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Abstract. We developed FeatureAgda, a framework to specify and prove
properties of feature-based composition of workflows implemented in the
Feature-Oriented Software Production Lines paradigm. The resulting work-
flows allow for adaptation at runtime by changing the set of enabled features.
Our framework allows the modular definition of features and promotes the
separation of concerns in the workflow definitions. In addition, we obtain
a single artefact that represents the entire software product line through
the use of the expressiveness of dependent types, allowing the application of
family-level formal verification.
Our framework is based on Agda which is both a theorem prover and a
programming language. We apply our framework to a case study from the
healthcare domain which implements feature-based composition of work-
flows for medication prescriptions. Our setting allows the workflow to be
changed according to patients’ specific cases and doctors’ needs while having
trustworthiness through formal verification.

Keywords: feature-oriented software development·product-BasedWorkflows
·Agda·theorem proving·dependable software·family-level formal verification
·verification of workflows·formal verification

1 Introduction

One of the most significant challenges of software design processes is resilience to
changes, which is especially true for dependable systems where verification infrastruc-
ture often adds considerable complexity to the software design process and where even
small modifications might have far-reaching implications for the verification process.
In this paper we address the current lack of flexibility of rigorously designed systems
based on a software product lines (SPL) paradigm. Specifically, our contribution is
a novel verification framework for feature-oriented software product lines [3], which
we named FeatureAgda.

Software product lines allow the assembly of software-intensive systems based on
a predefined set of features using reusable software components [3]. Areas of appli-
cation include the automotive sector, operating systems/kernels and the healthcare
domain [16].
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Currently, there are several design choices for SPLs and their verification. The first
design choice is the feature binding time: static versus dynamic/runtime. The second
choice is the implementation: either compositionally by implementing features as
modules that can be added or not to a product, or annotatively by embedding varia-
tion points corresponding to different features directly. Finally, there is product-based
verification of specific feature configurations versus family-based formal verification
of the whole SPL [27].

Essentially, compositional implementation puts flexibility first and postulates that
the systems should be developed from modular components. However, regarding the
formal verification and analyzability, annotation-based approaches are traditionally
better suited for family-based verification and can be considered to prioritise safety
first. We consider family-based verification a safer option for run-time feature binding
time, since we don’t want to call any theorem provers at run-time but use statically
guarantees provided by family-based verification for any feature selection.

With FeatureAgda, our goal is to cater for both design styles. Both the configura-
tion and the verification phases support dynamic composition of modules at run-time.
From a pure software design perspective this approach might be seen as fairly trivial,
since most software tools nowadays support some degree of extensionability (via
plugins or scripting). From the verifiability perspective, however, our approach is
novel, ensuring that specifications of modules (readily wired together or anticipated
at runtime) fit together and support reasoning about features. For instance, one can
formulate claims that hold true in all configurations based on features with some
properties, without the necessity to fully specify those configurations upfront.

In this way, in FeatureAgda one can compose systems both statically and dynam-
ically (even in the process of system execution) and still enjoy the benefits of formal
verification provided by the formal framework built atop of a theorem prover with
dependent types support (our prover of choice in this paper is Agda [2]).

We validate our approach using a case study from the healthcare domain, namely
the workflow of medication prescription in a complex and high-risk setting of pre-
scribing anticoagulants, commonly also called blood thinners. The recent introduction
of a highly efficient class of so-called novel anticoagulants (NOACs) has made the
prescription process exceedingly complex, since many parameters must be considered
for the correct drug and dosage selection. Despite detailed guidelines and special
measures taken in most hospitals to reduce the probability of errors (which can often
be life-threatening), an estimated 16% of prescription errors [29] and up to 60.8%
of dosage errors still currently occur in the everyday practice [9].

The constraints of the NOAC prescription process are not limited to the correct
interpretation of multiple medication leaflets provided by the manufacturers under
the control of the European Medical Association (EMA). As new medications are
introduced to the market and the new research results become available, the EMA
prescription regulations and medication leaflets are adapted, typically on a yearly
basis. An additional complexity comes from the requirement to comply with the
policies of insurance providers that cover the cost of the medication. According to
many healthcare providers’ policies (for instance the Austrian social insurance regula-
tions), the cheapest medication among equally effective ones should be prescribed. As
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the market prices fluctuate, this requirement effectively means that the prescription
procedure should be adapted continuously.

Last but not least, the same body of official recommendations, guidelines and
policies are normally implemented differently depending on the hospital, and even
show variations between different departments within the same institution. In fact,
actual workflows of different departments consist of different sequences of steps. Hence,
a competitive healthcare information system should cater for both the adaptability of
high-level specifications to ensure compliance with the actual normative documents
and the flexibility of implementation of actual workflows.

Our ongoing case study in the Vienna General Medical Hospital (AKH) tests a
formally verified computer prescription assistant, guiding the doctors through the
prescription workflow, including soliciting the patients’ information through necessary
medical examinations. The design of the underlying system was quite labor consuming,
even in the basic case of implementing and verifying a single version of prescription
guidelines. While the intermediate results of our study seem promising, adaptability
has arisen as the next pressing issue: how can one cater for future policy changes and
still retain the guarantees provided by the formal system design?

The present paper is an attempt to answer this question. The contributions that
we made are as follows:

– FeatureAgda as a framework implementing flexible SPLs using dependent types,
supporting modular description and implementation of features. An executable
workflow is generated from a feature selection.

– Support for static and dynamic (runtime) feature binding. For example, in the
NOAC prescription use case, both the support for verification and adaptability
are intrinsic requirements, as discussed above.

– Both specifications and proofs are variability-aware in FeatureAgda. We support
reasoning over features, such as a definition of feature properties and proving
claims about the system based on those properties, without having the full
specification of all the modules. In this way, we can support proofs which are pa-
rameterised by arbitrary feature configurations, known as family-based deductive
formal verification [27] of SPLs.

– An unbounded number of states and arbitrary IO. Our specifications support an
unbounded number of states and also support proofs over programs that include
IO actions such as database queries.

– Evaluation based on a relevant case from the healthcare domain. NOAC selection
proved to be an excellent showcase for the dependable software development meth-
ods, as an area where, on the one hand, formalization brings immediate benefits
and, on the other hand, yielding advanced functionality such as adaptability. Our
formalization of the NOAC prescription use case is publicly available and can be
used for testing and benchmarking similar tools and methodologies in the future.

Source Code. All displayed Agda code has been extracted automatically from type-
checked Agda code [1]. For readability, we have hidden some details and show only
the crucial parts of the code. The full source code is available online.4

4 https://gitlab.com/Stefanad/FeatureAgda
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Fig. 1: A part of the prescription workflow

2 Background and Context

2.1 Software Product Lines

We use the term Software Product Lines (SPLs) [3] to denote the software design
principle in which the software products are developed from a common set of core assets
or artefacts with variability and reuse among the main principles. Feature-oriented
SPLs place special emphasis on enabling modularity by formalizing the general notion
of feature as an end-user visible characteristic of a software product, which vendors
can compose to cater for requirements of a particular application domain.

In our running example, we apply the feature-oriented SPL approach to extend
a workflow (or a business process whose actions are executed by humans) with
variability points, as illustrated in Fig. 1.

The workflow in Fig. 1 is based on an ongoing case study evaluating the uses of
dependable software in healthcare, which we are currently conducting in the AKH
Hospital of Vienna. The workflow formalises the medical process of prescribing antico-
agulant medications. For the sake of simplicity, we only present several essential steps
of the actual workflow implemented in the hospital, including blood tests, treatment,
and writing a prescription for the required medications.

The workflow in Fig. 1 is displayed in PESOA notation [25], which is an extension
of the business process notation BPMN with additions for variability. For instance, the
prescription activity is performed by doctors with different specializations. In an ER
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Fig. 2: A part of the feature model for the NOAC prescription workflow

department, only two “classical” anticoagulants are used, whereas in the anticoagulant
clinic, novel anticoagulants (NOACs) are also applied.

The feature model for the prescription workflow is shown in Fig. 2 in the form of
a tree where nodes represent features and edges depict the relationship between them.
We choose a staged feature model [13], where a selection of user-relevant features on
the left is mapped to a feature selection on the right that is more solution relevant. For
example, on the right-hand side, we consider individual NOACmedications as features.

Domain features such as Preferred NOAC by insurance policy, Department are
represented, among others, by the variants ER and Anticoagulant clinic. We model
Preferred NOAC by insurance policy as an attributed feature to accommodate changes
and updates to the prescription regulations (e.g. in combination with runtime feature
selection). Preferred NOAC by insurance policy has preferred NOAC medication as an
attribute, normally referring to the cheapest NOAC on the market, which constitutes
a so-called attributed feature model [6].

The actions and features outlined in Fig. 1 and Fig. 2 are implemented in a software
system developed in the dependently typed functional programming language Agda.

2.2 Agda

Agda [2] is a theorem prover and also as a dependently typed programming language.
Types can depend on arbitrary values. This is in contrast to functional programming
languages such as Haskell and ML that separate types and values. Dependent types
are very handy for implementing and proving properties of SPLs, since any type can
depend on the value of a particular feature configuration.

There are several levels of types in Agda, the lowest is for historic reasons not
called “Type” but referred to as Set. The next level type is called Set1, which has the
same closure properties as Set but also contains Set as an element. The reason for
the levels is to avoid Girard’s paradox.

Agda has a termination and coverage checker. The coverage checker guarantees
that the definition of a function covers all possible cases, and the termination checker
verifies that definitions terminate. Without them, Agda would be inconsistent.

Types in Agda are given as dependent function types, inductive types and record
types. A dependent function type is written as (x :A)→B, which maps an element
x of type A to an element of type B, where the type B may depend on x.

Inductive data types are dependent versions of algebraic data types as they occur
in functional programming. Inductive data types are given as sets A together with
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constructors. For instance, the collection of finite numbers (i.e., numbers smaller than
a given limit) is given as a map from N to Set:

data Fin : N → Set where
zero : {n : N}→ Fin (succ n)
suc : {n : N}→ Fin n→ Fin (succ n)

Here {n :N} is an implicit argument. Implicit arguments are omitted, provided they
can be uniquely determined by the type checker. The elements of (Finn) are those
constructed from applying these constructors. Therefore, we can define functions that
operate on (Finn) by case distinction on these constructors using pattern matching
(similar to pattern matching in Haskell).

Record types are used to describe the grouping of several categories into one type,
for example:

record AB : Set where
a : N
b : Fin a

The above defines a new record type AB with two fields. The first field is a, which
has type N and the second field is b, with type Fin a. Also, Agda allows dependent
record type where the type of one field depends on other fields. In the above example,
the type of b depends on the value of a.

Agda has a mechanism for defining infix operators, where the arguments of infix
operators are denoted by the underscore (_). For example, disjunction which is infix
on truth value can be defined as follows:

_or_ : Bool→ Bool→ Bool
false or m = m
true or m = true

Note that in our code examples we sometimes show only the type of a function
and omit for brevity the full implementation.

3 Workflow Specification in FeatureAgda

Our main concern is the solution space and the aspect of formal verification of SPLs.
We don’t consider additional aspects of SPLs in this paper, such as requirement
analysis or documentation of SPLs. In the following, we give an overview of our
framework from the perspective of a user of the system.

We implement features in our compositional SPL approach using functions as
our compositional units. Thus, a feature implementation is a function that maps a
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product to an extended/adapted product. In our workflow case, this is as a map from
workflows to extended/adapted workflows:

featureImplementation : Workflow → Workflow
We will later show the dependently typed version of this function in full detail.

A specific workflow product can be expressed via function composition. Assuming
trivialFeatureImpl :Workflow, we could express the composition of the blood-test (sub)
workflow (cf. Fig. 1) for the E.R. department as follows:

trivialWorkflow : Workflow
defaultOrderBloodTests : Workflow → Workflow
orderBloodTestsER : Workflow → Workflow

workflowBloodTestER : Workflow
workflowBloodTestER = orderBloodTestsER (defaultOrderBloodTests trivialWorkflow)

A further step is to generate an executable workflow version according to such
defined workflows. The result is an executable program that implements the different
graphical user interface (GUI) forms necessary to guide a doctor during the prescrip-
tion workflow. We have implemented a generic function that converts workflows to
executable programs:

compileWorkflowToProgram : Workflow→ ExecutableIOProgram

main : ExecutableIOProgram
main = compileWorkflowToProgram workflowBloodTestER

The final step is to reason about and formally verify executable workflows. For such
proofs, we define finite simulations of workflows. As mentioned, a major goal is the ver-
ification of family-based proofs. This allows us to quantify over featureImplementation
and feature selections and prove that after composing a feature implementation with
another workflow, all relevant safety specifications still hold. In the context of pre-
scription workflows, safety usually means the patient is prescribed a save medication
together with a correct dose.

Experience has shown that functions as units of composition are flexible and
modular. However, it is challenging to allow for a high degree of expressiveness of the
feature adaptions, especially, while maintaining (family-based) analyzability based
on formalised proofs. Our solution to this challenge is the topic of the next chapter.

4 Workflow Verification and Implementation

We represent workflows as state machines embedded in dependent type theory within
Agda. Typical in healthcare, workflows depend on a lot of data (patient data, blood
test results, etc.) and also need to interface with databases and diagnosis machines
(e.g., Electrocardiography machines).

Here, state machines may have an unbounded number of states and allow for
arbitrary IO interactions, so they are more expressive than finite state machines.
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4.1 State machines

‘
We define our workflow state machines generically. We say a workflow state has a

view that represents the workflows state to a user (in our case doctors). We assume
two abstract types View and UserInput. The latter is a map from a view to a type
representing the user input for that view.

To define state machines for workflows we first define a handler for the user input:

machineInputHandler : (S : Set)(v : View)→ Set
machineInputHandler State v = (input : UserInput v)→ IO State

A handler is a function that maps user input to IO programs that calculate a
successor state for the state machine. A handler takes a type of states S, a view of
type View and finally maps the user input (dependent on the view) to IO programs
of type S. The latter means the IO programs return a value of type S, where the
return value represents the new state.

A MachineState is a record definition associating a view with a handler (called
handle) for user input for that view. The definition is as follows:

record MachineState (State : Set) : Set where
view : View
handleUserInput : machineInputHandler State view

Note that this is a dependent record, as handle depends on view. Here "type safety"
is already a much stronger consistency property than most existing approaches, as
the type system statically ensures that each user input is properly handled in the
state machine.

The record is generic, as it is parametrised over the state of simple states S.
Finally, we can define a StateMachine as a mapping from simple states to Ma-

chineState (with associated views and handlers):

StateMachine : Set → Set
StateMachine State = (s : State)→ MachineState State

4.2 Extending State Machines with Features

Features can be used to modify the structure and content of a state machine. For
example, a feature might add a new transition between states s and s′ triggered by
user input that is added to the view associated with state s. Each feature may be
included or not in the final workflow application yielding a family or product line
of possible workflow applications depending on which features are included.

Generic feature-oriented state machines are functions which for each feature yield
a state machine for the set of states.

FeatureMachineNaive : (F S : Set)→ Set
FeatureMachineNaive F S = ( f : F)→ StateMachine S
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Here (F S : Set)→ Set stands for (F : Set)(S : Set)→ Set which in turn stands for
(F : Set)→ (S : Set)→Set.

When expanding features, we will add extra states to the machine. We want
to modify the original states independently of the new states added. Therefore, we
separate the set of states into two sets, namely the set B of base states, common to
all machines independent of features added, and the set S of extra sets.

FeatureMachine : (F B S : Set) → Set
FeatureMachine F B S = ( f : F)→ StateMachine (B ] S)

Depending on a feature, the resulting state machine consists of the disjoint union (])
of the base states and the new states. This enables features to dynamically add new
states in a monadic way. It also enables features to be applied to a machine multiple
times. For example, given a feature that adds a button to the GUI associated with
a state, applying that feature twice would add two buttons to that GUI.

We can extend a feature machine by a new state, provided we give the information
how to handle the new state (which will yet be unreachable from the previous states):

addStateToFeatureMachine : {F B S’ : Set} (fm : FeatureMachine F B S’)
(new : MachineState (B ] (S’ ] Void)))
→ FeatureMachine F B (S’ ] Void)

In the above definition {F B F ′ :Set} stand for three hidden arguments: they are
like arguments (F B F ′ :Set), but when using them they can be omitted, if Agda can
automatically infer them. This helps to shorten the code. Void is the type without
specific information, having only one trivial element triv.

We can add a new dummy feature:

addFeatureToFeatureMachine : {F B F’ S : Set}
(fm : FeatureMachine F B S)
→ FeatureMachine (F × F’) B S

In order to give meaning to a new state and feature added, we need to adapt
other states so that they are modified depending on new features added. We illustrate
this by giving an example constructing a simple medical example:

We first construct a basic machine for the purpose of prescribing medication,
with only the trivial feature Void and no extra states (given by state set ∅). The
relevant blood test for the prescription is the estimation of the renal function, which
is measured as the value of creatinin clearance (CrCl). A value below 15 means
insufficient kidney function, for which Warfarin is the medication of choice. We give
only the definition for the initial state enterCrCl, which, depending on whether the
CrCl value is <15 or ≥15, goes to different states for prescribing medications:

basicMachine : FeatureMachine Void StatesBasic ∅
basicMachine f (position enterCrCl) =
disjointChoiceState "CrCl < 15" (position (prescribeMedication <15))

"CrCl ≥ 15" (position (prescribeMedication ≥15))
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Now we add to this machine a new state for handling NOAC medications:

NoacMAddNewState : {F S : Set}(noa : NOAC)
→ (fm : FeatureMachine F StatesBasic S)
→ FeatureMachine F StatesBasic(S ] Void)

and a new dummy feature allowing NOACS to be processed:

NoacMAddFeature : {F B S : Set}(noa : NOAC)(fm : FeatureMachine F B S)
→ FeatureMachine (F × (FeatureNOAC noa)) B S

Now we adapt the state for prescribing the medication for renal value ≥15 by
allowing the NOAC in question to be a choice for prescription, and keeping all other
states as they were before:

NoacMAdaptFeature :
{F S : Set}(noa : NOAC)
(fm : FeatureMachine (F × (FeatureNOAC noa)) StatesBasic (S ] Void))
→ FeatureMachine (F × (FeatureNOAC noa)) StatesBasic (S ] Void)

NoacMAdaptFeature noa fm ( f , yesNOAC .noa)
(position (prescribeMedication ≥15))

= addChoice2State (fm ( f , yesNOAC noa) (position (prescribeMedication ≥15)))
(noac2Name noa) newState

NoacMAdaptFeature noa fm (f , selection) s = fm ( f , selection) s

We can now add to a feature machine this new feature, by adding the previous
operations in sequence:

NoacFeatureMachine noa fm = NoacMAdaptFeature noa
(NoacMAddNewState noa
(NoacMAddFeature noa fm))

We an as well add two NOACs by adding the above operation twice for the two
NOACs in question:

NoacFeatureMachine2 noa1 noa2 =
NoacFeatureMachine noa1 (NoacFeatureMachine noa2 basicMachine)

The resulting code can now be compiled into an executable GUI:

NoacFeatureMachine2GUI {F}{S} f noa sta fm =
compile2GUI ((NoacFeatureMachine noa fm) ( f , yesNOAC noa)) sta

We can now prove correctness theorems. For instance we show that if we add
two NOACs to the basic machine, we will reach from the prescription state the state
where Warfarin is prescribed in case the renal value is <15:

theoremWarfarin : ∀ (noa1 noa2 : NOAC) →
prescribeMedicationState noa1 noa2 <15 -eventually-> warfarinState noa1 noa2
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4.3 Calling Machines with Different Features in a Monadic Way

We will now show how one state-machine can call another state machine using different
feature selections.We use this approach for dynamic (runtime) feature binding. In order
to do this we first define a monadic extension of state machines and feature machines.

The theoretical basis for the use of monads in functional programming was laid
by Moggi [23]. It was pioneered by Peyton-Jones and Wadler [28,24] as a paradigm
for representing IO in functional programming, especially Haskell. An element of the
IO monad (IOA) is an interactive program which continuously interacts with the real
world, and possibly terminates. If it terminates it gives a return value, an element
of type A. The monadic approach allows for monadic composition: If we have one
program p : IOA and a function q :A→ IOB we can form a program r := p � q
of type IOB: Program r first executes program p. If p terminates, returning value
a :A, then r continues executing (q a). If that program terminates with return value
b :B then r terminates as well with the same return value. Monads allow therefore
to compose programs in a modular way.

We apply the monadic approach to state machines as follows: The monadic version
of a state machine has an extra argument A of return values returned by the state
machine. Events are handled by an element of (MachineState (S]A)). Here S]A
is the disjoint union of S and A, having elements (inj1 s) for s :S and (inj2 a) for
a :A. If the user triggers an event, an element of (IO(S]A)) is executed. If that IO
program terminates with (inj1 s), the state machine continues in state s. If the IO
program terminates with (inj2 a) then the state machine terminates with return value
a. Monadic state machine and the monadic feature machine are defined as follows:

StateMachineMonadic : (A S : Set) → Set
StateMachineMonadic A S = S→ MachineState (S ] A)

FeatureMachineMonadic : (A F S : Set) → Set
FeatureMachineMonadic A F S = ( f : F)→ StateMachineMonadic A S

We can now take one state-machine machine1 which has as return value a feature
f and a state of a monadic feature machine (machine2f) for that feature. Assume the
return values of (machine2f) are states of machine1. Then we can combine both ma-
chines into one state-machine combimachine. It has as states the states frommachine1
and pairs consisting of a feature f for machine2 and a state s of machine2. The state
machine combimachine operates as follows: In a state of machine1, it executes as
machine1 until it terminates. Oncemachine1 has terminated with return value (f ,s),
machine2 is started with feature f and state s. That machine is executed, until it
terminates, giving as return value a state s′ of machine1. The control flow continues
again with machine1 starting in state s′. The type of this operation is as follows:

combineStateFeatureMachine : {F S S’ : Set}
(machine1 : StateMachineMonadic (F × S’) S)
(machine2 : FeatureMachineMonadic S F S’)
→ StateMachine (S ] (F × S’))
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As an example we take as first machine a machine which has only one state, in
which it gives the user the choice between having the creatinin clearance (CrCl) value
<15 or≥15. In the first case it calls the feature machine for prescribing the medication
having the NOAC feature deactivated, which means that there is no option of prescrib-
ing a NOAC. In the second case this feature is activated, allowing a NOAC prescription:

callMachine noa enterCrCl =
disjointChoiceState "CrCl < 15" (terminate (noNOAC noa , prescribeMed))

"CrCl ≥ 15" (terminate (yesNOAC noa , prescribeMed))

This machine will be extended to a function callMachineFeatured to allow for extra
features and states. As feature machine we take the same feature machine as before,
but in case of discharging the patient giving a return value which effectively calls the
first state machine again. We omit as well the first state which is now handled by
callMachineFeatured. We combine these two machines and obtain one machine: In that
combined machine the first machine (which has no features) calls the second feature
machine, and selects the feature used dynamically depending on its inputs. When
the second feature machine has terminated it makes a call back to the first machine.

NoacMachine noa =
combineStateFeatureMachine
(callMachineFeatured triv noa)
(NoacFeatureMachine noa (mapFeatureMach (λ _→ enterCrCl) basicMachine))

4.4 Case Studies Carried Out

We have applied the above approach to several paradigmatic examples. One example
is a vending machine [11]. Possible features are adding the option to obtain specific
beverages such as tea, coffee, or soda, the option of having a cancel body, and of
giving change. We defined this in a modular way so that operators can be applied one
by one to the machine. We defined as well an operator for adding a generic button
for any beverage, which is given by a string. That operator can be applied arbitrarily
many times to the vending machine, giving an unbounded number of buttons.

The second example was a simple ATM and similar to the Bank Account SPL [26].
The user can withdraw from the ATM as long as there is enough money left.

A third example allows GUI which have an unbounded number of buttons. Each
button results in an extension of the GUI by adding a certain amount of buttons
to the GUI. This example demonstrates that this framework allows to define GUIs
which have infinitely many states, where the states correspond to GUIs which differ
in the number of buttons.

Finally we developed a more advanced version of the NOAC medication pre-
scription example. The caller machine collects data about the patient, and then
calls a feature machine. The features of the feature machine form a subset of the
NOAC medications available. The feature machine will then handle prescription of
the medicines and then switch back to the state machine handling user input.
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5 Related Work

Verification of Software Product Lines Our examples in Section 4.2 show how our
library can be used to realise a feature-oriented software product line (SPL) [3] of
workflow applications; that is, a workflow application that varies depending on which
of several features are enabled. In general, SPLs can be developed either composition-
ally [5] by implementing features as modules that can be added or not to a product,
or annotatively [19,15] by embedding variation points corresponding to different
features directly in the source code. There are tradeoffs between the two styles [19].
Our realization of SPLs combines benefits of both approaches. Like compositional
approaches, our approach supports the modular definition of features and promotes
a separation of concerns. However, like annotative approaches we ultimately obtain
a single artefact that represents the entire SPL, promoting family-level analyses [26].

There is a huge body of work on verifying properties of software product
lines [14,10,11,20,22,27,26]. A strength of our implementation is that we can use
Agda’s theorem proving capabilities to prove arbitrary properties about SPLs. In
particular, we can prove that software products and the product line itself are cor-
rect w.r.t a formal specification. This is in contrast to other approaches that verify
only aspects such as the respective software contracts and (class) invariants. The
work by Classen et al. [11], which introduces the vending machine example, uses
model checking to verify several safety properties of the system, for example, that
for any selection of features, all included states are reachable. Such properties can
be formulated as types in Agda and proved by providing a value of that type.

Variability in Healthcare Process Models Asadi et al. [4] investigate how variability
can be represented as customizations of reference process models. They present a
case study modelling an information systems for the support of optometrists in their
daily activities. Additionally, they provide a framework which is able to discover
inconsistencies with regard to the reference process model automatically. However,
they don’t include any formalised proves such as that the process model variants are
correct with regards to a formal specification.

Dynamic feature binding and GUI applications Kramer et al. [21] have contributed
an approach that supports both static and runtime feature binding of GUIs based on
Dynamic SPLs (DSPLs [17]). We also support runtime feature binding of executable
workflows which include GUI forms. Kramer et al. [21] discuss certain challenges
including keeping the components of Model-View-Controller (MVC) architectures
consistent in the presence of variability. In this regard, note that in Section 4 we
demonstrate that we can automatically solve this consistency problem with a depen-
dent record type. For example, consider the definition of MachineState. This aspect
highlights that dependent types can express properties generically, which is beneficial
in realizing feature-oriented SPLs.
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6 Conclusion

We have developed FeatureAgda, a dependable design of Feature-Oriented SPLs.
Dependent types proved to be a powerful tool. They were essential, since the type of
machineInputHandler depends on the View. Dependent types allowed to call different
features of machines dynamically, allowing for run-time feature binding. This was
facilitated by the use of monadic state machines and feature machines.

Our approach was implemented as a library in the Agda programming language. It
should be noted however, that also other languages with dependent types support (e.g.,
Idris [8,18] or Coq [7,12]) could be used in a very similar fashion for the implementation.

Future work. Although proving claims about our experimental system implementation
was not overly complicated, the verification step in Agda is still not a fully automated
process. Increasing the degree of automation in this respect is thus a relevant future
work task. Some applications such as our running example of NOAC prescriptions can
be easily shown to be decidable and amenable to automatic verification. Our prototype
implementation in the NOAC prescription context shows how properties should be
formulated in Agda to allow for automatic type checking. We plan to further generalise
and extend this to support verification of decidable processes in other domains as well.

Our ongoing work also includes the support for a larger subset of BPMN spec-
ification as a way of importing existing workflows into Agda and proving properties
about them, thus extending our initial set of evaluation examples. This would in turn
require support for richer functionality such as feature interactions, concurrency, roles
and access right management.
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