doublet, since the Chern-Simons

gauge fields cannot contribute any additional physical, propagating degrees of freedom. The

dispersion relations for these four physical states are given by the solutions to a quartic

equation in (ω2,p2),

ω8 + µ2BC3 ω
6 + µ4BC2 ω

4 + µ6BC1 ω
2 + µ8B C0 = 0 , (3.8)

where the {Ci} (i = 0, . . . 3) are functions of dimensionless variables,

Ci = Ci

(
p2

µ2B
,
g4
µB

,
m2

µ2B
, k

)
, (3.9)

whose explicit forms are given in (A.3).

The phonon mode. We first recall that the U(1)B global symmetry is spontaneously

broken and the corresponding Goldstone mode is the phonon. Since the remaining broken

symmetries are local, the phonon should be the only massless state. This is confirmed by

solving for the spectrum using (3.8) at p = 0 which yields8

p = 0 : ωI− = 0 ωI+ =

√
m2 + 6g4v2 − µ2B +

(
2|µB| −

πv

|k|

)2

,

ωII(−) =
4π

|k|
v2 ωII(+) = 2|µB| . (3.10)

As expected the gapless mode with a quadratic dispersion in the k =∞ theory is lifted. It

is then straightforward to find the velocity of the phonon mode. In the limit of small ω and

|p| we identify the coefficients of the terms quadratic in ω and p in the polynomial (3.8).

The resulting speed of sound is then,

cs =
dω

d|p|

∣∣∣∣
|p|→0

= (1− y)1/2
(
−15y2 + 12y + (m2 + 6g4v

2)µ−2B − 1

y2 − 4y + (m2 + 6g4v2)µ
−2
B − 3

)1/2

y ≡ πv2

|kµB|
. (3.11)

The scalar VEV is given in eq. (2.22). In the massless limit (m = 0), the expression is

purely a function of the dimensionless combination µ̃ = πµB/|g4k| introduced earlier. In

particular, the two distinct regimes of large k (with g4 fixed) and small g4 (with k fixed),

which correspond to small and large µ̃ respectively, are distinguished by two different

limiting values for the speed of sound:

m = 0 , µ̃� 1 : cs =
1√
3

(
1 +

5 µ̃

12
− 91 µ̃2

96
+ . . .

)
(3.12)

m = 0 , µ̃� 1 : cs =
1√
2

(
1− 1

8 µ̃
+

11

128 µ̃2
+ . . .

)
8We follow the branches with the same nomenclature used for the k =∞ theory. The subscripts I(−) and

II(−) refer to the gapless states in that theory with linear and quadratic dispersion relations, respectively.
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Figure 2. The solid blue curve shows the slope of the phonon dispersion relation at p = 0 as a

function of µ̃ = π|µB/g4k| for the massless theory, It interpolates between cs = 1/
√

3 at small µ̃

and the conformal value of cs = 1/
√

2 when g4 is taken to zero.

The limit of vanishing g4 yields the free scalar field coupled to Chern-Simons gauge fields.

In this limit the theory is conformal and therefore the speed of sound is as expected for a

scale-invariant theory in 2+1 dimensions. This is a consistency check of the nontrivial Bose-

condensed ground state we have discussed, stabilized by gauge field expectation values.

It is also a consistency check on the dispersion relations for the semiclassical quadratic

fluctuations. For non-zero scalar masses the phonon velocity is a nontrivial function of

both m and µB. For instance, at large values of k and all other parameters held fixed,

we obtain

c2s =
µ2B −m2

3µ2B −m2
+
π
(
5µ2B +m2

)
(m2 − µ2B)2

2|kµB|g4(m2 − µ2B)2
+O(1/k2) . (3.13)

The expression can be rewritten as a function of the two dimensionless parameters µ̃ =

πµB/g4|k| and m̃ ≡ πm/g4|k|.

Level crossing. The perturbative spectrum in the regime of small ω and p displays

an interesting feature. This is a nontrivial consequence of crossing of energy levels which

occurs as we tune the Chern-Simons level from k = ∞ to finite (large) values. This

unavoidable crossing is between the phonon (ωI(−) branch) and the light state with energy

ωII(−) which happens to be gapless with quadratic dispersion relation at k = ∞, but

acquires a small gap ∼ 4πv2/k at large k. The crossing is accompanied by off-diagonal

mixings between these two fluctuations. In the low energy, long wavelength limit ω, |p| �
µB (where we are ignoring m for simplicity) it should suffice to focus attention on the two-

level system comprising of the two lightest excitations. In this limit, the gapped modes

only yield an overall multiplicative constant in the fluctuation determinant which takes the

approximate form, (
ω2 − c2sp2

)(
ω2 − p4

4µ2
− δ
)
− εp4 = 0 . (3.14)

The mixing term ε ∼ k−1, whilst the gap generated for the branch ωII(−) with quadratic

dispersion scales as δ ∼ k−2, both vanishing in the large k limit. The mixing must neces-

sarily be momentum dependent so that the gapless phonon mode persists as a Goldstone
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Figure 3. Left: the k =∞ theory displays two gapless excitations with linear and quadratic disper-

sion relation. Right: at finite large k, the two modes potentially cross, and also mix. The diagonal-

ized modes display a splitting and “repulsion” resulting in a local maximum in the phonon branch.

boson for the broken U(1)B. At low momentum the leading such contribution scales as

p4 (using eq. (A.3)). The new solutions to (3.14) provide a qualitative description of the

perturbed light spectrum at large, finite k. In particular, as shown in figure 3, the two

branches do not cross and the phonon branch displays a “maxon” or a local maximum in

its dispersion relation. For non-zero ε the two dispersion relations (viewed as functions of

p2) have a branch-point in the complex plane. For small enough ε, the location of the max-

imum in ωI(−) is close to the putative interesection point of the two curves. The presence of

this local maximum implies the existence of a “roton” minimum since all dispersion curves

must eventually increase linearly at large |p| consistent with UV relativistic invariance.

3.3 Roton minimum and complete spectrum

Our main observation is that for any (large) finite value of k, consistent with being in the

semiclassical regime the phonon branch always displays a roton minimum. At large k and

fixed g4, the position of the maximum can be estimated quite easily. It sits close to the

potential intersection point of the dispersion curves for ωII(−) and ωI(−). In the large k

regime, the former is flat, ωII(−) ≈ 4πv2/|k|, while the latter is linear, ωI(−) ≈ |p|/
√

3, and

their putative intersection is at

k � 1, g4 fixed : (ωmax, |p|max) ≈

(
4πv2

|k|
,

4πv2
√

3

|k|

)
. (3.15)

On the other hand, the location of the roton minimum is more subtle. In the large k theory

we expect the minimum to be located at parametrically small values close to the origin.

In fact, it turns out that ωrot ∼ k−1 whilst prot ∼ k−1/2. This can be checked by first

performing the scaling

ω =
1

k
$ p =

1√
k
% , (3.16)

then substituting into the fluctuation determinant (A.3), and the expression for ω′(p) by

differentiating (A.3). Subsequently, setting the determinant and ω′(p) to zero, and then

taking the large k limit, we find (setting m = 0 for simplicity):

3%4 − 24πµB%
2v2 + 4µ2B

(
16π2v4 −$2

)
= 0 (3.17)

%4 − 12πµB%
2v2 + 4µ2B

(
16π2v4 −$2

)
= 0 .
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Figure 4. Left: the spectrum for m = 0 with µ̃ = πµB/g4k = π/20. Right: the two lightest states,

including the phonon-roton branch (blue) with µ̃ = π/500. The dotted lines indicate the large-k

limiting values of the roton maximum and minimum.
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Figure 5. Left : the physical spectrum for the massive case. Right: in the scale invariant situation,

the dispersion relations have a universal form, independent of k and µ. The dotted blue line with

slope 1/
√

2 matches the phonon velocity at low momentum.

The solutions to these yield the roton minimum at large k for the massless theory:

k � 1 : (ωrot, |p|rot) =

(√
7πv2

k
,

√
6πµ

k
v

)
, (3.18)

where the VEV is given by (2.22) with m = 0. The results for the roton minimum and

maximum agree perfectly with the numerical curves for the phonon-roton branch at large

k, displayed in figure 4. The qualitative nature of the dispersion relations persists for all

values of m, µB and g4k. Figure 5 shows the relevant plots for one non-zero value of m.

Critical case with g4 = m = 0. A nontrivial aspect of the Bose condensed ground state

is that all generic features of the spectrum of fluctuations persist even when g4 = m = 0

(and µB 6= 0) so that the classical theory is scale invariant. The determinant of physical

fluctuations (A.3) simplifies greatly, and the relevant dispersion relations are obtained from
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its zeroes:

p̃ ≡ |p|
µB

ω̃ ≡ ω

µB
, (3.19)

p̃8 − p̃6
(

4ω̃2 +
28

9

)
+ p̃4

(
6ω̃4 − 4

3
ω̃2 +

160

81

)
− p̃2

(
4ω̃6 − 12ω̃4 +

992

81
ω̃2 − 512

81

)
+ ω̃8 − 68

9
ω̃6 +

1408

81
ω̃4 − 1024

81
ω̃2 = 0 .

At zero momentum the energies of the four physical states are:

ωI(−) = 0 , ωI(+) =
4µB

3
, ωII(−) =

4µB
3

, ωII(+) = 2µB , (3.20)

so that two of the massive states become degenerate, whilst the roton maximum and

minimum are at

(ωmax, |p|max) = (0.553µB, 0.937µB) , (ωrot, |p|rot) = (0.426µB, 1.487µB)

We expect these results to be stable against quantum corrections for large enough k, which

is the only small parameter in the system. It is interesting and somewhat unexpected

(given that the roton minimum is often attributed to the presence of a new scale) that the

roton persists in the theory where the chemical potential is the only dimensionful scale.

3.4 Landau critical velocity

According to Landau’s criterion, for a nonrelativistic superfluid flowing with velocity vs
(with respect to a vessel or capillary), when the velocity exceeds a critical value [21] given by

vcrit = min|p|

(
ω(p)

|p|

)
=⇒ ∂ω

∂|p|
=

ω

|p|
, (3.21)

the fluid loses energy through dissipation and the superfluid phase can be wholly or par-

tially destroyed e.g. by a condensate of rotons [28, 29]. In particular, [28] argues for the

appearance, within superfluid 4He flows, of a one dimensional periodic structure at rest

with respect to the walls so that the superfluidity criterion is not violated. The Landau

criterion is derived by boosting the Bose condensate in the ground state along a particular

direction (say the +x-axis) with a velocity vs, and considering excitations that could re-

duce or dissipate the energy of the moving condensate. In the frame where the condensate

has velocity vs, the energy of a backscattered nonrelativistic excitation with momentum p,

causing dissipation from the condensate, must satisfy

ω(|p|)− vs|p| < 0, (3.22)

where the second term is the result of transformation under the Galilean boost. The critical

value of the superfluid velocity is then given as vcrit = min(ω/|p|). The arguments can also

be carried out in the appropriate relativistic context (e.g. [21, 29]). The critical velocity is

inferred from the slope of the straight line passing through the origin and tangent to the

dispersion curve for the phonon-roton branch (see dashed black line in figure 5).

The behaviour of the critical velocity as a function of µB/g4k in the massless theory

is shown in figure 6. At large k, the critical velocity vanishes as 1/
√
k, and approaches a

constant value, vcrit ≈ 0.27, in the theory with g4 = 0.
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Figure 6. The Landau critical velocity as a function of the dimensionless parameter πµB/g4k in

the theory with m = 0.

3.5 The U(2)k theory

It is interesting to note the qualitative difference between SU(2) and U(2) gauge groups.

In the latter case the U(1)B symmetry is gauged and the chemical potential is synonymous

with a fixed background expectation value for the temporal component of the abelian

gauge field. The classical vacuum equations are satisfied by the same configuration as in

the SU(2) theory. The condensates of the scalar and gauge fields break both the SU(2) and

U(1)B local symmetries to a diagonal U(1). Since all symmetries are local we expect only

massive physical states. We obtain the physical fluctuations by employing Coulomb gauge

for the abelian gauge field, and retaining the covariant Rξ gauge-fixing for the SU(2) part.

The situation with m = g4 = 0 suffices to demonstrate the existence of the gap. In this

case, the dispersion relations of the four physical states can be obtained from the roots of

the following polynomial in (ω̃, p̃) = (ω/µB, |p|/µB):

p̃ ≡ |p|
µB

ω̃ ≡ ω

µB
, (3.23)

p̃8 − p̃6
(

4ω̃2 +
224

81

)
+ p̃4

(
6ω̃4 − 64

27
ω̃2 +

512

243

)
− p̃2

(
4ω̃6 − 352

27
ω̃4 +

3328

243
ω̃2 − 4096

729

)
+ ω̃8 − 640

81
ω̃6 +

4544

243
ω̃4 − 10240

729
ω̃2 +

16384

59049
.

Unlike the SU(2) theory (3.19) we see that ω̃ = p̃ = 0 is no longer a solution. All states

are gapped at p = 0, with the energies given by ω̃2 = 16/9, 16/9, (22 ± 5
√

19)8/81. The

dispersion relations for non-zero p are shown in figure 7.

4 The SU(N > 2) case

We now generalize the above analysis for Chern-Simons scalar theory with SU(N) gauge

group. We use lower case subscripts and superscripts, (p, q, r . . .) to label fundamental

and antifundamental representation indices. The gauge covariant derivative is defined to

include the chemical potential as a timelike background gauge field:

(Dµ) q
p = δ q

p ∂µ + (Aµ) q
p + iµB δ

q
p δ0µ . (4.1)
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Figure 7. The semiclassical spectrum of the U(2) ' SU(2) × U(1) theory. All states are gapped.

Nevertheless, the lightest state displays a roton-like minimum. The dotted blue line passing through

the origin with slope 1
√

2 is shown to emphasize the absence of phonon-like linear dispersion.

For general N , it is useful to define the quartic coupling so that a consistent large N limit

can be taken if necessary. The potential contributions involving both gauge and scalar

fields can be put together so that,

VCS + Vscalar = − k

4π

2

3
Tr (AµAνAρ) ε

µνρ − Φ†
(
Aµ + iµBη

µ0
) (
Aµ + iµBδ

0
µ

)
Φ

+m2Φ†Φ +
g4
N

(Φ†Φ)2 . (4.2)

Assuming that the scalar obtains a vacuum expectation value, we can always use SU(N)

gauge rotations to place the VEV in the N -th component,

〈Φp〉 =
√
N v δp,N . (4.3)

We have scaled out a factor of
√
N in anticipation of the expected scaling in the large-N

limit of vector models. In particular, the action for the matter fields should be O(N) in

the large-N limit. The choice of scalar VEV leaves a residual SU(N − 1) gauge symmetry,

which is then completely broken by the gauge field backgrounds in the ground state. In

order to obtain the correct matrix equations of motion, we vary the action (4.2) subject to a

tracelessness condition for SU(N) gauge fields, implemented by Lagrange multipliers Λ0,1,2:

VCS + Vscalar → VCS + Vscalar + ΛµTr(Aµ) . (4.4)

4.1 Vacuum configuration

The complete vacuum equations extremizing the potential function are:

− k

4π
[Aµ, Aν ]εµνλ −

{
ΦΦ†,

(
Aλ + iµB η

λ01
)}

+ Λλ 1 = 0 , TrAµ = 0 ,

− (Aµ)pN (Aµ)Np + 2iµB(A0)
N
N + (m2 − µ2B) + 2g4v

2 = 0 . (4.5)

The matrix ΦΦ† is a projector, and given that the scalar VEV can be rotated into the

lowest component, it has only one non-zero element,

(ΦΦ†) q
p = N δp,N δ

q,N v2 . (4.6)
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The Lagrange multipliers {Λλ} are determined by taking the trace of each of the respective

equations of motion so that,

Λλ = 2v2
[(
Aλ
) N

N
+ iµB η

λ0

]
. (4.7)

We now note that we may always use SU(N − 1) rotations to diagonalize one of the 3

gauge field components, say A0. It then follows that the commutator [Ax, Ay] must be

diagonal. In fact This is reminiscent of the N -dimensional (irreducible) representation of

the SU(2) algebra, where the off-diagonal ladder operators commute to yield a diagonal

matrix. Motivated by this similarity, we find a simple solution for the Chern-Simons

equations of motion:

〈Ax〉 q1 = iα δq,2 , 〈Ax〉 qN = iα
√
N − 1 δq,N−1 (4.8)

〈Ay〉 q1 = α δq,2 , 〈Ay〉 qN = −α
√
N − 1 δq,N−1

〈Ax〉 qp = iα
(√

p δq,p+1 +
√
p− 1 δq,p−1

)
, p = 2, . . . N − 1

〈Ay〉 qp = α
(√

p δq,p+1 −
√
p− 1 δq,p−1

)
, p = 2, . . . N − 1

〈A0〉 qp = iβ

(
1

N
δ q
p − δp,Nδq,N

)
, p, q = 1 . . . N ,

where the constants α and β are determined by the VEV and chemical potential as,

α =
β√
N

√
µB
β
− N − 1

N
, β =

v2

κ
, κ ≡ k

2πN
. (4.9)

The equation of motion for the scalar VEV (discarding the trivial extremum) is then

given by,

− 3

κ2

(
1− 1

N

)2

v4 + v2
[
2g4 +

4µB
κ

(
1− 1

N

)]
−
(
µ2B −m2

)
= 0 . (4.10)

Solving as a quadratic in v2, only one solution is physical9 and matches smoothly onto the

semiclassical (κ� 1) limit:

v2 =
Nκ

3(N − 1)

 g4Nκ

(N − 1)
+ 2µB −

√(
g4Nκ

N − 1
+ 2µB

)2

− 3(µ2B −m2)

 . (4.11)

This agrees precisely with the result (2.22) for N = 2 after we perform the rescalings,

v → v/
√
N and g4 → g4N , required to match the conventions adopted in our analysis of

the SU(2) theory. It is also worth remarking that the N → ∞ limit, keeping κ and g4
fixed, can be readily taken and v remains finite in this limit.

For the free massless scalar coupled to Chern-Simons fields (m = g4 = 0), we obtain

v2 = κ
NµB

3(N − 1)
, α =

µB
3

√
2

N − 1
. (4.12)

9The second root yields v2 > κµBN/(N − 1) which would render α imaginary. In addition, this solution

does not have a smooth k →∞ limit.
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4.2 Interpretation as quantum Hall droplet state

The vacuum configuration breaks the SU(N) gauge symmetry completely. The scalar field

VEV also breaks the global U(1)B spontaneously and therefore the spectrum must yield a

massless phonon mode. As seen previously in the SU(2) theory, the classical background is

left invariant by a diagonal combination of U(1)B, global colour and spatial rotations. An

SO(2) rotation in the x-y plane by an angle ϑ, as in eq. (2.28), can be undone by a global

gauge transformation generated by the diagonal matrix J3:

U(1)C : 〈Aj〉 → eiϑJ3 〈Aj〉 e−iϑJ3 (4.13)

J3 ≡ diag

(
−N − 1

2
,−N − 3

2
,−N − 5

2
. . . ,

N − 3

2
,
N − 1

2

)
.

J3 is the N -dimensional representation of one of the three generators of the SU(2) algebra.

The phase rotation of the scalar VEV generated by J3 can clearly be compensated by a

U(1)B transformation.

An interesting feature of the vacuum solution is that the Hermitean matrices i〈Ax〉
and i〈Ay〉 provide a matrix realization of coordinates on the noncommutative plane:

[i〈Ax〉, i〈Ay〉] = 2iα2

 1(N−1)×(N−1) 0

0 1−N

 (4.14)

where the noncommutativity parameter is 2α2 as defined in eq. (4.9), and scales as α2 ∼
1/N for large N .10 Furthermore, it appears that the coordinates are restricted to within a

disc or droplet:

(i〈Ax〉)2 + (i〈Ay〉)2 = 2α2diag (1 , 3 , 5 , . . . , (2N − 3) , (N − 1)) . (4.15)

The radius of the droplet is bounded in the large N limit since α2 ∼ 1/N with limiting value

Rdroplet |N→∞ = 2β

√
µB
β
− 1 . (4.16)

The algebra of matrices is closely related to that of harmonic oscillator creation and anni-

hilation operators, when written in terms of the ladder operators:

A± = i (〈Ax〉 ± i〈Ay〉) , (4.17)

which, for any finite N , satisfy (A+)N = (A−)N = 0. Precisely the same set of matrices

were introduced to describe the fractional quantum Hall droplet in [23], building on the

connection between Abelian noncommutative Chern-Simons theory on the plane and the

quantum Hall fluid [24]. The matrix model has also been shown to describe the low energy

dynamics of vortices in 2+1 dimensional Yang-Mills-Higgs theory with a Chern-Simons

10It is tempting to look for solutions to the vacuum equations which are reducible and consist of irreducible

lower dimensional blocks each satisfying the finite dimensional algebra implied by the vacuum conditions.

We have not succeeded in finding any solutions of this type.
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term [30, 31]. In this picture, the matrices i〈Ax〉 and i〈Ay〉 parametrize the (noncommut-

ing) coordinates of N particles in the droplet. As eq. (4.15) indicates, the particles are

placed in concentric circles of radius ∼
√

2n− 1 for n = 0, 1, 2, . . . , N − 1. In the present

context, the two matrices appear to deconstruct two dimensions (at large N) on top of the

2+1 spacetime dimensions in which the field theory is originally formulated.

Given the finite density “droplet” ground state for general N , we need to calculate the

spectrum of fluctuations around it. This will be addressed in detail in future work [38].

However, we can already make a few remarks. The spectrum must exhibit a massless

state corresponding to the phonon arising from the spontaneous breaking of U(1)B. In the

droplet picture, physical excitations live only on the boundary of the quantum Hall droplet

and are associated to area preserving deformations of the droplet boundary, subject to a

Gauss’ law constraint following from the Chern-Simons equations of motion [23]. These

have a zero mode corresponding to rotations of the circular droplet ground state, which

could naturally be identified with the phonon. In the language of the N × N matrices

comprising the gauge field fluctuations, in an appropriate gauge (more precisely, unitary

gauge), the excitations are encoded in the entries of the N -th row and column of gauge field

fluctuations of Ax and Ay, all other fluctuations corresponding to pure gauge or “bulk”

degrees of freedom of the droplet. It would be extremely interesting to flesh out this picture

in detail and explore the implications of this interpretation for the spectrum of the theory

for generic N , and in particular its large-N limit.

5 Summary and future directions

There are several immediate questions of interest that follow on from the results above.

The Bose condensed vacuum should have semiclassical vortex solutions, and it would be

interesting to understand their explicit construction given the non-Abelian nature of the

vacuum configuration. The ground state has a U(1) colour-flavour locked global symmetry.

A vortex solution that breaks this global symmetry will have an internal zero mode corre-

sponding to a U(1) moduli space of solutions. Such vortices in a (non-Abelian) Higgs phase

with noncommuting VEVs, carrying internal zero modes have been encountered previously

in different contexts [32–35]. The physical properties of such vortices and their role in the

Bose-Fermi duality would be extremely interesting to explore.

The origin of roton-like minima is often attributed to long range interactions. The

interpretation of the background VEVs as noncommuting “coordinates” for a quantum

Hall droplet could thus provide a natural route to establish the existence of roton-like

excitations11 for general N > 2. In general, the computation of the spectrum of excitations

and their dispersion relations about the Bose condensed ground state should be facilitated

by the connection to the droplet picture of [23]. The goal would be to eventually understand

the putative matching between the spectra of the bosonic theory at weak ’t Hooft coupling

(λB � 1) and that of the dual critical fermion theory (coupled to Chern-Simons) at strong

’t Hooft coupling (λF → 1). Perhaps the most puzzling aspect of this is the interpretation

11See e.g. [36] for a discussion of the relation between noncommutative field theory and roton excitations

in bosonic and fermionic systems.
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of the Higgsed ground state. When λF = 0, and a U(1)B chemical potential is switched

on in the critical theory, we do not expect fermion bilinears to condense (see e.g. [39]).

As λF is increased from zero it is conceivable that the effective potential for charged

fermion bilinears carrying U(1)B favours a condensate either for any non-zero λF or at

some critical value. It would be extremely interesting to understand the behaviour of the

large-N effective potential for fermion bilinears for non-zero λF and µB.

A related question has recently been explored in [37] where Bose-Fermi duality at finite

temperature and in the presence of scalar condensate has been established in the large-

N ’t Hooft limit. We will need to understand the modification of the zero temperature

finite density state, and in particular the background gauge fields VEVs, by any non-zero

temperature since the Euclidean finite temperature theory is effectively two dimensional at

long distances and thus fluctuations in the phase of the scalar VEV are unsuppressed. It

will be interesting to understand the fate of the phonon-roton mode at finite temperature

and non-zero ’t Hooft coupling in the Chern-Simons-scalar theory.
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A Determinant of fluctuation matrix for SU(2)

The determinant for the physical fluctuations is given in terms of frequency ω and momen-

tum p as,

ω8 + µ2BC3 ω
6 + µ4BC2 ω

4 + µ6BC1 ω
2 + µ8B C0 = 0 . (A.1)

Assuming k > 0, µB > 0 the coefficients {Ci} are (for general choice of signs, it is under-

stood that k and µB will be replaced by their absolute values below):

C0 =

(
p2

µ2B

)4

+

(
p2

µ2B

)3(
m2

µ2B
− 1 +

6g4v
2

µ2B
+

17π2v4

k2µ2B
− 12πv2

kµB

)
+

(
p2

µ2B

)2

×
(

16π2m2v4

k2µ4B
− 12πm2v2

kµ3B
+

96π2g4v
6

k2µ4B
− 72πg4v

4

kµ3B
+

16π4v8

k4µ4B
− 12π3v6

k3µ3B
− 16π2v4

k2µ2B
(A.2)

+
12πv2

kµB

)
+

(
p2

µ2B

)(
−384π3g4v

8

k3µ5B
+

384π2g4v
6

k2µ4B
+

960π5v10

k5µ5B
− 1728π4v8

k4µ4B

−64π3m2v6

k3µ5B
+

832π3v6

k3µ3B
+

64π2m2v4

k2µ4B
− 64π2v4

k2µ2B

)
(A.3)
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C1 = −4

(
p2

µ2B

)3

+

(
p2

µ2B

)2(
−5− 3m2

µ2B
− 18g4v

2

µ2B
− 51π2v4

k2µ2B
+

28πv2

kµB

)
+

(
p2

µ2B

)(
4− 4

m2

µ2B
− 24

g4v
2

µ2B
− 192π2g4v

6

k2µ4B
+

72πg4v
4

kµ3B
− 32π4v8

k4µ4B

+
76π3v6

k3µ3B
− 32π2m2v4

k2µ4B
− 84π2v4

k2µ2B
+

12πm2v2

kµ3B
− 28πv2

kµB

)
− 384π2g4v

6

k2µ4B

− 64π4v8

k4µ4B
+

256π3v6

k3µ3B
− 64π2m2v4

k2µ4B
− 192π2v4

k2µ2B

C2 = 6

(
p2

µ2B

)2

+

(
p2

µ2B

)(
18g4v

2

µ2B
+

51π2v4

k2µ2B
− 20πv2

kµB
+

3m2

µ2B
+ 13

)
+

96π2g4v
6

k2µ4B

+
24g4v

2

µ2B
+

16π4v8

k4µ4B
− 64π3v6

k3µ3B
+

16π2m2v4

k2µ4B
+

116π2v4

k2µ2B
− 16πv2

kµB
+

4m2

µ2B
+ 12

C3 = −4

(
p2

µ2B

)
− 6gBv

2

µ2B
− 17π2v4

k2µ2B
+

4πv2

kµB
− m2

µ2B
− 7
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