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Abstract 26 

Speciation mechanisms in marine organisms have attracted great interest because of the 27 

apparent lack of substantial barriers to genetic exchange in marine ecosystems. Marine 28 

mussels of the Mytilus edulis species complex provide a good model to study 29 

mechanisms underlying species formation. They hybridise extensively at many 30 

localities and both pre- and postzygotic isolating mechanisms may be operating. 31 

Mussels have external fertilisation and sperm cells should show specific adaptations for 32 

survival and successful fertilisation. Sperm thus represent key targets in investigations 33 

of the molecular mechanisms underlying reproductive isolation. We undertook a deep 34 

transcriptome sequencing (RNA-seq) of mature male gonads and a 2DE/MS-based 35 

proteome analysis of sperm from Mytilus edulis and M. galloprovincialis raised in a 36 

common environment. We provide evidence of extensive expression differences 37 

between the two mussel species, and general agreement between the transcriptomic and 38 

proteomic results in the direction of expression differences between species. Differential 39 

expression is marked for mitochondrial genes and for those involved in 40 

spermatogenesis, sperm motility, sperm-egg interactions, the acrosome reaction, sperm 41 

capacitation, ATP reserves and ROS production. Proteins and their corresponding genes 42 

might thus be good targets in further genomic analysis of reproductive barriers between 43 

these closely related species. 44 

 45 

Keywords: Sperm, gonad, external fertilisation, marine invertebrates, reproductive 46 

isolation, speciation, proteomics, transcriptomics  47 
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Highlights 48 

o Mytilus spp. are valuable in reproductive isolation and speciation studies.  49 

o Gametes are key cell targets in investigations of speciation mechanisms.  50 

o Mytilus spp. show proteome and transcriptome differences in male gonads and 51 

sperm. 52 

o Identified proteins are involved in sperm motility and sperm-egg interactions. 53 

o Joint proteomic and RNA-seq analysis provide candidate proteins for evolution 54 

studies. 55 

 56 

 57 

 58 

Significance 59 

Model systems for the study of fertilization include marine invertebrates with external 60 

fertilisation, such as abalones, sea urchins and mussels, because of the ease with which 61 

large quantities of gametes released into seawater can be collected after induced 62 

spawning. Unlike abalones and sea urchins, hybridisation has been reported between 63 

mussels of different Mytilus spp., which thus makes them very appealing for the study 64 

of reproductive isolation at both pre- and post-zygotic levels. There is a lack of 65 

empirical proteomic studies on sperm samples comparing different Mytilus species, 66 

which could help to advance this study. A comparative analysis of sperm proteomes 67 

across different taxa may provide important insights into the fundamental molecular 68 

processes and mechanisms involved in reproductive isolation. It might also contribute to 69 

a better understanding of sperm function and of the adaptive evolution of sperm proteins 70 

in different taxa. There is now growing evidence from genomics studies that multiple 71 

protein complexes and many individual proteins might have important functions in 72 

sperm biology and the fertilisation process. From an applied perspective, the 73 

identification of sperm-specific proteins could also contribute to the improved 74 

understanding of fertility problems and as targets for fertility control. 75 

76 
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1. Introduction 77 

The study of the mechanisms that lead to the formation of new species is of special 78 

interest in marine ecosystems due to the lack of obvious barriers to gene flow, and is 79 

especially relevant in organisms with a prolonged period of larval dispersion [1]. Many 80 

marine species release gametes into seawater, so fertilization occurs externally. Because 81 

of this, research on speciation in marine systems has focused on the evolution of gamete 82 

recognition systems because of their potential as prezygotic reproductive isolation 83 

mechanisms [2-4]. The role of postzygotic mechanisms has been less studied and is 84 

controversial [5] despite their potential relevance to maintain the integrity of species [6]. 85 

It seems obvious that gametes are key cell targets in investigations of the molecular 86 

mechanisms underlying reproductive isolation. Molecular studies on gametes are 87 

however quite scarce and largely restricted to a few model organisms. The molecular 88 

basis of fertilisation including the sperm-egg recognition system is still a poorly 89 

understood, yet basic, biological process [7-8]. In marine invertebrates such studies 90 

have focused on sea urchins, starfish, clams, oysters, abalones, sea snails and worms [8-91 

9]. The use of a greater diversity of species has recently been advocated as a good way 92 

to shed light on diverse questions that remain open in reproductive biology [10], 93 

including the molecular basis of species-specificity gamete interactions during 94 

fertilisation.  95 

Sperm are highly differentiated cells with marked genetic, cellular and functional 96 

differences from other cell types, reflecting important roles in fertilization, embryonic 97 

development, and heredity [11]. The sperm cell has also been put forward as an ideal 98 

candidate for proteomic analyses [12], mainly because it is thought to be 99 

transcriptionally inert (but see [13]). So far only a few proteomics studies have focussed 100 

on sperm cells, mostly in widely studied model organisms (see [4, 14]). The ascidian 101 

Ciona intestinales [15], the red abalone Haliotis rufescens [16], the Pacific oyster 102 

Crassostrea gigas [17], the king scallop Pecten maximus [18] and the marine mussels 103 

Mytilus edulis [19-20] and M. galloprovincialis [21], are the only marine organisms, all 104 

of them external fertilisers, currently in the sperm cell proteomic literature. Furthermore 105 

to the best of our knowledge, there are no comparative quantitative proteomic studies of 106 

sperm of closely related species, with the exception of an analysis of different ungulate 107 

and rodent species [14, 22]. A comparative research strategy involving proteomics 108 
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should contribute towards elucidating the molecular basis underlying reproductive 109 

isolation mechanisms and the evolutionary forces involved, as well as to obtaining a 110 

better understanding of basic functional aspects of sperm biology at the molecular level. 111 

Marine mussels from the Mytilus edulis complex are represented by three closely related 112 

species (Mytilus edulis, M. galloprovincialis and M. trossulus) that are able to hybridise 113 

at some rocky shore areas where their distributions overlap [23]. Hence, mussels 114 

represent a good model to address evolutionary hypotheses and study mechanisms 115 

underlying the formation of new species. On European coasts, M. edulis has a more 116 

northerly and M. galloprovincialis a more southerly distribution, while M. trossulus is 117 

mainly restricted to the Baltic Sea area. There are many localities where hybridisation 118 

and variable levels of genome introgression occur between the species. Research on 119 

Mytilus spp. has also attracted attention because of the important mussel aquaculture 120 

industry. Marine mussels are external fertilisers with a prolonged planktonic larval stage 121 

facilitating dispersal over great distances [24]. In order to preserve their genome 122 

integrity, despite extensive hybridisation, different reproductive mechanisms are likely 123 

to be operating both at the pre- and postzygotic level, though their relative contribution 124 

and underlying molecular mechanisms are not yet well understood. Cross-species 125 

fertilisation in Mytilus might be prevented to some degree by molecular 126 

incompatibilities resulting from the rapid evolution of reproductive proteins. Evidence 127 

for positive selection on M7 and M3 sperm lysin protein was provided for sympatric and 128 

allopatric populations of Mytilus spp. [25-28]. However prezygotic barriers might not be 129 

strong enough to prevent introgression due to extensive hybrid zones and wide variation 130 

in the genomic introgression rates observed in natural populations [29]. Weaknesses of 131 

prezygotic barriers are also suggested by contrasting results from interspecific crosses 132 

under laboratory conditions between Mytilus spp. [30-36].  133 

The arrival of high-throughput genomics and proteomics techniques is allowing the 134 

expansion of classical evolutionary studies over large protein datasets [37]. Despite this 135 

advance, less attention is still paid in evolutionary ecology studies to the proteome as 136 

compared to the transcriptome or genome, even though the proteome is closer to the 137 

molecular phenotype, and thus a more direct target for natural selection [38-40]. The 138 

choice of reproductive tissues or gametes as the main focus of research helps to bridge 139 

the gap between reproductive phenotypes and underlying molecular mechanisms [37, 140 
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41]. A 2-DE based proteomic study using a somatic tissue, the foot, from two sympatric 141 

Mytilus species (M. edulis and M. galloprovincialis) and their hybrids showed 142 

differences in the protein expression patterns of hybrids when compared with the two 143 

parental species, providing evidence compatible with Dobzhansky-Muller 144 

incompatibilities (DMI) between both parental genomes in hybrids [42]. Thus 145 

postzygotic isolation factors may also have played a role in limiting the degree of 146 

introgression among genomes of Mytilus spp. New studies using high throughput 147 

genomics and proteomics on gametes should provide a significantly better understanding 148 

of the molecular mechanisms underlying reproductive isolation and evolution of Mytilus 149 

spp.  150 

A good strategy when working with less well studied organisms to significantly boost 151 

the number and quality of protein identifications obtained through mass spectrometry 152 

analysis is to generate a customised protein database, for example through the 153 

translation of tissue and species-specific transcriptome datasets available in public 154 

databases or obtained from in-house experiments [37]. An additional resource for 155 

mussels is a recently published M. galloprovincialis genome [43]. However the 156 

availability of protein databases derived from transcriptomes provides a useful and 157 

complementary tool because of known limitations in the prediction and annotation of 158 

genes and posttranscriptional variants [44]. Moreover the combined use of 159 

transcriptomic and proteomic data specifically in non-model organisms has been 160 

advocated as one of the most useful proteogenomic approaches [45-46], because of its 161 

high and proven potential for synergy between the two approaches.  162 

In this study we undertook a deep transcriptome sequencing (RNA-seq) of mature male 163 

gonads obtained from Mytilus edulis and M. galloprovincialis individuals acclimatised 164 

for several weeks to common laboratory conditions after collection from their native 165 

localities. The results from this study contribute to, 1) providing a tissue Mytilus-166 

specific protein database to enhance protein identifications in follow-up proteomic 167 

analyses, and 2) providing a preliminary list of candidate gene products with potential 168 

involvement in sperm biology, fertilisation and reproductive isolation mechanisms in 169 

the two Mytilus species. A second complementary analysis based on a 2-DE+MS/MS 170 

proteomic approach, with the use of different customised protein databases, including 171 

one derived from our transcriptome data, to enhance protein identification, was carried 172 
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out directly on sperm samples. This was to assess whether sperm samples from the same 173 

two Mytilus species and populations, that were acclimatised to common laboratory 174 

conditions for several months, presented proteomic differences which would be a 175 

consequence of underlying genetic differences between the populations and species. The 176 

level of concordance of differential expression results between transcriptome and 177 

proteome data is evaluated, while the functional consequence of the observed variation 178 

is discussed from an evolutionary perspective in relation to sperm biology, and the 179 

potential role of the variation in fertilisation and reproductive isolation.  180 

 181 

2. Materials and Methods 182 

Extended versions of Material and Methods for RNA-seq and proteomic analysis are 183 

provided in Ref. [47] and File S1 respectively. 184 

2.1. Transcriptome (RNA-seq) analysis of mature male gonad tissues from two 185 

Mytilus spp. 186 

2.1.1. Sampling and histological analysis 187 

Mussels from Mytilus edulis and Mytilus galloprovincialis species were collected from 188 

rocky shores in Swansea (South Wales, UK) and Ria de Vigo (North-West Spain) 189 

respectively during the end of January of 2012, transported to aquarium facilities in the 190 

marine station at the University of Vigo (ECIMAT), and kept there in seawater under 191 

the same conditions for at least 2 months. This design ensured that all analysed 192 

individuals shared the same environmental conditions, and that gene expression 193 

differences between species were not therefore the results of differences in the 194 

immediate environment [48]. After 2 months, mussels from each species were processed 195 

individually. From each mussel, one piece of gonad tissue was immediately snap frozen 196 

and preserved in liquid nitrogen for further RNA-seq analysis, while a second piece of 197 

the same tissue was used for a histological test to assess the sex and reproductive stage 198 

of the mussel. For this purpose gonad tissues were fixed in Davidson´s solution and 199 

embedded in paraffin. Paraffin blocks were sectioned at 5µm with a microtome. Tissue 200 

sections were deparaffinised, stained with Harris´ hematoxylin and eosin, and examined 201 

by light microscopy for a histological study. Finally, 6 individual samples from each 202 
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Mytilus species corresponding to reproductively mature male individuals were chosen 203 

for RNA extraction (Figure 1). 204 

2.1.2. RNA extraction, mRNA library and Illumina paired-end sequencing 205 

RNA extraction was carried out using a protocol based on the Qiagen RNeasy® Mini kit 206 

(Qiagen, Valencia, CA, USA) with tissue homogenization in QIAshredder columns 207 

(Qiagen). The quantification of RNA samples was carried out using a NanoDrop 1000 208 

Spectrophotometer (Thermo scientific, DE, USA), and the RNA quality was assessed in 209 

an Agilent 2100 bioanalyzer (Agilent Technologies, CA, USA). Total RNA extracts 210 

from these selected samples were used to make two pools of 6 individuals each, one 211 

pool for each of the two Mytilus species. 700 ng of RNA per individual sample was 212 

used, so each pool contained 4.2 µg of total RNA. mRNA libraries were generated using 213 

the Illumina Truseq Small RNA Preparation kit (Illumina, CA, USA) according to 214 

Illumina's TruSeq Small RNA Sample Preparation Guide v2 (low sample protocol). 215 

Agarose gel-based selection was carried out to obtain libraries with fragments close to 216 

500 bp in length, and their quality was assessed through Bioanalyzer profiles using a 217 

high sensitivity DNA chip. Finally, libraries were quantified, by using quantitative PCR 218 

with specific primers complementary to the library adapters and KAPA SYBR FAST 219 

Universal qPCR Kit (Kapa Biosystems, MA, USA), and diluted to 12 pM before 220 

sequencing. Each library, corresponding to each of the two pools, was analysed in a full 221 

line of the flow cell from an Illumina HiScanSQ instrument (Illumina) and using TruSeq 222 

SBS v3 chemistry (Illumina) to generate 2 × 100 bases long paired-end reads. After 223 

sequencing, data were acquired and analysed by using the Genome Analyzer 224 

Sequencing Control Software (SCS 2.6) and Real Time Analyser (RTA 1.6) software 225 

from Illumina. A total of 124,102,082 and 111,865,458 raw reads were obtained from 226 

the Mytilus edulis and Mytilus galloprovincialis pooled samples respectively. Raw data 227 

were deposited into SRA-NCBI database (BioProject ID: PRJNA451093). The quality 228 

control and filtering of nucleotide sequences was carried out as explained in Ref. [47], 229 

yielding 187,829,361 confident reads that were used for de novo assembly and 230 

generation of a consensus transcriptome.  231 

2.1.3. De novo transcriptome assembly and functional annotation 232 

Due to absence of a complete Mytilus spp. genome sequence (but see a recently 233 

published low-coverage M. galloprovincialis genome in [43]), it was necessary to 234 
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follow a de novo assembly approach in order to build a consensus transcriptome from 235 

mature male gonad from both Mytilus spp. Thus, reads from both Mytilus species were 236 

assembled to generate a set of contigs (herein isotigs). The full set of isotigs should 237 

represent the majority of transcribed genes in this specific tissue in either one or both 238 

Mytilus species. This approach allowed the comparison of the expression levels from 239 

the different isotigs between samples of the two species. De novo transcriptome 240 

assembly was carried out by using Velvet followed by Oases software [49-50]. Oases 241 

uses the preliminary assembly made by Velvet to complete the assembling of reads into 242 

isotigs. Finally, it clusters the isotigs into small groups called loci (synonymous with the 243 

term isogroups, also used in the literature), representing the consensus transcriptome of 244 

the samples under study. These are not genetic loci, but rather a collection of similar 245 

sequences (isotigs), which might include different splice variants, alleles and partial 246 

assemblies of longer transcripts. Hence, it might be said that there are different isotigs 247 

for each locus (consensus transcript). Nevertheless, many loci contain only one isotig, 248 

though some others may contain hundreds of isotigs. The generated consensus 249 

transcriptome was annotated against a non-redundant UniProtKB/SwissProt sequence 250 

database using the program BlastX [51]. For comparative purposes the annotation was 251 

repeated against the published genome of another marine bivalve the Pacific oyster 252 

Crassostrea gigas [52], against all EST sequences available in NCBI from 253 

“Mytilus”[organism], and against two protein databases with sequences retrieved from 254 

NCBI either for "Mytilus"[Organism] or "Mollusca"[Organism] using a threshold e-255 

value of 1x10
-3

. Functional annotation based on Gene Ontology (GO) terms was 256 

performed using the tool Blast2GO [53]. An enrichment analysis of GO terms was 257 

carried out for those transcripts that showed significant differences between samples of 258 

the two Mytilus spp. (see below) using Fisher's exact test with a FDR=5% (see Ref. [47] 259 

for further details on method). This might provide some clues about the differences at 260 

functional level present in mature male gonad tissue of the two Mytilus spp. 261 

 262 

2.1.4. Differential expression analyses 263 

In the present study, differential gene expression analysis from mature male gonad 264 

tissue (pooled samples) between Mytilus edulis and M. galloprovincialis was carried 265 

using the RNA-seq data at isotig level. In circumstances where one biological replicate 266 

is available for each treatment group, methods based on the Negative Binomial (NB) 267 
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distribution [54] can be used to make inferences about differential expression between 268 

the Mytilus species and identify isotigs with higher effect-size. These changes could be 269 

supported in complementary studies, for instance by proteomic analysis with an 270 

appropriate biological replication (see section 2.2). The pooling approach met the 271 

requirements to fulfil one of the main objectives of the current study. This is to generate 272 

a tissue-specific Mytilus protein database from a high coverage reference transcriptome 273 

of both species in order to increase the success of protein identifications in proteomic 274 

analysis on sperm cells (see section 2.2). RSEM [55] combined with EBSeq [56] 275 

software were used to calculate differential expression (p<0.05, FDR=5%). This 276 

pipeline is appropriate in situations where a reference genome is not available, enabling 277 

accurate transcript quantification after transcriptomic de novo assembly [55], while 278 

controlling the false discovery rate (FDR) [57]. Functional annotation and an 279 

enrichment analysis for those differentially expressed transcripts was carried out as 280 

explained in the above section 2.1.3 and Ref. [47]. 281 

2.2. Proteomic analyses of sperm samples from two Mytilus spp. 282 

2.2.1. Sampling of mussels and sperm sample collection 283 

Mussels from Mytilus edulis and Mytilus galloprovincialis species were collected from 284 

rocky shores in Swansea (South Wales, UK) and Ria de Vigo (North-West Spain) 285 

respectively at different times within the spawning period (end of January and April) in 286 

2012, transported and kept under as far as possible the same laboratory conditions for at 287 

least 2 months, in order to minimize the differences between mussel species due to 288 

immediate environmental effects (see [48]). After 2 months, mussels were periodically 289 

induced to spawn following a thermal shock procedure (see detail in File S1). Sperm 290 

samples released into filtered/UV-treated seawater in individual bottles were collected, 291 

filtered twice (300 μm and 41 μm sieves), and centrifuged for 10 min at 24400 g, 10ºC. 292 

After discarding the supernatant, the pellet containing sperm was resuspended in 150 μl 293 

of a 10% glycerol solution, snap frozen in liquid nitrogen, and finally preserved at -80ºC 294 

until further analysis. In parallel, a drop of seawater for each sample containing sperm 295 

cells was examined under the microscope in order to check that the sperm presented 296 

good morphology, high motility and density, otherwise the sample was discarded for 297 

any further analysis. 298 

2.2.2. Protein extraction and 2-DE electrophoresis 299 
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Proteins were extracted from sperm samples of the two Mytilus spp. (10 biological 300 

replicates for each Mytilus spp. Two of them were run twice) in 0.3-0.5 ml of lysis 301 

buffer (7M urea, 2M thiourea, 4% CHAPS, 1% DTT and 1% carrier ampholytes 3-10) 302 

aided by sonication on ice (Branson Digital Sonifier 250, CT, USA). After 303 

centrifugation for 30 min at 21,000g, at 10
o
C, the supernatant was stored at -80ºC until 304 

electrophoresis. Protein concentration was measured with the Bradford method [58]. 305 

Approximately 200 µg of total protein was used for 2-DE. The first dimension 306 

electrophoresis was carried out with immobilized pH gradient strips (pH 5-8/17cm, Bio-307 

Rad) in a horizontal electrophoresis apparatus Protean IF System (BioRad) after strip 308 

equilibration. The second dimension of gel electrophoresis was carried out in 12.5 % 309 

polyacrylamide gels using an EttanDaltsix electrophoresis system (GE Healthcare, 310 

Little Chalfont, UK) at 20ºC, 15W/gel, and ~ 6h. Protein spots were visualized using 311 

SYPRO-Ruby (Molecular Probes, OR, USA), following the protocol described in [48]. 312 

Stained gels were scanned with a Pharox FX Plus molecular imager (BioRad), and 2-313 

DE gel images saved in TIFF file format. The SameSpots vs.4.1 (Nonlinear Dynamics 314 

Ltd, Newcastle upon Tyne, UK) software was used for 2-DE gel image and protein spot 315 

detection analysis (including background subtraction and normalisation) following the 316 

same procedure described in [59]. Normalised protein spot volumes for each 2-DE gel 317 

were saved in csv file format for further statistical analyses. 318 

2.2.3. Statistical analyses of 2-DE gels 319 

Normalised spot volumes were transformed to a logarithmic scale to fit normality and 320 

homoscedasticity assumptions of parametric tests [42]. Spearman's correlation 321 

coefficient and coefficient of variation (CV) calculations were carried out using the 322 

whole protein spot dataset from technical replicates, aiming to assess the experimental 323 

reproducibility. Analysis of variance (one-way ANOVA) using the log normalised 324 

volume of each protein spot (dependent variable) was carried out to test for significant 325 

differences in protein expression patterns in sperms cells of the two Mytilus spp., where 326 

biological replicates were used to provide the error variance in the analysis. Different 327 

corrections to account for the multiple hypothesis testing problem were calculated by 328 

using the SGoF+ software v.3.8 [60], thus following the procedure and rationale 329 

discussed in Ref. [61]. Heat map analysis was used to group protein spots and 330 

individual samples according to their similarity in expression pattern. The heat map and 331 

hierarchical clustering analyses were conducted with the R package gplots [62], using 332 
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Euclidean distance and the complete linkage method. Chi-square contingency tests were 333 

used to compare distributions of ontology terms for the protein spot identification and 334 

RNA-seq results, with significance levels determined by bootstrapping using 335 

FORTRAN programs written for this purpose and which allow for test of significance of 336 

individual rows in contingency tables. 337 

2.2.4. Mass spectrometry analysis and protein identification 338 

The protein spots of interest were visualized on a blue-light DarkReader (Clare 339 

Chemical Research, CO, USA), excised and processed following the protocol described 340 

in Ref. [48]. Resulting peptides were analyzed in an Orbitrap Elite mass spectrometer 341 

coupled to a Proxeon EASY-nLC 1000 UHPLC system (Thermo Fisher, San Jose CA). 342 

Peptide separation was performed on RP columns (EASY-Spray column, 50 cm x 75 343 

µm ID, PepMap C18, 2 µm particles, 100 Å pore size, Thermo Scientific) using a 120 344 

min linear gradient from 5 to 25 % of acetonitrile at a flow rate of 300 nL/min. For 345 

ionization, the spray voltage used was 1.95 kV, the capillary temperature was 260ºC and 346 

the Orbitrap set at 120,000 resolution. A positive mode from 400 to 1,700 amu (1 347 

µscan), 15 data dependent CID MS/MS scans using an isolation window of 2 amu and a 348 

normalized collision energy of 35%, with a dynamic exclusion for 80s after the 349 

fragmentation event, were used for peptide analysis. Singly charged ions were excluded 350 

from MS/MS analysis. MS/MS spectra were searched using PEAKS Studio v.7.0 351 

program (Bioinformatics Solutions Inc., Waterloo, ON, Canada) against three 352 

customized protein databases. Databases were made from the tissue and Mytilus-353 

specific RNA-seq data provided in this study, EST sequences available in NCBI for four 354 

Mytilus species retrieved using “Mytilus”[organism] as search term, and protein 355 

sequences deposited in NCBInr for “Mollusca” [organism] (see further detail in File 356 

S1). Positive protein identifications (FDR <1%) were only accepted when at least two 357 

matched and one unique peptide sequences were obtained. BlastX analyses against a 358 

non-redundant (nr) protein sequence database of all organisms were carried out in order 359 

to ascertain the final protein identities of translated EST and RNA-seq sequences using 360 

default parameters and a threshold e-value of 1x10
-6

. 361 

 362 

3. Results 363 
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3.1. Transcriptome (RNA-seq) analysis of mature male gonad tissues from Mytilus 364 

edulis and M. galloprovincialis 365 

3.1.1. De novo assembly and Blast analyses of the consensus transcriptome from both 366 

Mytilus spp. 367 

RNA-seq analyses of the two pooled samples from mature male gonad tissues, one from 368 

Mytilus edulis and one from M. galloprovincialis, produced more of 200 million 100bp 369 

paired-end reads. After filtering steps, more than 187 million reads remained valid to be 370 

used for de novo assembly, hence the generation of a consensus transcriptome for both 371 

Mytilus spp. (Table 1). De novo assembly produced a total of 97,425 isotigs, grouped in 372 

49,713 loci (see Files S1-S2 in Ref. [47]). Thus a consensus transcriptome for mature 373 

male gonads of the two Mytilus species was obtained. This provides a reference 374 

transcriptome to which individual reads from each pooled sample could be mapped in 375 

differential expression analysis. Moreover it provides a tissue and Mytilus-specific 376 

database that, once translated to six-reading frames, can be used for protein 377 

identification in the proteomic studies carried out on sperm samples (see section 3.2.2). 378 

The mean (median), maximum and N50 length of isotigs is 706 (434), 13,604 and 1,071 379 

nucleotides, respectively (Table 1). The estimated size calculated for the consensus 380 

transcriptome of both Mytilus spp. is 35.1 Mb. The redundancy level found for the 381 

transcriptome assembly was low (1.5% of loci). Results from Blast analysis against 382 

different databases (see Materials and Methods, and Figure 4 in Ref. [47]) are 383 

summarised in Table 1. A total of 13,498 sequences (27.2% of total loci) were 384 

successfully identified against a non-redundant UniProtKB/SwissProt database. This 385 

moderate to low similarity with the database may be due to potential novel genes (or 386 

variants) in these two species, whose full genomes had not been sequenced at the time 387 

of elaborating this paper. This is supported by the following results. When Blast analysis 388 

was carried out against the published and annotated oyster (C. gigas) genome [52], 389 

another marine bivalve mollusc, the number of positive identifications rose to 18,279 390 

transcripts (36.8%). The relatively modest increase in identifications may be due to the 391 

long divergence time between Mytilus and C. gigas even though they belong to the 392 

same phylum and class. This percentage is in line with the identification success 393 

(17,529 transcripts, 35.3%) and database coverage (% of sequences from NCBI 394 

database giving positive match against our transcriptome) obtained from Blast analysis 395 

against protein sequences from Molluscs retrieved from NCBI (Table 1). Despite the 396 
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low number of protein sequences for Mytilus spp. available in protein databases, the 397 

Blast analysis showed, as expected, a level of coverage for a protein sequence database 398 

(Mytilus[organism], NCBInr) of 81.3%. A similar result, a database coverage of 82.7%, 399 

was obtained after Blast analyses against all EST sequences available in NCBI for 400 

Mytilus[organism] that were translated to proteins by using the six-reading frames. 401 

Although the redundancy level of these EST sequences is high, the number of sequences 402 

is high so it is not surprising to see that a positive match/identification was reached for 403 

31,428 (63.2%) of loci from our consensus transcriptome. 404 

3.1.2. Functional annotation of the consensus transcriptome from both Mytilus spp. 405 

From functional analysis using Blast2GO, 12,156 loci were successfully annotated for 406 

GO terms (File S3 in Ref. [47]). The annotation was improved after InterProScan 407 

analysis, raising the number of successful annotations to 13,283 loci (File S4 in Ref. 408 

[47]). This might be interesting because functional information, e.g. a peptide signal 409 

sequence from the differential expressed sequences between Mytilus spp., is still 410 

reported despite the inability to get a confident gene/transcript identity during BlastX 411 

analysis. The distribution of GO-terms for the full annotated transcriptome at different 412 

levels, molecular function (MF), biological process (BP) and cellular component (CC) 413 

categories, is displayed in Figure 2a. It is reassuring to see that “reproduction” term is 414 

represented in BP category. The dominance of “binding”, a general term related to the 415 

non-covalent union or interaction of different molecules, in MF is also interesting 416 

because when checking MF terms for the more specific tree hierarchy level 3 (Figure 5 417 

in Ref. [47]), the highest representation is for protein binding, a term related to 418 

interactions among proteins or protein complexes. This category should include sperm 419 

proteins involved in sperm-egg interaction. Finally it is interesting to highlight in 420 

category CC, in both Figure 2a and Figure 5 in Ref. [47], the high representation for 421 

terms related to membrane proteins that potentially include those that might be involved 422 

in the sperm-egg recognition mechanisms.  423 

3.1.3. Differential expression analysis between Mytilus edulis and M. galloprovincialis. 424 

A total of 27,233 isotigs (28% of the 97,425 occurring in the transcript assembly) are 425 

differentially expressed between pooled samples of the two Mytilus spp. at FDR 5%, of 426 

which 20,997 (21.6%) are significant at FDR 1%. This corresponds to 14,737 loci 427 

(29.6% of 49,713 loci in the transcript assembly) which are significant (in that they 428 
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have at least one significant isotig) at FDR 5% of which 11,335 (22.8%) are significant 429 

at FDR 1%. Files S5 and S6 in Ref. [47] contain expression and statistical values from 430 

this analysis. File S7 in Ref. [47] contains the annotation based on BlastX (see section 431 

above 2.1.3) for all transcripts (loci) where a significant differential expression result 432 

was found. A total of 4338 (4223 at FDR 1%) differentially expressed loci were 433 

successfully annotated after Blast2GO including InterProScan 5.0 [63] analysis. The 434 

most relevant result of the GO term enrichment analysis in relation to this study is an 435 

overrepresentation of the BP term “reproduction” (Figure 2b). These loci form the main 436 

analytical focus in this paper. To pursue this, we chose those functional annotated loci (a 437 

total of 309 of the 4338 in total that are differentially expressed) that code for proteins 438 

specifically related to fertilisation and sperm biology processes. From these, 61 loci 439 

corresponding to 50 different proteins are shortlisted based on the prediction that they 440 

have signal peptide or transmembrane domains by using SignalP 4.1 [64] and TMHMM 441 

2.0 [65] servers, available in CGS Technical University of Denmark, respectively, and 442 

complemented with results from InterProScan 5.0 analysis described above (Table 2). 443 

These types of domains indicate that protein can be either secreted (e.g., present in the 444 

sperm acrosomal content) or located in the sperm plasma membrane respectively, hence 445 

with high potential to play a role in the sperm-egg recognition system or gamete fusion 446 

[16]. We thus wish to specifically focus on these as good candidates for more detailed 447 

consideration and perhaps future study. These candidate loci (Table 2) code for proteins 448 

that are mainly involved in different steps of spermatogenesis (Cdyl2, Ggnbp2, Nphp1, 449 

Rarb, Irs, Iap2, Tmbim6, eif4g2, CtsB, CtsL, CtsL2, Prdm9, Suv39h2), sperm motility 450 

(Dnal1, Ropn1, Ift172, Slc26, Slc6a5, Slc9c1), binding of sperm to the egg vitelline coat 451 

(Cct2, Cct3, Cct4, Cct5, Cct6a, Cct7, Cct8, Psma2, Ubc8, Pc1, Hya, Spag1, Thbs1, Zan, 452 

vitelline coat lysins M3 and M6), acrosome reaction and sperm capacitation (Cdc42, 453 

Spa17, CtsB). For each of the above candidate genes (loci), in some cases, isotigs 454 

within a locus varied in the nature and extent of differential expression between the two 455 

Mytilus species, see final two columns in Table 2. The expression differences could 456 

have resulted from simple allele differences between the mussels making up the pools, 457 

or more complex alternative splicing events producing different protein isoforms in the 458 

two species. It also might be the result of differential regulation of expression of the 459 

same protein isoform in the mature male gonad of the two different Mytilus species. It is 460 

important to note that allele differences can have two main different effects at the 461 
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molecular phenotype level, either changing the mRNA/protein sequence or acting as 462 

expression modifiers. The latter effect can be associated with changes in non-coding 463 

usually cis-regulatory regions, though getting direct evidence for this is rather difficult 464 

[66]. 465 

3.2. Proteomic analysis of sperm cells from Mytilus edulis and M. galloprovincialis  466 

3.2.1. Two-dimensional electrophoresis (2DE) and differential expression analyses 467 

After applying the quality filter based on comparisons made for each 2DE gel against a 468 

pre-defined “gold standard 2D gel”, a tool implemented in SameSpots software, two out 469 

of ten 2DE gels of sperm samples analysed from the Swansea population (M. edulis) 470 

were removed from further analysis, while all 2DE gel samples from Vigo population 471 

(M. galloprovincialis) successfully passed this pre-defined filter (File S2). The analysis 472 

of the 2DE gel images produced a final dataset of 727 protein spots (File S3). Results 473 

from the reproducibility experiment, where two sperm samples one from each species 474 

were analysed twice, permitted the comparison of technical and biological variation. For 475 

each of the 727 spots the CV of spot volume was calculated over 10 biological 476 

replicates for M. galloprovincialis and over 8 biological replicates for M. edulis. The 477 

technical variation was measured for each species from the sample of two technical 478 

replicates for each species. The spot-specific CV values averaged over both spots and 479 

species are 41.2 ± 0.29 (SE) and 19.0 ± 0.34 for biological and technical variation 480 

respectively. Because of the small number of technical replicates, nonparametric tests 481 

were further used to gauge the significance of this difference. Thus of the 727 spots, 638 482 

and 611 had higher CV for biological than technical replication in M. galloprovincialis 483 

and M. edulis respectively. χ2 tests against a 1:1 expectation were made where the null 484 

hypothesis is that higher CV is equally likely for biological and technical replicates. The 485 

expected frequencies in each category are thus 363.5:363.5. The χ2 value is highly 486 

significant in each species, even a ratio of 408:319 would be significant at p<0.001. 487 

Even if spot volume values are not independent for some pairs or groups of spots, this 488 

test is highly suggestive of significantly greater CV for biological than technical 489 

replicates. In a further test the Spearman correlation was computed over spots between 490 

technical replicates within each species. The values are 0.953 and 0.927 for M. 491 

galloprovincialis and M. edulis respectively. The corresponding correlation values 492 

between biological replicates vary between 0.767 and 0.895 for M. galloprovincialis 493 
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and 0.780 and 0.896 for M. edulis. Both tests confirm that spot volumes are much more 494 

different between biological than technical replicates providing clear evidence of 495 

biological signal within each species. 496 

One-way ANOVA (“Species”; fixed factor) for each spot resulted in 17.6% of the 497 

protein spots showing significant differences (a priori p<0.05) in their expression levels 498 

between mussel populations from the two Mytilus species. After applying several 499 

correction methods to control for the type I error using a procedure we have advocated 500 

previously [61] (see File S3), most of these spots remained significant, especially when 501 

more powerful correction methods were used (e.g., 125 and 123 spots after applying the 502 

SGoF+ and SFisher correction respectively). Reassuringly, the q-values indicate a low 503 

expected false positive rate for the 128 significant spots (q=0.208), while fixing a q-504 

value at 5% level provides 45 significant spots (Figure 3 and File S3). A heat map 505 

including the expression data for the 45 significant spots (q<0.05) shows samples for 506 

each population in one of two different clusters without any exceptional individuals 507 

(Figure 4). The same pattern is observed when the 128 a priori significant spots 508 

(p<0.05) are used (File S4). A Volcano plot (Figure 5) shows important size-effects in 509 

either Mytilus spp. directions. For example, there are significant differences (p<0.05) in 510 

expression associated with higher than 1.5 and 2.0 fold differences in 57 and 26 spots 511 

respectively comparing M. galloprovincialis with M. edulis, with higher expression in 512 

M. galloprovincialis, while 32 and 14 spots follow the same pattern but with opposite 513 

fold change direction with higher expression in M. edulis.  514 

3.2.2. Protein identification by mass spectrometry (MS) 515 

From a total of 45 candidate protein spots (q<0.05; see Figure 3), all except one were 516 

successfully identified after the analysis of mass spectrometry data against different 517 

customised databases used in this study (Table 3 and File S5). Spots 1101 and 1508 518 

were annotated against protein sequences generated from our RNA-seq dataset, though 519 

blast analysis of these RNA sequences against the NCBI protein database did not 520 

provide any significant match. It is important to note that in three analysed spots two 521 

different proteins were identified with very high confidence, PSMs and scores. These 522 

are spot 2164 (Uqcrc2 and Tekt1), spot 705 (Atp5a and Dld) and spot 988 (Acadm and 523 

Psmc6). An explanation for this result is that the “protein-pairs” identified for these 524 
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spots present similar MW and pI, hence 2-DE analysis was not able to resolve them and 525 

they were sampled together when the spots were excised. 526 

There are several spots showing differences in MW and pI (Figure 3) that were 527 

identified as the same protein (see Table 3). One possible explanation for this is that 528 

these originate by different post-transcriptional or post-translational modifications 529 

(PTMs). The correct interpretation of these candidate “multi-spot” proteins is important 530 

from a functional viewpoint to prevent misleading conclusions (see Box 2 in [38]). For 531 

example, in protein isoforms of Aco2 (spots 1205 and 1241) and Idh3g (spots 1085 and 532 

1087) a concordant pattern of up-regulation in M. edulis was observed, whereas protein 533 

isoforms for Uqcrc2 (spots 847, 2164a and 2151), Efhc2 (spots 1119, 1134 and 191), 534 

es1 (spots 1608, 2039 and 1602), and Glud (spots 589 and 2062) showed a discordant 535 

pattern (see Table 3, Figures 3 and 4). Phosphorylation is one of the well-known PTMs 536 

that usually implies modification in the pI of phosphorylated protein but little MW 537 

change [67]. An advantage of using 2-DE for proteome separation compared to gel-free 538 

(shotgun) proteomic approaches is that it provides the possibility of assessing the effects 539 

of differential post-translational modifications and different isoform expression between 540 

samples [68-70]. The observation of spots resolved in close proximity in the 2-DE gel 541 

such as Idh3g (spots 1085 and 1087), Uqcrc (spots 847 and 2164), Glud (spots 589 and 542 

2062), and Tekt2 (spots 814 and 776) is also compatible with differential 543 

phosphorylation events in the sperm of the two Mytilus spp., and could be verified by 544 

further phosphoproteomic analysis [71]. 545 

The list of protein identifications from excised spots contained many proteins 546 

potentially involved in sperm function. There are proteins involved in cell energy 547 

production, hence potentially affecting sperm motility, such as different members of the 548 

electron transport chain (ETC) protein complex (Nadufa10, Uqcrc2, Atp5a) or in close 549 

relation to ETC (Etfb), while Ppa1, Idh3g, Idh3a, Eno and Ak are other identified 550 

enzymes that also contribute to maintain the energetic cellular resources. An interesting 551 

observation is that about half of identified proteins are located in mitochondria (Table 552 

3), so playing a role in cellular energy homeostasis either through ETC or different 553 

metabolic pathways. Proteins that contribute to flagellum structure could play a role in 554 

sperm motility, like Tekt1, Tekt2, Tekt4, and Cnn1. There are also proteins involved in 555 

sperm capacitation, for example Aco2, Dld, and Npr1. The identifications include also 556 
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different catalytic and regulatory subunits of the proteasome (Psmb2, Psma4, Psmb6, 557 

Psmc6, Psmd11, and Psme3). There is a group of identified proteins with a less obvious 558 

sperm-specific function role (Acadm, Pfd0110w, Ivd, Efhc2, Glud, Hsd17b10, Prdx5, 559 

Sod2, Plc, and an es1 protein).  560 

3.3. Proteomic and transcriptomic differential expression results: in good 561 

agreement? 562 

Although gene expression studies based on transcriptomic analysis have relied on 563 

mRNA abundance as a good proxy for corresponding protein abundance, results from a 564 

number of studies have questioned the validity of this assumption [72]. Substantial 565 

posttranscriptional and posttranslational modifications are expected and this can also 566 

affect the correlation between protein and transcript levels for many but not all gene 567 

products [73]. In this study we have tested the general level of agreement in the 568 

direction of the differential expression between proteomics (identified protein spots in 569 

Table 3) and transcriptomics data (see Files S5-S6 in Ref. [47]). The data are 570 

summarised in File S6 where for both protein and mRNA-seq data E and G are used as 571 

abbreviations for M. edulis and M. galloprovincialis. Worksheet Table S6 of this file 572 

lists the protein spots which show differential expression between the two species, and 573 

for which of the two species the expression is higher. Then in addition for each spot the 574 

number of mRNA isotigs showing differential expression (E>G and G>E) are given in 575 

separate columns.  576 

For those protein spots showing higher M. edulis protein expression the total number of 577 

isotigs over all spots with E>G and G>E are 14 and 26 respectively: with higher M. 578 

galloprovincialis expression the numbers are 8 and 52. A χ2 heterogeneity test reveals 579 

that the overall preponderance of isotigs with G>E is significant (pooled χ2 = 31.360 580 

df=1 p=0.000) and that the ratios 14:26 and 8:52 are different (heterogeneity χ2= 4.507 581 

df=1 p=0.034) (File S6, worksheet Test). Thus spots which show G>E have a tendency 582 

towards an excess of isotigs also showing G>E. The data in Table S6 has also been used 583 

to directly correlate the fold change values for the proteomics data and for the RNA-seq. 584 

The data and plot is given in File S6 worksheet 2Dplot. There is a positive correlation 585 

which though weak (Spearman’s Rho = 0.126, p=0.210) is nevertheless consistent with 586 

the above χ2 analysis in showing some general correspondence between the two types 587 

of data. Expectation of a positive correlation would depend on assumption of 588 
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generalised up or down regulation for the protein in question. However in general there 589 

is not good correspondence between proteomics and transcriptomics data with cellular 590 

concentrations of proteins not correlating highly with the abundance of their RNAs [72-591 

73]. This may be related to a number of factors including variation in protein turnover 592 

rate, variation in the extent and nature of posttrancriptional and posttranslational 593 

modification and measurement error. 594 

Given that many isotigs in the overall dataset do not show differential expression, it is 595 

of interest to know whether a protein spot with E>G (or G>E) has at least one isotig 596 

with differential expression in the same direction. The number of spots showing such 597 

agreement can be contrasted with the number of spots for which all isotigs show 598 

differential expression but in the opposite direction to that shown by the protein spot. 599 

The numbers in these two categories are 28:4 over all spots (χ2 = 18.000 df=1 p<0.001, 600 

for test against 1:1 expectation, see File S6 worksheet Table S6 for further details) and 601 

20:4 when counting for protein identities, that is spots for the same protein are counted 602 

once only (χ2= 10.667 df=1 p=0.001). These significant results provide additional 603 

evidence for concordance between the two types of expression data. In addition to spots 604 

with isotigs showing differential expression, 15 protein spots (32% of the total number 605 

of spots) do not have any isotigs showing differential expression (File S6 worksheet 606 

Table S6, total spots with “0” in column K). It is important to highlight that four of 607 

these protein spots were identified as different proteasome subunits with higher 608 

expression in M. galloprovincialis sperm (File S6 worksheet Table S6, column D).  609 

For the two categories of proteins with expression E>G and G>E, the distribution of 610 

number of spots for different ontology terms was determined. This is carried out for two 611 

ontology classifications, Cellular Location and Molecular Function, which are derived 612 

from the classifications shown in Figure 2. The resulting distributions with further 613 

analysis are given in File S6 worksheet Test. The ontology terms having greatest 614 

frequency overall are Mitochondrion (43%) and Cytoplasm (20%) for Cellular 615 

Location, and Motility (29%), Capacitation (12%) and Acrosome reaction (12%) for 616 

Molecular Function. The results of χ2 contingency tests in which the ontology 617 

distributions are compared between E>G and G>E indicate a significant effect overall 618 

for both Cellular Location (p=0.002) and Molecular Function (p=0.027). Individual 619 

ontology terms which contribute most to the overall effect are Mitochondrion (p=0.000, 620 

higher number of spots for E>G), Cytoplasm (p=0.020, higher for G>E), Proteolysis 621 
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(p=0.083, higher for G>E), and Tricarboxylic acid cycle (p=0.005, higher for E>G). So 622 

while there is a correspondence overall for Cellular Location between the highest 623 

frequency terms and those differing in frequency most markedly between species, this is 624 

not observed for Molecular Function.  625 

3.4. Customised tissue and species-specific protein databases enhance protein 626 

identifications 627 

While identifying peptides from MS data together with the corresponding proteins in 628 

model organisms is quite straightforward, the situation becomes more challenging when 629 

working with non-model organisms because the availability of genomic and protein 630 

sequences in the latter is scarce. However there are different alternatives to overcome 631 

this limitation (see [37, 45-46]). For example, the generation of customised protein 632 

databases obtained from tissue and species-specific transcriptome datasets (RNA-seq) 633 

or from expression sequence tags (ESTs) deposited and available through NCBI. Also 634 

de novo interpretation of MS/MS spectra can provide complementary results when 635 

combined with the use of customised protein databases, specifically in providing 636 

information about unknown mutations and PTMs, this latter being also valid for model 637 

organisms. 638 

In order to assess whether the use of customised protein sequence databases has 639 

improved the quality and quantity of protein identifications in the current study on two 640 

Mytilus spp., we compared the number of peptide spectrum matches (PSMs), total (TP) 641 

and unique peptides (UP) obtained in the identification of 44 protein spots from sperm 642 

samples (see section 3.2.2) using 3 different customised databases (see section 2.2.4). 643 

Graph displayed in Figure 6, made from data available in File S5, shows that using a 644 

protein database made from our consensus tissue and species-specific transcriptome 645 

data provide on average across 44 spots better results in terms of a significantly higher 646 

number of PSMs (Kruskal-Wallis test; H=25.27, df=2, p<0.0001), TP (H=24.29, df=2, 647 

p<0.0001) and UP (H=34.48, df=2, p<0.0001) when compared with the other two 648 

protein databases. When these results are inspected in a pair-wise comparison basis, 649 

after applying Dunn post-hoc test for multiple comparisons, it is worth noting that the 650 

customised Mytilus-ESTs-based protein database also presented good results for PSMs 651 

and TP, but with a significantly lower number of UP, when compared with the RNA-652 
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seq-based protein database (see Figure 6). It is also clear that the results of these two 653 

customised Mytilus specific protein databases are significantly better than those 654 

obtained after using a NCBI[Mollusca]-based protein database, except the pairwise 655 

comparison between Mytilus-ESTs-based and NCBI[Mollusca]-based protein databases 656 

for UP (see Figure 6). The lower number for UP can be explained by high redundancy 657 

found in EST databases. The confirmation that EST sequences from Mytilus spp. are 658 

generally shorter than protein sequences derived from our RNA-seq project can be 659 

easily reached from inspection of matched protein sequences from each database used in 660 

the protein spot identifications (see File S5). File S5 also provides useful information 661 

about potential PTMs and mutations, ascertained with the PEAKS program through de 662 

novo interpretation of MS/MS spectra, present in the sequences of proteins to which the 663 

different spots were identified. 664 

 665 

4. Discussion 666 

4.1 Transcriptomic differences in mature male gonad between two Mytilus spp. 667 

shed light on proteins with potential involvement in reproductive isolation 668 

Results from transcriptomic experiments using next-generation sequencing technology 669 

(RNA-seq) with a focus on different biological questions have been reported for M. 670 

edulis (e.g. [74], in a study of gene regulation during early development) and M. 671 

galloprovincialis (e.g. [75], to compare transcript expression profiles in four different 672 

tissues). However there has not been any attempt to deep sequence the mature male 673 

gonad transcriptome and compare transcriptomic data in these two Mytilus species. The 674 

current RNA-seq analysis provides evidence of high variation in the mature male gonad 675 

transcriptome, with 22.8% of analysed loci differing (at FDR 1%) between M. 676 

galloprovincialis and M. edulis samples. In a high number of instances the differential 677 

expression was detected at isotig level within each consensus transcript (locus), with 678 

contrasting results among different isotigs within loci, both in terms of effect-size and 679 

direction of the expression level between the two Mytilus spp. (see Table 2). The RNA 680 

transcripts showing different expression in Table 2 are both derived from sperm and 681 

have sperm associated GO terms with their protein names. We would thus expect many 682 

of these transcripts to be expressed as proteins for specific functioning in this tissue. 683 

However in general it cannot be assumed that all isotigs showing differential expression 684 



23 

 

are translated into proteins [76], and it may be that a single transcript is dominant in 685 

terms of protein expression [77]. The statistical correspondence in the direction of 686 

expression between species for isotigs and protein spots (χ2 heterogeneity test in File 687 

S6, Table S6) give further evidence that some of the isotigs are translated into protein 688 

even if it is not possible to pinpoint exactly which isotigs are translated and which are 689 

not.  690 

Samples from both species shared a common laboratory environment for at least two 691 

months. This design often referred to as a common garden experiment (e.g. [78]), aims 692 

to demonstrate that observed phenotypic differences are mainly attributable to species-693 

specific (genetic) rather than sampling-site environmental differences, and is becoming 694 

important for studying adaption in genomic studies [79]). Although acclimation to the 695 

same laboratory conditions should help to minimise the effects of local environmental 696 

differences between the original sampling sites, some of these environmental effects 697 

may be retained permanently even after acclimation for several weeks [80]. When the 698 

aim is to compare allopatric population of different species, genetic and local 699 

environmental differences may always be confounded, but the long period of 700 

acclimation used in the current study (at least 2 months) should have maximised 701 

genetically based, as compared with environmentally based, transcriptome differences 702 

between the species. Variation between gonadal development stages in transcript 703 

abundance have been reported in M. galloprovincialis [81]. However in the present 704 

study mussels at the same stage of development, according to histological tests, were 705 

used in the two species. 706 

From the list of genes which show significant expression differences between M. edulis 707 

and M. galloprovincialis at the mRNA level, there are several that produce proteins with 708 

functional roles in sperm biology and fertilization (Table 2). Most of these proteins are 709 

thus good candidates for evolutionary study due to their potential role in reproductive 710 

isolation mechanisms and ultimately in the formation of new species, and are discussed 711 

below.  712 

4.1.1 T-complex protein 1 (TCP-1) and ubiquitin-proteasome system (UPS) might be 713 

involved in intraspecific gamete preference and reproductive isolation in Mytilus spp. 714 
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One of the most important results is the concerted differential expression between the 715 

two Mytilus spp. for seven out of eight subunits of the T-complex protein 1 (TCP-1). A 716 

chaperonin-containing T-complex protein 1 was found in the periacrosomal region of 717 

human and mouse sperm heads with an involvement in mediating sperm-ZP interaction 718 

[82-83]. Evidence was found to support the view that TCP-1 and the ubiquitin-719 

proteasome system (UPS) might by concerted action be involved in gamete interaction 720 

[82-83]. Hence TCP-1 and UPS are good targets for further investigation in relation to 721 

involvement in prezygotic reproductive mechanisms that could be operating between 722 

Mytilus spp. It is possible that differences in the expression level or in the sequence of 723 

TCP-1 and UPS related proteins can lead to a preference for intraspecific rather than 724 

interspecific fertilisations in Mytilus spp. UPS is involved in the process where protein 725 

substrates are labelled with different ubiquitins to be later recognised by the 26S 726 

proteasome complex machinery for protein substrate degradation playing important 727 

roles during sperm capacitation, the acrosome reaction and sperm-egg interactions 728 

(reviewed in [84]). Two candidate differentially expressed transcripts found in our study 729 

(Table 2) relate to the ubiquitin-proteasome system (UPS). These are the ubiquitin-730 

conjugating enzyme (UBC) E2-24 kDa (Ubc8) and the proteasome subunit alpha type-2 731 

(Psma2). Testis-specific isoforms of the first protein were found in the ascidian Ciona 732 

intestinalis and rat spermatozoa and a mutant mouse for this enzyme showed alterations 733 

in sperm as well as a reduced sperm number and motility [84]. Inactivation of an 734 

ubiquitin-conjugating enzyme in Drosophila causes male infertility due to abnormal 735 

levels of spermatogenesis [85]. It was demonstrated in ascidians, sea urchins and 736 

mammals that ubiquitin-conjugating enzymes regulate the penetration of spermatozoa 737 

into the vitelline coat (VC) of the egg and degrade the ubiquitinated sperm receptors on 738 

the VC (zona pellucida-ZP, in mammals) of eggs during fertilisation, contributing to the 739 

avoidance of polyspermy, with some roles also during sperm capacitation and regulation 740 

of acrosomal exocytosis (reviewed in [84, 86]. In relation to the second protein 741 

(Psma2), sperm proteasomes are released extracellularly as part of the acrosomal 742 

content during fertilisation. Together with an intracellular UPS inside the fertilised egg, 743 

it seems that animal fertilisation is also dependant of an extracellular UPS driven by the 744 

acrosomal exocytosis of different enzymes/proteins, and this mechanism seems to be 745 

quite evolutionarily conserved in the animal kingdom with small differences in 746 

ascidians compared with sea urchins and mammals. Its functional importance in 747 
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fertilisation has been empirically confirmed, suggesting that UPS proteins are a good 748 

target for controlling fertilisation, and hence reproduction, in different organisms [84]. 749 

Proteasome subunit alpha was also identified among those proteins with higher 750 

expression in Mytilus edulis sperm [20].  751 

4.1.2 Other candidate sperm-specific gene products linked to acrosome reaction, sperm-752 

egg interaction and rapid evolution 753 

The presence of a beta-n-acetylhexosaminidase (Bre-4) among the candidate proteins is 754 

interesting because glycosidic enzymes were observed in the sperm acrosome content 755 

and found to be necessary for penetration of the ZP during fertilisation in some 756 

mammals, as well as acting as important sperm receptors for the extracellular matrix of 757 

the oocyte in ascidians [87-88]. The sperm surface protein SP17 (Spa17) is of interest 758 

because it might be involved in spermatogenesis, sperm capacitation, the acrosomal 759 

reaction and sperm-egg interactions during fertilisation [89]. Evidence of high Spa17 760 

protein expression was obtained in Mytilus edulis sperm [20], and in the current study 761 

one isoform shows differential expression. Sperm proteins with testis-specific 762 

expression have been found to evolve more rapidly on average than proteins expressed 763 

in testis alone and in non-reproductive tissues. This is probably due to functional 764 

constraints associated with housekeeping tasks of this latter-type of protein (see [90]). 765 

The relative contribution of neutral and naturally selected genetic variation has been a 766 

long debated and investigated issue during the last 50 years in evolutionary biology 767 

[91]. In this context, SP17 was found to evolve rapidly by positive selection in several 768 

mammalian species [92]. Similarly zonadhesin protein (Zan) was found to evolve 769 

rapidly in primate species [93]. It is a large sperm-specific protein localised in the sperm 770 

head within the acrosomal matrix with multiple domains involved in the species-771 

specific recognition of ZP in eggs during fertilisation in mammals (reviewed in [94]). 772 

The acrosome content is quite variable between mammals and marine invertebrates. In 773 

sea urchins and abalones, bindin and lysin sperm acrosomal proteins are rapidly 774 

evolving species-specific proteins that recognise the vitelline coat of the egg 775 

(corresponding to ZP in mammals) during fertilisation, while evolution of zonadhesin is 776 

also driven by positive selection and involved in the same function in mammals, despite 777 

these three proteins being evolutionarily unrelated (reviewed in [2, 94]). The protein 778 

structure of zonadhesin is quite conserved despite high aminoacid divergence across 779 

different species. A precursor form of zonadhesin protein is produced during 780 
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spermatogenesis and quickly processed to produce 3 polypeptides of 300, 105 and 45 781 

kDa respectively in pig spermatozoa [94]. We provide evidence of four different Zan 782 

loci and a total of seven isotigs with differential expression between the Mytilus spp., so 783 

making this gene a target of interest in further studies of reproductive isolation in 784 

Mytilus species. Evidence has been actually reported for positive selection acting on the 785 

M7 lysin gene in some sympatric and allopatric Mytilus populations [25-27, but see 28] 786 

and the M3 lysin gene [95]. M3 and M7, together with the less studied M6 lysin, are 787 

non-orthologous highly abundant acrosomal proteins responsible for dissolving the egg 788 

vitelline envelope during fertilisation [96], so are thought to play an important role in 789 

the gamete recognition process. Interestingly in our study we found evidence of 790 

differential expression for a total of eight different isotigs of M3 and M6 lysins, but no 791 

differential expression of M7 lysin.  792 

4.1.3 Prdm9 and Suv39h2 gene products are promising targets to study postzygotic 793 

reproductive isolation mechanisms and sex differences in Mytilus spp. 794 

Finally two other candidate gene products displayed in Table 2, Prdm9 and Suv39h2, 795 

can be highlighted. When two populations that have evolved allopatrically come into 796 

secondary contact, gamete compatibility may still occur and hybrid individuals 797 

produced as observed for Mytilus spp. However hybrids can be sterile or have reduced 798 

fitness due to epistatic interactions of alleles from the two diverged genomes. This 799 

phenomenon known as Dobzhansky-Muller incompatibility (DMI) can lead to the 800 

formation of new species. Only a very few genes responsible for such low hybrid fitness 801 

have been discovered so far (see [97]). Prdm9, which shows differential expression for 802 

one isotig, is also known as Meisetz, is a histone H3 methyltransferase, and is expressed 803 

in mouse testis and ovaries [98]. This gene activates other essential genes for meiosis by 804 

means of specific-histone methylation. Sterile hybrid male mice had small testes, 805 

spermatogenic arrest and lacked sperm, the same phenotype as observed in null-Prdm9 806 

mutant mice [98]. The cause of sterility seems to be DMI generated by epistatic 807 

interaction between Prdm9 and other genes located on chromosome X (see [97]). In 808 

view of the discoveries in the mouse, we suggest that Prdm9 deserves further attention 809 

in evolutionary studies on Mytilus spp where reproductive isolation is incomplete. On 810 

the other hand, Suv39h2, differentially expressed here in two isotigs, is another histone 811 

H3 methyltransferase, and was found to be specifically expressed in mouse adult testes 812 

but not ovaries [99] and specifically accumulates with chromatin of the sex 813 
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chromosomes silencing their expression during early meiosis. Possibly this protein 814 

could be useful for the development of a sex specific marker in Mytilus. This is 815 

currently lacking in Mytilus spp for which there is currently no evidence of sex 816 

chromosome dimorphism. For example, Suv39h2 as a target protein in 817 

immunofluorescence analysis for detecting differences between males and females.  818 

4.2. Sperm proteome differences between Mytilus edulis and M. galloprovincialis 819 

In line with the RNA-seq results, proteomic analysis on sperm samples from individuals 820 

from M. edulis and M. galloprovincialis provide evidence of high proteome differences 821 

between the species, occurring in 17.6% of protein spots analysed (q=0.208). All 822 

mussels were kept under common laboratory conditions for at least 2 months and thus 823 

had a long period to acclimate prior to the collection of sperm for proteomics analysis. 824 

Following the reasoning given above in the discussion of the transcriptome results, 825 

proteome differences between the species can therefore be attributed entirely or in large 826 

part to genetic differences between the species. A reassuring result is that from a similar 827 

proteomic experiment on sperm samples of individual mussels from a hybrid population 828 

at Croyde (UK) with sympatric M. edulis and M. galloprovincialis, species-specific 829 

proteomic patterns were also observed [100], strengthening the evidence that species-830 

specific proteomic differences between mussels raised under similar conditions are 831 

genetically based. Although differential expression may be associated with the 832 

processes of protein synthesis, post-translational modification, and protein degradation, 833 

all may result in variation in protein abundance and have functional implications [101]. 834 

From the list of 44 protein spots (q=0.05) with differential expression and identified by 835 

MS, there are a number of proteins with key functional roles in sperm biology and 836 

fertilization (Table 3) that make them good targets (hereafter candidates) for potential 837 

involvement in reproductive isolation mechanisms. A feature of the results shown in 838 

Table 3 is that different spots for the same protein may differ in the species in which 839 

they show higher expression. Some proteins given in Table 3 which are of particular 840 

interest are highlighted and discussed below. 841 

4.2.1 Mitochondrial proteins linked to energy production and antioxidant enzymes are 842 

up-regulated in M. edulis 843 

Alterations in ETC-related proteins, and hence in cellular energetic production, have 844 

been linked to lack of sperm motility and, hence fertility, in some mammals [102-103], 845 
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so any observed differences between the two Mytilus species could be the result of their 846 

following different adaptive strategies relating to sperm motility. From the list of 847 

identified proteins showing differential expression (Table 3), NADH dehydrogenase 848 

[ubiquinone] 1 alpha subcomplex subunit 10 (Ndufa10), Cytochrome b-c1 complex 849 

subunit 2 (Uqcrc2), and ATP synthase subunit alpha (Atp5a) are nuclear encoded and 850 

from the different complexes of the respiratory electron transport chain (ETC) in 851 

mitochondria. Remarkably, the list of protein identifications (Table 3) reveals that nearly 852 

half of the identified proteins develop their functions and are located in mitochondria. A 853 

similar result was observed for highly expressed proteins in the sperm of Mytilus edulis 854 

[20]. Proteins from these ETC-associated complexes might be implicated in postzygotic 855 

isolating mechanisms due to coevolution of nuclear and mitochondrial genomes to 856 

ensure appropriate functional interactions between the nuclear and mitochondrial coded 857 

protein subunits of these complexes [104-105]. Marine mussels of Mytilus spp. as well 858 

as other bivalves present an unusual mtDNA inheritance mechanism (termed doubly-859 

uniparental inheritance, DUI) in which distinct mtDNA genomes are passed through the 860 

male and female lines of descent and which is coupled to sex determination in these 861 

species [106-109] with opportunity for selection to act directly on mtDNA coded sperm 862 

proteins. Negative epistatic interactions between nuclear and mitochondrial genomes in 863 

hybrids could contribute to the maintenance of species integrity, consistent with 864 

observations of DUI disruption in crosses between these two Mytilus species [110]. 865 

Other identified differentially expressed mitochondrial proteins relate to energy 866 

metabolism. These include isocitrate dehydrogenase (Idh3a and Idh3g), aconitate 867 

hydratase (Aco2) and dihydrolipoyl dehydrogenase (Dld). Idh3 was identified as having 868 

the highest expression levels in a previous proteomics study of Mytilus edulis sperm 869 

[20]. Low expression levels of Aco2 were reported in human sperm with reduced 870 

motility [111], and higher levels during mice sperm capacitation [112]. Deficiency of 871 

Dld mature protein was associated with low sperm motility in humans [113], while 872 

enzymes of this complex were also related to sperm capacitation and the acrosome 873 

reaction in the hamster and humans [114-115]. The higher expression of such proteins in 874 

might result in higher ATP production and a fitness advantage under certain ecological 875 

and environmental conditions (see section 4.3). However production of ATP through 876 

oxidative phosphorylation (OXPHOS) may produce high reactive oxygen species 877 

(ROS) in sperm leading to mitochondrial mutations [116] and evolution of a trade-off 878 
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between higher OXPHOS and higher activity of antioxidant enzymes to neutralise high 879 

ROS production. Related to this is the observation in the present study that the 880 

differentially expressed antioxidant enzymes peroxiredoxin-5 (PRDX5) and manganese 881 

superoxide dismutase (SOD2) were associated with abnormal sperm and infertility in 882 

several mammals [117-118]. SOD activity may have detrimental effects on human 883 

sperm motility [119], and PRDX5 might play a role in sperm-egg interaction through 884 

the induction of signalling events by means of redox reactions after ZP binding [120].  885 

4.2.2 Up-regulation of rapid energy supply and alternative production pathways in M. 886 

galloprovincialis  887 

It is of interest that different species, for different cellular types, could have evolved 888 

different strategies and molecular pathways for energy production [121] driven by 889 

different ecological or environmental pressures. For example, glutamate dehydrogenase 890 

(Glud) converts glutamate to α-ketoglutarate potentially enhancing the activity of the 891 

TCA cycle in which α-ketoglutarate is an intermediate. Two spots closely located in the 892 

2-DE map, were identified as Glud. These could be isoforms resulting from different 893 

posttranscriptional and posttranslational modifications (e.g. phosphorylation) implying 894 

functional changes [122] in sperm of both Mytilus spp.  895 

ATP production through the glycolytic pathway in the sperm is compartmentalised in 896 

the principal piece of the flagellum, and this ATP source may be important in the sperm 897 

motility process known as hyperactivation [123]. The glycolytic enzyme enolase (Eno) 898 

was also differentially expressed. Disruption of expression of this enzyme sperm causes 899 

sperm structural defects and male infertility in the mouse [124]. In general glycolytic 900 

ATP is produced faster but less efficiently than ATP from aerobic pathways. Thus a 901 

trade-off between speed and amount of ATP production in sperm cells might also be of 902 

functional significance in sperm. 903 

Phosphagen kinases are involved in intracellular energy transport and temporal 904 

buffering of ATP levels, specifically in flagellated cells, and hence probably play a role 905 

in sustained sperm motility [125]. The enzyme also influences sperm tail length and 906 

flagellar bending [126-127] and sperm-specific isoforms have been reported in various 907 

invertebrates [20, 125]. One of these enzymes, arginine kinase (Ak) was differentially 908 

expressed here in two spots. Phosphagen molecules also regulate intracellular inorganic 909 

phosphate levels [128] and play an important role in sperm motility, capacitation, the 910 
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acrosome reaction and sperm-egg fusion [129]. Inorganic pyrophosphate (PPi) is 911 

degraded by pyrophosphatase 1 (Ppa1) for which one differentially expressed spot was 912 

identified. PPi enhances sperm proteasome activity, of key importance for the sperm-913 

egg interaction during fertilization [129]. Interestingly several differentially expressed 914 

spots related to the proteasome complex have been identified in the present study (see 915 

section 4.2.3). 916 

4.2.3 Up-regulation of sperm proteasome activity in M. galloprovincialis: contrasting 917 

transcriptomic and proteomic results 918 

Six protein spots were identified as different structural (alpha), catalytic (beta) and 919 

regulatory subunits of the proteasome complex (Psma4, Psmb2, Psmb6, Psme3, Psmc6 920 

and Psmd11). The important role of the ubiquitin-proteasome system (UPS) during 921 

fertilization, including sperm capacitation, acrosome reaction and sperm-ZP binding, 922 

has been considered in section 4.1. It is notable that all these had higher expression in 923 

M. galloprovincialis (Table 3 and File S6) suggesting that this species could have924 

evolved specific regulatory mechanisms that increase the abundance of these proteins in 925 

sperm cells. Interestingly several proteasome subunit alpha components were also 926 

identified in M. edulis eggs and linked to the molecular mechanism underlying doubly-927 

uniparental inheritance (DUI, see section 4.2.1) of mtDNA in Mytilus spp. [59, 130]. 928 

Sperm mitochondria are labelled through ubiquitination during spermatogenesis [131] 929 

and thus marked for elimination by the proteasome complex in the fertilised oocyte. 930 

Three of the differentially expressed transcripts (Table 2) are two prohibitins (Phb and 931 

Phb2) and sequestosome-1 (Sqstm1). Prohibitins play a role in mtDNA inheritance 932 

[132], and are targets for ubiquitination in sperm mitochondria [133] while Sqstm1 has 933 

been linked to sperm mitophagy in mammals [134]. Thus there may be a link between 934 

the observed species-specific expression differences of these proteins in this study and 935 

disruption in DUI reported in inter-specific crosses [110], and of relevance to 936 

Dobzhansky-Muller incompatibilities (DMI) in hybrids between these species.  937 

4.2.4 Higher expression of tektins suggests high motility sperm in M. galloprovincialis 938 

Another interesting functional group of proteins showing differential expression are 939 

tektins. Six spots were identified as three different tektin proteins (Tekt1, Tekt2 and 940 

Tekt4) (Table 3). Of these, five had higher expression in M. galloprovincialis. Tektins 941 

are cytoskeletal proteins of the sperm flagellum and involved in sperm motility and 942 
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flagellar bending. Differences in expression between normal and low motility sperm in 943 

humans were reported for Tekt1 and Tekt2, and Tekt4 was found to be essential for 944 

proper coordinated beating of the flagellum and for fertility [135-139]. Tektin 945 

expression occurs in the sperm acrosomal region perhaps indicating some specific role 946 

during fertilisation (see [135]) and has been implicated in flagellar bending and motility 947 

patterns [135, 140].  948 

4.2.5 Other identified proteins with sperm-specific functional links  949 

Three different spots with differential expression were identified as the protein EF-hand 950 

domain-containing family member C2-like (Efhc2). Sperm proteins with EF-hand 951 

domains play a key role in activation of the oocyte during fertilisation in mammals 952 

[141], and can also be involved in the acrosome reaction in invertebrates [9] and 953 

motility regulation of sperm [142-143]. Three protein spots identified as ES1 also 954 

showed differential expression. There is little functional information on this protein 955 

though it has been related to differential sperm motility in humans [111]. Other proteins 956 

showing differential expression are 3-hydroxyacyl-CoA dehydrogenase type-2 957 

(Hsd17b10), potentially involved in the regulation of steroid hormones in reproduction 958 

and reported in several molluscs [144], and atrial natriuretic peptide receptor (Npr1) 959 

which acts on capacitation, chemotaxis and chemokinesis [145-146] and thus might 960 

potentially play a role in species-specific sperm-egg recognition in Mytilus spp. driven 961 

by chemotaxis signals released from eggs.  962 

4.3. Rapid evolution and sperm function trade-offs may explain species-specific 963 

proteome differences 964 

4.3.1 Selective pressures and adaptation in sperm 965 

In external fertilisers such as mussels, sperm are expected to be under a variety of 966 

selective pressures relating to the different biological strategies for fertilisation and the 967 

ecological and environmental challenges they experience. Mussel settlements are patchy 968 

along rocky shores, and population density may vary considerably on a geographic or 969 

seasonal basis. Even though there may be synchronous spawning of eggs and sperm, the 970 

impact of varying gamete density and the role of sperm limitation is unclear [147-148]. 971 

If sperm density is too low then the probability of successful fertilisation may be low: 972 

on the other hand if sperm density is too high polyspermy may occur also resulting in 973 

incomplete fertilisation [149]. With sexual conflict, competition between sperm to 974 
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achieve successful fertilisation may be accompanied by selection for eggs that block 975 

fertilization to prevent polyspermy. This can lead to rapid co-evolution of proteins in 976 

eggs and sperm in the context of sexual conflict. The rapid evolution of sperm proteins 977 

has been observed in many animal groups from mammals to different marine 978 

invertebrates such as sea urchins, abalones, turban snails, oysters, sea stars and mussels 979 

[9, 150-151]. In a comparison of sperm proteins between M. galloprovincialis and M. 980 

edulis the highest non-synonymous to synonymous substitutions rates were observed for 981 

proteins involved in fertilisation [21]. Sperm limitation should exert strong selection for 982 

adaptations increasing the chance of successful fertilisation in marine organisms with 983 

external fertilisation [152-153]. These include spawning synchrony, high levels of 984 

sperm production, chemotaxis over short distances, and sperm longevity. There is 985 

evidence that sperm energetics, for example higher ATP production may enhance sperm 986 

performance through an increase in swimming speed [154] and increase the chance of 987 

fertilization. But given finite energy resources to allocate to sperm properties and 988 

function, trade-offs between sperm traits are expected. For example trade-offs between 989 

sperm velocity and longevity occur both within and between species [154-155]. 990 

However there are numerous complicating factors such as the ability of sperm to 991 

maintain flagellar beats with low ATP and high inorganic phosphate levels, or the use of 992 

alternative pathways for energy production [121, 156] despite oxidative phosphorylation 993 

and glycolysis in the sperm midpiece being the major source of ATP production [123].  994 

4.3.2 Sperm proteins upregulated in M. edulis and M. galloprovincialis 995 

In the present study many proteins connected with sperm function which are 996 

upregulated in M. edulis or M. galloprovincialis (Table 3) have been identified and their 997 

properties discussed above (see section 4.2). As contrasting scenarios, selective 998 

pressures in the native environments of the two species could be somewhat similar or 999 

quite different. In the former scenario suppose that selection favoured upregulation of 1000 

proteins improving motility to enhance fertilisation success. This could be achieved by 1001 

upregulating different genes of the same protein in the two species. For example 1002 

proteins from different Tektin-2 spots are upregulated in M. edulis and M. 1003 

galloprovincialis (Table 3). This differential effect could be achieved by selection or 1004 

drift increasing the frequency of different locus specific expression modifiers in the two 1005 

species. Alternatively different proteins potentially affecting motility could be 1006 

differentially upregulated in the two species. For example, isocitrate dehydrogenase is 1007 
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upregulated in M. edulis and arginine kinase is upregulated in M. galloprovincialis 1008 

(Table 3). In the latter scenario where selection pressures differ between species, 1009 

proteins for quite different traits may obviously be upregulated in the two species.  1010 

A summary of the proteins of Table 3 matched with sperm functional traits is given in 1011 

File S7. Column I marks the particular 4.2 sub-sections in which proteins were flagged 1012 

as having predominantly higher expression in M. edulis (4.2.1) or M. galloprovincialis 1013 

(4.2.2, 4.2.3, 4.2.4). Column G assigns functional trait terms to the proteins and the 1014 

count and % frequency distributions for these terms are given in Figure 7. These 1015 

distributions give at least an approximate guide to which sperm traits are upregulated in 1016 

the two species. In both species proteins relating to motility are important in this regard. 1017 

After this, proteins relating to ATP reserves and perhaps ROS production are important 1018 

in M. edulis whereas proteins relating to the acrosome reaction, capacitation, and sperm-1019 

egg interaction might be highlighted in M. galloprovincialis. On this basis it is possible 1020 

to hypothesise that motility is important in both species but particularly M. edulis, 1021 

whereas in M. galloprovincialis proteins relating to sperm maturation and the 1022 

fertilization process should be highlighted.  1023 

The potential biological consequences of these sperm traits are elaborated in File S7 in 1024 

column H. A notable feature is that upregulation of many proteins in Table 3 can be 1025 

hypothesised to result in a functional advantage for sperm. In this circumstance red font 1026 

is used in columns G and H. For example in M. edulis, aconitate hydratase has higher 1027 

expression than in M. galloprovincialis and this higher expression could be interpreted 1028 

as a functional benefit in terms of faster swimming speed or endurance as well as 1029 

improved maturation of sperm. By contrast the higher expression of es1 protein in M. 1030 

edulis affecting the sperm trait motility might be hypothesised to reduce motility, a 1031 

functional disadvantage, on the basis that lower motility was observed in human sperm 1032 

with higher levels of this protein. This is represented by green text font in File S7 1033 

columns G and H. Where it is more difficult to arrive at a functional benefit or 1034 

disadvantage, black font is used. The counts of the number of spots in which the sperm 1035 

trait terms can be flagged with red, green or black font are also given in the final two 1036 

columns of Figure 7. There is a clear preponderance of protein spots in which higher 1037 

expression can be hypothesised to be a functional benefit in terms of sperm performance 1038 

in the species in which this higher expression occurs, the functional benefits being 1039 

largely in sperm motility and related traits and the fertilization process. 1040 
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In both species, the higher expression of proteins associated with various aspects of 1041 

sperm function are consistent with positive natural selection towards improved function 1042 

and fitness of sperm. Closely related hybridising species such as M. edulis and M. 1043 

galloprovincialis might be expected to show few or many differences in expression as a 1044 

result of selection pressures arising from ecological forces. The wide range of 1045 

differentially expressed proteins observed in the current study is consistent with 1046 

evidence from the mouse where a diverse set of 81 different protein genes, including 23 1047 

sperm membrane proteins all gave evidence of positive selection [157], and where 1048 

proteins involved in sperm-egg interactions in particular show accelerated evolution 1049 

[151]. Such a large number of genes involved in sperm function could underline that 1050 

there may be a high selection intensity acting on sperm. This may also provide multiple 1051 

opportunities for disrupting sperm function. For example it has been reported that in sea 1052 

urchins as few as 10 amino acid changes in the protein bindin are needed for complete 1053 

gamete incompatibility [158], so limited changes occurring at different loci might have 1054 

similar effects. 1055 

4.3.3 Differential expression: implications for hybridization of M. edulis and M. 1056 

galloprovincialis 1057 

The observation of protein expression differences for many different genes connected 1058 

with sperm function has implications for models of hybridization and introgression 1059 

between the species. An earlier proteomic study of a hybrid zone between M. edulis and 1060 

M. galloprovincialis using somatic tissue found evidence of high gene expression 1061 

variation amongst hybrids consistent with segregation at expression modifier loci as 1062 

introgression proceeds [42]. Such segregation of modifiers at many sperm function 1063 

related genes differing in protein expression between the species could result lowered 1064 

expression or general disruption of expression of these genes depending on dominance 1065 

relationships at and epistatic interaction between the modifier loci. This could contribute 1066 

to lowered fertility of hybrids or lowered fitness of larvae as has been observed 1067 

experimentally between different Mytilus spp. [33, 35]. It might also contribute to the 1068 

observed disruption of doubly uniparental inheritance (DUI) in crosses between these 1069 

two species [159] or other pair of Mytilus spp. [160-162]. 1070 

4.3.4 Possible influences of environmental variation on sperm function 1071 
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M. edulis evolved in the North Atlantic whereas M. galloprovincialis evolved in the 1072 

Mediterranean [101, 162-163]. The most prominent environmental factors that might 1073 

have exerted selective influences in the past are first temperature and then salinity 1074 

which are both higher in the Mediterranean. These environmental differences persist in 1075 

the contrast between Vigo and Swansea today, with seawater temperature about 4
o
C 1076 

higher at Vigo during the spawning season. There is evidence that changes in seawater 1077 

temperature may affect sperm function. Thus in M. galloprovincialis higher temperature 1078 

is associated with lower fertilization rates on average [164] and sperm motility and 1079 

linearity of swimming patterns are affected by temperature and its interaction with pH 1080 

[165]. This may have fitness consequences as swimming speed has also been associated 1081 

with higher fertilisation rates [166]. In some circumstances, for example when 1082 

chemoattractants are not present, non-linear swimming patterns may be advantageous to 1083 

maximise the chance of fertilisation [147, 167-168]. Other environmental factors may 1084 

be important for successful fertilisation for example viscosity which is a function of 1085 

temperature and salinity [169]. Factors such as seawater specific gravity and turbulence 1086 

may also be important in determining the chance of successful fertilisation [170-171].  1087 

4.3.5 Selective pressures and interpretation of present results 1088 

The historical and current environmental factors affecting M. edulis and M. 1089 

galloprovincialis could have generated different selective forces to cause divergence in 1090 

sperm phenotype. This could include modification of functional trade-offs between 1091 

traits such as swimming speed and endurance [172]. Differential selection modifying 1092 

sperm phenotype are expected to cause differences in gene expression which could be 1093 

reflected in the observed differences in protein expression as observed in the present 1094 

study (Table 3, Figure 7 and File S7). Higher temperature and salinity in the evolution 1095 

of M. galloprovincialis might relate to another factor, oxygen solubility which is lower 1096 

at higher temperature and salinity. Stress from reduced oxygen could impact negatively 1097 

on ATP production impacting on energy dependent biological processes such as motility, 1098 

swimming speed and endurance in M. galloprovincialis from Vigo. In the present study 1099 

however it appears that motility related proteins are relatively upregulated in M. edulis 1100 

whereas proteins involved in sperm maturation and fertilisation are upregulated in M. 1101 

galloprovincialis (Figure 7 and File S7).  1102 

4.3.6 Future studies integrating proteomics and experimental work on sperm 1103 
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Clearly relating proteomics data and biochemical interpretations to environmental 1104 

factors and to variation between species in sperm functional traits is a complex task for 1105 

the future. Measuring intra and interspecific variation in sperm functional traits is in 1106 

itself not an easy task [154]. Currently we are not aware of any direct comparative study 1107 

of some sperm functional traits, like speed, longevity and movement pattern, between 1108 

M. edulis and M. galloprovincialis. An experimental design in which sperm from M. 1109 

edulis and M. galloprovincialis are spawned and their performance in motility and 1110 

endurance as well as fertilisation success assessed, at a range of temperature and salinity 1111 

conditions would be informative. This could be combined with further proteomics 1112 

studies applied to sperm from individual mussels from these experiments. The sperm 1113 

phenotype is highly plastic and evidence already exists for genotype-by-environmental 1114 

interaction effects on sperm function [172]. An experimental design such as the one 1115 

described above should allow detecting main effects and interactions involving species 1116 

differences, reflecting genetic adaptation, contemporary environmental variation and 1117 

underlying gene expression data. Such approaches could be further extended to the 1118 

study of hybrid populations of the two species. 1119 

5. Concluding remarks 1120 

In order to achieve fertilization a sperm must come into contact with an egg and interact 1121 

with it appropriately. Proteins mediate the interactions between sperm and egg at each 1122 

step of the fertilisation process, and there is growing evidence that multiple protein 1123 

complexes might be involved in concert during gamete interaction [82-83]. Species 1124 

differences in these proteins are proposed as one of the key factors that lead to species-1125 

specific fertilisation and reproductive isolation. When prezygotic barriers fail, inter-1126 

species hybrids can occur. When this happens, postzygotic barriers play an important 1127 

role in preservation of species integrity. We provide evidence of extensive variation in 1128 

the mature male gonad transcriptome and sperm proteome in two mussel species, M. 1129 

edulis and M. galloprovincialis. From the transcriptome analysis, we provide a 1130 

preliminary list of proteins with sperm-specific functions. These functions are related to 1131 

sperm-egg interaction, the acrosome reaction, spermatogenesis and motility. From the 1132 

proteome analysis, we provide evidence of an overrepresentation of mitochondrial 1133 

proteins among those candidate protein spots identified by MS, as well as contrasting 1134 

differential expression in isoforms of many proteins. The use of customised species-1135 
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specific protein databases significantly enhance both the quantity and quality of protein 1136 

identifications, with the use of RNA-seq derived protein databases showing superior 1137 

results to other customised databases analysed in this study. Our results provide 1138 

evidence of agreement between the transcriptomic and proteomic results in the direction 1139 

of expression differences between species. Our results highlight that some candidate 1140 

sperm proteins, specifically those relating to sperm motility, ATP reserves, and ROS 1141 

production in M. edulis and proteins relating to sperm motility, the acrosome reaction, 1142 

capacitation and sperm-egg interaction in M. galloprovincialis might be good targets in 1143 

further genomic analysis of reproductive barriers between closely related species. 1144 

1145 
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Figure Legends 1651 

1652 

Figure 1: Histological tests of mature male gonads of the six Mytilus edulis (a-f) and 1653 

six M. galloprovincialis (g-l) mussels selected to make each pool for RNA-seq analysis. 1654 

There are two different zoom views (see 500 and 50 µm scale respectively, above and 1655 

below) shown for each histology test and individual mussel. Ac: male gonadal follicles 1656 

with spermatozoa (sp), where heads (hd) and flagella (fl) can be seen and differentiated. 1657 

Adipogranular (ag) and vesicular connective tissue (cv) cells can be found between the 1658 

spermatic acini. 1659 

1660 

Figure 2: a) Distribution of Level 2 GO terms of loci annotated in three ontological 1661 

categories: biological process (BP), molecular function (MF) and cellular component 1662 

(CC). Note that only those GO terms with annotations in at least 100 and 10 loci, for BP 1663 

and MF respectively are shown. b) Enrichment analysis results for GO terms in 1664 

differentially expressed loci between mature male gonads of the two Mytilus spp. 1665 

according to Fisher's exact test (FDR<0.05). DE: differentially expressed, ND: not 1666 

differentially expressed set of loci defined after RSEM analysis. Length of bars 1667 

represents the percentage of loci annotated for each term in the DE (blue bars) and ND 1668 

(red bars) sets. A blue longer than red bar indicates that that GO term is overrepresented 1669 

in the differentially expressed loci. GO terms are grouped by their ontological category 1670 

(BP, MF, CC), and within category, GO terms are displayed sorted by increasing p- 1671 

values. 1672 

1673 

Figure 3: 2DE gels showing sperm proteome from a representative Mytilus 1674 

galloprovincialis and M. edulis mussel respectively. 45 spots that showed significant 1675 

differences between the two Mytilus populations and species (q≤0.05) and were 1676 

identified (all except one) by MS (see Table 3) are numbered and encircled. 1677 

1678 

Figure 4: Hierarchical clustering and heat map made using log normalised expression 1679 

data for the 45 protein spots of sperm samples that showed significant differences in 1680 

expression level (q≤0.05) between the two Mytilus species and populations (SW: 1681 
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Swansea, VG: Vigo) and were identified (all except one) by MS (see Figure 3). Each 1682 

column and row contains information for an individual mussel and protein spot 1683 

respectively. The numbers on the right are the protein spot numbers to each of which 1684 

isattached an abbreviation that corresponds to gene name that code for the identified 1685 

protein (see Table 3). Note that for two identified protein spots (1101 and 1508) there 1686 

are no gene name abbreviations available. Cells are coloured according to z-scores, 1687 

showing up-regulation (red) or down-regulation (green) of protein spot volumes in the 1688 

individual mussels compared with average expression values calculated from all mussel 1689 

samples. 1690 

1691 

Figure 5: Volcano plot made with the 727 sperm protein spots analysed by 2DE. Log2 1692 

of the ratio of average expression values between Swansea and Vigo populations (FC) 1693 

plotted against log10 of p-values derived from the one-way ANOVA analysis. Note that 1694 

positive and negative Log2 (FC) values mean higher expression on average in samples 1695 

from Vigo (M. galloprovincialis) and Swansea (M. edulis), respectively. Grey (FC>1.5) 1696 

and black (up to 1.5 FC) represent non-significant protein spots (p>0.05), while colour 1697 

represents protein spots significant after one-way ANOVA (p≤0.05); blue, <1.5 FC; red, 1698 

between 1.5 and 2.0 FC; green, >2.0 FC. 1699 

1700 

Figure 6: Comparative results of protein spot identifications by MS using different 1701 

customised protein databases (see Materials and Methods). Bars represent the total 1702 

number of peptide spectrum matches (PSMs), total peptides (TP) and unique peptides 1703 

(UP), expressed as percentage, obtained against each of the three protein databases 1704 

made from: 1) RNA-seq data from the current study (RNA), 2) EST sequences available 1705 

in NCBI from Mytilus[organism] (EST), and 3) protein sequences available in NCBI for 1706 

Mollusca[organism] (NCBI). *: p<0.001, ns: not significant, for Kruskal-Wallis and 1707 

post-hoc pairwise tests (after Dunn correction to account for multiple comparisons) 1708 

between the different protein databases either for the total number of PSMs, TP or UP. 1709 

1710 

Figure 7: Summary of counts and percentages of sperm trait and functional terms for 1711 

proteins having higher expression in M. edulis and M. galloprovincialis. The data is 1712 
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derived from Table 3 and from File S7, worksheet Table S7 where it is further 1713 

elaborated (see captions of Tables S6-S7). Columns 2-5 give the counts and % values of 1714 

sperm trait terms assigned to proteins having higher expression in M. edulis and M. 1715 

galloprovincialis. Red and green fill indicate higher and lower % values in each row. 1716 

Columns 6 and 7 indicate the number of occurrences of terms according to a tentative 1717 

hypothesis on perceived benefit of higher expression to the species at the head of the 1718 

columns (in red font) or perceived disadvantage (green font). Black font indicates that a 1719 

conclusion in relation to benefit or disadvantage could not easily be made.  1720 

1721 
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Table 1: Summary results from RNA-seq data and annotation through Blast analysis 1722 

against different databases: 1) all protein sequences available in SwissProt 1723 

(UniProtKB/SwissProt), 2) the Pacific oyster Crassostrea gigas genome 1724 

(Oyster_Genome), 3) all EST sequences available in NCBI from “Mytilus”, 4) protein 1725 

sequences retrieved from NCBI for "Mytilus" (NCBI_MytProt), and 5) protein 1726 

sequences retrieved from NCBI for "Mollusca" (NCBI_MolluscaProt). See further 1727 

details in materials and methods. 1728 

Number of reads (raw / filtered) 235,967,540 / 187,829,361 

Number of Isotigs 97,425 

Number of Loci 49,713 

Maximum sequence length (bp) 13,604 

Mean / Median sequence length (bp) 706 / 434 

N50 length (bp) 1,071 

Number of Loci identified following:   

     BlastX (UniProtKB/SwissProt) 13,498 (27.1% of total loci)* 

     tBlastX (Oyster_Genome) 18,279 (36.8%) 

     tBlastX (NCBI_MytESTs) 31,428 (63.2%); database coverage [56,253 of 

total 67,990 MytEST sequences (82.7%)] 

     BlastX (NCBI_MytProt) 2,234 (4.5%); database coverage [5,153 of total 
6338 MytProt sequences (81.3%)] 

     BlastX (NCBI_MolluscaProt) 17,529 (35.3%); database coverage [70,317 of 
total 190,951 MolluscaProt sequences (36.8%)] 

(*) 13,283 loci were functionally annotated using Blast2GO, including InterProScan.  1729 
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Table 2: Transcripts (loci) showing significant differences (FDR 1% at isotig level) in expression of mature male gonad tissue between Mytilus 

edulis (mussels from Swansea, E) and M. galloprovincialis (mussels from Vigo, G), with GO or protein name terms associated with the search 

term string “SPERM*” OR “FERT*” and a prediction that they have a signal peptide (SP) or a transmembrane (TM) domain in their sequences, 

this later information coming from SignalP 4.1, TMHMM 2.0 and InterProScan 5.0 analysis. Transcripts were functionally annotated using 

Blast2GO against UniProt-SwissProt database [all organisms], but protein names below are derived by checking against the nrNCBI[Mollusca] 

protein database. The numbers of significant isotigs from each locus (FDR 1%) with higher expression levels in M. edulis compared to M. 

galloprovincialis (E<G) and vice-versa (G>E) are also displayed. 

Transcript # 
Gene 

name 
Protein name (nrNCBI [Mollusca]) Function 

SP, 

TM 

N. 

Isotigs 

E>G

N. 

Isotigs 

G>E

Locus_2854 Iap2 Apoptosis 2 inhibitor [C. gigas] Spermatogenesis, acrosome reaction TM 1 2 

Locus_3972 Tmbim6 Bax inhibitor-1 protein [M. galloprovincialis] Spermatogenesis, acrosome reaction TM 3 2 

Locus_9050 Bre-4 Beta-1,4-N-acetylgalactosaminyltransferase bre-4 [C. gigas] Sperm-egg interaction TM 0 1 

Locus_1384 CtsB Cathepsin B [C. ariakensis] Spermatogenesis, acrosome reaction SP, TM 2 2 

Locus_175 

Locus_2547 

CtsL Cathepsin L [C. gigas] Spermatogenesis, acrosome reaction SP, TM 3 

0 

2 

2 
Locus_587 CtsL2 Cathepsin L2 cysteine protease [P. fucata] Spermatogenesis, acrosome reaction TM 1 1 

Locus_6135 Cdc42 Cell division cycle 42 [Mytilus sp. ZED-2008] Sperm capacitation, acrosome reaction TM 1 0 

Locus_24960 Cht3 Chitinase-3 [H. cumingii] Sperm-egg interaction TM 0 3 

Locus_6902 Cdyl2 Chromodomain Y-like protein 2 [C. gigas] Spermatogenesis TM 0 1 

Locus_1290 Cng Cyclic nucleotide-gated channel rod photoreceptor sub. Spermatogenesis TM 0 1 



57 

alpha [C. gigas] 

Locus_1433 Dnal1 Dynein light chain 1, axonemal, partial [C. gigas] Sperm motility TM 0 1 

Locus_2552 Eif4g2 Eukaryotic translation initiation factor 4 gamma 2 [C. gigas] Spermatogenesis SP, TM 1 2 

Locus_5126 Ggnbp2 Gametogenetin-binding protein 2 [C. gigas] Spermatogenesis TM 1 3 

Locus_134 Hsp90 Heat shock protein 90 [M. galloprovincialis] Spermatogenesis TM 1 1 

Locus_22899 Prdm9 Histone-lysine N-methyltransferase PRDM9 [C. gigas] Spermatogenesis TM 0 1 

Locus_18746 Suv39h2 Histone-lysine N-methyltransferase SUV39H2 [C. gigas] Spermatogenesis TM 1 1 

Locus_6027 Hya Hyaluronidase [C. gigas] Sperm-egg interaction SP, TM 1 0 

Locus_1259 

Locus_12988 

Irs Insulin-related peptide receptor [P. fucata] Spermatogenesis SP, TM 1 

1 

6 

1 

Locus_5663 Ift172 Intraflagellar transport protein 172 homolog, predicted [A. 

californica] 

Sperm motility TM 2 2 

Locus_2244 Imp2 Mitochondrial inner membrane protease subunit 2 [C. gigas] Spermatogenesis TM 1 2 

Locus_10336 Nphp1 Nephrocystin-1 [C. gigas] Spermatogenesis SP, TM 0 2 

Locus_9945 Pmca Plasma membrane calcium ATPase [P. fucata] Sperm motility TM 2 4 

Locus_1143 Phb Prohibitin [O. tankahkeei] Spermatogenesis TM 1 1 

Locus_1157 Phb2 Prohibitin-2-like, predicted [A. californica] Spermatogenesis TM 0 1 

Locus_19017 Pc1 Prohormone convertase 1 [H. diversicolor sup.] Sperm-egg interaction, sperm 

capacitation, sperm motility 

SP, TM 0 2 

Locus_2686 Psma2 Proteasome subunit alpha type-2 [C. gigas] Sperm capacitation, acrosome reaction TM 0 1 
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Locus_29609 Rarb Retinoic acid receptor beta [C. gigas] Spermatogenesis SP, TM 0 3 

Locus_29136 Ropn1 Ropporin-1-like protein [C. gigas] Spermatogenesis, sperm motility TM 0 1 

Locus_815 Sqstm1 Sequestosome-1 [C. gigas] Spermatogenesis TM 0 1 

Locus_9081 Slc6a5 Sodium- and chloride-dependent glycine transporter 2 [C. 

gigas]

Sperm motility TM 1 2 

Locus_3269 Slc9c1 Sodium/hydrogen exchanger 10 [C. gigas] Spermatogenesis, sperm motility TM 2 2 

Locus_29004 Spatc1 Speriolin [C. gigas] Spermatogenesis TM 1 5 

Locus_13213 Spa17 Sperm surface protein Sp17 [C. gigas] Spermatogenesis, sperm-egg interaction, 

sperm capacitation, acrosome reaction 

TM 0 1 

Locus_12286 Spag1 Sperm-associated antigen 1 [C. gigas] Sperm-egg interaction TM 1 1 

Locus_1176 

Locus_10277 

Srsf4 Splicing factor, arginine/serine-rich 4 [C. gigas] Spermatogenesis SP, TM 1 

0 

1 

1 

Locus_18976 Samd7 Sterile alpha motif domain-containing protein 7 [C. gigas] Spermatogenesis TM 1 1 

Locus_1959 Slc26 Sulfate transporter-like, predicted [A. californica] Sperm motility TM 2 2 

Locus_4801 Cct2 T-complex protein 1 (TCP-1) subunit beta [C. gigas] Sperm-egg interaction TM 1 0 

Locus_586 Cct4 T-complex protein 1 (TCP-1) subunit delta [C. gigas] Sperm-egg interaction TM 0 2 

Locus_1374 Cct5 T-complex protein 1 (TCP-1) subunit epsilon [C. gigas] Sperm-egg interaction - 4 3 

Locus_24738 Cct7 T-complex protein 1 (TCP-1) subunit eta [C. gigas] Sperm-egg interaction TM 0 1 

Locus_22131 

Locus_25048 

Locus_36832 

Cct3 T-complex protein 1 (TCP-1) subunit gamma [C. gigas] Sperm-egg interaction TM 0 

2 

0 

2 

2 

1 

Locus_20775 Cct8 T-complex protein 1 (TCP-1) subunit theta [C. gigas] Sperm-egg interaction TM 2 1 
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Locus_188 Cct6a T-complex protein 1 (TCP-1) subunit zeta [C. gigas] Sperm-egg interaction - 1 0 

Locus_8047 

Locus_29534 

Thbs1 Thrombospondin-1 [C. gigas] Sperm-egg interaction SP, TM 0

0

2 

1 
Locus_17402 Ubc8 Ubiquitin-conjugating enzyme E2-24 kDa [C. gigas] Spermatogenesis TM 1 0 

Locus_39229 

Locus_25485 

M3 vitelline coat lysin M3 [M. edulis] Sperm-egg interaction SP 1

0

1 

1 

Locus_24 

Locus_30388 

M6 vitelline coat lysin M6 [M. edulis] Sperm-egg interaction SP 1

0

2 

2 

Locus_3846 Zfr Zinc finger RNA-binding protein [C. gigas] Spermatogenesis TM 1 0 

Locus_1040 

Locus_1240 

Locus_1570 

Locus_2570 

Zan Zonadhesin [C. gigas] Sperm-egg interaction TM 1 

1 

1 

0 

0 

2 

1 

1 
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Table 3: Identification by MS/MS of 44 out of 45 protein spots (see Fig. 3) from sperm that showed significant differences (q<0.05) between the two analysed 

species and populations of mussels (M. galloprovincialis from Vigo vs M. edulis from Swansea). Gene, the name of the gene (official gene symbol, retrieved 

from UniProt) that code for the protein sequence described in “Protein id” column. FC, fold change, defined as the unstandardized effect size with higher 

expression in either M. galloprovincialis (G) or M. edulis (E) mussel species. The databases from which an identification of the protein spots was obtained are 

given in the Database column: EST, expression sequence tags from Mytilus spp. available in Genbank, RNA, sequences obtained in the current study and, 

NCBI, protein sequences from Mollusca available in NCBI (see Materials and Methods).  

Spot Gene Protein id FC Database 
Cellular 

location 
Molecular Function 

1205 

1241 

Aco2 Aconitate hydratase 1.7 E 

2.0 E 

RNA, NCBI 

RNA, NCBI 

Mitochondrion Tricarboxylic acid cycle, sperm 

capacitation, motility 

1272 

1744 

Ak Arginine kinase 2.0 G 

2.1 G 

RNA, EST, NCBI 

RNA, EST, NCBI 

Cytoplasm Phosphorylation, motility 

705a Atp5a ATP synthase subunit alpha 1.8 E RNA, EST, NCBI Mitochondrion Respiratory electron transport chain, 

motility 

430 Npr1 Atrial natriuretic peptide receptor 1 1.7 G RNA, NCBI Membrane Hormone binding, capacitation, 

chemotaxis 

1074 Cnn1 Calponin protein 4.2 G RNA, EST, NCBI Cytoskeleton Actin binding, motility 

2151 

2164a 

847 

Uqcrc2 Cytochrome b-c1 complex subunit 2 1.9 G 

1.6 G 

5.6 E 

RNA, EST 

RNA, EST 

RNA, EST 

Mitochondrion Respiratory electron transport chain, 

motility 

705b Dld Dihydrolipoyl dehydrogenase 1.8 E RNA, EST, NCBI Mitochondrion Capacitation, acrosome reaction, 

motility 

1119 

1134 

191 

Efhc2 EF-hand domain-containing family 

member C2 

4.7 G 

2.4 E 

2.3 G 

RNA, EST, NCBI 

RNA, EST, NCBI 

RNA, EST, NCBI 

Ubiquitous Calcium binding, acrosome reaction, 

motility 
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1536 Etfb Electron transfer flavoprotein subunit 

beta 

1.4 G RNA, EST, NCBI Mitochondrion Respiratory electron transport chain, 

motility 

801 Eno Enolase 1.6 G RNA, NCBI Cytoplasm Glycolysis, motility 

1608 

2039 

1602 

es1 es1 protein 2.1 G 

3.5 E 

2.4 G 

RNA, EST 

RNA, EST, NCBI 

RNA, EST 

Mitochondrion Unknown 

589 

2062 

Glud Glutamate dehydrogenase 2.0 G 

2.5 E 

RNA, EST, NCBI 

RNA, EST, NCBI 

Mitochondrion Oxidoreductase 

1265 Ppa1 Inorganic pyrophosphatase 2.6 G RNA, EST, NCBI Cytoplasm Hydrolase, motility, sperm 

capacitation, acrosome reaction 

1094 Idh3a Isocitrate dehydrogenase [NAD] 

subunit alpha 

1.2 E RNA, EST, NCBI Mitochondrion Tricarboxylic acid cycle, motility 

1085 

1087 

Idh3g Isocitrate dehydrogenase [NAD] 

subunit gamma 

3.1 E 

1.5 E 

RNA, EST, NCBI 

RNA, EST 

Mitochondrion Tricarboxylic acid cycle, motility 

1012 Ivd Isovaleryl-CoA dehydrogenase 2.6 G RNA, EST, NCBI Mitochondrion Aminoacid degradation 

988a Acadm Medium-chain specific acyl-CoA 

dehydrogenase 

1.7 G RNA, EST, NCBI Mitochondrion Beta-oxidation 

2038 Sod2 Mitochondrial manganese superoxide 

dismutase 

3.4 E RNA, EST, NCBI Mitochondrion Antioxidant, oxidoreductase 

949 Ndufa10 NADH dehydrogenase [ubiquinone] 1 

alpha subcomplex subunit 10 

4.5 G RNA, EST Mitochondrion Respiratory electron transport chain, 

motility 

2108 Plc Perlucin 1.8 E RNA Extracellular 

region 

Shell formation 

1919 Prdx5 Peroxiredoxin-5 2.2 E EST, NCBI Mitochondrion Antioxidant, peroxidase, sperm-egg 

interaction 

1322 Psme3 Proteasome activator complex subunit 3 1.7 G RNA, EST Cytoplasm, 

nucleus 

Proteolysis, sperm capacitation, 

acrosome reaction  

1503 Psma4 Proteasome subunit alpha type-4 1.9 G RNA, EST, NCBI Cytoplasm, 

nucleus 

Proteolysis, sperm capacitation, 

acrosome reaction 
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1795 Psmb2 Proteasome subunit beta type-2 2.0 G RNA, EST, NCBI Cytoplasm, 

nucleus 

Proteolysis, sperm capacitation, 

acrosome reaction 

1778 Psmb6 Proteasome subunit beta type-6 1.6 G EST, NCBI Cytoplasm, 

nucleus 

Proteolysis, sperm capacitation, 

acrosome reaction 

590 Pfd0110w Reticulocyte-binding protein 

PFD0110w isoform X3 

1.7 G RNA, EST Membrane Cell-cell adhesion 

2164b Tekt1 Tektin-1 1.6 G EST, NCBI Cytoskeleton Motility 

1258 

2084 

776 

814 

Tekt2 Tektin-2 1.7 G 

2.5 E 

2.3 G 

2.7 G 

RNA, EST, NCBI 

RNA, EST, NCBI 

RNA, EST, NCBI 

RNA, EST, NCBI 

Cytoskeleton Motility 

753 Tekt4 Tektin-4 1.9 G RNA, EST, NCBI Cytoskeleton Motility 

1508 -- Uncharacterized protein 

LOC105318227 

3.5 G RNA, EST -- -- 

1101 -- Uncharacterized protein ZK1073.1 

isoform X2 

3.7 G RNA, EST -- -- 

988b Psmc6 26S protease regulatory subunit 10B 1.7 G EST, NCBI Cytoplasm, 

nucleus 

Proteolysis, sperm capacitation, 

acrosome reaction 

901 Psmd11 26S proteasome non-ATPase regulatory 

subunit 11 

1.9 G RNA, EST, NCBI Cytoplasm, 

nucleus 

Proteolysis, sperm capacitation, 

acrosome reaction 

1606 Hsd17b10 3-hydroxyacyl-CoA dehydrogenase

type-2 

1.5 E RNA, EST, NCBI Mitochondrion Beta-oxidation, oxidoreductase 

97
#
 1.7 G 

#
: due to technical problems this protein spot was not identified by MS. Note that three spots (705, 988 and 2164) were identified as two different proteins (a-b). 
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