

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43697

Book:

Fan, X. (2018). PRIMA 2018: Principles and Practice of Multi-Agent Systems. Tokyo. The 21st International

Conference on Principles and Practice of Multi-Agent Systems (PRIMA2018).

http://dx.doi.org/10.1007/978-3-030-03098-8

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/187088121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa43697
http://dx.doi.org/10.1007/978-3-030-03098-8
http://www.swansea.ac.uk/library/researchsupport/ris-support/

A Temporal Planning Example with Assumption-based
Argumentation

No Author Given

No Institute Given

Abstract. Agent planning has attracted much research attention in recent years.
In argumentation, agent planning has been studied by several researchers with
significant contributions made in modelling agent goals, desires and actions. How-
ever, there is little work that connects argumentation semantics, plan construction
and temporal information in a unified framework. In this work, we use a version
of the classic blocks world planning problem as our case study and demonstrate
how Assumption-based Argumentation can be used to tackle planning problems
with explicit time step information. In our approach, the process of plan construc-
tion is equated to constructing acceptable arguments (with respect to an argumen-
tation semantics) with temporal aspects taken into consideration.

1 Introduction

Agent planning has been studied with argumentation-based approaches by several re-
searchers. Notably, Amgoud and her colleagues have studied joining deliberation and
means-ends reasoning in a single unified argumentation system such that “[the] sys-
tem combines option generation and checking the feasibility of options” [1, 2]. In their
work, argumentation has been used to identify agent intentions in a way that the re-
sulting intentions satisfy the argumentation rationality postulates [2]. However, in their
work, temporal reasoning has not been considered as agent goals are fulfilled by sets
of actions instantaneously rather than through a sequence of actions over a course of
plan execution. On the other hand, García et al. [3] have studied incorporating defea-
sible information in agent planning, as originally proposed by Pollock [5]. In García’s
work, argumentation has been introduced to model defeasibility in planning [3]. Their
work is more inline with classic planning approaches (see e.g. [4]) in that their plans are
sequences of actions with effects. Although temporal information has been considered
in [3] with arguments modelling defeasibility, they have used a specifically designed
search process to identify suitable plans. Thus their plans are not confirmed to argu-
mentation rationality postulates in the same way as [2].

In this work, we study using Assumption-based Argumentation (ABA) [6] to solve
planning problems. In the same spirit as [3], we consider plans consist sequences of ac-
tions and performing an action results changes to the “world state”. Thus, the execution
of a plan transfers the world from some “initial situation” to a “final situation”. The de-
signed transformation is carried out argumentatively so argumentation semantics can be
used to validate plans. Unlike [3], where a dedicated algorithm was introduced to search
for plan solutions, we equate plan solution construction with acceptable argument com-
putation. In our work, actions are modelled with assumptions and the contrary of an

assumption describe conditions for which an action cannot be performed; the efforts
of an action describe changes to the world state, updating available actions. Overall,
our work can be viewed as an illustration of an ABA instantiation of Pollock’s idea on
defeasible planning: “It is argued that the planning must instead be done defeasibly,
making the default assumption that there are no threats and then modifying plans as
threats are discovered.” [5]

2 Background

Assumption-based Argumentation (ABA) frameworks are tuples 〈L,R,A, C〉,

– 〈L,R〉 is a deductive system, with L the language andR a set of rules of the form
s0 ← s1, . . . , sm(m ≥ 0, si ∈ L);

– A ⊆ L is a (non-empty) set of assumptions;
– C is a total mapping from A into 2L − {{}}, where each s ∈ C(a) is a contrary of
a, for a ∈ A.

Given a rule ρ = s0 ← s1, . . . , sm, s0 is referred to as the head and s1, . . . , sm as the
body. A rule with an empty body is referred to as a fact.

Arguments are deductions of claims using rules and supported by sets of assump-
tions; Attacks are targeted at the assumptions in the support of arguments:

– an argument for (claim) s ∈ L supported by ∆ ⊆ A (denoted ∆ ` s) is a finite
tree with nodes labelled by sentences in L or by τ 1, the root labelled by s, leaves
either τ or assumptions in ∆, and non-leaves s′ with, as children, the elements of
the body of some rule ρ with head s′;

– an argument A = ∆1 ` s1 attacks an argument ∆2 ` s2 iff s1 is a contrary of
some assumption α in ∆2, and we say A targets at α.

A set of arguments As is admissible iff As is conflict-free (i.e. no argument in As
attacks any argument in As) and all arguments attacking some argument in As are
counter attacked by arguments in As; an argument is admissible iff it belongs to an
admissible set of arguments.

3 Planning in Blocks World

A blocks world (Fig. 1) contains a set of “blocks” of different sizes and a set of “lo-
cations” where each block is at some location, and each location could have a “block
pile” such that if two blocks r, r′ are in a pile then r is placed higher than r′, iff r is
smaller than r′. The initial and final situations are two placements of blocks. Two types
of actions are possible to a block, (1) moving it from one location to another while sat-
isfying the “smaller-block-placed-higher” constraint and (2) no-operation, i.e., not to
move it. A plan is a sequence of actions which transfers the initial situation to the final
one. Formally, we use the following four definitions.

1 τ /∈ L represents “true” and stands for the empty body of rules.

Fig. 1. A blocks world with two blocks r1 and r2 and three locations a, b and c. The initial
situation is shown on the left-hand side and the final situation is shown on the right-hand side.

Definition 1. A blocks world is a tuple 〈R, L, <〉 in which R is a set of blocks, L is a set
of locations and <⊆ R × R is a total order such that for r1, r2 ∈ R, r1 < r2 iff r1 is
smaller than r2.

Definition 2. A blocks world planning problem is a tuple 〈W, T, S0, Sn〉 where

– W = 〈R, L, <〉 is a blocks world,
– T = 〈t0, . . . , tn〉 is a time step sequence,
– a situation Si (for a time step ti in T) is a set {at(r1, l1, ti), . . . , at(rn, lm, ti)}

specifying the location lj ∈ L for each block rk ∈ R. For a situation Si, there is no
rk ∈ R such that rk is not specified in Si. Moreover,
• S0 = {at(r1, l1, t0), . . . , at(rn, lm, t0)} is the initial situation, and
• Sn = {at(r1, l′1, tn), . . . , at(rn, l′m, tn)} is the final situation.

Definition 3. In a blocks world 〈R, L, <〉, the two actions are: (1) move(X,L,L′, T),
move X ∈ R from L ∈ L to L′ ∈ L at time step T , and (2) noOp(X,L, T), do nothing
to X ∈ R sitting at L ∈ L at time T .

Given Si = {at(r1, l1, ti), . . . , at(rn, li, ti)}, then apply move(ri, l, l
′, ti) to Si

yield (Si \ {at(ri, l, ti)}) ∪ {at(ri, l′, ti+1)}; apply noOp(ri, l, ti) to Si yield (Si \
{at(ri, l, ti)}) ∪ {at(ri, l, ti+1)}.

move(X,L,L′, T) is valid iff all of the following conditions hold (at time T):

(C1) X sits at L;
(C2) there is no X ′ ∈ R such that X ′ is at L and X ′ < X;
(C3) if there is a block at L′, then let X ′ ∈ R be the top block at L′, X < X ′;
(C4) X is not being moved to a different location L′ ∈ L; and
(C5) there is no other block X ′ ∈ R being moved to L.

Definition 4. A plan for 〈W, T, S0, Sn〉 is a set
{P (r1, t0) . . . P (rm, t0)} ∪ . . .∪ {P (r1, tn) . . . P (rm, tn)}

where each P (ri, tj) is either move(ri, l, l′, tj) or noOp(ri, l, tj) such that S1 is ob-
tained by applying all P (r, 0) to S0; Si+1 is obtained by applying all P (r, ti) to Si;
and Sn is obtained by applying all P (r, tn−1) to Sn−1.

A plan P is valid iff all actions in P are valid; otherwise, P is invalid.

We illustrate Definition 2-4 with the following example.

Example 1. Given the blocks world shown in Figure 1, we have blocks R = {r1, r2},
locations L = {a, b, c} and time steps T = 〈t0, t1, t2, t3〉. Moreover, r1 is smaller
than r2. The initial situation is {at(r1, a, t0), at(r2, a, t0)} and the final situation is
{at(r1, c, t3), at(r2, c, t3)}. It is easy to see that {move(r1, a, b, t0), noOp(r2, a, t0),
noOp(r1, b, t1), move(r2, a, c, t1), move(r1, b, c, t2), noOp(r2, c, t2)} is a plan.

4 Planning in Blocks World with ABA

We take a two-step approach to model blocks world planning with ABA. Firstly, we
define the core framework wrt a blocks world; then, for any given specific problem
with a given time step sequence and initial, final situations, we define an instantiated
framework (extending the core framework) to generate specific plans. Formally,

Definition 5. Given a blocks world W = 〈R, L, <〉, the core framework corresponding
to W is an ABA framework F0 = 〈L0,R0,A0, C0〉 such that:2

– R0 contains the following rules and nothing else.
above(X,X ′, L, T)← at(X,L, T), at(X ′, L, T), smaller(X,X ′) (1)
at(X,L, T)← at(X,L, T−), noOp(X,L, T−), succ(T, T−) (2)
at(X,L, T)← at(X,L′, T−),move(X,L′, L, T−), succ(T, T−) (3)
occupied(X,L, T)← at(X ′, L, T), smaller(X ′, X) (4)
smaller(X,X ′)← (5)

– A0 contains the following assumptions and nothing else.
move(X,L′, L, T) noOp(X,L, T) notAt(X,L, T)

– C0 is such that:
C(move(X,L′, L, T)) = {noOp(X,L, T),move(X,L′, L′′, T),

move(X ′, L′′, L, T), above(X ′, X, L, T),
occupied(X,L, T), notAt(X,L′, T)}

C(noOp(X,L, T)) = {move(X,L,L′, T)}
C(notAt(X,L, T)) = {at(X,L, T)}

Rule 1 states that a block X is above another block X ′ at time T if both X and X ′

are at the same location L at time T and X is smaller than X ′. Rule 2 states that if a
block X is at location L at ti and it is not moved at ti, then X is at L at time ti+1. Rule
3 states that, at ti, if a block X is at location L′ and X is moved from L′ to L, then X
is at L at ti+1. Rule 4 states that a location L is occupied wrt to a block X if there is
another block X ′ at L such that X ′ is smaller than X . Rule 5 states that X is smaller
than X ′ for all X < X ′.

Assumptions A0 and their contraries C0 can be read as:

1. we move a block X from L′ to L at time T unless (a) we do not move X , or (b)
we move it to a different L′′, or (c) some other block X ′ 6= X is moved to L, or
(d) some other block X ′ is on top of X , or (e) X is no smaller than the top of pile
block at L, or (f) X is not at L′.

2. we do not move a block X unless we move it;
3. a block X is not at a location L unless it is at L.

Within a blocks world, a planning problem can be modelled with an instantiated
framework, defined as follows.

2 We use rule and assumption schemata to simplify our notations. Specifically, in each of the
rules, assumptions and contraries, we have X,X ′ ∈ R, X 6= X ′, L, L′, L′′ ∈ L, L 6= L′, L 6=
L′′, L′ 6= L′′ and T, T− in some time step sequence. In Rule 5, we also enforce thatX < X ′.

Table 1: Arguments attacking A in Example 2.
Arguments targeting at move(r1, a, b, t0):
B1 = {m(r1, a, c, t0)} ` m(r1, a, c, t0), B2 = {m(r2, a, b, t0)} ` m(r2, a, b, t0),
B3 = {m(r2, c, b, t0)} ` m(r2, c, b, t0), B4 = {n(r1, a, t0)} ` n(r1, a, t0),
B5 = {nA(r1, a, t0)} ` nA(r1, a, t0).
Arguments targeting at n(r2, a, t0):
C1 = {m(r2, a, b, t0)} ` m(r2, a, b, t0), C2 = {m(r2, a, c, t0)} ` m(r2, a, c, t0).
Arguments targeting at n(r1, b, t1):
D1 = {m(r1, b, a, t1)} ` m(r2, b, a, t1), D2 = {m(r1, b, c, t1)} ` m(r2, b, c, t1).
Arguments targeting at m(r2, a, c, t1):
E1 = {m(r2, a, b, t1)} ` m(r2, a, b, t1), E2 = {m(r1, a, c, t1)} ` m(r1, a, c, t1),
E3 = {m(r1, b, c, t1)} ` m(r1, b, c, t1), E4 = {n(r2, a, t1)} ` n(r2, a, t1),
E5 = {nA(r2, a, t1)} ` nA(r2, a, t1), E7 = {m(r1, a, c, t0)} ` o(r2, c, t1),
E6 = {n(r1, a, t0), n(r2, a, t0)} ` above(r1, r2, a, t1).
Arguments targeting at m(r1, b, c, t2):
F1 = {m(r1, b, a, t2)} ` m(r1, b, a, t2), F2 = {m(r2, a, c, t2)} ` m(r2, a, c, t2),
F3 = {m(r2, b, c, t2)} ` m(r2, b, c, t2), F4 = {n(r1, b, t2)} ` n(r1, b, t2),
F5 = {nA(r1, b, t2)} ` nA(r1, b, t2).
Arguments targeting at n(r2, c, t2):
G1 = {m(r2, c, a, t2)} ` m(r2, c, a, t2), G2 = {m(r2, c, b, t2)} ` m(r2, c, b, t2).

Definition 6. For a planning problem Π = 〈W, T, S0, Sn〉, let 〈L0,R0,A0, C0〉 be the
core framework for W , then the instantiated framework corresponding to Π is an ABA
framework FI = 〈LI ,RI ,AI , CI〉 such that:

– RI isR0 with the following additional rules:
goal← s1, . . . , sm, for {s1, . . . , sm} = Sn, (1)
succ(T, T−)←, for all T, T− ∈ T such that T is the successor of T−, (2)
s← for each s ∈ S0; (3)

– AI = A0, and for each α ∈ AI , CI(α) = C0(α).

The core framework corresponding to a blocks world W capturing generic infor-
mation about W . The instantiated framework encodes information that is specific to a
planning problem. Namely, RI contains all rules in R0 and with an addition rule to
describe what is to be achieved in the final situation (Rule 1), facts to describe the time
step sequence (Rule 2), and facts to describe the initial situation (Rule 3). We illustrate
Definition 5 and 6 with the following example.

Example 2. (Example 1 continued.) As given in Definition 6, we introduce rules
goal← at(r1, c, t3), at(r2, c, t3)
at(r1, a, t3)← at(r2, a, t3)← smaller(r1, r2)←

in the instantiated framework. An admissible argument for goal, A = ∆ ` goal, is
shown in Figure 2 with ∆ = {move(r1, a, b, t0), noOp(r2, a, t0), noOp(r1, b, t1),
move(r2, a, c, t1), move(r1, b, c, t2), noOp(r2, c, t2)}. Arguments attacking A are in
Table 1.3 Arguments attacking B1 . . . G2 (thus defending A) are shown in Table 2 (B′1

3 Here, m,n, nA and o are short-hands for move, noOp, notAt and occupied, respectively.

goal

at(r1, c, t3)

44

at(r2, c, t3)

ll

at(r1, b, t2)

44

move(r1, b, c, t2)

OO

succ(t3, t2)

jj

at(r2, c, t2)

44

noOp(r2, t2)

OO

succ(t3, t2)

jj

at(r1, b, t1)

OO

noOp(r1, t1)

jj

succ(t2, t1)

ll

at(r2, a, t1)

OO

move(r2, a, c, t1)

jj

succ(t2, t1)

ll

at(r1, a, t0)

OO

move(r1, a, b, t0)

jj

succ(t1, t0)

ll

at(r2, a, t0)

OO

noOp(r2, t0)

jj

succ(t1, t0)

ll

Fig. 2. An argument for goal in Example 2. To save space, all leaf nodes τ , as the child of
underlined nodes, are omitted.

attacks B1, B′2 attacks B2, etc). We observe that all arguments in Table 2 are sup-
ported by assumptions in ∆ except B′3 = {nA(r2, c, t0)} ` nA(r2, c, t0), E′2 =
{nA(r1, a, t1)} ` nA(r1, a, t1) and F ′3 = {nA(r2, b, t2)} ` nA(r2, b, t2). Among
these,B′3 is not attacked as there is no argument for at(r2, c, t0).E′2 is attacked byH =
{n(r1, a, t0)} ` at(r1, a, t1) andF ′3 is attacked by I1 = {m(r2, a, b, t0), n(r2, b, t1)} `
at(r2, b, t2), I2 = {m(r2, a, c, t0),m(r2, c, b, t1)} ` at(r2, b, t2), and argument I3 =
{n(r2, a, t0),m(r2, a, b, t1)} ` at(r2, b, t2). However, H is attacked by B′1, I1 and I2
are attacked by B′2. I3 is attacked by E′1. Thus, A is defended by arguments in Table 2.

Table 2: Summary of arguments defending A in Example 2.
B′1 {m(r1, a, b, t0)} ` m(r1, a, b, t0) B′2 {n(r2, a, t0)} ` n(r2, a, t0)
B′3 {nA(r2, c, t0)} ` nA(r2, c, t0) B′4 {m(r1, a, b, t0)} ` m(r1, a, b, t0)
B′5 {} ` at(r1, a, t0)
C′1 {n(r2, a, t0)} ` n(r2, a, t0) C′2 {n(r2, a, t0)} ` n(r2, a, t0)
D′1 {n(r1, b, t1)} ` n(r1, b, t1) D′2 {n(r1, b, t1)} ` n(r1, b, t1)
E′1 {m(r2, a, c, t1)} ` m(r2, a, c, t1) E′2 {nA(r1, a, t1)} ` nA(r1, a, t1)
E′3 {n(r1, b, t1)} ` n(r1, b, t1) E′4 {m(r2, a, c, t1)} ` m(r2, a, c, t1)
E′5 {n(r2, a, t0)} ` at(r2, a, t1) E′6 {m(r1, a, b, t0)} ` m(r1, a, b, t0)
E′7 {m(r1, a, b, t0)} ` m(r1, a, b, t0)

F ′1 {m(r1, b, c, t2)} ` m(r1, b, c, t2) F ′2 {n(r2, c, t2)} ` n(r2, c, t2)
F ′3 {nA(r2, b, t2)} ` nA(r2, b, t2) F ′4 {m(r1, b, c, t2)} ` m(r1, b, c, t2)
F ′5 {m(r1, a, b, t0), n(r1, b, t1)} ` at(r1, b, t2)
G′1 {n(r2, c, t2)} ` n(r2, c, t2) G′2 {n(r2, c, t2)} ` n(r2, c, t2)

Theorem 1. Given a planning problem Π , let FI be the instantiated framework corre-
sponding to Π , then there is a valid plan for Π iff there exists an admissible argument
∆ ` goal in FI .

Proof. (Sketch.) We first show that if a plan exists then an admissible argument A =
∆ ` goal. By Rule 1 in Definition 6, we know that to “prove” goal, we need to “prove”
at(X,L, tn) for all blocks X , each at some location L. It is easy to see that using a
combination of Rules 2 & 3 in Definition 5, all blocks can be placed to their speci-
fied locations (assuming tn is large enough) so A can be constructed. To see that A is
admissible, we make the following observations.

– Arguments targeting at α = noOp(_, _, _) are of the form {move(_, _, _, _)} `
move(_, _, _, _). These arguments can be counterattacked by N = {α} ` α. N
does not attack A.

– Arguments targeting at α′ = move(X,L,L′, T) are of the following forms:
(1) {noOp(X,L, T)} ` noOp(X,L, T) (not to move X away from L at time T)
and {move(X,L,L′′, T)} ` move(X,L,L′′, T) (move X to a different location).
These arguments can be counterattacked by M = {α′} ` α′. M does not attack A.
(2) {move(X ′, L′′′, L′, T)} ` move(X,L′′′, L′, T). These can be counterattacked
by either {move(X ′, L′′′, L∗, T)} ` move(X,L′′′, L∗, T) or {noOp(X ′, L′′′, T)} `
noOp(X ′, L′′′, T) or {notAt(X ′, L′′′, T)} ` notAt(X ′, L′′′, T). These arguments
do not attack A.
(3) _ ` above(X ′, X, L, T). By Rule 1 in Definition 5, to have arguments of this
form, we need to have some block X ′ at the same location as X but smaller. Under
such cases,X should not be moved thus no suchmove(X,L,L′, T) would be used
to support A.
(4) _ ` occupied(X ′, X, T). By Rule 4 in Definition 5, to have arguments of this
form, we have some block smaller than X at the destination of the move. In such
cases, X should not be moved to that destination so no such move(X,L,L′, T)
would be used to support A.

Since a plan exists for this problem, a sequence of moves and noOps, which would not
trigger indefensible attacks from ∆ ` above(X ′, X, L, T) or ∆ ` occupied(X ′, X, T)
must exist. The other direction of this theorem is trivial as once an admissible A is
found, assumptions from A consist a plan.

The following corollary follows trivially from Theorem 1.

Corollary 1. Given a planning problem Π , let FI be the instantiated framework cor-
responding to Π , if ∆ ` goal is admissible in FI , then ∆ is a valid plan for Π .4

Theorem 1 and Corollary 1 establish the connection between planning in blocks
world and ABA frameworks. The admissibility of the argument A for goal can be
viewed as a means to justify the “validity” of the plan as every assumption support-
ing the argument A is “defended”. This can be read as every action in the plan is valid.
Similarly, non-admissible arguments of the form ∆ ` goal correspond to invalid plans,
illustrated with the next example.

Example 3. Given the blocks world shown in Figure 1, the plan

P = {move(r1, a, c, t0), noOp(r2, a, t0),move(r2, a, c, t1), noOp(r2, c, t1)}

is invalid as c is occupied by r1 at t1 and r1 < r2. So move(r2, a, c, t1) is invalid and
it is in an explanation for P . Let FI be the instantiated framework.

A′ = {move(r1, a, c, t0), noOp(r2, a, t0),move(r2, a, c, t1), noOp(r2, c, t1)} ` goal
4 We abuse the notation∆. Here and hereinafter,∆ is used to represent both a set of assumptions

in the instantiated framework FI and a plan containing a set of actions with syntactically
identical names in the corresponding planning problem Π .

is not admissible in FI . Arguments attacking A′ are shown in Table 3. Using reasoning
similar to Example 2, we see that A is able to defend all of its attackers except E6 as
E6 is supported by a single assumption m(r1, a, c, t0), which also supports A′. Thus,
any argumentBi attacksE6 must also attackA′. Any set of argument containingA′, Bi

cannot be conflict-free, therefore A′ is not admissible.

Table 3: Arguments attacking A′ in Example 3.
Arguments targeting at move(r1, a, c, t0):
B1 = {m(r1, a, b, t0)} ` m(r1, a, b, t0) B2 = {m(r2, a, c, t0)} ` m(r2, a, c, t0)
B3 = {m(r2, b, c, t0)} ` m(r1, b, c, t0) B4 = {n(r1, a, t0)} ` n(r1, a, t0)
B5 = {nA(r1, a, t0)} ` nA(r1, a, t0)
Arguments targeting at noOp(r2, a, t0):
C1 = {m(r2, a, b, t0)} ` m(r2, a, b, t0) C2 = {m(r2, a, c, t0)} ` m(r2, a, c, t0)

Arguments targeting at noOp(r1, c, t1):
D1 = {m(r1, c, a, t1)} ` m(r1, c, a, t1) D2 = {m(r1, c, b, t1)} ` m(r1, c, b, t1)

Arguments targeting at move(r2, a, c, t1):
E1 = {m(r2, a, b, t1)} ` m(r2, a, b, t0) E2 = {m(r1, a, c, t1)} ` m(r1, a, c, t1)
E3 = {m(r1, b, c, t1)} ` m(r1, b, c, t1) E4 = {n(r2, a, t1)} ` n(r2, a, t1)
E5 = {nA(r2, a, t1)} ` nA(r2, a, t1) E6 = {m(r1, a, c, t0)} ` o(r2, c, t1)
E7 = {n(r1, a, t0), n(r2, a, t0)} ` above(r1, r2, a, t1)

5 Conclusion

In this paper, we studied how to use ABA to model planning problems in line with the
defeasible planning proposal suggested by Pollock. Using blocks world as a case study,
we demonstrated the feasibility of using ABA to plan. The two key ideas are (1) with
actions modelled with assumptions, plan construction can be equated to the construction
of ABA arguments and (2) by modelling action constraints as arguments attacking the
plan, identifying valid plans can be equated to computing admissible ABA arguments.
In future, we will generalise this work to create argumentation-based planning models
and apply our work in some real-world practical planning applications.

References
1. L. Amgoud, C. Devred, and M. Lagasquie-Schiex. A constrained argumentation system for

practical reasoning. In Prof. of AAMAS, pages 429–436, Richland, SC, 2008. International
Foundation for Autonomous Agents and Multiagent Systems.

2. L. Amgoud, C. Devred, and M. Lagasquie-Schiex. Generating possible intentions with con-
strained argumentation systems. IJAR, 52(9):1363–1391, 2011.

3. D. R. García, A. J. García, and G. R. Simari. Defeasible reasoning and partial order planning.
In Proc. of FoIKS, pages 311–328, Berlin, Heidelberg, 2008. Springer-Verlag.

4. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

5. J. Pollock. Defeasible planning. In Proc. of AAAI Workshop, Integrating Planning, Scheduling
and Execution in Dynamic and Uncertain Environments, 1998.

6. F. Toni. A tutorial on assumption-based argumentation. Argument & Computation, Special
Issue: Tutorials on Structured Argumentation, 5(1):89–117, 2014.

