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Abstract 

Transcranial direct current stimulation (tDCS) facilitates cognitive enhancement by directly 

increasing neuroplasticity, and has shown promising results as an external intervention to attenuate 

age-related cognitive decline. However, stimulation protocols have failed to account for age-

associated changes in brain structure and the present literature omits investigation of attentional 

control, despite the occurrence of substantial inhibitory processing deficits with age. To provide new 

insight into the benefits of tDCS, the objective of this study was to develop an age-optimised 

stimulation protocol in which key parameters (amplitude, duration, and electrode configuration) were 

selected in accordance with knowledge of stimulation effects, specific to the ageing brain. Participants 

(mean age 66.5 years) completed three sessions of double-blind, anodal or sham stimulation, in 

conjunction with a novel task switching paradigm, which was designed to reflect the complexities of 

simultaneously monitoring and updating stimulus representations. The results show that those who 

had anodal tDCS exhibited an acute, post-stimulation increase in task switching speed (p<.01, 

d=1.36). Although the sham group were subject to the same task exposure, only the anodal 

stimulation group experienced a performance gain, thus emphasising the efficacy of active brain 

stimulation.  For the first time, this study demonstrates the utility of stimulation protocols tailored 

specifically for use with older adults, targeted towards the modulation of attentional control. This 
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finding has critical implications for cognitive health and encourages the use of age-optimised tDCS as 

a viable method for enhancing executive function in later life. 

 

Key words: healthy aging; neural plasticity; attentional control; task switching; transcranial direct 

current stimulation.  

 

1. Introduction 

Ageing is a complex process characterised by structural and functional changes in the brain, 

as well as associated declines in cognitive performance (Anderson et al., 1998; Gazzaley et al., 2008; 

Drag and Bieliauskas, 2010; Zanto et al., 2010; Erel and Levy, 2016). Considerable atrophy occurs as 

part of normal ageing (Raz et al., 2005) and this is accompanied by loss of excitatory and inhibitory 

neurochemicals that govern plasticity (Gao et al., 2013). Loss of structural integrity is particularly 

pronounced in anterior regions, such as dorsolateral prefrontal cortex (dlPFC), which exerts top‐down 

control over attentional processes in a goal-oriented manner (Sylvester et al., 2003; Cieslik et al., 

2015). However, to attempt to recruit sufficient resources to sustain such cognitive processes, the 

ageing brain adapts to these changes by undergoing substantial functional reorganisation (Reuter-

Lorenz and Cappell, 2008). One empirical model proposes that this process fulfils a neuroprotective 

role thus preventing severe decline in cognition (Cabeza, 2002), whilst another account states that 

functional plasticity reflects the formation of alternative goal-oriented neural circuits (Reuter-Lorenz 

and Park, 2014). Such functional alterations are suggested to bolster existing task-relevant 

connections and compensate for losses in grey and white matter, corroborated by a recent approach 

designed to integrate structural and functional brain change (Marstaller et al., 2015). 

In the absence of such compensation or where these mechanisms fail to provide adequate 

support, older adults show a marked decline in executive function (e.g. working memory, attentional 

control, task switching: Cabeza et al., 2002; Cabeza et al., 2004; Cappell et al., 2010; Hedden et al., 

2011; Cona et al., 2013). Such cognitive deficits impact upon how an individual interacts with the 

environment and, as such, the efficiency of neural mechanisms supporting cognition is essential to life 
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satisfaction and adequate daily functioning (Wilkins et al., 2010). It is clear, therefore, that a gradual 

shift towards adaptive connectivity is advantageous in maintaining cognition, and also general well-

being, throughout old age. This is an extremely pertinent issue given the projected growth of the 

ageing population and prevalence of cognitive impairment.  

Accordingly, the success of interventions to prevent cognitive decline is likely to be highly 

dependent on their ability to aid adaptive neuroplasticity, by maintaining existing brain function and 

ensuring compensatory mechanisms are not over-recruited too early on. Current treatment options for 

cognitive impairment are largely ineffective at preventing further progression (Casey et al., 2010; 

Cotelli et al., 2012). Therefore, new methods are needed to support brain function prior to the onset of 

clinically observable decline. Such neuroenhancement has been made possible by the development of 

techniques that aid cognition by directly influencing the way the brain functions (Clark and 

Parasuraman, 2014). One such non-invasive brain stimulation method, transcranial direct current 

stimulation (tDCS), acts by modifying the action of glutamate and gamma-aminobutyric acid (GABA) 

receptors to alter plasticity (Bikson et al., 2004; Stagg and Nitsche, 2011; Rahman et al., 2013) and 

strengthen connections within specific functional networks (Polanía et al., 2011; Keeser et al., 2011; 

Hunter et al., 2015).  

With advancing age, the presence of cells expressing the glutamic acid decarboxylase (GAD) 

enzyme, responsible for synthesising GABA from glutamate, is reduced in prefrontal cortex. The 

number of inhibitory interneurons and excitatory pyramidal cells, which alter the efficiency of 

neurochemical signalling, are also reduced (McQuail et al., 2015). This limits the potential for 

learning and cognitive flexibility as those with less frontal GABA have been shown to perform poorly 

on cognitive tasks (Porges et al., 2017). By selectively modulating prefrontal neurochemistry to 

regulate network activity and achieve the necessary balance of excitation and inhibition within each 

hemisphere, cognition may be improved in older adults. Consequently, the correspondence of 

neurochemical change as part of the ageing process, and the mechanisms underlying the 

neuromodulation technique, provide a highly compelling rationale for the use of tDCS to aid 

cognition in older adults.  
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The limited literature to date shows that tDCS is an effective tool for improving age-related 

cognitive deficits (Hsu et al., 2015). These studies utilise anodal tDCS, which has been shown to 

improve performance via depolarisation of resting membrane potential (Stagg and Nitsche, 2011). In 

turn, accompanying increases in glutamatergic transmission via N-methyl-D-aspartate (NMDA) 

receptors and decreases in GABAA-mediated responses are generated under the anode (with the 

opposite expected under the cathode), which modulate plasticity and potential for learning (Liebetanz 

et al., 2002; Nitsche et al., 2003, 2004). However, previous work has largely been confined to aspects 

of memory (Berryhill and Jones, 2012; Park et al., 2014). Research relating to aspects of cognitive 

control with regard to attention and response inhibition is notably absent, with a recent meta-analysis 

(Summers et al., 2016) citing only 2 applicable studies that present a huge discrepancy in the ability of 

tDCS to improve executive function. Accordingly, Boggio et al. (2010) demonstrate that participants' 

ability to successfully complete a task designed to measure risk-taking behaviour declined following 

stimulation. While Harty et al. (2014) document the induction of a moderate enhancement in 

participants' awareness of incorrect responses during an error detection paradigm, thus highlighting 

the necessity for research in this field. Given the role of attentional control in our everyday lives and 

how it declines significantly with age (Campbell et al., 2012; Li et al., 2013), it is surprising that this 

domain has been overlooked.  

Equally surprising is the lack of commentary on stimulation parameters in relation to their 

suitability for use with older participants. While the number of studies concerning older adults has 

risen in recent years, what we know of non-invasive brain stimulation is largely founded upon studies 

of young adults. Considering the ageing process from a neural perspective, advancing age is likely to 

have a profound result on the effects of stimulation (Laakso et al., 2015). The abundance of 

cerebrospinal fluid (CSF) in the ageing brain has been proposed to alter the resulting current 

distribution (Mahdavi and Towhidkhah, 2018), and such computational modelling work suggests that 

stimulation parameters need to be carefully considered to ensure effects are likely to emerge. 

Consequently, protocols used in conjunction with the ageing population are likely to benefit from 

attempts to make stimulation more focal, longer, and more intense than it typically is in studies of 
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young adults (e.g. 1 mA) (Lindenberg et al., 2013; Tatti et al., 2016). Choices related to individual 

parameters will, therefore, inherently influence the biological plausibility of associated research and 

potentially limit the validity of subsequent inferences (Bestmann et al., 2015). 

To determine the potential for tDCS to aid adaptive neuroplasticity, the present research 

represents the first known attempt to enhance attentional control via a stimulation protocol tailored for 

use with older adults. Using a novel task switching paradigm, participants speed and accuracy was 

assessed following three applications of anodal or sham stimulation, which was administered via a 

bihemispheric electrode configuration (designed to regulate prefrontal recruitment demands via 

network-wide changes in the balance of excitation and inhibition). It was anticipated that anodal 

stimulation, in comparison to sham, would produce better performance on both measures.  

 

2. Materials and methods 

2.1. Subjects  

24 subjects with corrected-to-normal vision were recruited to take part in the study, based on 

sample sizes cited in the corresponding literature (Summers et al., 2016). On entering the study, 

participants were assigned to one of two stimulation groups (anodal, sham) using a randomly 

generated sequence of the two possible outcomes. Subjects were allocated to the next available 

classification upon recruitment and received either anodal or sham stimulation for the duration of the 

three sessions. Participants were 54-75 years of age (M=66.46, SD=5.34; 16 female), representing an 

age range at the transition from middle age to older adulthood where interventions are well-placed to 

attenuate the progression of sub-clinical deficits. Upon expressing an interest in taking part in the 

study, subjects were screened to determine their eligibility to take part in tDCS research. Those with 

any contraindications were excluded from the study. Contraindications included history of 

neurological (e.g. seizures, stroke) and/or psychiatric conditions (e.g. anxiety, depression), head 

trauma/concussion, and certain surgical implants (e.g. neurostimulator, pacemaker, cochlear implant). 

Individuals were also excluded who had been prescribed medication designed to directly influence 
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cortical excitation/inhibition (e.g. gabapentin for nerve pain), that may interfere with the emergence of 

tDCS effects (McLaren et al., 2018). The Montreal Cognitive Assessment (MoCA) (Nasreddine et al., 

2005) was used to establish the cognitive health of all participants (M=28.17, SD=1.61), who gave 

written informed consent prior to taking part in the study. All procedures were carried out with the 

approval of the local ethics committee (Department of Psychology, Swansea University). 

 

2.2. Task switching paradigm  

The Swansea Test of Attentional Control (STAC; Carter, N. and Wood, R., unpublished) 

assesses task switching ability. Comprising of selective attention, task monitoring, and response 

inhibition components, STAC represents a complex task in terms of cognitive load (Sebastian et al., 

2013). The stability and validity of the STAC task has previously been assessed, resulting in good 

test-retest reliability between two consecutive runs (r(30)=.857, p=.000) and strong correspondence 

between STAC final speed and reaction times (RT) from a standard Flanker task (r(24)=-.650, 

p=.001). The latter correlation indicates that as STAC final speed increases, Flanker RT decreases, 

thus signifying that performance improvement between the measures is aligned. Consequently, STAC 

performance is regarded as comparable to that of the widely used Flanker task but the novel task has 

several distinct advantages compared to such standard tests. 

One advantage of the STAC paradigm relates to the integration of features from standard 

tasks of vigilance and executive processing. STAC combines the inhibitory control demands of a 

Flanker task, with the resource-intensive target identification of a visual search task, and also features 

continuous presentation of stimuli rather than being dependent on repeat presentation of single trials. 

Therefore, compared to use of other tasks in isolation, STAC has the benefit of being more holistic in 

relation to the demands of stimulus engagement in everyday life. Having been developed in such a 

manner, STAC represents an ideal task to use where a complex test of attentional control is required. 

Furthermore, task complexity is of particular importance with regard to tDCS research (where 

performance improvements have been more readily noted in relation to complex tasks; Suntrup et al., 

2013, Berryhill et al., 2014). However, the issue of task difficulty is often problematic where older 
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adults are the focus of the research. Standard tasks such as Flanker require the researcher to set 

parameters (e.g. stimulus presentation speed) in advance and often lack flexibility because such values 

are fixed. This means that the participant is forced to struggle to respond or is not sufficiently 

challenged. Use of a flexible algorithm designed to track performance (Parameter Estimation by 

Sequential Testing, PEST; Taylor and Creelman, 1967), which calibrates speed on the basis of prior 

responses, facilitates completion of the task within the bounds of an individual’s capabilities. The 

dynamic nature of STAC means the variation in ability often demonstrated in an older adult sample 

can be accommodated, ensuring participants are able to respond successfully while not compromising 

on task difficulty. 

The task is to identify the target within a 3 x 3 matrix of symbols on the right and search for 

matching symbols amongst an array of three columns of symbols, which scroll up the left-hand side of 

the screen (Fig. 1). Participants respond when a matching symbol crosses behind the line. The target 

changes throughout the task such that participants must remain vigilant in order to consistently update 

their search criteria, while simultaneously monitoring the search array in order to identify matching 

items and inhibit the irrelevant symbols. Target changes take place every 12 s but are delayed if the 

current target appears in the search array. In such instances, the corresponding time lapse is added to 

the total run time. Speed (measured in symbols per minute per column; abbreviated to ‘spm’) is 

adjusted to maintain accuracy around a 75% correct criterion, using the PEST algorithm. After a 

minimum of 4 target changes, speed is calibrated on the basis of performance accuracy; increasing or 

decreasing with a step-size between 7 and 23 spm. The participants’ threshold is the speed at which 

the task is performed at the end of the pre-defined duration. Higher speed thresholds, therefore, reflect 

performance capability under conditions of increased difficulty.  
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Fig. 1. STAC task. A target is identified within the 3 x 3 matrix of symbols (right). When a matching 

symbol appears amongst the three columns of the search array (left), participants press the spacebar as 

the symbol crosses behind the red line. 

 

2.3. transcranial direct current stimulation 

A DC-Stimulator Plus device (neuroConn, Germany) was used to deliver direct current 

stimulation. In line with studies outlining the interaction between age-related brain changes and the 

distribution of current (Lindenberg et al., 2013; Laakso et al., 2015; Tatti et al., 2016; Mahdavi and 

Towhidkhah, 2018), stimulation parameters were designed to be effective for use with older adults. 

Options with regard to electrode size and configuration, current duration, and amplitude were 

therefore cautiously reviewed as part of this study in an attempt to compensate for the inherent 

challenges posed by age-related atrophy (reflected in the stimulation protocol outlined below). 

Rubber electrodes, measuring 5 × 5 cm (25 cm
2
), were placed into sponge holders soaked in 

saline solution and positioned over dlPFC: F3 (anode) and F4 (cathode) (Fig. 2a; Chatrian et al., 

1985). Although bihemispheric montages have been reported to lead to greater shunting of current 

through the scalp (Datta et al., 2008), Fig. 2b illustrates dlPFC is highly likely to be influenced given 
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the selected parameters. Stimulation was held constant for 20 minutes with an additional 30 s period 

at the beginning and end of the stimulation phase, during which the current was gradually increased to 

the pre-specified maximum and decreased to zero on termination. Anodal stimulation was delivered 

with a current of 1.5 mA (current density = 0.06 mA/cm
2
) to increase intensity from the standard 1 

mA application, while maintaining participant comfort and the efficiency of the double-blind 

procedure (shown to be problematic at higher strengths; O’Connell et al., 2012). For sham 

stimulation, the neuroConn device initially ramped up the current to mimic the peripheral effects of 

active tDCS before ramping down.  

 

 

Fig. 2. Electrode configuration and current distribution. a) Bihemispheric stimulation was applied to 

F3/F4 in order to target dorsolateral prefrontal cortex (left hemisphere, anode; right hemisphere, 

cathode). b) The current distribution was modelled for the parameters used as part of the study, 

illustrating the anticipated stimulation of the target regions (HD-Explore; Soterixmedical Inc, New 

York).  

2.4. Experimental procedure 

Participants began each of the three sessions by completing consent and screening forms. 

During the first session, they were then seated in front of a computer monitor, at a distance of 

approximately 60 cm, to perform the STAC task. To gain experience with the paradigm, participants 

executed the task for approximately 5 target changes before baseline data was recorded 

(approximately 10 minutes into the first session). Acquisitions of task data were 5 minutes in length, 

resulting in approximately 25 target changes. The speed at which the task began was 41 spm, 

increasing or decreasing (to a minimum of 37 spm) in line with performance accuracy as the test 
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progressed. Participants indicated that they had identified that a symbol matching the target had 

passed behind the line by pressing the spacebar. Upon completing the task, subjects were prepared for 

tDCS (this process took 10 minutes, after which stimulation was administered as outlined above in 

section 2.3). Both the researcher and the participant were blind to the nature of the stimulation that 

took place during each session. Participants were instructed to rest and relax during this time while 

watching a nature documentary, and were not asked to complete the task during tDCS. Following 

stimulation, participants completed an Adverse Effects Questionnaire (AEQ) in order to determine the 

presence and severity of side-effects relating to tDCS. Subjects rated side-effects on a scale of 0-4; 

corresponding to absent, mild, moderate, strong, and severe. This process took 5 minutes, after which 

the STAC task was completed again. Subsequent sessions (administered 48 hours apart) were 

implemented such that further baseline measures were not acquired. During sessions 2 and 3, 

participants received a repeat of the tDCS procedure and were asked to complete the AEQ, before 

post-stimulation data from the task were recorded (Fig. 3). 

      

Fig. 3. Experimental procedure. During the first session, participants completed a baseline run of the 

attentional control task prior to stimulation. Post-stimulation, participants completed the Adverse 
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Effects Questionnaire (AEQ) and another run of the task. During the second and third sessions, 

participants repeated the tDCS procedure, followed by the AEQ, and then completed the task. 

Sessions took place 48 hours apart. 

2.5. Data analysis 

Of the 24 subjects tested, 2 were removed from the sample (1 from the anodal group due to 

incomplete data, and 1 from the sham group due to poor performance accuracy). Data from the 

remaining 22 participants (11 per group; 54-73 years of age (M=66.50, SD=4.85)) was entered into 

statistical analysis using SPSS for Windows software (version 22; IBM, New York). Prior to 

analysing the task data, independent samples t-tests were performed to test for group differences in 

age and performance on the MoCA. A one-way ANOVA featuring data from the AEQ (sessions 1, 2, 

3) was used to assess group differences in the peripheral sensations experienced as a result of 

stimulation. 

Pearson’s correlation was used to assess the relationship of age and baseline data, whereby a 

significant result would signify the use of age as a covariate in the main analysis. Speed and accuracy 

measures resulting from the STAC task were entered into separate ANOVAs with the variables of 

Time (Baseline, Post Stim 1, Post Stim 2, Post Stim 3) and Group (Anodal, Sham). Further t-tests 

were conducted to investigate interactions. Greenhouse–Geisser correction was used for violations of 

sphericity. An alpha level of 0.05 was used to determine significance. 

3. Results 

3.1. Preliminary analyses (group differences) 

No significant age difference was observed between groups (t(20)=1.394, p=.179), suggesting 

age could be ruled out as a contributing factor should differences arise as a result of stimulation. 

No significant difference in MoCA score was found between groups (t(20)=-1.934, p=.067), 

indicating that each group was equally capable of performing the tasks. 
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Participants reported mild-moderate peripheral sensations (tingling/itching) under the 

electrode pads, largely towards the beginning of the stimulation period. These reports were consistent 

across each of the three sessions (F(2,40)=1.637, p=.207, ηp²=.076) and between groups 

(F(1,20)=2.778, p=.111, ηp²=.122), suggesting stimulation was experienced in a similar manner 

across the study.  

3.2. STAC analyses 

3.2.1. Speed threshold 

No significant correlation was found between age and the speed of results at baseline (r(22)=-

.004, p=.986), supporting the notion that the age of participants was not a contributing factor to 

performance. 

No significant difference was found in the speed of baseline results between groups (t(20)=-

.183, p=.857), indicating that there were no pre-existing distinctions in performance aptitude prior to 

stimulation.  

The results of the ANOVA demonstrate no significant main effect of Time (F(3,60)=2.398, 

p=.077, ηp²=.107) or Group (F(1,20)=2.326, p=.143, ηp²=.104), but there was a significant 

Time*Group interaction (F(3,60)=4.355, p=.008, ηp²=.179). Significant differences within the anodal 

group (Post Stim 1/Post Stim 3 (t(10)=-3.133, p=.011); baseline/Post Stim3 (t(10)=-4.343, p=.001, 

Cohen’s d=1.36) ), and between the anodal and sham stimulation conditions (Post Stim 3 

(t(20)=2.724, p=.013)) account for the interaction effect (Fig. 4). 
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Fig. 4. STAC speed thresholds. Average speed values obtained at baseline and post-stimulation. Error 

bars represent ±1 S.E.M.  

 

3.2.2. Accuracy 

As for speed threshold, no significant correlation was found between age and the accuracy of 

baseline performance (r(22)=-.339, p=.123). No significant difference in the accuracy of baseline 

results was observed between groups (t(20)=-.334, p=.741). 

Both groups performed well, although accuracy within the sham group decreased during the 

final session (Fig. 5). Accordingly, the results of the ANOVA demonstrate no significant effect of 

Time (F(3,60)=1.508, p=.222, ηp²=.070), Group (F(1,20)=2.740, p=.113, ηp²=.120), or their 

interaction (Time*Group: F(3,60)=1.975, p=.127, ηp²=.090). 
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Fig. 5. STAC performance accuracy. Average accuracy values obtained at baseline and post-

stimulation. Error bars represent ±1 S.E.M.  

In summary, anodal tDCS resulted in significantly better final speed thresholds, confined to 

the final stimulation session, whereas no significant differences in accuracy were evident. 

 

4. Discussion  

The aim of the study was to enhance attentional control in older adults, using tDCS optimised 

for use in the context of ageing. As predicted, anodal tDCS produced a significant increase in speed 

thresholds obtained as part of the STAC paradigm, whereas sham stimulation did not. However, this 

effect was restricted to the final session. The results, therefore, suggest that at this specific time point, 

those in the anodal stimulation group were more efficient at responding in line with task demands and 

inhibiting interference from irrelevant stimuli.  

4.1. Improving attentional control in ageing 

The results indicate that the observed increase in speed thresholds was unique to the anodal 

stimulation group. The lack of identical enhancement under sham control conditions suggests that task 

exposure (in the absence of active stimulation) was not sufficient to advance performance. The effect 
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emerged only at the third session, which suggests that the cognitive benefits of stimulation are not 

immediately observable in older adults (as found by Fujiyama et al., 2014). Such a delay is attributed 

to an age-related reduction in the efficiency of neurochemical signalling (McQuail et al., 2015), 

requiring additional exposure to stimulation to restore the mechanisms of plasticity and facilitate 

cognitive change. At present, it should be emphasised that the speed improvement is regarded as an 

acute, post-stimulation effect, as opposed to being sustained across the entire study. However, the 

present results highlight the potential benefits of non-invasive brain stimulation for older adults. To 

date, the literature has failed to demonstrate a robust effect of anodal tDCS on attention in general 

(Dedoncker et al., 2016; Reteig et al., 2017), and is lacking sufficient evidence with regard to 

attentional control in both younger and older adults. This study resulted in a large effect size 

(exceeding the 0.50 threshold required to be considered as clinically relevant; Sloan et al., 2005), thus 

making the results of the study particularly compelling. Nonetheless, further investigations are needed 

to clarify the extent to which tDCS can be regarded as beneficial in this context. 

A task as simple as crossing the road requires consistent monitoring of the environment to 

update the surroundings, suppression of irrelevant distractions, and sufficient inhibitory signalling to 

acknowledge when it would not be safe to proceed. This signifies that cognitive control mechanisms 

are integral to everyday life (Wilkins et al., 2010). As such, tDCS-induced enhancements are an 

incredibly valuable prospect, which could potentially contribute to the attenuation of cognitive decline 

while also helping to sustain the independence and well-being of older adults. Plans for a large-scale 

intervention, featuring tasks of inhibitory control, were recently published, which will no doubt 

provide further insight into the benefits of tDCS, specific to the ageing population (Woods et al., 

2018). Preliminary research suggests it is also possible to improve cognition via tDCS in those with 

Mild Cognitive Impairment (Meinzer et al., 2015) and early stage Alzheimer’s disease (Boggio et al., 

2012). However, improving severe impairment would be expected to be more difficult in light of 

advanced atrophy, as well as the loss of crucial neurochemicals that the stimulation method 

modulates. The greatest benefits of tDCS are, therefore, proposed to be apparent in supporting 
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existing plastic mechanisms and preventing cognitive decline, in advance of substantial 

neurodegeneration and related deficits. 

4.2. Stimulating the ageing brain 

The outcome of the current study highlights the importance of considering the 

neurobiological mechanisms of tDCS, and related issues of the chosen sample, as part of experimental 

design. As anticipated on the basis of computational modelling work (Laakso et al., 2015; Mahdavi 

and Towhidkhah, 2018), high intensity and long duration stimulation appears to be advantageous in 

the ageing population, contrary to findings in young adults (Batsikadze et al., 2013; Jamil et al., 2017; 

Esmaeilpour et al., 2018). Such protocols may also be crucial with respect to inducing sustained 

benefits because 2 mA stimulation has been reported as superior to 1 mA in this regard (Stephens and 

Berryhill, 2016), although blinding procedures may be compromised at such strengths (O’Connell et 

al., 2012). A systematic study of the effects of current intensity and duration in the ageing population 

has not been conducted but would certainly help to clarify the validity of this concept and its upper 

limits.  

With advancing age, older adults have been shown to recruit the left and right hemispheres of 

frontal cortex to perform cognitive tasks, even at low levels of demand (compared to young adults 

who demonstrate lateralisation: Cabeza, 2002; Carp et al., 2010; Sala-Llonch et al., 2015). 

Accordingly, the electrode configuration implemented as part of the study was designed to balance the 

demands on resources across the prefrontal network (Lindenberg et al., 2013; Tatti et al., 2016). As 

such, an improvement in attentional control may not have been observed having utilised a unilateral 

montage (to target a single hub within the network). Therefore, the observed tDCS-induced 

improvement in task switching speed is attributed to the parameters used, which were selected on the 

basis of what is known of the ageing brain and how current distribution is altered as a result (Laakso 

et al., 2015; Mahdavi and Towhidkhah, 2018). 

The complexity of the task switching paradigm may have also been integral to the present 

findings. Effects resulting from tDCS have been proposed to be more readily observed with difficult 
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tasks (Berryhill et al., 2014; Suntrup et al., 2013). Accordingly, the difficulty of the STAC task may 

have promoted engagement in order to elicit adequate performance. When coupled with the 

anticipated effects of tDCS on calcium transmission and the availability of glutamate (Nitsche et al., 

2003; Stagg et al., 2009), synaptic activation and depolarisation of the post-synaptic membrane would 

be facilitated thus enabling LTP (Wigström et al., 1986). It can be inferred that optimal calcium levels 

resulted from the stimulation as excessive calcium influx triggers hyperpolarisation (Lisman, 2001), 

which would be predicted to result in poor task performance. The stimulation may have similarly 

regulated GABAergic neurotransmission (also integral to plasticity; Trepel and Racine, 2000) in 

frontal cortices. Consequently, tDCS effects are potentially most evident during complex top-down 

tasks, which would be of great benefit in restoring goal-oriented functions that suffer substantially as 

a result of age-related frontal declines (Bennett et al., 2012).  

4.3. Optimising stimulation (study limitations and future developments) 

In the absence of neuroimaging data, demonstrating structural, functional, and/or 

neurochemical change, the current study is unable to confirm the origin of the performance 

enhancement. However, on the basis of past literature, the findings suggest that anodal stimulation 

produced a strengthening of prefrontal information processing to support task performance under 

conditions of increased difficulty, by restoring more youth-like function and alleviating pressure on 

compensatory mechanisms (Meinzer et al., 2013). Investigation of prefrontal response patterns, 

functional connectivity, and changes in neurochemistry is needed to clarify the precise mechanism of 

action. Whether the stimulation produced a sustained, cumulative effect, or a more acute alteration in 

participants’ response to stimulation, also remains to be determined. Such insight will be gained from 

incorporating baseline measures at each session. This will help to further characterise the nature of 

tDCS effects as research continues to support cognition in the context of ageing.  

Where tDCS has been shown to be beneficial in older adult samples, participants typically 

attend 5-10 separate sessions (Jones et al., 2015; Stephens and Berryhill, 2016). Here, a significant 

improvement in attentional control was observed at the final session in a series of three. While the 
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observed effect suggests that fewer sessions of tDCS were required to support task switching 

performance (where the effect is inferred to have been due to a change in acute sensitivity to tDCS, 

developing post-stimulation with each subsequent exposure, as opposed to being sustained across the 

duration of the study), the results also imply that single-session approaches are unlikely to be effective 

in altering older adult performance (Fujiyama et al., 2014; Horvath et al., 2015). Moving forward, the 

key to enhancing plasticity may be to minimise sessions but to implement within-session repeats of 

tDCS (Monte-Silva et al., 2013; Bastani and Jaberzadeh, 2014; Au et al., 2016; Au et al., 2017). Such 

protocols are also likely to be more appealing to participants than more frequent attendance. 

With regard to the precision of responses, in young adults, it is not uncommon for reaction 

time to improve but for anodal tDCS to result in a lack of benefits for performance accuracy (Brunoni 

and Vanderhasselt, 2014). In the context of the present study, it is also possible that no tDCS-induced 

improvement in accuracy was observed due to the nature of the task. The PEST algorithm attempts to 

maintain accuracy at 75% correct, whereas there was no ceiling level to the speed element of the task. 

Participants, therefore, had a far greater dynamic range for improvement with regard to speed. 

Adjusting the flexibility of the accuracy measure, may assist in determining whether improvements in 

the precision of task switching performance are also evident following anodal tDCS in older adult 

samples. 

Finally, during future studies, a wider variety of tests will be implemented in a longitudinal 

manner, to offer perspective on sustained effects that this initial investigation could not accommodate.  

Firstly, subsequent work will incorporate the means to assess changes in motor function, alongside 

attentional control. Although it would be unlikely that the induction of improved response speed, for 

example, would sufficiently account for the present findings (where STAC is dependent on precision 

and vigilance, identifying the target as it crosses the line, as opposed to gross response time), it will be 

important to identify any contributions relating to enhanced motor function as the research develops. 

Use of additional tests of executive control will also be incorporated, similar to Jones et al. (2015) and 

Stephens and Berryhill (2016), to enable distinctions between local and global benefits of stimulation 

(using tasks that participants are highly familiar with, compared to those they will have minimal 
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exposure to). This approach will allow for inferences on the transfer of effects and more holistic 

outcomes that could potentially influence everyday aspects of function.  

In conclusion, the study found that older adults’ speed of processing in relation to attentional 

control can be improved, in an acute manner, using anodal tDCS. However, there is much scope for 

further optimisation. The findings are attributed to the implemented paradigm and stimulation 

parameters, which reflect knowledge of the ageing process and tDCS mechanisms from a 

neurobiological perspective. Ultimately, those seeking to enhance cognition in populations known to 

experience changes in brain structure and function are encouraged to adopt a similar approach, as 

opposed to relying on standard protocols reported in the literature. Future benefits of stimulation are 

far more likely in this context; particularly with regard to ageing, the maintenance of cognitive health, 

and subsequent well-being. 
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Anodal tDCS improves attentional control in older adults.  

Dr Claire J. Hanley and Prof Andrea Tales  

 

Highlights   

Age-optimised stimulation parameters were used to increase attentional control. 

The study featured a novel task-switching paradigm. 

Anodal tDCS significantly improved task-switching speed in older adults.  

tDCS represents a viable method for enhancing cognitive function in ageing. 
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