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A B S T R A C T

We report on the effects of using an atomic layer deposited ZnO transparent buffer layer with> 106 Ω cm
resistivity on the performance of CdZnS/CdTe solar cells grown by metalorganic chemical vapour deposition
(MOCVD). The buffer film thickness is adjusted by optical modelling to suppress the reflection losses at the front
contact. A clear improvement, up to 1.8% in conversion efficiency, was obtained in comparison to reference
devices without the ZnO buffer layer, thanks to the enhancement of the current density (Jsc) and fill factor (FF).
Device spectral response showed improved collection for most of the visible region. Reflectance measurements
confirmed that the ZnO film reduced the optical reflectance around the transparent front contact. This effect
permitted light management through the front contact leading to an improvement of the Jsc and hence the
photovoltaic conversion efficiency. These results are intriguing since the literature on CdTe solar cells did not
previously report improvement to the photocurrent and device response through controlling the highly-resistive
transparent buffer layer.

1. Introduction

The interest in cadmium telluride (CdTe) thin film solar cells from
both academia and industry has risen significantly due to the recent
record device efficiencies of 22.1% for cells and 18.6% for modules [1].
CdTe solar cells produced by metalorganic chemical vapour deposition
(MOCVD) has also gone through significant improvements in recent
years. High performance cells and mini-modules were reported through
window layer (Cd1-xZnxS) optimization for higher photocurrents and a
post-growth anneal for higher voltage and fill factors [2,3]. The
MOCVD CdTe devices may be further improved via other approaches
known to work for other chalcogenide thin film solar cells. One of these
strategies is the use of a highly-resistive transparent (HRT) buffer layer,
inserted between the transparent conducting oxide (TCO) electrode and
the n-type window layers [4].

The use of a metal-oxide HRT buffer is commonly anticipated to
allow further thinning of the window layer (to reduce its parasitic ab-
sorption) and thereby increase light transmission into the absorber and
improve the photocurrent. In the absence of a HRT layer, considering
the rough surface of the TCO on glass substrates normally used, the

extreme thinning of the window layer often leads to poor substrate
coverage and hence localized TCO-absorber direct junctions which
produces a poor junction [5]. However, contradictory results were
obtained as to how much the performance and which device parameters
are actually improved with the use of a HRT buffer film. Ferekides et al.
studied the performance of CdTe solar cells for which a variety of TCO
[indium-tin-oxide (ITO), SnO2:F, and CdIn2O4] and HRT (SnO2, In2O3,
and Zn2SnO4) layer combinations were used [6]. In general, they re-
ported performance boost via the shunt resistance (Rsh), fill factor (FF)
and open circuit potential (Voc) parameters with the inclusion of the
HRT layer at the front contact. Spectrally-resolved FF measurements
indicated enhanced carrier collection in the long wavelength
(500–800 nm) region, which was interpreted to emanate from
strengthening of the collection field as well as carrier lifetime in the
absorber layer. Fedorenko et al. studied ~ 100 nm thick ZnO, ZnSe, and
ZnS films as the HRT layer for CdS/CdTe devices [7]. Device efficiency
was found to be much poorer when using ZnSe or ZnS HRT films while
no specific performance gain was observable for the ZnO HRT case.
These results were attributed to inefficient doping and formation of
recombination centers within the CdTe absorber, in relation to the
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effect of strain on the electronic properties of the grain boundary in-
terface states. Williams et al. reported the effect of ZnO HRT films
grown by atomic-layer-deposition (ALD) and sputtering on Cu(In,Ga)Se
(CIGS) solar cells employing a CdS window layer [8]. Some ZnO films
were treated with an oxygen plasma to increase their electrical re-
sistance. It is found that cells with lower resistivity (as-deposited) HRT
performed better than those with a high resistivity (plasma-treated)
HRT ZnO film.

More recently, through optical modelling Womack et al. showed the
possibility of an anti-reflection (AR) behaviour, observable when using
a ZnO or SnO2 buffer layer in CdS/CdTe solar cells [9]. The reflection
and transmittance in TCO/HRT/CdS/CdTe stacked thin film device
structures were calculated using the transfer matrix method, as function
of the HRT and CdS window layer thickness. It was found that due to
the low absorption in the ZnO layer it was possible to achieve window/
ZnO layer combinations that provide useful broad anti-reflection ef-
fects.

In this study we focus on ZnO thin film material deposited by ALD to
study its contribution to CdTe solar cells as a HRT buffer layer which
could possibly impart an AR property to the transparent front contact.
The choice of ALD emanates from its proven ability to provide uniform,
pin-hole free and conformal coatings at relatively low growth tem-
peratures [10–12], which is essential for good coverage of the rough
TCO layer without degrading its electrical conductivity. Optical mod-
elling was used to aid the experimental work to suppress the reflection
in the front contact region and thereby to boost the photocurrent. We
observed a clear enhancement in the performance of all devices fabri-
cated with the designed HRT layer due mainly to the optical gain and
shunt resistance it provided. To our knowledge, this is the first ex-
perimental report which significantly improved the performance of a
CdTe solar cell by reducing the reflection loss due to the front contact,
using a suitable HRT buffer. Detailed device characterization and si-
mulation results will be presented to explain the origins of the changes
observed in device operation.

2. Experimental

Undoped ZnO buffer layers were deposited onto commercial
5.0× 2.5 cm2 boro-aluminosilicate glass coated with a 150–200 nm
indium-tin-oxide (ITO) TCO layer (4–8Ω/◽ sheet resistance with 30 nm
SiO2 underlayer) as well as reference oxidized silicon substrates by ALD
at 120 °C. ZnO film thickness was controlled to be in the region of
50 nm, which was predicted to effectively suppress the optical reflec-
tion around the ITO film. The Zn and O precursors used were diethyl-
zinc and H2O, respectively. The growth process followed was similar to
that in Refs. [8,10], which provided good reproducibility and high
electrical resistance. Four-point probe measurements carried out on
ZnO films deposited on reference substrates showed an electrical re-
sistivity on the order of 1–5×106 Ω cm. Ellipsometry was measured on
reference ZnO films to obtain the refractive index (n, k). It is worth
noting that no additional AR coating was applied to the glass/air in-
terface.

Thin film Cd1-xZnxS/CdTe:As solar cells were deposited using
MOCVD in a horizontally configured growth chamber and H2 carrier
gas at atmospheric pressure. In every cell deposition run, one uncoated
and one ZnO coated ITO substrates were placed side-by-side in the
chamber, in order to have a direct comparison of the MOCVD film
properties and the solar cell performance. Bare ITO substrates were
surface-treated with an O2 plasma prior to MOCVD which improves
lateral uniformity. This treatment process was omitted for the ZnO/ITO
substrates due to the strong influence of O2 plasma on ZnO electrical
resistance which tends to increase by several orders of magnitude [8].
Instead, ZnO/ITO substrates were kept sealed after the ALD process and
only blown with dry N2 gas before loading them into the MOCVD
chamber. The thickness of Cd1-xZnxS window layer (referred as CdZnS
window hereafter) was varied between 60 and 150 nm with Zn

concentration (x) set to 0.7. Extrinsic As doping was used to obtain
CdTe with p-type conductivity, with concentration of ~ 3×1018

atoms/cm3 for the bulk of CdTe absorber (2000 nm) and ~ 1×1019

atoms/cm3 for the heavily-doped CdTe back contact layer (250 nm).
The CdCl2 heat treatment for cell activation was carried out after de-
positing CdCl2 at 200 °C and annealing the samples under the H2 am-
bient at 420 °C for 10min. After cooling the substrates to room tem-
perature and rinsing the excess CdCl2 using deionised water, a post-
deposition anneal was also performed in air ambient at 170 °C for
90min for further cell activation. Further details on MOCVD growth of
individual layers as well as device processing can be found in Refs.
[3,13].

Solar cells of 0.5× 0.5 cm2 area were finished by masked-deposi-
tion of a ~ 200 nm gold (Au) film on each sample via thermal eva-
poration. The current density-voltage (J-V) curves were obtained em-
ploying an Abet Technologies Ltd. solar simulator in dark and light
conditions. The intensity of the lamp output (AM1.5 solar spectrum)
was calibrated using a GaAs reference cell. The device spectral response
was characterized by measuring the external quantum efficiency (EQE)
on a Bentham PV300 quantum efficiency system without a bias. The
response of the system was corrected with respect to the output of a
reference crystalline Si photodetector. The concentration and depth
profiling of the arsenic dopant in the CdTe film were measured by
secondary ion-mass spectroscopy (SIMS) using a Cameca IMS-4f in-
strument. The primary source was Cs+ ions operated at 10 keV energy
with 20 nA current. The specimen to be analysed was cleaved (to
~ 1×1 cm2 size) from the main sample and then etched in 0.2%
bromine in methanol solution in order to reduce the surface roughness
and thereby improve the depth resolution. An ion-implanted CdTe:As
layer served as the calibration specimen.

3. Optical and device simulations

The reflectance data were modelled using The Essential Macleod, an
optical modelling software based on the transfer matrix method [14].
The optical light is introduced through the glass substrate in normal
direction. The optical constants (n, k) were taken from the library files
available with the software, except for the ZnO layer for which these
were taken from ellipsometry data. Due to lack of available data, CdS
was selected in place of the CdZnS material due to their material and
functional similarity. Thickness of the films involved were kept close to
their nominal values with some flexibility considered to account for the
experimental variations due to deposition and post-processing. Table 1
provides the film thicknesses and the refractive indices (n, k at 510 nm)
used in the optical model.

Device structures were modelled using SCAPS, a one-dimensional
thin film solar cell simulation software [19] to investigate the effect of
ZnO HRT layer on the performance of CdZnS/CdTe solar cells. Material
parameters used in these simulations (mostly taken from previous work
[3]) are given in Table 2. The carrier density of the CdTe and ZnO layers

Table 1
Solar cell design and materials used to simulate reflectance data (incidence
angle= 0 degrees; reference wavelength= 510 nm; n=refractive index;
k=extinction coefficient). Sources for the optical constants were Refs. [15]
(SiO2), [16] (ITO), [17] (CdS), and [18] (CdTe).
Source:Sources for the optical constants were Refs.

Layer Material n k Thickness (nm)

Medium Glass 1.52083 0.00000
0 SiO2 1.46180 0.00000 30
1 ITO 1.94000 0.01000 180
2 ZnO 2.06286 0.00018 0–50
3 CdS 2.50192 0.02695 110
4 CdTe 3.11402 0.49164 2000
Medium Air 1.00000 0.00000
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as well as device parasitic resistances (Rsh, Rs) were taken directly from
the experimental J-V data.

4. Results and discussion

Modelling showed that a ZnO film thickness in the region of 50 nm
provided the highest AR effect for an ITO layer of ~ 180 nm thickness.
The simulated reflection spectra with and without a ZnO buffer film of
50 nm in the ITO/HRT/CdS/CdTe device structure is given in Fig. 1. It
is noticeable that the broad reflection peak at 625 nm observable for the
non-HRT case is suppressed, along with some other gains obtained at
other wavelengths, for the HRT device. This demonstrates that a 50 nm
ZnO buffer layer can introduce AR to the ITO substrate used in our
experiments.

The quantum efficiency (EQE) and J-V parameters of three pairs of
devices, each with and without the HRT layer, and employing variable
CdZnS thickness (60, 100, and 150 nm) are given in Fig. 2 and Table 3,
respectively. The blue/near UV response is improved with thinner
CdZnS in both cases, as can be expected from the improved transmis-
sion into the absorber. Meanwhile, the quantum efficiency of non-HRT
cells shows greater variability and is inferior to that of HRT devices in
the 500–850 nm range. As a result, the photocurrent is improved when
using the HRT layer, albeit the absorption loss due to ZnO film
(bandgap 3.37 eV), for each set of devices. Importantly, the device re-
sponse was much more uniform for cells with the HRT layer. The mean
short-circuit current density (Jsc) and fill factor (FF) are improved by
∼ 2mA cm−2 and ∼ 4%, respectively, when the HRT layer is used. The
FF seems to benefit from an apparent rise in the shunt resistance (Rsh) as
well as a small drop in series resistance (Rs). On the other hand, the
open circuit potential (Voc) for HRT devices with the 100 and 150 nm
thick CdZnS is surprisingly lower (by ~ 20mV) than their non-HRT
counterparts, while for the 60 nm CdZnS layer the Voc is substantially
higher with the HRT layer.

Fig. 3 presents the light J-V curve and the EQE spectrum of the best
cells obtained for both substrate types when CdZnS is 100 nm thick. The
efficiency increases from 13.1% for non-HRT cell to 14.8% for the HRT
cell, whereby the FF is improved by 2.3% and the Jsc by 2.5 mA cm−2

while the Voc reduced by 20mV. The Jsc increase (by 11.5% relative)
with the HRT layer is particularly significant and comes mainly from
the improved collection in the 500–900 nm region, which deserves a
detailed explanation.

Let's first examine the improvement to the Jsc and spectral response
when using the ZnO HRT layer. Enhancement of the quantum efficiency
at most wavelengths (as seen in Fig. 3b) indicates improved light cap-
ture and/or carrier transport by the absorber. These could be possible
by the virtue of (1) the front contact/window layer stack becoming
more transparent, and (2) the electronic quality of the absorber

Table 2
Material parameters used in SCAPS device simulations.

Parameter ITO ZnO CdZnS CdTe:As CdTe: As+

Thickness (nm) 200 50 150 2000 250
Bandgap (eV) 3.72 3.37 2.90 1.45 1.435
Electron affinity (eV) 4.50 4.00 4.26 4.28 4.28
Dielectric permittivity (relative) 9.4 9.0 9.3 9.4 9.4
CB density of states (cm−3) 4× 1019 1.8× 1019 2.1× 1018 1.5× 1018 8× 1017

VB density of states (cm−3) 1× 1018 2.4× 1018 1.7× 1019 1.8× 1019 1.8× 1019

Electron mobility (cm2/Vs) 30 25 70 700 700
Hole mobility (cm2/Vs) 5 25 20 60 60
Shallow donor density (cm−3) 1× 1021 1× 1019 1.2× 1018 – –
Shallow acceptor density (cm−3) – – – 1×1016 2× 1016

Fig. 1. Calculated reflection spectra of a CdTe solar cell structure with and
without a 50 nm ZnO HRT layer. Reflection is suppressed at most visible wa-
velengths with the HRT film, suggesting more light will be transmitted to the
absorber.

Fig. 2. EQE spectra of CdZnS/CdTe devices with different CdZnS thickness without (a) and with (b) the ZnO HRT layer. The Jsc values calculated via spectral
integration are also given for each spectrum. Absorption edges due to ZnO, CdZnS, and CdTe are indicated in (b).
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increasing. As predicted from optical simulations, increased transmit-
tance is likely to result from reduced reflectance losses around the front
contact. To verify the AR effect, reflectance of two devices grown

simultaneously, with and without the 50 nm ZnO HRT layer, were
measured (Fig. 4a). Compared to the model data (Fig. 1), suppression of
the reflectance at most visible wavelengths is evident for the HRT de-
vice which demonstrates that the ZnO layer indeed introduced AR to
the ITO substrate. In Fig. 4b, the change in the quantum efficiency is
compared to that of the optical reflection for the same devices. Between
400 and 700 nm the spectra are in close agreement, indicating that
device spectral response and the Jsc benefit strongly from the AR
property in this region. Above 700 nm EQE of the HRT device is
markedly superior to that of the non-HRT device, beyond the prediction
of the reflectance gain. The additional gain in EQE may result from a
change in the electronic properties of the semiconductor films due to a
change in the growth substrate, i.e. ITO vs. ZnO/ITO. A small change in
the MOCVD kinetics (e.g. due to the deposition substrate) can influence
the film composition and properties, especially in terms of dopant

Table 3
8-cell mean J-V data of CdZnS/CdTe devices with different CdZnS thicknesses. HRT refers to the 50 nm ZnO buffer film between ITO front contact and CdZnS
window.

HRT CdZnS (nm) Voc (mV) Jsc (mA cm−2) FF (%) ɳ (%) Rs (Ω) Rsh (Ω)

No 60 432 ± 37 23.4 ± 0.9 60.2 ± 2.3 6.1 ± 0.8 3.5 ± 0.3 642 ± 130
Yes 60 641 ± 21 24.9 ± 0.5 64.0 ± 3.1 10.2 ± 0.7 3.5 ± 0.2 1247 ± 297
No 100 790 ± 13 21.7 ± 0.4 72.8 ± 4.8 12.5 ± 1.0 3.2 ± 0.4 911 ± 148
Yes 100 768 ± 11 23.9 ± 0.4 77.3 ± 0.9 14.2 ± 0.5 2.8 ± 0.2 3077 ± 596
No 150 798 ± 11 21.9 ± 0.6 75.9 ± 2.3 13.3 ± 0.7 3.5 ± 0.2 1979 ± 567
Yes 150 775 ± 15 23.1 ± 0.5 78.1 ± 1.5 14.0 ± 0.4 2.6 ± 0.2 3127 ± 751

Fig. 3. The light J-V curve (a) and EQE spectrum (b) of the best cells found using 100 nm CdZnS, with and without the HRT layer. The extracted J-V parameters are
given as inset to (a).

Fig. 4. (a) Reflectance spectrum of CdTe solar cells grown with and without the ZnO HRT layer, and (b) comparison of the change in reflectance and quantum
efficiency for the same cells.

Table 4
Summary of the simulated J-V data for CdZnS/CdTe devices, with and without
the 50 nm ZnO HRT buffer layer. Results for equivalent absorber carrier density
(Na =1×1016 cm−3) show no significant Voc change between the two device
structures, hinting that the Voc is more sensitive to the absorber carrier density
than the band alignment.

HRT Na (cm−3) Voc (mV) Jsc (mA cm−2) FF (%) ɳ (%)

No 1.7× 1016 857.20 25.00 73.79 15.24
No 1.0× 1016 834.60 24.24 73.15 14.80
Yes 1.0× 1016 835.30 24.10 75.46 15.19
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distribution and carrier density. Such a small difference is indeed ob-
served in the As concentration and consequent p-type doping density in
the CdTe absorber (see Fig. 1 in Ref. [20]). Slightly higher bulk re-
combination at long wavelengths for the non-HRT device may be linked
with its higher As density, whereby most As atoms are compensated for
due to the low dopant activation ratio (~ 1%). Finally, the loss of EQE
between 300 and 370 nm is due to absorption by ZnO.

Next, let's discuss the small Voc loss encountered when using a HRT
layer with ≥ 100 nm thick CdZnS window (Table 3). In the related
literature, there is no loss, but usually a gain, of Voc is reported when
using a ZnO HRT layer with CdTe solar cells [21,22]. For example,
Mahabaduge et al. employed 1× 105 Ω-cm resistivity ZnO films as the
HRT layer for sputter-deposited CdS/CdTe solar cells and found that the
HRT layer improved the Voc when thinner (40 nm) CdS was used but
there was no noticeable difference for thicker (90 nm) CdS window
layers [22]. This was attributed to blockade effect of the HRT layer on
the shunt paths which are more prevalent for thinner window layers.
Here, the small loss of Voc, encountered even for 150 nm thick window
layer, is likely to arise from (1) the energy band alignment at the ma-
terial interfaces with the ZnO film incorporated into the device struc-
ture [8] or (2) the electronic quality (carrier density and/or lifetime) of
the absorber [6,23]. A change particularly in the conduction band offset
(CBO) between the absorber/window layers for CdTe solar cells can
alter the interfacial surface recombination and hence device parameters
[24]. Using SCAPS, we modelled our thin film device structures to ex-
amine the band alignment at the absorber/window/front contact in-
terfaces. Although, the insertion of HRT layer produced narrow spikes
at the interfaces to CdZnS and ITO (see Fig. 2 in Ref. [20]) these do not
seem to lead to a change in the Voc for a constant absorber carrier
density of 1× 1016 cm−3 (Table 4). However, when the apparent CdTe
carrier densities from the C-V data (see Fig. 1 in Ref. [20]) are used in
device simulations the Voc of the HRT device is observed to reduce by
~ 20mV, which agrees well with the experimental data. Thus, it is
sensible to suggest that the Voc of HRT devices can also be optimized by
adjusting the p-doping density via the As concentration.

Devices with the thinnest (60 nm) CdZnS window layer showed a
significant decrease in the Voc and FF (Table 1). This observation agrees
with previous reports where Voc and FF fall rapidly as the CdS window
thickness in CdS/CdTe solar cells is reduced to below 100 nm [4,25,26].
This effect is usually attributed to insufficient substrate coverage by the
window layer. Extra-thin regions, or pin-holes, in the window layer
would result in weak diodes between CdTe and the TCO layer with an
increase in shunting. The ZnO HRT layer is partially effective in elim-
inating the effect of such bad junctions on device parameters. In this
study, the optimum CdZnS window thickness reduced from 150 nm to
100 nm when using the ZnO HRT layer which also helped to enhance
the photocurrent. It is believed all J-V parameters can be optimized by
further tuning of the TCO/HRT bi-layer parameters and absorber
doping.

5. Conclusions

CdTe solar cells with and without a highly conformal intrinsic ZnO
buffer layer were studied. The superstrate CdZnS/CdTe solar cells were
grown side-by-side on ITO/glass and ZnO/ITO/glass substrates by
MOCVD, where the CdZnS thickness was varied between 60 and
150 nm. Thickness of the ZnO HRT film was adjusted to ~ 50 nm
through optical modelling to suppress the reflection losses around the
front contact. In experiments, the reflection was indeed reduced at most
visible wavelengths on incorporating ZnO to the front contact, leading
to significant boost of the photocurrent (up to 11.5% relative).
Additionally, the shunt resistance and fill factor were superior for the
HRT devices, which provided a conversion efficiency improvement up
to 1.8%, despite no gain was obtained in the open circuit potential (for
≥ 100 nm CdZnS). When using a very thin (60 nm) CdZnS window both
Voc and FF suffered significantly due to inferior substrate coverage,

leading to poor TCO/CdTe localized junctions, whilst the ZnO HRT was
effective in their recovery. The Jsc gain through reduced reflectance at
the front contact for CdTe solar cells is a new experimental observation.
Overall, these results show that higher improvements to CdTe solar
cells would be possible by further engineering the TCO/HRT metal-
oxide front contact.
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