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supersymmetry, and show how the half-maximal structure of ExFT permits the inclusion
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1 Introduction

Despite substantial effort during the 23 years since the inception of M-theory [1], it remains

an open problem to provide a complete account of the theory beyond its low energy limits

or its perturbative vacua described by critical superstring theories. Whatever form this

final answer takes, it seems likely that duality symmetries will play an essential role [2–4].

Indeed, a significant enterprise has been to develop a theory that captures the low energy

effective dynamics of M-theory i.e. supergravity, but in way that promotes dualities to

manifest symmetries.

This approach has centred on the development of double field theory (DFT) [5–7]

and exceptional field theory (ExFT) [8, 9]. These theories provide linear realisations of

O(d − 1, d − 1) (T-duality) or Ed(d) (U-duality) acting on an extended space obtained by

augmenting the coordinates of the regular maximal supergravity theories with additional

spatial coordinates.

This gives a unified description of the standard 10- and 11-dimensional supergravity

theories, which are related by duality upon dimensional reduction. The bosonic supergrav-

ity degrees of freedom are combined into common Ed(d) or O(d− 1, d− 1) multiplets, while

the fermions transform under the double cover of the maximal compact subgroups of these

groups. The bosonic local symmetries, including both diffeomorphisms and p-form gauge

transformations, combine into so-called “generalised diffeomorphisms” [10–12]. In order to

obtain formal Ed(d) or O(d− 1, d− 1) covariance, we allow all fields and gauge parameters

to depend in principle on any of the extended coordinates. However, we must impose a

constraint on the coordinate dependence, which restricts the total number of “physical”

coordinates, on which fields can depend, to 10 or 11.

This constraint is known as the section condition. A solution of the section condition

(or SSC, for short)1 amounts to a choice of which 10 or 11 coordinates the fields may

depend on, and which can be viewed as the coordinates of physical spacetime. The section

1We shall eschew the usual language whereby solutions of the section condition are referred to as “sec-

tions” to avoid a clash of terminology when we introduce genuine sections of bundles.
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condition of ExFT admits inequivalent SSCs, which correspond to either 11-dimensional

supergravity, ten dimensional type IIA supergravity or type IIB supergravity. We will often

refer to the 11-dimensional SSC as the M-theory SSC. The type IIB SSCs are inequivalent

to the M-theory/type IIA SSCs in that they cannot be related by an Ed(d) transformation.

We can view changing the choice of SSC as a form of duality in the general sense. This

interchanges M-theory, type IIA and type IIB descriptions.

These are the theories with maximal supergravity, and the full duality web contains

also theories with less supersymmetry. Recently, [13–15] has provided an ExFT description

of half-maximally supersymmetric backgrounds, and shown how this leads to an ExFT

description of heterotic SUGRA compactifications.2 The subject of this paper is to push

this correspondence further, and to establish a connection within ExFT between M-theory

and the heterotic and unoriented superstring theories in 10 dimensions. In particular, we

will explore how to capture the non-Abelian gauge fields within ExFT.

Famously, the E8 × E8 heterotic string is obtained from M-theory by an orbifold

reduction on S1/Z2 [20, 21]. From there the SO(32) heterotic theory can be obtained by

T-duality and, as conjectured in [1], the type I by a subsequent S-duality [22–24]. A second

route to the type I theory is its construction as an orientifold of IIB [25].

We will demonstrate how this picture can be understood naturally in the ExFT context,

by quotienting by elements of Ed(d), which generalise and combine standard orientifold and

orbifold actions on supergravity fields. All these half-maximal theories — M-theory on

an interval, type II with orientifold planes, and the heterotic theories — can be obtained

from a Z2 quotient of ExFT, with the additional gauge fields appearing via a twist ansatz

similar to [13–15].

We will also discuss quotients of ExFT by more general discrete subgroups of Ed(d).

Depending on the choice of SSC, these will correspond generically to non-geometric and

non-perturbative “generalised orientifolds” (as termed in [26]) of string theory and M-

theory, where the spacetime coordinates will be identified with brane wrapping coordinates.

In some cases, the identification may be between 10-dimensional coordinates and string

winding coordinates, which should correspond to asymmetric orbifolds of strings.

In ExFT, we would rather call the result of such quotients a generalised orbifold or an

O-fold . ExFT involves an extended spacetime and Ed(d) multiplets of generalised tensors

defined on this background, on which the Ed(d) quotient acts entirely geometrically. We

contrast this with the situation in an orientifold, or the Hořava-Witten orbifold, where one

has to supplement the spacetime reflections with additional transformations of the space-

time fields - as we will see, these together generate an Ed(d) transformation. Just as DFT

and ExFT should be the natural setting in which to define T- and U-folds (non-geometric

backgrounds where one patches by duality transformations), it should then provide a way

to study quotients leading to “O-folds”. Indeed, there is a close relation between non-

geometric compactifications with duality twists and duality quotients [27], with O-folds as

2In the context of half-maximal DFT, heterotic SUGRA can be accommodated as shown in [5, 6, 16, 17]

by extending O(d, d) to O(d, d+N), which also allows for a description of the gravitational contribution to

the Bianchi identity, both in DFT [18] and generalised geometry [19].

– 2 –
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we are defining them here appearing at the fixed points in moduli space of U-fold compact-

ifications.

In order to obtain half-maximal theories, we will restrict to quotients which are com-

patible with the structures associated to half-maximal supersymmetry in ExFT [13–15].

More specifically, in this manuscript we shall show that:

1 conventional orbifolds [28] and orientifolds [25, 29, 30] can be given a common origin

in ExFT as an orbifold action of the extended space,

2 for a particular, simple, Z2 quotient one can recover variously Type I, Type I′, het-
erotic E8 × E8, heterotic SO(32) as well as type II theories in the presence of other

orientifold planes, depending on the alignment of orbifold of the extended space and

the chosen solution to the section condition,

3 more generally, one can define orbifold and orientifold actions preserving half of the

supersymmetry by requiring compatibility with an ExFT half-maximal structure [15],

4 furthermore, one can use this half-maximal structure to include “twisted sector”

degrees of freedom which go beyond maximal supergravity at the O-fold fixed points,

such as gauge fields living on D-branes, or vector multiplets of the type I and heterotic

theories,

5 admissible half-maximal orbifold actions are described by discrete subgroups of the

stabiliser of the half-maximal structure. For the case of SL(5) ExFT, where the

stabiliser is SU(2), this means they admit an ADE classification,

6 generically these quotients are non-geometric, i.e. they involve identifications between

the physical coordinates in spacetime and dual (string winding and brane wrapping)

coordinates. We expect that these quotients can in some cases be related to usual

asymmetric orbifolds [31, 32], or to (non-perturbative) generalisations thereof.

Mostly the results we give are general and will apply to the ExFT corresponding to

any of Ed(d) series for d ≥ 4. In some cases, minor modifications following [15] may be

necessary, and will we indicate where this is necessary in the text. For illustrative purposes,

we will mostly discuss the case of E4(4) = SL(5) in detail, though we will also study the

different chiral and non-chiral half-maximal structures of E5(5) = Spin(5, 5) in the first

appendix.

Compelling though these results are, there remains a challenging question that we will

not address in the present work. Although we will here refer to the theories obtained by

this quotient as heterotic SO(32) or heterotic E8 ×E8, when we eventually add the vector

multiplets for these theories we will not be precise about what the gauge group actually

is. While we do recover expected features of localised vector multiplets such as modified

Bianchi identities and appropriate Yang-Mills terms in the action, in this paper we will not

provide a direct way to constrain the number of vector multiplets or their gauge group from

first principles within ExFT. Possibly, the entire framework of anomaly cancelation may

– 3 –
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need to be considered from an ExFT perspective. We leave this as an enticing challenge

for the future.

There has been some previous work on the incorporation of orientifold projections in

generalised geometry (to which DFT and ExFT reduce on solving the section condition).

Orientifolds in O(d, d) generalised geometry can be accommodated as in [33], allowing for

transformations which do not preserve the O(d, d) structure but scale it by a constant. A

description of orientifolds in E7(7) generalised geometry appeared in [34] in which the ori-

entifold projection was required to be compatible with D = 4 N = 1 and N = 2 structures.

Meanwhile, in ExFT itself, a Z2 projection of the E7(7) ExFT was used in [35] on the way

to obtain the “SL(2) DFT”, and it was noted there that this projection corresponded to

orientifolding.

Here we go further, in several ways. Firstly, we show how different half-maximal

theories, including the 11-dimensional Hořava-Witten theory, 10-dimensional type I and

heterotic supergravities, and various lower-dimensional theories, are unified in ExFT upon

imposing the O-fold quotient. Secondly, we provide evidence that orientifolds and orbifolds

should be understood as generalised orbifold acting on the extended space. In particular,

as we will show in the half-maximal case, the inclusion of “twisted sectors” at the O-

fold fixed point will give rise to the required vector multiplets. Thirdly, we show how to

systematically construct orientifolds and orbifolds preserving half-maximal supersymmetry

in generalised parallelisable backgrounds, including quotients that should correspond to

asymmetric orbifolds.

Let us now outline the form of this paper. In section 2, we discuss immediately how

a Z2 orbifold of the SL(5) ExFT reproduces the field content and quotients that appear

in what we might call the half-maximal duality web, uniting M-theory on an interval, the

heterotic theories, and type II in the presence of orientifold planes. We present here a short

reminder of this duality web in section 2.1, and a brief introduction to the core concepts of

ExFT in section 2.2 to allow us to emphasise its utility here with a minimum of background.

In section 3, we explain more fully how to define generalised orbifolds of ExFT which

preserve half the supersymmetry. We first review more details of the ExFT framework,

including the notion of a half-maximal structure [13, 15]. We then explain how to quotient

by discrete subgroups of the stabiliser of such a structure, and go into more detail on the

classification of such subgroups for the case of SL(5).

In section 4, we discuss how one can expand all the ExFT fields in order to include

additional (localised) gauge fields via a “twisted” ansatz. We discuss how this enables us to

include modifications to the gauge transformations, field strengths and Bianchi identities

of the ordinary ExFT fields, that for the Z2 generalised orbifold on choosing an SSC

correspond to the expected modifications in the different half-maximal theories. We also

discuss how one obtains the contributions of the additional gauge fields to the action.

We conclude in section 5 with a summary of our findings, and a discussion of what we

feel are the interesting and natural questions that should be followed up.

A number of appendices cover additional material. Firstly, in appendix A we study

some Z2 and Z4 generalised orbifolds of the Spin(5, 5) ExFT. Here there are two inequiva-

lent half-maximal structures, linked to the appearance of chiral and non-chiral theories in

– 4 –
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D = 6. We also discuss the description of orientifolds in double field theory in appendix B.

The remaining appendices include information on the relationship between ExFT and su-

pergravity, and provide useful expressions for the SL(5) ExFT.

2 The half-maximal duality web and a Z2 orbifold of exceptional field

theory

Our goal is to study orbifold and orientifold actions in string and M-theory from a unified

perspective, using exceptional field theory. In this section, we want to focus on how this

works for a simple Z2 orbifold, which allows one to explore the half-maximal duality web

within ExFT.

2.1 The duality web

First, let us recall the standard picture of dualities that connects string and M-theory [1].

There are two 10-dimensional string theories with maximal (N = 2) supersymmetry. These

are the type IIA and type IIB theories. The corresponding low energy supergravities contain

the same NSNS sector fields — a metric, two-form and dilaton — and different RR sectors,

consisting of odd p-form gauge fields in the IIA case and even p-form gauge fields in the

IIB case, and their supersymmetric fermionic counterparts. Compactifying on a circle, the

two theories are related by T-duality.

At strong coupling, type IIA is described by an 11-dimensional theory, M-theory, with

the radius of the eleventh dimension related to the IIA string coupling. Its low energy limit

is 11-dimensional supergravity, whose bosonic degrees of freedom consist just of a metric

and a three-form.

In addition, there are three 10-dimensional string theories with half-maximal (N = 1)

supersymmetry. These are the heterotic string theories with gauge groups SO(32) and

E8 × E8, and the type I superstring. The two heterotic theories are related by T-duality

after compactifying on a circle with Wilson lines, while the type I theory and the SO(32)

heterotic string are related by S-duality.

The IIB superstring is self-S-dual, while the strong coupling limit of the E8 ×E8 het-

erotic string [36] is given by 11-dimensional M-theory on an interval, as described by Hořava

andWitten [20, 21]. In this case, the length of the interval determines the heterotic coupling

constant. We can view this interval as the result of orbifolding a compact 11th direction ys

by the Z2 reflection ys → −ys. This is a symmetry of 11-dimensional supergravity when

combined with an action of the three-form, C(3) → −C(3) (and an appropriate lift to the

fermions). The fixed points of the reflection symmetry are the loci of two 10-dimensional

“end-of-the-world” branes. On these branes, extra degrees of freedom appear, consisting

of gauge fields for the group E8 at each boundary, as mandated by anomaly cancellation.

These supply the gauge fields of the E8×E8 heterotic string. As the length of the interval

is shrunk, the surviving components of the 11-dimensional metric and three-form become

the metric, dilaton and two-form of the weakly-coupled heterotic string.

Return now to the type I superstring. This can be obtained by orientifolding the type

IIB superstring. In general, an orientifold is obtained by quotienting string theory on some

– 5 –
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background M by a group G1 ∪G2Ω, where G1 and G2 are discrete groups, and Ω is the

worldsheet parity transformation. Worldsheet parity is a symmetry of the type IIB string,

and quotienting by this leads to the type I superstring. Of the bosonic massless states,

the NSNS 2-form and RR 0- and 4-forms are projected out. The resulting theory can be

thought of as type IIB superstring theory in the presence of a spacetime filling orientifold

plane. In general, these O-planes couple to the RR fields and carry negative tension. This

forces the inclusion of D-branes of the same dimension, in order to cancel the overall charge

(when the transverse space is compact). This introduces a “twisted sector”, consisting of

the open strings which end on the D-branes. For the type I theory, 16 D-branes are needed

and the open strings lead to the gauge group SO(32).

Under T-duality, the worldsheet parity symmetry of type IIB becomes a symmetry of

type IIA consisting of the composition of worldsheet parity with reflection in the dual space-

time direction. Orientifolding by this leads to the type I′ theory. The fixed points of the

spacetime reflection at the endpoints of the resulting interval are O8-planes. This can be

related to the reduction of the Hořava-Witten setup on a circle, with the end-of-the-world

branes there reducing to the O8-planes. Further T-dualities lead to Op planes for p < 8,

corresponding to quotients of the type II theory by additional spatial reflections, world-

sheet parity and (in some cases) spacetime left-moving fermion number (−1)FL (see [37–39]

for relevant pedagogical reviews). To be specific,3 one obtains O9 and O5 planes by ori-

entifolding IIB with Ωσ, where σ is the appropriate spacetime reflection, while to obtain

O7 and O3 planes one orientifolds with (−1)FLΩσ. Meanwhile one obtains O6 planes from

orientifolding IIA by (−1)FLΩσ, while to get O8 planes one uses just Ωσ. We should note

that all the orientifolds we consider in this paper are those with negative RR charge and

which then give rise to gauge groups SO(2n) when coincident with n Dp-branes.

In addition, one can consider other orbifolds of M-theory and their relationship to type

II [40–42], for example the T 5/Z2 orbifold of M-theory which leads to a six-dimensional

fixed point with a chiral theory, dual to IIB on K3 (we will encounter this in appendix A).

2.2 Field content of exceptional field theory

We shall unify the description of these orbifold and orientifold quotients, by making use of

exceptional field theory. First, we will provide a theoretical minimum of exceptional field

theory (ExFT): we introduce the idea of the extended coordinates, the field content and

how it fits into ExFT representations, and the so-called section condition which restricts

how the fields depend on the coordinates. We first explain the set up in general and then

illustrate this explicitly for the case of the E4(4) = SL(5) ExFT. Differential and dynamical

considerations will be postponed until later in the paper where they are needed.

The principle underlying ExFT is that one can reorganise the fields and gauge param-

eters of supergravity into multiplets of the groups Ed(d), which become the duality groups

when we toroidally reduce. The relevant representations of Ed(d) are found in table 1.

3In IIA, Ω : (B(2), C(3)) → (−B(2),−C(3)), while in IIB, Ω : (B(2), C(0), C(4)) → (−B(2),−C(0),−C(4)).

In both, (−1)FL = −1 on RR states and +1 on NSNS.

– 6 –
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Consider 10- or 11-dimensional supergravity on a background M which can be viewed

as a fibre bundle

Mint M

Mext

with local trivialisations X µ̂ = (Xµ, Y i), where µ = 0, . . . , D − 1 and i = 1, . . . , d or d− 1

depending whether we are considering 10- or 11-dimensional supergravity (the final con-

struction is identical in each case). Following the nomenclature of [9], we will refer to the

D = 11 − d coordinates Xµ on the base, Mext, and any fields on the base, as “external’

although importantly no compactification or truncation is assumed on the remaining di-

mensions. We now extend the coordinates Y i by introducing a number of extra “dual”

coordinates, generically carrying antisymmetric covector indices, such that the complete

set Y M = (Y i, Ỹi1...ip , . . . ) furnishes a representation, R1, of Ed(d). These dual coordinates

can be viewed as conjugate to winding modes of branes, however this interpretation is not

needed to construct and use the formalism (though we will in section 2.4 see a benefit of

this viewpoint).

The perspective we will adopt is that ExFT is a theory which can be formulated in

terms of extended coordinates (Xµ, Y M ), but with the actual dependence of all fields and

gauge parameters on the Y M restricted such that the theory reduces locally (but not nec-

essarily globally) to either 11-dimensional supergravity or 10-dimensional type IIA or type

IIB supergravity, depending on how exactly one chooses the allowed coordinate depen-

dence. This restriction, which is required for closure of the algebra of local symmetries,

can be formulated in an Ed(d) covariant manner as

∂ ⊗ ∂|R2 = 0 ⇔ Y MN
PQ∂M ⊗ ∂N = 0 , (2.1)

where Y MN
PQ is an invariant of Ed(d), given explicitly in [12]. This somewhat heuristic

equation requires explanation. It is meant to mean that the projection on to some repre-

sentation R2 of Ed(d), given in table 1, of two derivatives with respect to Y M acting on

fields or the product of fields must vanish.

A solution of the section condition (or SSC) means a choice of d or d− 1 coordinates

of the total Y M on which we allow all fields to depend, such that (2.1) is satisfied. This

choice breaks Ed(d) to GL(d) or GL(d− 1).

Now we turn to the field content of ExFT. We will only consider the bosonic sector (but

note that the Ed(d) symmetry “knows” about supersymmetry, and can be used to fix all

relative coefficients in the bosonic Lagrangian without appealing to the latter. The explicit

supersymmetrisation can be carried out as e.g. in [43]). The ExFT fields are written as

(gµν ,MMN ,Aµ,Bµν , Cµνρ, . . . ), and lie in Ed(d) representations as we now explain.

The “external metric” gµν and coordinates Xµ are singlets. The “generalised metric”

MMN carries a symmetric pair of R1 indices and has determinant one: it is a representative

of the coset Ed(d)/Hd where Hd is the maximal compact subgroup of Ed(d), given in table 1.

– 7 –
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D Ed(d) Hd R1 R2 R3 R4 Rc

7 SL(5) USp(4)/Z2 10 5 5 10 ∅
6 Spin(5, 5) USp(4)×USp(4)/Z2 16 10 16 45 1

5 E6(6) USp(8)/Z2 27 27 78 351′ 27

4 E7(7) SU(8)/Z2 56 133 912 8645⊕ 133 1539

Table 1. The split real form of the exceptional groups, their maximal compact subgroups and

representations appearing in the tensor hierarchy, as well as the additional representation Rc used

to define a certain purity condition required later in the definition of half-maximal structures.

The remaining fields play the role of gauge potentials in the external space: they are

antisymmetric in their external indices (µ, ν, . . . ) and lie in a set of representations of Ed(d)

denoted by Rp, thus Aµ ∈ R1, Bµν ∈ R2, Cµνρ ∈ R3,. . .. These fields, which constitute

the “tensor hierarchy” of ExFT [9, 44–47], are local sections of vector bundles Rp with

fibre Rp.

2.3 The SL(5) ExFT in brief

To illustrate the set up we will take the example of the SL(5) ExFT corresponding to

the group E4(4), which was developed in [8, 10, 48]. Let a, b, c, . . . = 1, . . . , 5 denote

indices in the fundamental 5. The extended coordinates Y M are in the 10; we will write

Y M ≡ Y ab = −Y ba with ab antisymmetric such that the total coordinates are (Xµ, Y ab),

with µ = 0, . . . , 6. By convention we write V MUM ≡ 1
2V

abUab for contractions of indices.

The generalised metric in this case can be decomposed as Mab,cd = macmbd −madmbc

in terms of a symmetric unit determinant “little metric” mab [10]. The tensor hierarchy

fields are Aµ
ab, also in the antisymmetric 10, Bµνa, Cµνρa in the 5 and 5 respectively, and

Dµνρσab in the 10. The Y-tensor appearing in eq. (2.1) can be expressed in terms of the

invariant alternating symbol, defined with η12345 = 1, via

Y MN
PQ = ηaMNηaPQ , (2.2)

such that the section condition constraining the coordinate dependence of all fields and

gauge parameters is equivalent to

∂[ab ⊗ ∂cd] = 0 , (2.3)

acting on fields/products of fields.

We consider ways to satisfy eq. (2.3) for which a subset of the ∂ab are not identically

vanishing; i.e. dependence is allowed only on a subset of the Y ab. We shall call such

coordinates with non-vanishing derivatives “physical” and refer to the other coordinates

within Y ab as “duals”. For SL(5), there are allowed solutions of the section condition

(SSCs) with four physical coordinates, corresponding to 11-dimensional supergravity, or

with three, corresponding to 10-dimensional type IIA or type IIB. In preparation for our

treatment of ExFT orbifolds, let us exhibit the form of these different SSCs, and show how

the ExFT generalised gauge fields encode components of the supergravity fields.
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M-theory SSC. The fields of 11-dimensional supergravity are (ĝµ̂ν̂ , Ĉµ̂ν̂ρ̂, Ĉµ̂1...µ̂6), where

it is convenient to also include the six-form which is dual to the three-form. In an M-theory

SSC, we split the 5-dimensional SL(5) index a = (i, 5) with i = 1, 2, 3, 4. The physical

coordinates are yi ≡ Y i5 with the remaining six derivatives, ∂ij , vanishing on all fields and

gauge parameters. We let ηijkl ≡ ηijkl5 denote the four-dimensional alternating symbol.

The ExFT fields can be easily identified with the decompositions of the supergravity

fields:
Aµ

i5 = Aµ
i

Aµ
ij ∼ 1

2η
ijklĈµkl

Bµνi ∼ Ĉµνi

Bµν5 ∼ 1
4!η

ijklĈµνijkl

Cµνρi ∼ 1
3!η

ijklĈµνρjkl

Cµνρ5 ∼ Ĉµνρ .
(2.4)

Here Aµ
i = ĝµj(ĝij)

−1 is the “Kaluza-Klein” vector of a standard decomposition of the

metric, see equation (C.1) for more details. For the form field identifications, note that

we write ∼ to denote that the precise identification makes use of redefinitions of the com-

ponents involving Aµ
i (there may also be numerical factors depending on the choice of

normalisation convention for the SUGRA fields). The form of these redefinitions can be

found in appendix D but will not be important to us here. The field Dµνρσab in the 10

includes only components dual to those of the three-form (and in principle to the metric),

and is omitted for concision as it does not contain any independent dynamical degrees of

freedom. The generalised metric encodes the internal components of the 11d metric and

three-form as detailed in eq. (D.13).

IIA SSC. The fields of IIA supergravity, including dual form fields, are (ĝµ̂ν̂ , B̂µ̂ν̂ , Φ,

Ĉµ̂, Ĉµ̂ν̂ρ̂, B̂µ̂1...µ̂6 , Ĉµ̂1...µ̂7 , Ĉµ̂1...µ̂5). In a IIA-theory SSC, we split the 5-dimensional SL(5)

index a = (i, 4, 5) with i = 1, 2, 3. The three physical coordinates are yi ≡ Y i4. We let

ηijk ≡ ηijk45 denote the three-dimensional alternating symbol.

The ExFT-supergravity identification is:

Aµ
i5 = Aµ

i

Aµ
i4 ∼ 1

2η
ijkĈµjk

Aµ
45 ∼ Ĉµ

Aµ
ij ∼ ηijkB̂µk

Bµνi ∼ Ĉµνi

Bµν4 ∼ B̂µν

Bµν5 ∼ 1
3!η

ijkĈµνijk

Cµνρi ∼ 1
2η

ijkĈµνρjk

Cµνρ4 ∼ 1
3!η

ijkB̂µνρijk

Cµνρ5 ∼ Ĉµνρ

(2.5)

Again, Aµ
i is the KK-style vector coming from the metric decomposition (C.1), we suppress

numerical factors and redefinitions involving Aµ
i in the other components, and omit the

details of Dµνρσab, which describes only dual degrees of freedom. The generalised metric

encodes the internal components of the 10-dimensional metric, NSNS two-form, RR one-

and three-form potentials and the dilaton as detailed in eq. (D.14).

IIB SSC. The fields of IIB supergravity (excluding duals of the scalars) are:

(ĝµ̂ν̂ , B̂µ̂ν̂ ,Φ, Ĉ(0), Ĉµ̂ν̂ , Ĉµ̂1...µ̂4 , B̂µ̂1...µ̂6 , Ĉµ̂1...µ̂6) .

We denote by B̂µ̂ν̂
α̇ = (Ĉµ̂ν̂ , B̂µ̂ν̂) the SL(2) doublet of two-forms, and similarly B̂µ̂1...µ̂6

α̇

the doublet of dual six-forms.

In a IIB SSC, we split the 5-dimensional SL(5) index a = (i, α̇) with i = 1, 2, 3 and

α̇ = 1̇, 2̇ transforming under the unbroken SL(2) S-duality. It is convenient to take the

– 9 –
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i index to be naturally down, thus V a = (Vi, V
α̇). The SL(5) invariant tensor ηabcde

decomposes as a product ηijkα̇β = ηijkηα̇β̇ , where ηijk is the three-dimensional alternating

symbol and ηα̇β̇ the antisymmetric SL(2) invariant. The physical coordinates are then

yi ≡ 1
2η

ijkYjk. The ExFT-supergravity identification is:

Aµij = ηijkAµ
k

Aµi
α̇ ∼ B̂µi

α̇

Aµ
α̇β̇ ∼ 1

3!η
ijkηα̇β̇Ĉµijk

Bµν
i ∼ ηijkĈµνjk

Bµνα̇ ∼ ηα̇β̇B̂µν
β̇

Cµνρi ∼ Ĉµνρi

Cµνρα̇ ∼ 1
3!η

ijkĈµνρijk
α̇ (2.6)

Here it is also convenient to note Dµνρσα̇β̇ ∼ ηα̇β̇Ĉµνρσ. Once more Aµ
i is the KK-style

vector arising from the metric and we suppress redefinitions involving it, and numerical

factors. The generalised metric encodes the internal components of the 10d metric, NS

two-form, RR potentials and the dilaton as detailed in eq. (D.15).

2.4 A Z2 generalised orbifold of the SL(5) ExFT

Now we wish to impose a certain equivalence relation in the ExFT space and see how it

cascades to identifications in the various different SSCs described above.

Let us consider the following Z2 action:

Za
b = diag (−1,−1,−1,−1,+1) (2.7)

which is an element of SL(5) and hence a symmetry of ExFT. We have made a choice

here to pick a diagonal matrix but within that the reader may wonder why exactly four

negative signs enter. As we will show in the next section, requiring the quotient to preserve

half-maximal supersymmetry uniquely fixes this as the only allowed diagonal Z2.

We will quotient by making the identification on the coordinates

Y ab ∼ Za
cZ

b
dY

cd . (2.8)

From the form of Za
b it immediately follows that of these ten coordinates exactly four will

be odd (i.e. be identified with a minus sign in the above) and six even. If the Y ab were

coordinates on a torus, we would end up with eight fixed points. It is tempting to view these

fixed points as 7+6-dimensional “generalised O-planes” in the 7+10-dimensional extended

space of this ExFT. The overlap of the six of the extended directions corresponding to the

fixed point with the (three or four) physical coordinates chosen to be the SSC then produces

different sorts of fixed point planes in spacetime. This is reminiscent of how D-branes may

be viewed as half-dimensional subspaces of the doubled geometry of DFT, and indeed the

structure of the generalised O-planes should naturally generalise this, given that in type II

SSCs they will produce orientifold planes which exactly coincide with D-branes. Here, the

ExFT fixed points describe not only O-planes/D-branes but the end-of-the-world planes

in 11-dimensions, while in SSCs corresponding to heterotic strings the fixed point could as

in [49] be considered to coincide with spacetime filling “NS9A” or “NS9B” branes.

On fields we similarly demand that

mab(X,Y ) ∼ (Z−1)ca(Z
−1)dbmcd(X,ZZY )

Aµ
ab(X,Y ) ∼ Za

cZ
b
dAµ

cd(X,ZZY ) ,

Bµνa(X,Y ) ∼ (Z−1)baBµνb(X,ZZY ) ,

(2.9)
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and so on. By choosing different alignments of the plus sign of Za
b with the decomposition

of SL(5) into physical and dual directions, we can obtain from the single ExFT approach

quotients giving rise to all the half-maximal theories in the standard duality web. We will

now discuss how this works in each case. For now, we will show that this reproduces the

correct bulk field content excluding the “twisted sector” gauge fields. We will treat the

theory at the fixed points in section 4 and show how to include the twisted sectors.

The Z2 orbifold and M-theory SSCs. The M-theory SSC is determined by the choice

of one direction in the 5 representation, such that a = (i, 5), with i a four-dimensional

index. Then the physical coordinates are Y i5 and the duals, which we can think of as

conjugate to M2 winding modes, are Y ij = 1
2η

ijklỸkl.

There are two types of orbifolds in the M-theory section, determined by whether the

special direction a = 5 has even or odd parity under the identification, i.e. we can have

Z5
5 = ±1. These are:

• Hořava-Witten: when Z5
5 = −1, exactly one of the physical directions i must have

odd parity, such that
physical: Y i5 +++−

dual: Y ij +++−−− (2.10)

Thus in this case one physical direction, let us call it ys, is reflected by the orbifold

action. In addition, using (2.4), one finds that in addition one must take Ĉ(3) →
−Ĉ(3). This is precisely the “upstairs” picture in [20, 21]. Note that the extra Ĉ(3)

identification means that this is not just a geometric action, but does correspond

precisely to an SL(5) element.

• Strong coupling limit of O6: when Z5
5 = +1, the coordinate parities are

physical: Y i5 −−−−
dual: Y ij ++++++

(2.11)

Hence the orbifold acts by reflection in all internal directions. Using (2.4), one finds

that there is no additional action on the supergravity fields beyond the orbifold

quotient, so this is a purely geometric action, corresponding in effect to T 4/Z2 (the

orbifold limit of K3). This is the correct description of the strong coupling limit of

the O6 plane in IIA [50] (notice that it is not the T 3/Z2 × S1 that might naively be

expected).

The Z2 orbifold and IIA SSCs. One can analyse these by taking the two types of

M-theory SSCs, described above and imposing an additional isometry. In the first case,

where the coordinates have parities given in (2.10), we can choose this M-theory direction

to either be reflected or not by the orbifold action. In the second case, with the parities

in (2.11), the M-theory direction necessarily has parity odd.

The resulting IIA SSCs have physical coordinates Y i5, where i = 1, 2, 3. We denote

the M-theory direction by Y 45, and the remaining dual coordinates are Y ij = 1
2η

ijkỸk,

conjugate to F1 winding modes, and Y i4 = 1
2η

ijkỸjk, conjugate to D2 winding modes.
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Starting with (2.10), we find the following:

• Heterotic E8 × E8: in this case, we pick the M-theory Y 45 to have odd parity.

This corresponds to splitting a = (i, 4, 5) with parity (− − − + −). The resulting

physical IIA coordinates and duals transform under the orbifold action according to

the following:

physical: Y i5 +++

M-theory: Y 45 −
dual: Y ij +++

dual: Y i4 −−−

(2.12)

None of the physical coordinates, the Y i5, are reflected, thus in this case the “orbifold”

action acts just on the field content. We find that ĝ, B̂(2),Φ are even while Ĉ(1) and

Ĉ(3) are odd and so are projected out. This truncated field content matches that of

the heterotic string, excluding the gauge vectors whose introduction will be discussed

later, consistent with the reduction of M-theory on an interval to heterotic string

theory.

• IIA with O8 planes (Type I′): in this case, we pick the M-theory direction to

have even parity. This corresponds to splitting a = (i, 4, 5) with parity (+−−−−).

We have:
physical: Y i5 −++

M-theory: Y 45 +

dual: Y ij −−+

dual: Y i4 −++

(2.13)

The physical direction Y 15 is reflected here. The action on the fields is (ĝ, Ĉ(1),Φ) →
(ĝ, Ĉ(1),Φ) and (B̂(2), Ĉ(3)) → (−B̂(2),−Ĉ(3)). These identifications are consistent

with those of the type I′ theory with O8 planes at the fixed points Y 15 = 0 and

Y 15 = πR, corresponding to orbifolding by Ωσ where σ : Y 15 → −Y 15 and Ω is the

string worldsheet parity transformation.

Next, starting with (2.11), we have:

• IIA with O6 planes: in this case, we split a = (i, 4, 5) with parity (−−−−+) so

that the M-theory direction Y 45 is again of odd parity. We have:

physical: Y i5 −−−
M-theory: Y 45 −

dual: Y ij +++

dual: Y i4 +++

(2.14)

We have (ĝ, Ĉ(3),Φ) → (ĝ, Ĉ(3),Φ) and (B̂(2), Ĉ(1)) → (−B̂(2),−Ĉ(1)). This corre-

sponds to orientifolding by Ω(−1)FLσ where σ : Y i5 → −Y i5. This describes type

IIA with O6 planes at the fixed points.
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The Z2 orbifold and IIB SSCs. We split a = (i, α̇) where i is a three-dimensional index

and α̇ is a two-dimensional S-duality index. There are two types of section, depending

on whether the positive component of Za
b is taken to correspond to one of the three-

dimensional directions or the S-duality directions. In the former case, the SL(2) S-duality

is unbroken, while in the latter case it is broken.

The type IIB SSC physical coordinates are Yij = 1
2ηijky

k (recall we write the index i

down in IIB SSCs), while the duals are Yi
α̇, conjugate to F1 and D1 winding modes, and

Y α̇β̇ = 1
3!η

ijkηα̇β̇Ỹijk, conjugate to the single D3 winding mode in three dimensions.

Starting with the case where the S-duality is broken, and concretely identifying α̇ = 1

with the RR fields, α̇ = 2 with the NSNS fields, we find:

• Heterotic SO(32): this corresponds to splitting a = (i, α̇) with parity (−−−+−).

The coordinates have parity given by

physical: Yij +++

dual: Yi
α̇

{
−−−
+++

dual: Y α̇β̇ −

(2.15)

There is no reflection on the physical coordinates. We find that Ĉ(0), Ĉ(2) and Ĉ(4)

are odd and projected out. The resulting field content matches that of the heterotic

string. (Note that counter-intuitively it is actually α̇ = 1, the RR index, that has

even parity.)

• IIB with O9 plane (Type I): this corresponds to swapping the parities of the α̇

indices relative to the above case. The result is that now B̂(2) is odd, and is truncated

out, while Ĉ(2) is even. The resulting field content is (ĝ, Ĉ(2),Φ), matching that of

type IIB in the presence of an O9 plane, corresponding to type I string theory. This

is in agreement with the fact that type I and heterotic SO(32) are interchanged by

S-duality.

• IIB with O7 planes: in this case, the SL(2) is unbroken, where a = (i, α̇) has

parity (−−+−−). The coordinates have parity given by:

physical: Yij −−+

dual: Yi
α̇

{
++−
++−

dual: Y α̇β̇ +

(2.16)

Therefore two of the physical coordinates are reflected. The fields transform such

that B̂(2) and Ĉ(2) are odd. This corresponds to orientifolding IIB by Ω(−1)FLσ

where σ reflects two of the coordinates. This gives IIB with O7 planes at the (four)

fixed points.
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Comment on S-duality. It is interesting to make a further comment on how the above

Z2 acts on the SL(2) doublet directions indexed by α̇ in the above. In the O7 case, we have

Zα̇
β̇ = −I2, which is an element of SL(2), and which then exactly matches the action of

Ω(−1)FL on the worldsheet. In the O9/heterotic case, we have instead Zα̇
β̇ = diag(1,−1)

or diag(−1, 1). This is no longer an element of SL(2). We note that if one considered the

D = 9 ExFT based on SL(2)× R
+ [51], this would be exactly the Z2 transformation used

to obtain the Hořava-Witten configuration in the M-theory SSC, and the type I/heterotic

pair in the IIB SSC. So in this case the Z2 generalised orbifold quotient does not exactly

correspond to an SL(2) × R
+ element, but is instead in GL(2). One could view this as

extending the global symmetry of the ExFT from SL(2)×R
+ to GL(2) in this case. Indeed,

this argument has recently been made for the actual ten-dimensional SL(2) S-duality of

type IIB in [52].

Comment on (−1)FL. As discussed in for instance [49, 53], the type IIA superstring

modded out by (−1)FL leads to the type IIB superstring, and vice versa. One might view

(−1)FL as appearing in the IIA SSC where our Z2 acts as (2.12), and in the IIB SSC where

our Z2 acts as (2.15): in these two cases we project out the RR fields, which are odd under

(−1)FL . We have labelled these cases as heterotic. This anticipates the inclusion of the

non-abelian gauge fields in section 4. It is possible that there is another way to include

a “twisted sector” in ExFT, which would restore the missing maximal SUGRA degrees of

freedom such that quotienting by (2.12) or (2.15) leads to type IIB or type IIA respectively

instead. In the remainder of the paper, we assume that the orbifolding procedure preserves

only half-maximal SUSY.

Note that including a twisted sector that takes IIA to IIB directly in these two SSCs

would have to be interpreted in other SSCs, and this is not completely clear. Indeed, naively

acting with dualities on the perturbative (−1)FL quotient predicts for instance that M-

theory on an interval gives the type IIB theory [49, 53]. Perhaps from the ExFT perspective,

as we discuss in the conclusions, what we are lacking is a tool (anomaly cancellation) to

determine the twisted sector unambiguously, which may provide some clarity.

Alternatively, one could view the interchange of IIA and IIB under (−1)FL orbifolding

as being realised as an outer automorphism of the Spin(d−1, d−1) ⊂ Ed(d), which exchanges

IIA and IIB SSCs, as in [54]. In this case, the transformation is not an element of Ed(d),

unlike the Z2 we consider in this paper.

BPS brane spectrum. Let us also make some comments about the ExFT perspective

on the (BPS) brane spectrum. As ExFT conveniently describes the content and symmetries

of the supergravity p-form gauge fields, to which the BPS branes couple, it is fairly obvious

that understanding which form components are projected out in the above quotient tells us

which branes are lost in the same procedure. In any case, we wish to make some comments

about this quotient works on the known brane spectrum in ExFT language. (Ultimately,

of course, one hopes to use the ExFT description as a tool to understand various exotic or

non-geometric branes, which are still BPS, though we will not encounter such objects in

this paper.)
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M IIA IIB

pi5 pp pi5 pp pij ∼ pi pp

pij ∼ wij M2 on ij p45 D0 piα̇ F1/D1 on i

pij ∼ wi F1 on i pα̇β̇ D3 on ijk

pi4 ∼ wij D2 on ij

Table 2. Totally wrapped branes (particles): pab.

M IIA IIB

qi M2 on i qi D2 on i qi ∼ wij D3 on ij

q5 M5 on ijkl q4 F1 qα̇ F1/D1

q5 D4 on ijk

Table 3. Partially wrapped branes (strings): qa.

Let us first emphasise one nice aspect of ExFT. In a reduction, branes which completely

wrap the internal space appear as particles in the external spacetime. In the extended

space of ExFT, we can associate such wrapped branes to momentum or wave states in the

extended directions. Quite simply, a wave in a dual direction corresponds (on choosing an

SSC) to a wrapped brane of some sort; a wave in a physical direction meanwhile remains a

pp-wave on choosing an SSC. This perspective has been developed at the level of solutions

of DFT/ExFT in [55–57] and in terms of particle actions in [58].

One can classify these particle states in terms of charges p ∈ R̄1 which are thought of

as generalised momenta conjugate to the extended coordinates Y M . Directions with fixed

points will have no conserved momenta and correspondingly correspond to missing brane

wrappings. For example, in an M-theory SSC, whenever a coordinate Y ij = 1
2η

ijklỸkl is

odd, the corresponding M2 winding on the directions kl 6= ij is absent. This gives quite

a nice perspective on how to extract some information about the brane spectrum directly

from our Z2 quotient.

More generally, it is well known that the BPS brane spectrum of string or M-theory

forms multiplets of Ed(d) after reducing on tori (see for instance the comprehensive review

and discussion in [59]). Branes which totally wrap the internal space fill out the particle

multiple R̄1, as we have explained, while branes which have one spatial world-volume

direction unwrapped fill out the string multiplet, R̄2, and so on. A quick fix to determine

the brane spectrum after carrying out a generalised orbifold is simply to act on the brane

charges p ∈ R̄1, q ∈ R̄2, . . . , with the transformations with which we are quotienting. Only

(linear combinations of) branes which are preserved by the quotient action will continue

to be present in the resulting theory.

For the example of SL(5), the tables 2, 3, 4 and 5 exhibit the decomposition of the SL(5)

covariant charges pab, q
a, qa and qab which describe wrapped branes producing particles,

strings, membranes and three-branes in the external space.
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M IIA IIB

qi ∼ wijk M5 on ijk qi ∼ wij D4 on ij qi D3 on i

q5 M2 q4 ∼ wijk NS5 on ijk qα̇ NS5/D5 on ijk

q5 D2

Table 4. Partially wrapped branes (membranes): qa.

M IIA IIB

qi5 KKM on ijkl qi5 KKM on ijk qij ∼ wi KKM on ijk

qij M5 on ij q45 D6 on ijk qi
α̇ ∼ qijα̇ NS5/D5 on ij

qij NS5 ij qα̇β̇ D3

qi4 D4 on i

Table 5. Partially wrapped branes (three-branes): qab.

So, we can easily extract information from this about the brane spectrum allowed by

the orbifold quotient.

For the Z2 orbifold, let’s consider first IIA SSCs, letting a = (i, 4, 5):

• for the heterotic E8 × E8 SSC, when Za
b = diag(−1,−1,−1,+1,−1), then both pij

and q4 are even, and so fundamental strings can appear. We also have momentum

states, as pi5 is even, and the states corresponding to NS5 and KKM wrappings - all

D-branes are removed, as we would expected.

• for the SSC with O6 planes, when Za
b = diag(−1,−1,−1,−1,+1), then pij is even,

and we can have fundamental strings wrapping the transverse directions of the O6

plane; but no fundamental strings wrapping other directions. As pi5 is odd, there is

no conserved momentum states transverse to the plane.

• for the SSC with O8 planes, when Za
b = diag(+1,−1,−1,−1,−1), then p23 ∼ w1 is

even, and so we can have fundamental strings wrapping the transverse direction of

the O8 plane; but no fundamental strings wrapping other directions. Similarly to the

above, p15 is odd but p25, p35 are even, so there is no conserved momentum transverse

to the plane.

Meanwhile, on the IIB side, letting a = (i, α̇):

• for the SSCs corresponding to the heterotic/type I pair, when Za
b =

diag(−1,−1,−1,±1,∓1), in the case corresponding to heterotic SO(32) we can have

strings wrapping all directions and all D-branes are projected out. Conversely, in the

case corresponding to type I, there is no string wrapping, and the NSNS branes are

removed. There is, however, momentum as pij is always even.

• for the SSC with O7 planes, when Za
b = diag(+1,−1,−1,−1,−1), we can have

strings wrapping the directions transverse to the O7 plane, and no momentum in

these directions.
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For completeness, we can consider M-theory SSCs, letting a = (i, 5):

• for the SSC corresponding to the Hořava-Witten configuration, when Za
b =

diag(+1,−1,−1,−1,−1), then there is no momentum along the odd direction Y 15,

and the only M2 wrapping states allowed are those that stretch along this direction

and one other. This is just what is expected, as then these M2 states suspended

between the end-of-the-world branes give rise to the heterotic string on reduction

along the interval direction, and other M2s would reduce to D2 branes, which are not

present in the heterotic spectrum.

• for the remaining SSC interpreted as the strong coupling limit of IIA with O6 planes,

when Za
b = diag(−1,−1,−1,−1,+1), then there is no momentum along the four odd

directions Y i5, and the allowed M2 states must wrap zero or two of these directions.

Summary. We learn from the above that a single element of the ExFT structure group

encodes the action on spacetime and the massless fields of string/M-theory of all the orbifold

and orientifold quotient actions that appear in the half-maximal duality web. This includes

the Hořava-Witten reflection on the same footing as the orientifolds of the type II theory,

and also produces the heterotic and type I string theories when there are no reflections in

the physical spacetime.

This captures only how the quotient plays out in the degrees of freedom that are

already present in the maximal theory. We know however that consistency — anomaly

or tadpole cancellations in particular — requires there to be additional “twisted sectors”

present, which are gauge fields for generically non-Abelian gauge groups, and which appear

localised at the fixed points (in spacetime) of orbifold actions. In order to introduce these

gauge fields, we must use some additional ExFT machinery.

This leads us to study how one can describe half-maximal configurations in the (naively

maximally supersymmetric) language of ExFT. This also provides us with a general way

to find and classify possible quotients of ExFT by discrete groups which break half the

supersymmetry. For this, we make use of the notion of a “half-maximal structure” [13–15],

which we will require to be preserved by generalised orbifold quotients.

3 Exceptional field theory, half-maximal structures and generalised orb-

ifolds

3.1 Differential content of ExFT

Having previously introduced the field content and representation theory underpinning

ExFT we now turn to differential concepts namely the local symmetry structure and tensor

hierarchy. This will be vital in order to introduce half-maximal structures and understand

how localised vector multiplets enter.

Supergravity is a theory invariant under diffeomorphisms and p-form gauge symme-

tries; in ExFT such symmetries are united into so-called generalised diffeomorphisms.

These realise infinitesimal local Ed(d) transformations via a generalised Lie derivative, de-

fined naturally in terms of the action of gauge parameters Λ ∈ R1 on a generalised vector
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V ∈ R1 [10–12]:

δΛV
M ≡ LΛV

M = ΛN∂NV M −V N∂NΛM +Y MN
PQ∂NΛPV Q+(λV +ω)∂NΛNV M . (3.1)

The deformation from the usual Lie derivative is written here in terms of a Y-tensor Y MN
PQ

which is formed in each case (see [12]) from invariants of the group Ed(d).
4 Here λV denotes

the weight of the vector V , while there is also an intrinsic weight term ω = − 1
D−2 (where

recall D + d = 11).

The generalised Lie derivative can be extended to act on the other representations

R2, R3, . . . which appear in the theory. The generalised diffeomorphism parameter Λ is

itself taken to have weight −ω, while the tensor hierarchy field transforming in Rp carries

weight −pω. The generalised metric and external metric transform as a tensor and scalar

of weights 0 and −2ω respectively. Requiring the generalised Lie derivative to lead to

a closed algebra motivates the imposition of the section condition introduced previously

in eq. (2.1).

The transformation of the external metric and generalised metric under generalised

diffeomorphisms is defined to be exactly as given by (3.1), i.e. δΛ(g,M) = LΛ(g,M). The

tensor hierarchy fields transform in a more complicated manner. The starting point is to

require Aµ
M to serve as a gauge field for these transformations, such that derivatives with

respect to the Xµ coordinates can be covariantised using

Dµ ≡ ∂µ − LAµ . (3.2)

This requires that δΛAµ = DµΛ. In addition, we have one-form gauge transformations

with parameter Ξµ ∈ Γ(R2), under which δΞAµ = −dΞµ. Here d is a nilpotent derivative

(with respect to the extended coordinates) which is defined [15, 45–47] for 2 ≤ i ≤ D − 3

such that

d : Γ (Ri) −→ Γ (Ri−1) . (3.3)

Alongside d one can introduce a product operation [15, 46] analogous to the wedge product,

defined for i ≤ D − 4 and j ≤ D − 3− i such that

∧ : Ri ⊗Rj −→ Ri+j . (3.4)

Note that in the literature the notation • and ∂̂ is frequently used instead of ∧ and d.

The construction of an invariant field strength for Aµ leads to

Fµν = 2∂[µAν] − [Aµ,Aν ]E + dBµν , (3.5)

where [Aµ,Aν ]E = 1
2(LAµAν − LAνAµ). We see that the two-form potential B ∈ Γ(R2)

appears in the field strength for the one-form potential A ∈ Γ(R1). For Fµν to trans-

form covariantly under generalised diffeomorphisms, and invariantly under the other gauge

4The form of the derivative as an Ed(d) transformation can be made explicit by rewriting in terms of

projectors onto the adjoint,

LΛV
M = ΛN∂NV M − α(Padj)

M
N

P
Q∂PΛ

QV N + λV ∂NΛNV M ,

where α is a constant that can be determined case-by-case.

– 18 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
7

transformations, we require the transformation of Bµν to be given by:

∆Bµν = Λ ∧ Fµν + 2D[µΞν] − dΘµν , (3.6)

where the “covariant variation” of Bµν is ∆Bµν ≡ δBµν + A[µ ∧ δAν], and Θµν ∈ Γ(R3).

The field strength for Bµν can then be constructed as:

Hµνρ = 3D[µBνρ] − 3∂[µAν ∧ Aρ] +A[µ ∧ [Aν ,Aρ]]E + dCµνρ , (3.7)

where we see the appearance of the third field, Cµνρ ∈ Γ(R3). In principle, the tensor

hierarchy then continues with the introduction of a field strength Jµνρσ in which the four-

form Dµνρσ ∈ Γ(R4) appears, and so on. In practice, not all of the gauge fields are

dynamical and so not all the field strengths appear with a kinetic term in the action.

Hence, a given ExFT will only involve some part of the tensor hierarchy. We refer the reader

to [9, 44, 45, 47, 51] in which the specific and general details are worked out more fully.

In addition to generalised diffeomorphisms and gauge transformations, ExFT is fur-

ther invariant under external diffeomorphisms parameterised by external vectors ξµ [9].

Requiring invariance under all these local symmetries fixes the bosonic part of the action.5

Furthermore, the supersymmetric completion has been constructed [43, 60, 61]. Thus ExFT

provides a full reformulation of the maximally supersymmetric 10- and 11-dimensional su-

pergravities, treating them simply as different solutions to the section condition.

3.2 Half-maximal structures in ExFT

Our goal now is to deal with supergravities which have half-maximal supersymmetry. We

will be able to do this purely bosonically (assuming the underlying manifolds to be spin),

using the appropriate language of half-maximal structures introduced in [13–15].

In order to describe backgrounds and theories with half-maximal supersymmetry in

ExFT, we must ensure that they admit globally well-defined spinors (in the exceptional

sense as sections of vector bundles associated to the double cover of the maximal compact

subgroup of Ed(d)). As in conventional geometry without fluxes, the global existence of

such spinors implies that the structure group can be reduced to the stabiliser group of

the necessary spinors. Including fluxes and moving to the ExFT setting, a background

with half-maximal SUSY must have an “exceptional generalised Spin(d − 1) structure”,

i.e. the structure group of the exceptional generalised tangent bundle can be reduced to

Spin(d − 1) ⊂ Ed(d) [15]. Equivalently, this means that the manifold admits the following

well-defined and nowhere-vanishing generalised tensors [15]

Ju ∈ Γ (R1) , K̂ ∈ Γ (RD−4) , (3.8)

where u = 1 , . . . , d − 1, and the Ri are the generalised bundles appearing in the tensor

hierarchy whose fibres are the vector spaces listed in table 1.

5Technically for D even one only has a pseudo-action combined with an appropriate chirality constraint.
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To define a Spin(d − 1) ⊂ Ed(d) structure, the Ju and K̂ have to further satisfy the

following algebraic compatibility conditions

(
δwu δ

x
v − 1

d− 1
δuvδ

wx

)
Jw ∧ Jx = 0 ,

(
K̂ ⊗ K̂

)
|R∗

c×S2D−8 = 0 ,

K̂ ∧ (Ju ∧ Ju) > 0 ,

(3.9)

where S denotes a vector bundle of rank zero and weight 1/(D − 2) and R∗
c is the bundle

with fibre R∗
c that is the dual of Rc as defined in the final column of table 1. For many

applications, it is often useful to define

K =
1

d− 1
Ju ∧ Ju ∈ Γ (R2) , K ∧ K̂ = ∆D−2 , (3.10)

which given (3.9) automatically satisfy

Ju ∧K = 0 , (K ⊗K) |Rc×S4 = 0 . (3.11)

We can additionally define

Ĵu = Ju ∧ K̂ ∈ Γ(RD−3) , (3.12)

which we will frequently use below.

To gain some intuition of these definitions it is helpful to understand that the existence

of K, K̂,∆ reduce the structure group Ed(d) ×R
+ −→ Spin(d− 1, d− 1). The introduction

of the d−1 vector fields Ju then further reduce this down to Spin(d−1) ⊂ Spin(d−1, d−1)

(a detailed explanation of this can be found in the appendix of [15]). Thus the structures

will be stabilised (left invariant) by a Spin(d − 1)S symmetry which we will make use of

below. Note that in order to have a 1
2 -maximal vacuum, these tensors must also satisfy

certain differential, or “integrability” conditions [15].

One virtue of this approach is that it provides a ready starting point to perform

consistent truncations of supergravity which break half of the supersymmetry [13, 15]

and e.g. can be used to connect K3 compactifications of M-theory to the heterotic theory

in seven dimensions within ExFT [14]. Furthermore, it also provides a characterisation

of half-maximally supersymmetric AdS vacua [15] and can be used as a starting point

for studying these.6 Rather elegantly the metric of a compactification manifold can be

expressed in terms of the tensors introduced above [64]. For example, as shown in [64], in

SL(5) ExFT the generalised metric and its inverse can be constructed as

mab = ∆−4

(
KaKb +

4
√
2

3
∆−5 ηuvwĴu,acĴv,bdJw

cd

)
,

mab = ∆−6

(
K̂aK̂b +

2
√
2

3
ηuvwJu

acJv
bdĴw,cd

)
,

(3.13)

6See also the description of 1/4-maximal AdS vacua in D = 4, 5 dimensions in generalised geome-

try [62, 63]
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or in the 10× 10

Mab,cd = 8∆−8Ĵu,abĴ
u
cd −∆−3ηabcdeK̂

e − 1

6
√
2
∆−3ηabefgηcdhijη

uvwJu
efJv

hiJw
gj ,

Mab,cd = 2∆−2Ju
abJu,cd −∆−2ηabcdeKe −

2
√
2

3
∆−12ηuvwηabefgηcdhij Ĵu,ef Ĵv,hiĴw,gj .

(3.14)

Similar expressions exist for the other ExFT’s. The “fully internal” SUGRA fields can be

read off from the above once a solution to the section condition has been chosen.

Our objective now is to search for generalised orbifolds that are constructed making

use of discrete subgroups of the Ed(d) symmetry of ExFT. We will require that we preserve

half-maximal supersymmetry, i.e. that the subgroup that we quotient by preserves the

existence of the half-maximal structure of [15] and reviewed in the previous subsection.

The half-maximal structure is stabilised by an Spin(d − 1) ⊂ Ed(d), so in practice we

consider discrete subgroups of Spin(d− 1). We will illustrate this in the case of SL(5) for

which the stabiliser is SU(2) and, as is well known, its discrete subgroups — the binary

polyhedral groups — admit an ADE classification via the McKay correspondence.

3.3 Half-maximal orbifolds of generalised parallelisable spaces

In this subsection, we will describe how to construct general O-folds of “generalised paral-

lelisable spaces” [65], i.e. those on which a maximal set of (not necessarily Killing) spinors

can be defined, that preserve half-maximal supersymmetry. This of course includes flat

space, or tori, as well as certain spheres, especially those which give rise to maximally

supersymmetric AdS vacua upon compactifying 10- or 11-dimensional SUGRA. We choose

this class of backgrounds because the generalised parallelisation defines a global action of

Ed(d) on the geometry and fluxes, which allows us to write down a general formula for the

orbifold / orientifold action. There may be other backgrounds which admit an action of

Ed(d) but are not generalised parallelisable. Even more general backgrounds (with fluxes)

will only admit an action of a subgroup of Ed(d) which can be used to quotient the space.

Generalised parallelisable backgrounds admit a globally well-defined “generalised

frame”, i.e. dimR1 nowhere-vanishing globally well-defined generalised vector fields. From

these we can always pick out 2× (d− 1) generalised vector fields satisfying

JA ∧ JB − 1

2(d− 1)
ηABη

CDJC ∧ JD = 0 , (3.15)

where ηAB is a constant O(d−1, d−1) metric. Furthermore, the generalised parallelisation

gives us a globally well-defined basis for any exceptional vector bundles. Thus, we can

always construct a K̂ ∈ Γ (RD−4) such that

(
ηCDJC ∧ JD

)
∧ K̂ > 0 . (3.16)

The d− 1 generalised vector fields satisfying

Ju ∧ Jv =
1

d− 1
δuvJw ∧ Jxδ

wx , u, v, w, x = 1, . . . , d− 1 , (3.17)
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together with K̂ define a half-maximal structure. On the other hand the d− 1 generalised

vector fields satisfying

J̄ū ∧ J̄v̄ = − 1

d− 1
δūv̄Jw̄ ∧ Jx̄δ

w̄x̄ , ū, v̄, w̄, x̄ = 1, . . . , d− 1 , (3.18)

can be used to define the Spin(d−1)S stabiliser group of the half-maximal structure defined

by the Ju and K̂, as follows. Following [15], we define

ˆ̄Jū = J̄ū ∧ K̂ ∈ Γ (RD−3) . (3.19)

We can then introduce the Spin(d− 1)S generators

J̄ūv̄ = ˆ̄Jū ∧P J̄v̄ , (3.20)

where ∧P : R1 ⊗ RD−3 −→ RP maps onto the adjoint representation of Ed(d). One can

verify that these generate the Spin(d− 1) algebra

[
J̄ūv̄, J̄w̄x̄

]
= 2∆D−2

(
δw̄[ūJv̄]x̄ − δx̄[ūJv̄]w̄

)
, (3.21)

and leave invariant (stabilise) the half-maximal structure

J̄ūv̄ · Jw = 0 , J̄ūv̄ · K̂ = 0 , (3.22)

where · denotes the adjoint action.

Having explicitly constructed the Spin(d − 1)S stabiliser group of the half-maximal

structure we can write down the most general Ed(d) element that leaves invariant the half-

maximal structure as

Z = exp
[
∆−(D−2)J̄ūv̄θ

ūv̄
]
. (3.23)

Given a discrete subgroup of such elements, we can then consider quotienting the ExFT

by said subgroup. The result will be a generalised orbifold.

In section 2.4 we considered a Z2 quotient and showed that this allows us to recover

the 10-dimensional N = 1 supergravities. At this stage, one may wonder if there are other

quotients that in a suitable choice of SSC could give rise to a 10-dimensional theory. To

answer this, we note that the only known 10-dimensional N = 1 theories have a common

bosonic sector parameterising the coset space O(10, 10)/O(1, 9)×O(1, 9), which after quo-

tienting must live at the fixed point of the O-fold action. In our split into D “external”

and internal dimensions, this means that we must have a remnant O(d−1, d−1) symmetry

at the O-fold fixed point.

In particular, this means that at the fixed point we must have more than a half-

maximal structure: instead we require 2 × (d− 1) generalised vector fields JA (as well as

a K̂ ∈ Γ (RD−3)) that obey eqs. (3.15) and (3.16). As discussed in [15], if there were

d − 1 + N such generalised vector fields with constant O(d − 1, N) metric ηAB, then this

would be stabilised by a Spin(d − 1 − N) group. Correctly taking into account discrete

factors, we find that when N = d − 1, the stabiliser group is Z2. This implies that only

when we consider a quotient by a Z2 ⊂ Ed(d) action, can we obtain a 10-dimensional N = 1

theory at the O-fold fixed point.
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3.4 An SL(5) ExFT example

Half-maximal structure and its stabiliser. Let us give an explicit example of the

above construction for the SL(5) ExFT. The half-maximal structure consists of three vec-

tors Ju
ab, with u = 1 . . . 3 in the 10 of SL(5), together with Ka, K̂

a and ∆. The condi-

tions (3.9) that must be obeyed here are

ηabcdeJu
bcJv

de =
1

3
δuvηabcdeJw

bcJw de , ηabcdeK̂
aJu

bcJv
de > 0 . (3.24)

In flat space, we can without loss of generality take

Ka =
(
0, 0, 0, 0, ∆2f

)
, K̂a =

(
0, 0, 0, 0, ∆3f−1

)
. (3.25)

The factors of ∆ are to ensure the correct weights of these vectors. Let us say that this

corresponds to the index split a = (i, s), where i = 1, . . . , 4, so that Ki = 0, Ks 6= 0.

Making use of the ’t Hooft symbols7 we introduce two sets of vectors:

Ju
ab =




∆f
1
2√
2
ηu,ij 0

0 0


 , J̄ū

ab =




∆f
1
2√
2
η̄ū,ij 0

0 0


 . (3.26)

From these we can define

(Ĵu)ab =
1

4
ηabcdeJu

cdK̂e , ( ˆ̄Jū)ab =
1

4
ηabcdeJ̄ū

cdK̂e . (3.27)

The Ju
ab by construction satisfy the conditions in eq. (3.24) and can be used to construct

the three generators of the SU(2)R symmetry [15]

(Juv)
a
b = (Ĵ[u)bc(Jv])

ac − 1

5
δab (Ĵ[v)cd(Ju])

cd ,

Ju = ǫuvwJuv , [Ju,Jv] = ∆5ǫuvwJw .
(3.28)

Under the action of Jw the K, K̂ and ∆ are singlets but Ju is a triplet. Conversely the

J̄ū
ab can be used to construct the three generators of the SU(2)S symmetry under which

Jw,K, K̂ and ∆ are all left invariant:

(J̄ūv̄)
a
b = ( ˆ̄J[ū)bc(J̄v̄])

ac − 1

5
δab (

ˆ̄J[v̄)cd(J̄ū])
cd

J̄ū = ǫūv̄w̄J̄ūv̄ , [J̄ū, J̄v̄] = −∆5ǫūv̄w̄J̄w̄ .
(3.29)

Having made explicit the construction of the stabilising SU(2)S we can immediately write

down the most general SL(5) element that leaves invariant the half-maximal structure as

Za
b = exp

[
∆−5J̄ūθu

]a
b

=

(
cos θ

2δ
i
j + sin θ

2 η̄u,ij
θu
θ 0

0 1

)
,

(3.30)

7Recall the self-dual (SD) and anti-self-dual (ASD) ’t Hooft symbols

SD : ηu,ij = ηuij4 + δuiδj4 − δujδi4 ,

ASD : η̄u,ij = ηuij4 − δuiδj4 + δujδi4 .
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where θ2 = θ21 + θ22 + θ23. For θ = 2π we obtain Za
b = diag(−1,−1,−1,−1,+1), i.e. the Z2

generalised orbifold action considered earlier. This is clearly the only such diagonal Z2.

Discrete subgroups of the SU(2)S ⊂ SL(5) stabiliser. We have found the explicit

expression for general elements of SU(2)S ⊂ SL(5). We want to further restrict to discrete

subgroups of the stabiliser, which can can be used to take quotients generalising orientifolds

and orbifolds. To do this, we recall the result that the discrete subgroups of SU(2) follow

an ADE classification.

The Ak series for k ≥ 1 produces Zk+1 subgroups, with each such subgroup gener-

ated by

(ZAk
)ab =

(
(Uk)

i
j 0

0 1

)
, Uk =




cos 2π
k+1 − sin 2π

k+1 0 0

sin 2π
k+1 cos 2π

k+1 0 0

0 0 cos 2π
k+1 sin 2π

k+1

0 0 − sin 2π
k+1 cos 2π

k+1


 . (3.31)

This corresponds to taking θ3 = 4π
(k+1) and θ1 = θ2 = 0. Note that the case k = 1

corresponds to the transformation Za
b = diag(−1,−1,−1,−1, 1), which, as we described

at the start of this paper, leads to the identifications of the standard half-maximal 10- and

11-dimensional theories including the Hořava-Witten configuration.

Similarly, there is a Dk series, k ≥ 4, leading to the binary dihedral groups Dk−2,

which are generated by the elements

(ZDk
)ab =

(
(UDk

)ij 0

0 1

)
, Ra

b =

(
Ri

j 0

0 1

)
, (3.32)

with

(UDk
)ij =




cos π
k−2 − sin π

k−2 0 0

sin π
k−2 cos π

k−2 0 0

0 0 cos π
k−2 sin π

k−2

0 0 − sin π
k−2 cos π

k−2


 , Ri

j =




0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0


 . (3.33)

The element R corresponds to taking θ1 = −π with θ2 = θ3 = 0. Note that the (ZDk
)ab

alone generate Z2k−4 subgroups.

Finally, there are also the E6, E7, E8 discrete subgroups of SU(2) whose generators

can be read off from for example [66].

Note that when we decompose under an M-theory choice of SSC such that the physical

coordinates are Y i5, the above quotients are completely geometric and would lead to the

standard ALE spaces C2/Γ with ADE singularities. In other choices of SSC, we have some

seemingly exotic set of quotients which are generically non-geometric in the sense that the

physical coordinates will be identified with the duals.
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A Z4 example. Consider the Z4 generated by the transformation J ≡ ZD4 (which is the

same as J ≡ ZA3) under which a generalised vector V a = (V 1, V 2, V 3, V 4, V s) becomes

(−V 2, V 1, V 4,−V 3, V s). Note that then (J2)ab = diag(−1,−1,−1,−1, 1), which is the Z2

generator from before. Of course, J3 = J−1 = −J .

Let us focus on the identification of the coordinates using J . They are identified

pairwise:

(
Y 13

Y 24

)
→

(
−Y 24

−Y 13

)
,

(
Y 14

Y 23

)
→

(
Y 23

Y 14

)
,

(
Y 1s

Y 2s

)
→

(
−Y 2s

Y 1s

)
,

(
Y 3s

Y 4s

)
→

(
Y 4s

−Y 3s

)
,

(3.34)

with Y 12 and Y 34 invariant.

We can extract from the above various possible forms of the quotient on choosing a

solution of the section condition. For instance:

• IIB SSCs: we could take (Y 12, Y 23, Y 13) ∼ (Y 12, Y 14,−Y 24). This is a non-

geometric quotient, with two of the coordinates identified with (F1 or D1) winding

coordinates. Another choice of SSC in which this quotient is non-geometric would

be (Y 1s, Y 3s, Y 13) ∼ (−Y 2s, Y 4s,−Y 24). The identification is with a mix of F1, D1

and D3 windings. However, we can also find an SSC in which the quotient acts

geometrically, given by for instance (Y 12, Y 1s, Y 2s) ∼ (Y 12,−Y 2s, Y 1s).

• M-theory SSCs: one type of SSC is of the form (Y 1s, Y 12, Y 13, Y 14)

∼ (−Y 2s, Y 12,−Y 24,Y 23), where the quotient is non-geometric. The other type in-

volves a geometric quotient, (Y 1s, Y 2s, Y 3s, Y 4s) ∼ (−Y 2s, Y 1s, Y 4s,−Y 3s).

• IIA SSCs: there are no IIA SSCs in which the quotient is geometric. For instance,

we could pick (Y 12, Y 13, Y 14) ∼ (Y 12,−Y 24, Y 23), where the identification is with F1

winding coordinates.

In the IIA or IIB cases when the physical coordinates of the SSC are identified solely

with F1 winding coordinates, the above quotients may correspond to asymmetric orbifolds

of type II or heterotic strings. In general, the identifications may be with winding coordi-

nates associated to D-branes, while in M-theory SSCs one may identify physical coordinates

with M2 winding dual coordinates. Thus generically we have very non-geometric quotients

which can be viewed as non-perturbative orbifolds of M-theory and string theory. Indeed,

this Z4 was already considered in [26], where the resulting quotient is referred to as a

generalised orientifold. In the context of ExFT, we prefer to call it a generalised orbifold,

as thanks to the extended space and Ed(d) multiplets of ExFT the action of the quotient

becomes completely (generalised) geometric - we might also use the term “O-fold”. Just

as the extra coordinates of DFT and ExFT are expected to play an important role in

defining T-folds and U-folds (where a non-geometric background is patched together by

duality transformations), here we expect that they allow for a better understanding of

these quotients by the duality group.
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4 Localised vector multiplets and the Z2 orbifold

In this section we show how to use the half-maximal structure of ExFT to capture degrees

of freedom which do not descend from maximally supersymmetric SUGRA, by using a

technique analogous to the one employed in [14, 15] to reduce ExFT to heterotic DFT.

Here we will extend this technique to include “twisted sectors” at the fixed points of the

generalised orbifold action. In our half-maximal setup these will be vector multiplets,

corresponding to degrees of freedom living on D-branes on top of O-planes, Yang-Mills

multiplets living at “end-of-the-world” branes as in the Hořava-Witten setup, gauge bosons

arising from branes wrapping shrinking cycles, or simply the vector multiplets of the 10-

dimensional heterotic or unoriented string. When the fixed points lie inside the physical

part of the SSC the vector multiplets are localised, while if the fixed points are only in

unphysical directions, the vector multiplets are delocalised over the physical spacetime and

the result is an N = 1 10-dimensional theory with vector multiplets such as the heterotic

or type I supergravities. Throughout, we will always refer to these degrees of freedom as

“localised” even if they may be delocalised in the physical spacetime (since in that case

the “localisation” occurs in the unphysical dual directions of the extended space).

We will see that as a result, at the fixed points we are effectively enhancing the gen-

eralised tangent bundle by a vector bundle of the adjoint representation of some group

G. Such a generalised tangent bundle describes heterotic DFT [5, 6, 16–18] or generalised

geometry [19] and thus heterotic SUGRA and its α′-correction. Enlarging the tangent

bundle has also been used to study gauge enhancement in the bosonic and heterotic string

theories [67–70]. We will show that we can obtain these modifications such that they

only appear at the fixed points and in a way that is compatible with the Ed(d) structure of

ExFT. Furthermore, this modification will, analogous to [18, 19], yield precisely the correct

Bianchi identities taking into account the localised vector multiplets.

An important point is that the full modified Bianchi identities take the generic form

dH ∼ tr(F ∧ F )− tr(R ∧R) (4.1)

where the first term on the right-hand-side is the gauge anomaly contribution, with gauge

group G̃ say, and the second is the gravitational contribution. We can think of the Lorentz

group SO(1, 9) on the same footing as the gauge group, and in fact consider our additional

gauge fields to be those of the total group G = G̃×SO(1, 9),8 identifying the SO(1, 9) gauge

fields with the spin connection. This allows us to treat the gravitational and gauge anomaly

together, which is also how we expect them to appear in ExFT. Indeed, this is how the

gravitational anomaly would appear in the description of heterotic strings in generalised

geometry [19] or double field theory [18]. In this paper, we will adopt this point of view

as a preliminary and simple way to include the tr(R∧R) term at no extra cost (though in

general we will not explicitly distinguish between the gauge and gravitational parts of our

8When there are multiple fixed point planes in spacetime, the gravitational anomaly may be distributed

amongst these, e.g. each of the two end-of-the-world branes in the Hořava-Witten configuration contributes

− 1
2
tr(R∧R). In such cases, we have to take the normalisation of the trace of the full group G at each fixed

point to be different in the gauge and gravitational sectors.
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localised gauge group G below), however further work is required to completely develop

the treatment of this and anomaly cancellation in general within ExFT.

In the following, we will focus on the Z2 orbifold and describe in detail how to include

the twisted sectors at the fixed points. The Z2 orbifold is singled out because it contains

SSCs in which the half-maximal theory is 10-dimensional, as discussed previously. Although

we are really working with the SL(5) ExFT we will keep the discussion as general as

possible so that this procedure can be repeated mutatis mutandis in lower dimensions.

Some changes, which can be mostly be worked out using [15], will be required in D = 6 and

D ≤ 4 due to the existence of chiral half-maximal supersymmetry inD = 6, electromagnetic

duality in D = 4, etc.

4.1 Expansion

To capture the localised degrees of freedom, we perform a half-maximal “twist”

ansatz [13–15]. The components of the fields and gauge parameters of the ExFT are

either even or odd under the Z2 orbifold action. Our strategy will be to introduce a basis

of generalised tensors which are even under the Z2, and study the expansion of all the

objects in the ExFT in this basis. We will also need to keep track of the odd components,

to an extent — these will be treated more completely in appendix E.

For simplicity, let us for now focus on the theory in the vicinity of a single fixed point

at y = 0, where y denote the odd coordinates. Note that the y need not be physical

coordinates: if all y coordinates are dual coordinates in a given SSC then all of spacetime

belongs to the fixed point and thus the vector multiplets are in fact delocalised in spacetime.

As we discussed before, this occurs in the heterotic and type I theories. The generalisation

to multiple fixed points is straightforward and will be addressed at the end of section 4.5.

The even basis tensors are given by

ωA ∈ Γ(R̃1) , n ∈ Γ (R2) , n̂ ∈ Γ (RD−4) , (4.2)

where A = 1, . . . , 2 × (d − 1) + dimG, with G some Lie group and R̃1 is effectively an

enlarged generalised tangent bundle, in several ways similar to that used in the double

field theory / generalised geometry description of heterotic SUGRA [16, 18, 19]. We will

write ωA =
(
ωk , ω

k , ωα

)
with k = 1, . . . , d− 1 and α = 1, . . . , dimG. Of these, the ωk, ω

k

correspond to degrees of freedom descending from maximal SUGRA and are truly sections

of R1, while ωα correspond to vector multiplets localised at the fixed point, and are the

crucial ingredient allowing us to go beyond the analysis of [14, 15].

These generalised tensors further satisfy the algebraic conditions

ωA ∧ ωB = ηAB n ,

ωA ∧ n = 0 ,

n̂ ∧ n = ρD−2 > 0 ,

(4.3)

where ρ is a scalar density of weight 1
D−2 , while ηAB has components

ηi
j = ηj i = δi

j , ηαβ = 2σ καβ δ(y) , (4.4)
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where καβ is the Killing form of the Lie group G and σ is a constant. In what follows we

shall also make use of the ‘inverse’ ηAB

ηi
j = ηj i = δi

j , ηαβ =
1

2σ
καβδ(y) . (4.5)

The basis tensors also satisfy the following differential conditions

LωAωB = −fAB
CωC ,

LωA n̂ = 0 ,

dn = 0 ,

(4.6)

and

dn̂ = 0 , for D = 6 , 7 , (4.7)

Ln̂n = 0 , Ln̂ωA = 0 for D = 5 , (4.8)

where the only non-vanishing components of fAB
C are fαβ

γ , the structure constants of the

Lie group G. Thus, we can see that the subbundle of R̃1 spanned by the ωA has a similar

structure to the heterotic generalised tangent bundles used in DFT [16] and generalised

geometry [19], with the crucial differences that the gauge field contributions to the would-be

O(d− 1, d− 1 + dimG) metric ηAB are localised at the O-fold fixed point.

Thus, for example, any generalised vector field V ∈ Γ (R1) is expanded as

V (X,Y ) = V A(X,Y )ωA(Y ) + V̄ I(X,Y )πI(Y )

= V k(X,Y )ωk(Y ) + Vk(X,Y )ωk(Y ) + Ṽ α(X,Y )ωα(Y ) + V̄ I(X,Y )πI(Y ) ,

(4.9)

where πI are a basis for generalised vector fields that are odd at the fixed points, i.e.

V̄ I necessarily vanishes there. We further develop the treatment of these components in

appendix E and in what follows will frequently indicate the presence of such terms where

applicable with ellipsis. Note that we will denote the gauge field component with a tilde,

and we will write

tr
(
Ṽ W̃

)
= καβṼ

αW̃ β , (4.10)

as well as [
Ṽ , W̃

]α
= −fβγ

αṼ βW̃ γ . (4.11)

A generalised tensor Ξ ∈ Γ (R2) is expanded as

Ξ(X,Y ) = Ξ̊(X,Y )n(Y ) + . . . , (4.12)

where the ellipsis refers to terms that are odd under the orbifold and hence vanish at the

fixed point. Similar expansions can be carried out for the other ExFT fields. For ExFT

“covectors” W ∈ Γ (RD−3), it is worthwhile introducing the objects

ω̂A = ωA ∧ n̂ ∈ Γ (RD−3) , (4.13)
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which provide a basis for the even components. Note that these satisfy

ω̂A ∧ ωB = ηAB ρD−2 , ω̂A ∧ n̂ = 0 . (4.14)

In particular, the half-maximal structure Ju, K̂, which capture the fully internal degrees

of freedom, are expanded as

Ju(X,Y ) = Ju
A(X,Y )ωA(Y ) + J̄u

I(X,Y )πI(Y )

= Ju
k(X,Y )ωk(Y ) + Ju k(X,Y )ωk(Y ) + J̃u

α(X,Y )ωα(Y ) + . . . ,

K̂(X,Y ) = e−2d(X,Y ) n̂(Y ) + . . . ,

∆(X,Y ) = e−2d(X,Y )/(D−2) ρ(Y ) ,

(4.15)

with

Ju
AJv

BηAB = δuv , (4.16)

and where we have decided to label the even part of K̂ by e−2d (this field d is not to be

confused with that denoting the dimension of the internal physical space: it will correspond

to a generalised dilaton in the half-maximal theory) and expanded ∆ accordingly in ρ so

that the compatibility conditions (3.10) are automatically satisfied. Note that we have

required the half-maximal structure to be preserved by the quotient. This simply means

that J and K̂ must not vanish identically at the fixed point. The ellipsis in the above

expansions corresponds to the components of J and K̂ which do vanish at the fixed points,

and which encode additional internal degrees of freedom present in the “bulk”. In SSCs

without fixed points in the physical directions, of course, such components are identically

projected out. The modifications of the internal SUGRA fields due to the localised vector

multiplets can then be obtained from the generalised metric when parametrised in terms

of the half-maximal structure as in eqs. (3.13) and (3.14), as we will explicitly see below.

The expansion of the even components alone is precisely as if we were performing a half-

maximal consistent truncation [13, 15] although we allow for (almost) arbitrary coordinate

dependence in the coefficients. This method of expanding the ExFT fields in a basis that

is reminiscent of a consistent truncation while not truncating the coordinate dependence

has previously been used in the maximally supersymmetric case to obtain massive IIA

SUGRA [71] as well as generalised IIB SUGRA [72] from ExFT. Furthermore, the half-

maximal twist ansatz was used in [14, 15] to show how to reduce ExFT to heterotic DFT,

a new five-dimensional SO(5, 5) DFT with a (10 + 1)-dimensional “doubled space” which

contains a new solution to the section condition corresponding to chiral six-dimensional

SUGRA, as well as the recently-constructed “double field theory at SL(2) angles” [35].

Finally, we also need to define the “twisted derivatives”

∂A = ωA
M∂M , (4.17)

such that

∂M = ρ−(D−2)ηABω̂BM∂A + . . . = ρ−(D−2)ω̂A
M∂A + . . . , (4.18)

where again the ellipsis refer to derivatives with respect to coordinates that are not invariant

under the generalised orbifold action, and which we will deal with in detail in appendix E.

– 29 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
7

We will always take

∂α = 0 . (4.19)

Thus, whenever we write ∂A in reality the derivatives with respect to gauge components do

not appear. For instance, this allows us to invert (4.17) as in (4.18) — in doing so we must

also note that terms where ωA
M multiply the odd basis field πI , i.e. the ellipsis suppressed

contributions, vanish as detailed in appendix E.

Focusing on the derivatives ∂A only in (4.18), we can show that

Y MN
PQ ωC

P ωD
QWC∂NV D = ωA

MηAB ηCD WC∂BV
D . (4.20)

To show this, note that Y MN
PQ projects R1⊗R1 corresponding to the indices P,Q (i.e here

ωC
P and ωD

Q) to R2 and then tensors the result with the object in RD−3, corresponding to

indexN , onto R1 corresponding to the indexM . Now we use ωC⊗R2ωD ≡ ωC∧ωD = ηCD n

so that

Y MN
PQ ωC

P ωD
Q ηAB ω̂AN∂B = ηAB ηCD (n⊗ ω̂A)

M = ρD−2 ηAB ηCD ωA
M . (4.21)

Furthermore, we demand that the ∂A derivatives commute. Using eq. (4.6), together

with the assumptions that ∂α = 0 and fαβ
γ are the only non-vanishing structure constants

we find this requires

Y MN
PQωA

P∂MωB
Q∂N = 0 . (4.22)

Moreover, the ExFT section condition requires

ηAB∂A ⊗ ∂B = 0 , (4.23)

as well as the Jacobi identity

f[AB
DfC]D

E = 0 , (4.24)

which ensures that we have a closed algebra. These conditions need to also be supplemented

by conditions involving derivatives with respect to coordinates that are odd under the

generalised orbifold which we present in appendix E. In particular, denoting such derivatives

by ∂I , away from the fixed point we require

γAIJ∂A ⊗ ∂I = 0 , (4.25)

where γAIJ is an O(d − 1, d − 1) gamma matrix as defined in E. An ExFT section choice

may involve some ∂I 6= 0, in which case the above condition can in fact impose ∂A = 0 for

some A. This corresponds to cases where the fixed point does not fill all of spacetime (for

instance, Hořava-Witten, or Op planes for p < 9).

We will always choose to solve the section condition (4.23) such that ∂A = (0, ∂k, 0).

The choice of solution to the full ExFT section condition, or equivalently to (4.25), may

further require that we drop the dependence on some or all of the ∂k. We can implement

such “additional isometries” reducing the dimension of the fixed point at the end of our

analysis.
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We now write the generalised Lie derivative as follows in order to display solely the

modifications:

LV W = L̊V W + 2σ ωk δ(y) tr
(
W̃∂kṼ

)
+ ωα

([
Ṽ , W̃

]
+ LvW̃ − LwṼ

)α
, (4.26)

where the very first term denotes the standard unmodified generalised Lie derivative of V

and W excluding the Ṽ α, W̃α terms. More explicitly, we have

LV W = ωk

(
Lvw

k + . . .
)
+ ωk

(
LvWk +W j(∂kVj − ∂jVk) + 2σ δ(y) tr

(
W̃∂kṼ

)
+ . . .

)

+ ωα

([
Ṽ , W̃

]
+ LvW̃ − LwṼ

)α
+ πI(LV W̄ )I ,

(4.27)

where v and w denote the vector component of V and W respectively. The ellipsis here

hides all possible terms which do not involve solely components and derivatives carrying

the indices k associated to the components which are non-vanishing at fixed points. The

full expressions are contained in appendix E.

Let us also make a short comment on how to treat the case of multiple fixed points

in our analysis. Suppose there are K fixed points at y = y⋆(n), n = 1, . . . ,K, and that

we want to localise the gauge fields at these points. Let us label the gauge indices at each

fixed point by α(n). Then, we simply write

ωα
ab = (ω(1)

α(1)

ab, . . . , ω(K)
α(K)

ab) , (4.28)

and take ηαβ to be block diagonal with blocks

2σκ
(n)
α(n)β(n)

δ(y − y⋆(n)) . (4.29)

Then our results will go through in very much the same manner, replacing δ(y)tr by∑
n δ(y−y⋆(n))tr

(n), where tr(n) denotes the trace in the gauge group at the nth fixed point.

4.2 Modified gauge transformations and Bianchi identities

The modification (4.27) of the generalised Lie derivative implies modified gauge transfor-

mations for the SUGRA fields. We will demonstrate this explicitly for the SUGRA fields

encoded in the generalised metric, as well as Aµ and Bµν . For the latter, we will also show

how their gauge invariant field strengths and Bianchi identities are modified as a result.

In the following we will not need to worry about the choice of SSC because as mentioned

at the end of the previous subsection, we can always take the derivatives along physical

coordinates to be a subset of the d−1 ∂k, i.e. the derivatives corresponding to the expansion

tensors ωk. In turn, the SSC just determines — via the explicit form of ωk as a generalised

vector field — which components of the SUGRA are modified. Indeed, we will show in

sections 4.4 and 4.5 that we obtain the correct modifications corresponding to the Hořava-

Witten and heterotic/type I theories.

Note that using the form (4.27) of the modified generalised Lie derivative, while ig-

noring the terms indicated by + . . . which do not play a role at the fixed points, means

that effectively we are dealing with an embedding of the gauge structure of heterotic DFT

into our ExFT, with the novelty that certain terms are in fact localised in certain SSCs.

Appendix (C.3) contains a review of the essential details of that theory.
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Generalised diffeomorphisms of generalised metric. We begin with the internal

degrees of freedom which are encoded in the generalised metric. We use the expansion of

the half-maximal structure (4.15) inserted into the expression (3.14) for the generalised

metric to relate this to the generalised metric. First we note that the term cubic in J in

the expansion of the generalised metric of (3.14), i.e.

Mab,cd
(3) ∼ ηuvwηabefgηcdhij Ĵu,ef Ĵv,hiĴw,gj , (4.30)

is odd under the O-fold action and vanishes at the fixed point.9 Thus at the fixed point

the generalised metric is simply given by

Mab,cd|y=0 = 2∆−2Ju
abJu,cd − ∆−2ηabcdeKe . (4.31)

Using the expansion (4.15) we find that

Mab,cd|y=0 =
(
2Ju

AJuB − ηAB
)
e4d/5ρ−2ωA

abωB
cd = HABe4d/5ρ−2ωA

abωB
cd . (4.32)

The analogue also holds in D ≤ 7, with the aforementioned subtleties in D = 6 and D ≤ 4.

The term inside the brackets is precisely the half-maximal O(d−1, d−1+dimG) generalised

metric, HAB, with Ju
A the ‘left-moving’ vielbein [5]. After expanding the parameter of

generalised diffeomorphisms in the standard way,

ΛM = ΛA(X,Y )ωA
M (Y ) + ΛI(X,Y )πI

M (Y ) , (4.33)

then HAB will transform as:

δΛHAB = ΛC∂CHAB − 2HC(A∂CΛ
B) + 2∂(AΛCHB)C − 2fCD

(A|ΛCH|B)D + . . . (4.34)

where the dots denote extra transformations involving the components ΛI which are only

relevant away from the fixed point.

Let us write the components of ΛA = (vi,Λi, Λ̃
α). Starting with the expression (4.34),

one can work out a parameterisation which is essentially that appearing in discussions of

heterotic supergravity and T-duality [5, 16, 73]. For instance, one has immediately that

δΛHij = LvHij prompting the identification Hij = φij , which we take to be the inverse of

φij , some symmetric tensor. When all ∂k derivatives are non-zero, this can be interpreted

as (proportional to) the “internal” components of a spacetime metric. When some or all

of the ∂k are zero by the SSC, φij instead consists of certain components of spacetime

fields (including possibly both metric and form components), which are scalars, covectors

or metric components from the point of view of the theory at the fixed point. We will

discuss how this works in different SSCs in sections 4.3–4.5.

Then one can consider

δΛHiα = LvHiα − ∂kΛ
αHik − fβγ

αΛβHiγ (4.35)

9To see this is true we note that M(3)
ab,[cdK̂e] = 0 which implies by [15] that M(3)ab,cd is purely a metric

on the 4 of SL(4) ∼ Spin(3, 3). However, this is the irrep which contains the spinors of Spin(3)S ∼ SU(2)S
that are projected out at the half-maximal orbifold fixed point.
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which leads to Hiα = −φikÃk
α, with

δΛÃk
α = LvÃk

α + ∂kΛ̃
α − [Ãk, Λ̃] . (4.36)

This shows that when ∂k 6= 0, the Ãk
α are gauge fields for the gauge group G with structure

constants fαβ
γ as in equation (4.6). When some, or all, of the derivatives ∂k are vanishing

by the section condition, some, or all, of the Ãk
α are scalars transforming in the adjoint of

the group G, instead.10 We will explore this in more detail in sections 4.3–4.5.

The transformation of the remaining degrees of freedom follows from considering

δΛHi
j = LvHi

j +Hjk(∂iΛk − ∂kΛi) + 2σδ(y)∂iΛαHjα , (4.37)

where the delta function appears owing to the form of ηαβ . If we then parameterise the

generalised diffeomorphism parameter Λi as

Λi = λi + σδ(y)tr(Λ̃Ãi) , (4.38)

we find that we can write Hi
j = −φjk(Ωki + σδ(y)tr(ÃkÃi)), with the standard Green-

Schwarz transformation

δΩjk = LvΩjk + 2∂[jλk] + 2σδ(y)tr(Λ̃∂[jÃk]) , (4.39)

which tells us that when all ∂k 6= 0 that Ωij can be identified as an internal two-form

potential. When some or all of the derivatives are zero, then Ωij encodes some collection of

internal components of the surviving field components, which are then either scalars, one-

forms or two-forms from the point of view of the theory at the fixed point. The remaining

components of HAB can be similarly worked out, but will not involve any new fields or

transformations.

We can similarly parameterise the vielbein Ju
A, if we introduce eui such that

euie
v
jδuv = φij . With eu

i the inverse of eui, we can take

Ju
A =

1√
2

(
eiu, eui − eju(Ωji + σδ(y)tr(ÃjÃi)),−ejuÃj

α
)
. (4.40)

This is consistent with its transformation under generalised Lie derivatives at the fixed

point, the condition (4.16) and with the above components of the generalised metric.

Tensor hierarchy and gauge transformations. Now, we similarly write the ExFT

one-form as

Aµ = ωkAµ
k + ωk

(
Aµk + σδ(y)tr(ÃµÃk)

)
+ ωαÃµ

α + πIĀµ
I , (4.41)

where the Ãµ
α that appear here are non-Abelian gauge fields (carrying an “external” index)

with gauge group G with structure constants fαβ
γ . Similarly, for the ExFT two-form Bµν

and the one-form gauge parameter Ξµ we write

Bµν = B̄µν + n
(
Bµν + σδ(y)tr

(
ÃkÃ[µ

)
Aν]

k)
)
,

Ξµ = Ξ̄µ + n
(
Ξµ − σδ(y)tr

(
ÃµΛ̃

)
− σδ(y)tr

(
ÃµÃk

)
Λk

)
.

(4.42)

The barred quantities here are those that vanish at fixed points.

10If G includes a Lorentz group factor to take into account gravitational anomalies, so G = G̃× SO(1, p)

for some p, then we should only consider adjoint scalars of G̃.
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We can now compute the gauge transformation for the ExFT gauge field Aµ, which as

reviewed in section 3.1 is given by

δAµ = ∂µΛ− LAµΛ− dΞµ . (4.43)

Using the modification of the generalised Lie derivative (4.27) and (4.41) we now find

δAµ = ωk

(
Dµv

k + . . .
)
+ ωα

(
DµΛ̃−

[
Ãµ, Λ̃

]
+ LΛvÃµ

)α
+ πI(δΛĀµ

I) .

+ ωk
(
Dµλk + vj(∂jAµk − ∂kAµj)− ∂kΞµ

+ σδ(y)tr
[(

ÃkDµΛ̃ + ∂kΛ̃Ãµ

)
+ Λ̃

(
DµÃk − ∂kÃµ

)]
+ . . .

)
.

(4.44)

Here the derivative Dµ = ∂µ −LAµ , where the Lie derivative L as above is with respect to

the Aµ
k component. This is the “covariant external partial derivative” necessary due to

the Kaluza-Klein split we are employing. From this, we see immediately that

δÃµ
α = LvÃµ

α +DµΛ̃
α −

[
Ãµ, Λ̃

]α
, (4.45)

i.e. the Aµ
α are gauge fields with gauge group G. Writing Ξµ = λµ − vjAµj , we work

out that

δAµk = LvAµk +Dµλk − ∂kλµ + σδ(y)tr
(
Λ̃
(
DµÃk − ∂kÃµ

))
+ . . . (4.46)

From this we see explicitly that the components Aµk have modified gauge transformation

due to the localised gauge fields, and that the modifications take the same form as the

transformations of the “internal” components Ωij , written down in (4.39).

One can similarly work through the calculation of the transformation of Bµν , as defined

in (4.42), finding

δBµν = LvBµν − ∂[µv
jAν]j

+ 2D[µλν] + λiFµν
i +A[µ

i
(
∂|i|λν] −Dν]λi

)

+ σδ(y)tr
(
Λ̃
(
2D[µÃν] + ÃiFµν

i +A[µ
j(∂|j|Ãν] −Dν]Ãj

))
+ . . . .

(4.47)

This also displays modified localised gauge transformations of a similar type, however

adapted as we are to the conventions of heterotic DFT there is an extra piece involving

Aµ
j . This simply suggests that the combination Bµν + A[µ

jAν]j , which will appear in

the field strengths below, is in a sense more natural. This amounts to little more than a

different choice of field redefinitions.

Field strengths. We now compute the gauge-covariant field strengths. Recall that we

were able to include the localised vector multiplets by the “twist ansatz” which generated

an effective modification of the generalised Lie derivative. This implies that we can work

with the usual ExFT definitions, and the modifications due to localised vector multiplets

only appear when we express the fields in terms of SUGRA components. We begin by

computing the gauge-covariant field strength from equation (3.5). First, we work out the
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general form of the expansion of Fµν . We know that this transforms as a generalised vector.

This implies that

Fµν = ωk

(
Fµν

k
)
+ ωk

(
Hµνk − Fµν

jΩjk + 2σδ(y)tr

(
ÃkF̃µν −

1

2
Fµν

jÃjÃk

))

+ ωα

(
F̃µν

α − Fµν
kÃk

)
+ πI F̄µν

I ,

(4.48)

where the components Fµν
k, Hµνk, and F̃µν are all tensors under vk diffeomorphisms, and

invariant under gauge transformations Λk. The full expressions (again, up to additional

contributions involving fields or derivatives which are odd under the Z2 and not relevant

to the modifications at the fixed points) for these can be worked out to be:

Fµν
k = 2∂[µAν]

k −A[µ|
j∂jA|ν]

k + . . . , (4.49)

F̃µν
α − Fµν

kÃk = 2D[µÃν]
α − [Ãµ, Ãν ] , (4.50)

and

Hµνk = 2D[µAν]k − Fµν
jΩkj + ∂k

(
Bµν +A[µ

jAν]j

)
− σδ(y)ωCS

µνk + . . . , (4.51)

where

ωCS
µνk = tr

(
3F̃[µνÃk] +

[
Ãµ, Ãν

]
Ãk

)
, (4.52)

is the Chern-Simons-like 3-form.11 Note here the antisymmetrisation over mixed index

types, leading to the appearance of a field strength

F̃µk = DµÃk − ∂kÃµ − [Ãµ, Ãk] . (4.53)

Observe that these equations are written in a way that is covariant with respect to our split

into “internal” and “external” directions, which is, for example, why the Ωjk transforming

as in (4.39) appears. This is independent of the existence of the localised vector multiplets.

More importantly, the field strength Hµνk has obtained a localised contribution at the fixed

points.

Similarly for Hµνρ one has Hµνρ = H̄µνρ + Hµνρn, with the component proportional

to n given by

Hµνρ = 3D[µBνρ] − 3A[µ
kDνAρ]k − 3∂[µAν

kAρ]k − σδ(y)ωCS
µνρ + . . . , (4.54)

where

ωCS
µνρ = tr

(
3F̃[µνÃρ] +

[
Ãµ, Ãν

]
Ãρ

)
, (4.55)

is the fully external Chern-Simons-like 3-form.

11We say “Chern-Simons-like” because in some SSCs Ãµ are actually adjoint-valued scalars rather than

gauge fields.

– 35 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
7

Bianchi identities. Since the ExFT field strengths Fµν and Hµνρ are gauge-covariant

by construction, we did not have to modify their definition in terms of the ExFT fields.

This further implies that the ExFT Bianchi identities are unmodified and given by [47]

3D[µFνρ] = dHµνρ ,

4D[µHνρσ] + 3F[µν ∧ Fρσ] = 0 .
(4.56)

Let us begin by showing how the first one gives a modified Bianchi identity for Hµνk. For

Hµνρ = Hµνρn+ H̄µνρ, we have that dHµνρ = ωk∂kHµνρ + . . . . This therefore contributes

only to the terms proportional to ωk and not to those involving ωk or ωα. We then calculate

D[µFνρ], using (4.41), (4.48) and the generalised Lie derivative (4.27). From the resulting

expressions for the ωk and ωα terms we find the Bianchi identities

D[µFνρ]
k + · · · = 0 , (4.57)

and

D[µF̃νρ] − [Ã[µ, F̃νρ]]− F[µν
kF̃ρ]k = 0 . (4.58)

Using these two to simplify the form of the ωk component leads to

3D[µHνρ]k − 3F[µν
jHρ]jk − ∂kHµνρ + · · · = −6σδ(y)tr

(
F̃[µ|k|F̃νρ]

)
, (4.59)

where we defined the combination

Hµjk = DµΩjk − 2∂[jA|µ|k] − σδ(y)ωCS
µjk + . . . , (4.60)

with

ωCS
µij = tr

(
3F̃[µiÃj] +

[
Ãi, Ãj

]
Ãµ

)
, (4.61)

where the antisymmetrisation on mixed indices leads to the appearance of the internal field

strength

F̃ij = 2∂[iÃj] − [Ãi, Ãj ] . (4.62)

We then consider the second equation in (4.56). We find for the n component alone that

4D[µHνρσ] + 6F[µν
kHρσ]k + · · · = −6σδ(y)tr(F̃[µνF̃νρ]) , (4.63)

while the other components are not modified.

Summary. The fields displaying modified gauge transformations were: Ωij , from the

internal sector, Aµi and Bµν from the tensor hierarchy. We found

δlocΩij = 2σδ(y)tr(Λ̃∂[jÃk]) ,

δlocAµk = σδ(y)tr
(
Λ̃
(
DµÃk − ∂kÃµ

))
,

δlocBµν = σδ(y)tr
(
Λ̃
(
2D[µÃν] + ÃiFµν

i −A[µ
i(Dν]Ãi − ∂|i|Ãν]

))
.

(4.64)
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Our calculation led to field strengths for these fields, namely: Hµij , Hµνi and Hµνρ, defined

in (4.60), (4.51) and (4.54), respectively. Each of these came with a localised contribution,

which letting µ̂ = (µ, i), took the same form

H loc
µ̂ν̂ρ̂ = −σδ(y) trωCS

µ̂ν̂ρ̂ , (4.65)

with the Chern-Simons-like 3-form

ωCS
µ̂ν̂ρ̂ = tr

(
3F̃[µ̂ν̂Ãρ̂] +

[
Ãµ̂, Ãν̂

]
Ãρ̂

)
, (4.66)

involving field strengths F̃µν , F̃µi, and F̃ij , defined in equations (4.50), (4.53) and (4.62),

respectively. Then, we found modified Bianchi identities in the tensor hierarchy

3D[µHνρ]k − 3F[µν
jHρ]jk − ∂kHµνρ + . . . = −6σδ(y)tr

(
F̃[µ|k|F̃νρ]

)
,

4D[µHνρσ] + 6F[µν
kHρσ]k + . . . = −6σδ(y)tr(F̃[µνF̃νρ]) .

(4.67)

The above box summarises the modifications of the bulk gauge fields that we found due to

the inclusion of localised vector multiplets.

We have not yet discussed the fully internal Hijk field strength, but this would appear

in a “flux formulation”, e.g. via the torsion of the Weitzenböck connection [74–76], while its

Bianchi identity is related to the closure of the generalised Lie derivative. For simplicity, we

ignored it here by focusing solely on the modifications of Bianchi identities appearing in the

tensor hierarchy. This is enough to allow us to make contact with standard formulations

of supergravity, and relate the field components involved, which is what we will do next.

We will properly encounter Hijk in section 4.6 when we discuss the contributions of the

localised field strengths to the action.

4.3 Comparison with heterotic SUGRA

Decomposition of heterotic SUGRA. In heterotic SUGRA, the bosonic field content

consists just of the metric, ĝµ̂ν̂ , 2-form, B̂µ̂ν̂ , dilaton, Φ, and the gauge fields, Âµ̂
α. In this

subsection, µ̂ is the 10-dimensional index, which we will split as µ̂ = (µ, i) into external

and internal indices. Commensurate with this split, we will make a Kaluza-Klein inspired

decomposition of our fields, while retaining the full coordinate dependence. This is a

standard procedure to make contact with double field theory or exceptional field theory,

which is described in more detail in appendix C.

Note that here we anticipate the result by automatically identifying the internal index

i with that appearing in the expansion of the even components of the ExFT fields (in

section 2 and appendix C we use i for the internal index for the 10-dimensional theories).

In particular, the metric gµ̂ν̂ gives rises to (gµν , Aµ
i, gij) according to (C.1) (with the

conformal factor Ω there equal to 1). The “Kaluza-Klein vector” has a field strength

Fµν
i (covariant under diffeomorphisms in the internal directions) given by (C.2). The 2-

form B̂µ̂ν̂ gives fields (Bµν , Aµi, Bij) as in (C.19). Similarly the gauge field Âµ
α leads to

(Ãµ
α, Ãi

α), as in (C.4).
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With the gauge fields present, the B-field has a modified gauge transformation:

δB̂µ̂ν̂ = 2c tr(∂[µ̂Âν̂]Λ) , (4.68)

which leads to the modified gauge transformations (C.19). (Here c is a constant propor-

tional to α′.) The field strength

Ĥµ̂ν̂ρ̂ = 3∂[µ̂B̂ν̂ρ̂] − c ω̂CS
µ̂ν̂ρ̂ , (4.69)

can be decomposed to give covariant field strengths Hµνρ, Hµνi, Hµij , Hijk, given by equa-

tion (C.23). The decomposition of the Chern-Simons three-form involves the field strengths

F̃µν , F̃µi and F̃ij of the gauge fields, defined in (C.6).

The Bianchi identity which the field strength (4.69) obeys is

4∂[µ̂Ĥν̂ρ̂σ̂] = −6c tr(F̂[µ̂ν̂F̂ρ̂σ̂]) , (4.70)

leading on decomposing µ̂ = (µ, i) to the set of equations (C.24), of which the relevant

ones involving three and four external indices are:

3D[µHνρ]i − 3F[µν
jHρ]ji − ∂iHµνρ = −6c tr(F̃[µνF̃ρ]i) ,

4D[µHνρσ] + 6F[µν
iHρσ]i = −6c tr(F̃[µνF̃ρσ]) .

(4.71)

In fact, as we discussed at the start of this section, we can actually take the gauge group

to be G = G̃× SO(1, 9), where G̃ should be SO(32) or E8 × E8, and the SO(1, 9) leads to

the inclusion of the gravitational contribution to the anomaly on the same footing as the

gauge contribution.

The ExFT SSCs. The ExFT SSCs that correspond to the heterotic theory, as listed in

section 2.4, are those in which the Z2 reflection only acts on dual directions, with all the

spacetime coordinates being even. Thus we drop the δ(y) from all our expressions.

We consider first the IIA SSC, in which the “M-theory index” s in a = (i, s, 5) is even

under the Z2. We take

ωk
i5 = δk

i , ωkij = ηkij , ns = −1 = n̂s . (4.72)

These obey the constraint (4.3), taking ηijks5 = ηijk, the three-dimensional alternating

symbol. Therefore, it is the components

Aµ
ij = ωkij(Aµk + . . . ) , Bµνs = ns(Bµν + . . . ) (4.73)

which contain Aµk and Bµν and thus have modified gauge transformations. The ExFT to

IIA dictionary of section 2.3 also allows us to confirm that Aµ
ij ∼ ηijkB̂µk, Bµ̂ν̂s ∼ B̂µν ,

i.e. that it is indeed the NSNS 2-form that is appearing here.

Next, we consider the IIB SSC. Recall here we had an SL(2) doublet α̇ = (1̇, 2̇) in which

1̇ indicated the “RR” component and 2̇ the “NSNS” component. To obtain a heterotic SSC,

we take the Z2 to act on the 1̇ index as +1. We take

ωkij = ηkij , ωk
i
2̇ = δ

k
i n1̇ = −1 = n̂1̇ , (4.74)

obeying (4.3) with ηijk 1̇2̇ = ηijkη1̇2̇, η1̇2̇ = −η2̇1̇ = +1.
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Thus we find modified gauge transformations associated to the components

Aµi
2̇ = ωk

i
2̇(Aµk + . . . ) , Bµν1̇ = n1̇(Bµν + . . . ) , (4.75)

which according to the dictionary of section 2.3 indeed correspond to Aµi
2̇ ∼ B̂µi,

Bµν1̇ ∼ B̂µν .

Comparison. Comparing the transformations we found in the previous section, (4.64),

and the expressions for the field strengths, (4.65), shows that we can match Ωij = Bij ,

while the Aµi and Bµν coming from the expansion of the ExFT fields are exactly the Aµi

and Bµν coming from the decomposition of the supergravity fields. Similarly, the gauge

fields correspond to each other. We can also take φij = gij , the internal components of

the 10-dimensional string frame metric. Next one sees that the ExFT field strengths, Hµij ,

Hµνi and Hµνρ also match identically with the SUGRA ones and similarly the Bianchi

identities (4.67) coincide with (4.71) (taking our constant σ = c).

As for the gauge group: at the level of our present analysis, we should think that this

can be specified by hand alongside the choice of SSC. It would be desirable, and interesting,

to have access to an ExFT version of anomaly cancellation conditions which allowed one to

specify more precisely the gauge group in different SSCs, as we discuss in the conclusions.

Type I SUGRA. The type I theory is S-dual to the heterotic SO(32), i.e. to the heterotic

theory obtained from a IIB SSC. We instead need

ωkij = ηkij , ωk
i
1̇ = δ

k
i n2̇ = 1 = n̂2̇ . (4.76)

The result is just to replace everywhere the B-field with the RR 2-form to obtain the desired

modifications to the Bianchi identities. The only subtlety is that one should now identify

φij with the S-dual to the string frame metric of the heterotic case, as one can explicitly

see by studying the generalised metric decomposition in this case in appendix D.5.

4.4 Comparison with Hořava-Witten

Decomposition of 11-dimensional SUGRA on interval. We will now compare with

11-dimensional SUGRA on the interval S1/Z2 [20, 21], where the circle coordinate ys is

subject to the orbifold identification ys ∼ −ys. Under this reflection we require also the

11-dimensional three-form be transformed as Ĉ(3) → −Ĉ(3). The fixed points are at ys = 0

and ys = πRs, and can be viewed as 10-dimensional boundaries or “end-of-the-world

branes”. At these fixed points, Hořava and Witten showed that there must exist additional

degrees of freedom, namely an E8 gauge multiplet at each one. Here we will concentrate

solely on the modifications at ys = 0, and as discussed at the start of this section, we can

think of the gravitational contribution as being included by taking the gauge group to be

E8×SO(1, 9), with an appropriate normalisation in the trace such that that of the SO(1, 9)

group is normalised with a factor of 1/2 relative to that of the E8 gauge group.
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The three-form’s gauge transformations, field strength and Bianchi identities are mod-

ified as follows. Firstly, the three-form transforms as12

δlocĈµ̂ν̂ρ =
κ2

λ2
δ(ys)6δs[µ̂tr(Λ∂ν̂Âρ]) . (4.77)

under gauge transformations δÂµ̂ = ∂µ̂Λ − [Âµ̂,Λ] of the 10-dimensional gauge fields Âµ̂.

(In order to write the gauge transformations in the form (4.77) we abuse notation by using

the same index µ̂ on the localised gauge fields, with the understanding that there is no

component Âs.) The modified field strength invariant under this gauge transformation is:

F̂µ̂ν̂ρ̂σ̂ = 4∂[µ̂Ĉν̂ρ̂σ̂] +
κ2

λ2
δ(ys)4δs[µ̂ω̂

CS
ν̂ρ̂σ̂] , (4.78)

where

ω̂CS
µ̂ν̂ρ̂ = tr

(
3A[µ̂F̂ν̂ρ̂] + Â[µ̂[Âν̂ , Âρ̂]]

)
. (4.79)

The Bianchi identity is then:

5∂[µ̂F̂ν̂ρ̂σ̂λ̂] = −6
κ2

λ2
δ(ys)5δs

[λ̂
tr(F̂µ̂ν̂F̂ρ̂σ̂]) . (4.80)

We see that in all cases, it is components carrying the index s that are modified.

To make contact with ExFT, we follow the standard procedure of [9], as described in

more detail in appendix C. We split X µ̂ = (Xµ, Y i), where we further let Y i = (Y i, ys).

This means that the interval direction is chosen to be “internal” and so becomes part of the

extended space of ExFT. The metric decomposes as ĝµ̂ν̂ → (gµν , Aµ
i, gij) using (C.1). The

three-form splits as Ĉµ̂ν̂ρ̂ → (Aijk, Aµij , Aµνi, Aµνρ), after making certain field redefinitions

as explained in appendix C: the precise definitions here are given in equation (C.7). Simi-

larly, we obtain Ãµ and Ãi, as in (C.4), from the decomposition of the localised gauge field.

The modified gauge transformations of the three-form components are now provided

by (C.9), while the field strengths, Fµνρσ, Fµνρi, etc. are defined in (C.16), making use of the

decomposition of the Chern-Simons three-form given by (C.15), where the field strengths

F̃µν , F̃µi and F̃ij (see (C.6)) of Ãµ and Ãi appear. The Bianchi identities include:

3D[µFνρ]ks − 3F[µν
jFρ]jks − ∂kFµνρs + ∂sFµνρk = −6

κ2

λ2
δ(ys)tr(F̃[µ|k|F̃νρ])

4D[µFνρσ]s + 6F[µν
kFρσ]ks + ∂sFµνρσ = −6

κ2

λ2
δ(ys)tr(F̃[µνF̃ρσ]) .

(4.81)

Note that we see here components of Fµν
i, the field strength associated to the vector Aµ

i

arising from the metric, defined in (C.2).

12Note that the conventions in the original paper are somewhat different. Their (unmodified) field

strength is GHW = 6(dCHW ). The three-form here is related to theirs by CHW = 1

6
√
2
Ĉ. Hence, our

SUGRA bosonic action is S = − 1
2κ2

∫

d11X
√
g
(

R+ 1
48
F 2 + 1

1442
ǫCFF

)

with F = dC, and the bosonic

Yang-Mills action is SY M = − 1
λ2

∫

d10x
√
g 1
4
F 2. Anomaly cancellation determines κ2/λ2 = κ2/3/2π(4π)2/3.
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The ExFT SSC. The SL(5) ExFT SSC corresponding to the Hořava-Witten configura-

tion, as explained in section 2.4 involved splitting a = (i, s, 5) with (i, 5) having odd parity

under the Z2 and s even parity. The physical coordinates are then Y i = (Y k5, Y s5) of

parity (+++−), and can be identified with the physical coordinates (Y i, ys) in the above

split. We therefore replace δ(y) with δ(ys) in all expressions that we obtained.

A choice of basis for the well-defined generalised tensors is

ωk
j5 = δk

j , ωkij = ηkij , ns = −1 = n̂s , (4.82)

taking ηkijs5 = ηkijs. Hence, we find modified gauge transformations in the components

Aµ
ij = ωkij(Aµk + . . . ) , Bµνs = ns(Bµν + . . . ) . (4.83)

Using the ExFT to SUGRA dictionary of 2.3, we know that Aµ
ij ∼ ηijksĈµks, Bµνs ∼ Ĉµνs.

We therefore see that it is the components of three-form carrying the index s that come

with a modified gauge transformation, exactly as expected.

Comparison. We can then be precise about the identification. Firstly, we note that

the 11-dimensional supergravity metric has non-vanishing internal components gij and gss.

The latter is just a scalar as far as the theory at the fixed point is concerned. It is natural

to identify φij which appeared in the generalised metric of the ExFT as being proportional

to gij . From appendix D.5, we find the precise identification is φij = (gss)
1/2gij , which

is exactly such that φij becomes the internal components of the 10-dimensional heterotic

string frame metric after reducing on the interval direction s.

Now we turn to the components which had modified gauge transformations. In ExFT,

these were Ωij , Aµi and Bµν , as summarised in (4.64). Comparing with the gauge transfor-

mations of the three-form components (C.9) we see that we have the following identification:

Ωij = Aijs ,

Aµi = Aµis ,

Bµν = Aµνs −A[µ
iAν]is .

(4.84)

Similarly we can compare the field strengths (4.65) with the decompositions (C.16). We

see that we ought to have

Hµij = Fµijs ,

Hµνi = Fµνis ,

Hµνρ = Fµνρs .

(4.85)

The Hořava-Witten Bianchi identities (4.81) then agree exactly with what we found, (4.67),

for σ = κ2/λ2, and after noting that the terms in (4.81) involving the ∂s derivatives would

come from the omitted “ellipsis” terms in the calculations leading to (4.63) and (4.59).
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4.5 Modifications in other SSCs and the general structure

Having described in detail how our ExFT mod Z2 description reproduces the modified

gauge transformations, field strengths and Bianchi identities of heterotic SUGRA, as well

as the Hořava-Witten description of 11-dimensional SUGRA on an interval, we will now

sketch how the modifications we found appear in other SSCs. In these cases, the fewer

than three of the ∂k can be non-zero, and thus at least some of the Ãk
α are adjoint scalars

rather than components of gauge fields. We will discuss what these fields and what the

bulk fields that obtain modified gauge transformations, Aµk and Bµν , correspond to. The

fields in Ωij (which also have modified gauge transformations and Bianchi identities) and

φij will be dealt with in appendix D.5.

We begin by discussing the localised fields Ãµ̂, where µ̂ = 0, . . . , p, where in our SL(5)

example we have here p = 6, 7, 8. As we saw in section 4.2 the external ones, Ãµ, are always

components of gauge fields, while the internal ones Ãk are components of gauge fields of the

localised gauge group G if the corresponding ∂k 6= 0 by the section condition and adjoint

scalars if ∂k = 0. To be precise, if we want to obtain the gravitational contribution to the

modified Bianchi identities, we take the gauge group G = G̃ × SO(1, p) and assume that

we only have adjoint scalars of G̃, which will have a physical interpretation in string theoy,

and not of the Lorentz group on the fixed point plane.

Thus, for the different SSCs we find a total number of gauge fields in adjoint scalars as

listed in table 6. As we already mentioned in the preceding sections for the Hořava-Witten

orbifold and heterotic theories we obtain 10-dimensional gauge fields (in the Hořava-Witten

case they are localised on the “end-of-the-world-branes” while in the heterotic theories they

are purely localised in the dual directions and thus delocalised in spacetime). For the SSCs

corresponding to Op-planes, we correctly find the field content living on Dp-branes (i.e.

p+ 1-dimensional gauge fields and 9− p adjoint scalars), while in the SSCs describing M-

theory on T 4/Z2, i.e. the strong-coupling limit of O6-planes, we have 7-dimensional gauge

fields and 3 adjoint scalars. The gauge fields are the non-Abelian gauge bosons coming

from membranes wrapped on shrinking 2-cycles of T 4/Z2, while the 3×dimG scalar fields

are part of the moduli space describing of Einstein metrics T 4/Z2, the orbifold limit of K3

(for dimG = 16). In this case, the remaining scalar fields of the moduli space reside in φij .

Let us now outline how to identify which fields obtain localised modifications to their

gauge transformations due to equation (4.64). Firstly, note that in order to calculate the

modified gauge transformations and Bianchi identities, we assumed that the gauge fields

were localised at the fixed points. This means we restrict ourselves to describing situations

where all the D-branes sit on top of the O-planes so that the charges cancel locally. This

implies that we must always take all the adjoint scalars that are in Ãk
α to be vanishing.

We can see what the Ωij correspond to from the action of the generalised Lie derivative

as discussed in section 4.2, or alternatively directly from the parameterisations of the

generalised metric in appendix D.5. On the other hand, for the fields living in the tensor

hierarchy we need to first use the basis tensors ωk, ωk, n for the various SSCs, which we

list in table 7, to identify which components of the ExFT tensor hierarchy fields contain

Aµk, Bµν . Then, we compare with the ExFT ↔ SUGRA dictionary for the different SSCs,

– 42 –



J
H
E
P
0
9
(
2
0
1
8
)
1
5
7

Dim fixed point ExFT SSC Theory Transverse dirs Field content of Ãµ̂

7+3 M HW 1 10-d gauge fields

7+3 IIA het E8 × E8 0 10-d gauge fields

7+3 IIB type I (O9) 0 10-d gauge fields

7+3 IIB het SO(32) 0 10-d gauge fields

7+2 IIA type I′ (O8) 1 9-d gauge & 1 scalar fields

7+1 IIB O7 2 8-d gauge & 2 scalar fields

7 M O6 (gs → ∞) 4 7-d gauge & 3 scalar fields

7 IIA O6 3 7-d gauge & 3 scalar fields

Table 6. Different theories captured by the Z2 orbifold of the SL(5) ExFT. Depending on the

number of the transverse directions (which are always reflected), only a subset of the ∂k 6= 0 by the

section condition. The corresponding Ãk are either components of gauge fields or adjoint scalars.

SSC
(
y‖, y⊥

)
ωk, ωk n, n̂

IIA type I′ (O8) (yp, ys) ωp,q4=ηpq, ω4,pq=ηpq, ωp
q5=δ

q
p, ω4

45=1 ns= n̂s=−1

IIB O7 (ys, yp) ωs,αβ=ηαβ , ωp
q
2=δ

p
q , ωs,pq=ηpq, ωp,q

1=ηpq ns= n̂s=1

M O6 (gs → ∞)
(
∅, yi

)
ωk,ij= 1

2

(
ηk,ij + η̄k,ij

)
, ωk

ij= 1
2

(
ηk,ij − η̄k,ij

)
n5= n̂5=1

IIA O6
(
∅, yi

)
ωk,ij=ηkij , ωk

i4=δ
i
k n5= n̂5=1

Table 7. We list the only non-vanishing components of the basis forms ωk, ωk, na and n̂a for SSCs

in which the fixed point is less than 10-dimensional. The y‖ / y⊥ denote the physical coordinates

which are tangent and transverse to the fixed point, respectively. The index p = 1, 2 label tangent

/ transverse coordinates in the O8/O7 case.

SSC ∂k 6= 0? Aµ
k Aµk Bµν

IIA type I′ ∂p 6= 0 Aµ
p, Cµ Cµps, Bµs Cµνs

IIB O7 ∂y 6= 0 Aµ
y, Cµp Cµpqy, Bµp Cµνpq

M O6 (gs → ∞) ∂k = 0 Cµij Cµij Cµνijkl

IIA O6 ∂k = 0 Cµij Bµi Cµνijk

Table 8. Field components in the expansion: Aµk for ∂k 6= 0 and Bµν have modified Bianchi

identities. For the O8 case and O7 case, this means the RR field components in Aµk. Notation as

in table 7.

which we reviewed in section 2.3, to identify the SUGRA fields which have modified gauge

transformations. This information is contained in table 8. We find in the type II sections

with O-planes that as expected the RR gauge fields whose duals C̃ couple to the D-brane

via a term ∼
∫
C̃ ∧ tr(F ∧ F ) have modified gauge transformations and thus modified

Bianchi identities [77], thus this is C(3) in the O8 case, C(4) in the O7 case, and so on.
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4.6 Modified action

We can also describe how the localised vector multiplets appear in the ExFT action. The

ExFT Lagrangian [9, 44, 48, 78] can be generally written as

LExFT=
√
|g|

(
Rg+

1

4α
gµνDµMMNDνMMN− 1

4
Fµν

MFµν NMMN+
√
|g|−1

Ltop−V +. . .

)
.

(4.86)

Here gµν is the external metric, Rg is the external Ricci scalar, Ltop is a topological term

involving only the ExFT gauge fields but not the generalised metric and V is the “scalar

potential” which is normally given by internal derivatives of the generalised metric and

gµν . The constant α depends on the group. The ellipsis denotes gauge kinetic terms for

the other gauge potentials Bµν , etc. which appear in high enough dimensions such that

their field strengths are not dual to the other potentials appearing in the action. In even

dimensions, one can actually only obtain a pseudo-action, which must be supplemented by

a twisted self-duality condition as in [44].

We will now discuss the modifications of these various terms due to the localised

vector multiplets. Here we will make use of the results of [13, 15]. We begin with the

scalar potential V which in fact can be written in terms of the half-maximal structure Ju,

K̂ (instead of in terms of the generalised metric) in the following manner.

One can build a particular set of combinations first order in derivatives of Ju and K̂

which provide the “intrinsic torsion” of the half-maximal structure. These can be thought

of as analogous to the torsion of the Weitzenböck connection [74–76] (and thus contain the

internal fluxes of the theory). Following [13, 15], where the complete definitions can be

found, we denote these by R1uv, R2uvw, T1, T2u and Uu.

For instance, the tensors T1, T2u appear as independent components in an expansion

of d (Ju ∧ Ju). However, from the expansion (4.15) one can easily see that Ju ∧ Ju =

(d − 1)n(Y ) + . . . with . . . as before standing for terms that vanish at the fixed point.

Furthermore, dn = 0 and hence T1 = T2,u receive no modifications and we will ignore

them. From this point forward, we will drop the ellipsis which we normally use to hide all

possible terms which do not involve solely components and derivatives carrying the indices

k associated to the components which are non-vanishing at fixed points, in the interests of

legibility. We will comment on how such terms appear at the end of this subsection.

Bearing this in mind, the other quantities can be expressed simply as

R2uvw = ∆D−3LJuJv ∧ Ĵw

R1uv = ∆−2LJuJv −∆−1R2uvwJ
w ,

Uu = ∆D−1LJu∆
D−2 .

(4.87)

The scalar potential of [13, 15] can be simplified for our purposes to

V =
1

3
R2uvwR2

uvw +∆4−DR1uv ∧R1
uv ∧ K̂ − 2Uu U

u − 4∆−2LJu (U
u∆) , (4.88)

(note here there could also be further dimension-dependent pieces which receive no modi-

fications at the fixed point, as discussed in section 5.1 of [14] and 6.3 of [15]).
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We can then compute the scalar potential using the parametrisation (4.40) of Ju
A.

Inserting (4.40) into (4.87) and focusing on the expansion of R1uv
M in terms of the basis

ωA for the even components,

R1uv
M = ρ−2e4d/(D−2)R1uv

AωA
M , (4.89)

one finds that

R1uv
i =

1

2
τ̂uv

i ,

R1uv i = −1

2
(Ωki + σδ(y)tr(ÃkÃi))τ̂uv

k − 1

4
Huvi − σδ(y)tr

(
ÃiF̃uv

)

+
1

2

(
2e[u

k
(
∂|k|ev]i − ∂|i|ev]k

)
− 3ewie

j
[ue

k
v∂|k|ew]j

)
,

R1uv
α = −1

2
F̃uv

α − 1

2
τ̂uv

kÃk
α ,

R2uvw =
1

2
√
2
ρ−1 e2d/(D−2)

(
6ei[ue

k
v∂|k|ew]i −Huvw

)
,

(4.90)

where we have defined the quantities

Hijk = 3∂[iΩjk] − σδ(y)ωCS
ijk ,

τ̂uv
i = 2ek [u∂|k|e

i
v] − 3eiwej [ue

k
v∂|k|ew]j +

1

2
eiwHuvw

(4.91)

and used eiu to “flatten” indices. After a short calculation with many nice cancellations

we find that

ρ2e−4d/(D−2)V ⊃ 1

2
σδ(y)tr

(
F̃ijF̃kl

)
φikφjl − 1

12
HijkHlmnφ

ilφjmφkn . (4.92)

Here we are omitting also terms involving derivatives of φij , that we are not interested in,

choosing to display only the terms in which the gauge fields Ãk
α appear.

Next we consider the gauge kinetic term

Lkin,g = −1

4
Fµν

MFµν NMMN , (4.93)

which can be rewritten in terms of the half-maximal structure [13, 15] as

Lkin,g =
1

2
∆2−D

(
Fµν ∧ Ĵu

)(
Fµν ∧ Ĵu

)
− 1

4
Fµν ∧ Fµν ∧ K̂ . (4.94)

Using (4.48) and (4.15) as well as rewriting the external metric (since it carries a weight

under generalised diffeomorphisms) as

gExFTµν (X,Y ) = gµν(X,Y )∆2(Y ) , (4.95)

where in turn we expand ∆ as in (4.15), we find, displaying again only the terms involving

the extra gauge vectors,

ρ2e−4d/(D−2)Lkin,g ⊃ 1

4
HµνiH

µν
jφ

ij − σ

2
δ(y)tr

(
F̃µνF̃

µν
)
. (4.96)
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Similarly, we calculate the modifications of the scalar kinetic term

Lkin,s =
1

4α
gµνDµMMNDνMMN . (4.97)

We again begin by rewriting it in terms of the half-maximal structure, such that it takes

the form

Lkin,s = −∆2−Dgµν
(
DµJu ∧Dν Ĵ

u + κ2−D
(
Ĵu ∧DµJ

v
)(

Ĵv ∧DνJ
u
)

+
D − 2

4(d− 1)
Dµ (Ju ∧ Ju) ∧DνK̂

)
,

(4.98)

as shown in [13, 15]. To evaluate this we first compute

DµJu = DµJu
A ωA , (4.99)

to find

DµJu
i =

1√
2
Dµe

i
u ,

DµJu
α = − 1√

2

(
eiuF̃µi

α + Ãi
αDµe

i
u

)
,

DµJu i =
1√
2

(
Dµeui −

(
Ωji + σ δ(y) tr

(
ÃjÃi

))
Dµe

j
u + ejuHµij

+2σ δ(y) tr
(
ÃiF̃jµ

)
eju

)
.

(4.100)

After a straightforward calculation one then finds the localised gauge contributions are

ρ2e−4d/(D−2)Lkin,s⊃ −σ δ(y) tr
(
F̃µiF̃

µ
j

)
φij +

1

4
HµijH

µ
klφ

ikφjl . (4.101)

Finally, the topological term could also in principle receive modifications. However,

one can easily check using the explicit expressions of the topological term found

in [9, 44, 46, 48, 51, 78] and the results of 4.2 that no modifications are generated in the

topological term.

We can now summarise the way in which the localised gauge fields Ãµ
α, Ãi

α appear in

the action. We have found that the Lagrangian contains the terms:13

ρ−(D−2)e2d
√
|g|−1LExFT⊃ 1

12

(
3HµνiH

µν
jφ

ij + 3HµijH
µ
klφ

ikφjl +HijkHlmnφ
ilφjmφkn

)

− 1

4
2σ δ(y)

(
tr
(
F̃µνF̃

µν
)
+tr

(
F̃ijF̃kl

)
φikφjl + 2tr

(
F̃µiF̃

µ
j

)
φij

)
,

(4.102)

13We have not discussed how the kinetic term for the external field strength Hµνρ would appear: this

would arise automatically from the kinetic term for the ExFT two-form Bµν in D = 6 and above. In lower

dimensions, there is no such kinetic term in the action, with the degrees of freedom of Bµν being dual to

degrees of freedom in Aµ or the generalised metric.
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where the field strengths are as in (4.50), (4.53) and (4.62),

F̃µν = 2D[µÃν] + Fµν
kÃk − [Ãµ, Ãν ] ,

F̃µk = DµÃk − ∂kÃµ − [Ãµ, Ãk] ,

F̃ij = 2∂[iÃj] − [Ãi, Ãj ] ,

(4.103)

and as in (4.51), (4.60) and (4.91)

Hµνk = 2D[µAν]k − Fµν
jΩkj + ∂k

(
Bµν +A[µ

jAν]j

)
− σδ(y)ωCS

µνk + . . . ,

Hµjk = DµΩjk − 2∂[jA|µ|k] − σδ(y)ωCS
µjk + . . . ,

Hijk = 3∂[iΩjk] − σδ(y)ωCS
ijk + . . .

(4.104)

with ωCS defined as in (4.66). We think of the field strengths (4.103) as being localised

at the fixed points in spacetime of the Z2 generalised orbifold action, while the field

strengths (4.104) are not themselves localised but contain localised contributions as in-

dicated. The field strengths (4.104), as we have discussed, can be identified with certain

components of field strengths of the supergravity theory in a particular SSC, in which

case they may contain additional terms (involving derivatives and field components which

are odd under the Z2), denoted here by the ellipsis. These all contribute to the action

as in (4.102) in exactly the expected manner, with the kinetic terms for the gauge fields

appearing automatically with a delta function (if necessary) to localise them to the fixed

points in spacetime.

In particular, in heterotic SSCs, where we set δ(y) → 1, we have immediately found the

expected kinetic term for the NSNS two-form (note the field strengths Hµ... are the result

of certain redefinitions of the 10-dimensional field strengths as explained in appendix C,

hence the particularly nice factorisation of the 10-dimensional H2 term using just φij ,

the internal metric components, to contract internal indices). In the Hořava-Witten SSC,

setting δ(y) → δ(ys), the terms in the first line of in (4.102) come from the kinetic term of

the modified field strength of the three-form (only components carrying the interval index

s are modified, and here we find all terms quadratic in such components only), while the

second line leads to the expected 10-dimensional Yang-Mills action living on the “end-of-

the-world branes”.

5 Conclusion and discussion

Summary. Let us first briefly summarise the findings.

In this work we have seen how a variety of orientifold and orbifold constructions are

unified in ExFT as a simple geometric quotient acting in the extended space — we call this

a “generalised orbifold” or O-fold. Demanding the preservation of a 1
2 -maximal structure

in ExFT provides an elegant way to determine compatibility of such generalised orbifolds

with supersymmetry. Thus with a single Z2 quotient we can capture HW/heterotic setups

as well as Type I, Type I′ and a varied spectrum of orientifolds planes depending on how

the solution to the section condition is aligned with the generalised orbifold action. This
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accounts for degrees of freedom that are already present in the maximal theory and are

preserved by the quotient.

New degrees of freedom will also be present in the generalised orbifold theory arising

from twisted sectors localised on “generalised O-planes” i.e. on the fixed points of the O-

fold action in the extended space. Here the sense of localisation needs to be understood in

the context of the extended spacetime of ExFT; depending on the alignment of solution to

the section condition with the O-fold these additional degrees of freedom can be localised

in the physical space (e.g. Yang-Mills multiplets on end of the world branes) or not (e.g.

vector multiplets in heterotic theories).

Using a twist ansatz analogous to that of half-maximal consistent truncations [13–15]

we are able to accommodate exactly such localised vector multiplets. When the ExFT

gauge fields are expanded in this twist ansatz, one finds that their gauge transformations

are modified at the location of the generalised O-planes by the localised vector multiplets.

One can define a properly covariant field strength under this transformation but for which

the Bianchi identity receives a modification sourced by the vector multiplets localised on

O-planes. When evaluated on a particular solution to the section condition, and expressed

in terms of conventional supergravity fields, this can give rise to appropriate modifications

to the field strengths and Bianchi identities. For instance in the Hořava-Witten solution to

the section condition the field strength of the 11-dimensional three-form is modified such

that its Bianchi identity receives a term δ(ys) ∧ tr(F ∧ F ), in which the delta function

localises to the end-of-the-world branes.

This work leads to a number of interesting questions that we hope will form the basis

of further investigation by the community.

Gauge groups and anomalies. We have shown how to produce from ExFT the addi-

tional vector multiplets, either present throughout spacetime or localised at the presence

of orientifold planes or end-of-the-world branes, that are present in the half-maximal the-

ories in 10- and 11-dimensions. However, we seem to have a lot of freedom in how we

introduce these.

Normally, the gauge group is fixed by anomaly cancellation or by placing the appro-

priate number of branes to cancel the tadpole associate to the charged orientifold planes.

A compelling challenge, therefore, is to understand the origin of these powerful consistency

requirements within ExFT.

First, one might imagine carrying out an anomaly analysis in ExFT. Of course this is

challenging since many of the presumably required topological concepts are not presently

understood in ExFT. Should this be possible though it would be very interesting to see

how such a calculation manifests itself in different choices of SSC. Already before taking

any generalised orbifold, one might want to see how ExFT treats the possible appearance

of anomalies in type IIB SSCs (a chiral theory in ten dimensions) when these would triv-

ially not appear in M-theory or IIA SSCs (an 11-dimensional or non-chiral 10-dimensional

theory). This may suggest that the ExFT perspective on anomalies is a very powerful one:

the existence of the trivially anomaly free IIA SSC may mean that an ExFT analysis of the

potential IIB anomaly is very easy, or trivial, to establish. Furthermore, as ExFT serves to
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unify the gauge and gravitational sectors into common Ed(d) multiplets, one might expect

that this unification may simplify such calculations. While mechanically it is quite easy to

embed the gravitational spin connection into the gauge sector of the ExFT by including

an SO(1, n) factor in the gauge group, as for example in heterotic DFT or generalised ge-

ometry [18, 19], it would be interesting to understand the necessity of such a contribution

to the “gauge group” within an ExFT analysis.

The obvious question would then be to take the Z2 quotient as we have done, and

study the interplay between potential ExFT anomaly cancellation and the variable number

of fixed points in different SSCs (and hence different gauge groups). We can mention any

number of ways this is intriguing. For instance, why should E8 × E8 be associated to the

IIA heterotic SSC but SO(32) with the IIB heterotic SSC? Presumably this has something

to do with the existence of the 11-dimensional SSC into which the former can be embedded,

but how exactly does this consequence of string duality manifest itself in our formalism.

A second route may be to consider the equivalent of a tadpole cancelation in ExFT.

We would need to examine the charge of the O-planes in the appropriate ExFT sense.

Once this is established it may be possible to apply the standard charge cancellation on a

compact space at ExFT by including an appropriate number of its 1
2 -BPS objects.

Ultimately of course the expectation is that distinction between the ExFT origin of

gravitational anomaly cancelation and tadpole cancelation becomes moot. Here we mainly

focused on explicit examples in E4(4) ExFT but the technology provided is, modulo small

adjustments, applicable in this context. When making this leap we will also encounter

conventional Op planes with p ≤ 5. This presents new features; first that the O-planes

violate a naive Dirac quantisation recently resolved in [52] and secondly that there are

additional variants on O-planes arising from the discrete torsion of the transverse space [42].

One hopes to give an elegant interpretation of such charges in ExFT as well as the tension

of these objects.

An important point to reiterate is that in the ExFT generalised oribfolds considered

here the distinction between string theory orientifolds and orbifolds is not apparent. A

single discrete identification of the ExFT extended space can appear, depending on the

solution to the section condition, as either a conventional orientifold or an orbifold back-

ground. In section A.2 we provide a further example of this feature with a generalised

orbifold that can appear as either a T 4/Z2 orbifold of IIA or IIA with O6 planes. Consis-

tency of string theory necessitates the inclusion of extra degrees of freedom for both orbifold

and orientifold constructions but for seemingly distinct reasons; for orbifolds twisted sec-

tors restore modularity whereas for orientifolds D-branes cancel the tadpole. Our current

understanding of ExFT provides a natural way of including vector multiplets that can

capture the low energy dynamics of such degrees of freedom but, as with the discussion of

anomalies above, we do not yet have a clear way to constrain the precise field content. It

is not too fanciful to suggest that with sufficient understanding of the constraints placed

upon inclusions of vector multiples in ExFT generalised orbifold, one would be able to

make a precise match to either to the twisted sector of closed string orbifolds or the open

sector invoked by orientifolds.
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Moduli space. The expectation from perturbative string theory is that when orientifold

planes are present, there exist special configurations in which the negative RR tension of

the O-planes is cancelled locally by distributing the necessary D-branes symmetrically at

each fixed point where each plane is situated.

However, we can engineer other gauge groups by positioning D-branes away from

the fixed points. One can further obtain enhancements to exceptional groups non-

perturbatively. For instance, for the type I′ theory, one can obtain, at particular values

of the radii and brane positioning, an E8 gauge group at one orientifold plane, thanks to

extra states coming from D0 branes stuck at the fixed point (at which the string coupling

diverges). This is T- and S-dual to gauge enhancement in the compactified heterotic string

with Wilson lines.

Meanwhile, the charge cancelling configuration consisting of an O7-plane and 4 D7-

branes at each of 4 fixed points can be obtained as a particular point in the moduli space

of F-theory on K3 [79], which one can then view as providing the full non-perturbative

description of O7 and D7 configurations. The full moduli space of O6 and D6 configurations

meanwhile can be argued to be M-theory on K3 [50].

One exciting direction is to give a unified description of this rich perturbative and

non-perturbative information within ExFT. We could consider compactifications of ExFT

that involve K3. The theory of consistent truncations of ExFT on K3 has been established

in [13–15] — one should like to develop this further to study the full low energy theory

on K3. One could choose an M-theory solution to the section condition in which K3 lies

entirely in the physical space. Alternatively one could choose a IIB SSC in which two

directions of the K3 are physical and the other two lie in the dual directions, and can be

identified with the F-theory torus embedded in the extended space of ExFT. As a step

towards this it may be enlightening to consider ExFT on not just the singular generalised

orbifold but also its smooth blow-up. One would then be able to examine the interplay of

the various choices of the solution to the section condition with e.g. the intersection matrix

on two-cycles.

Even without considering such F-theory-esque setups, it may be interesting to consider

the simple example of the type I′ theory with D8 branes positioned arbitrarily on the

interval. The theory between the branes will then be the Romans massive IIA. This does

not have a conventional 11-dimensional uplift, but can be described as a generalised Scherk-

Schwarz reduction of ExFT, corresponding to ExFT on a twisted torus [71, 80]. This is

a prototypical situation in which dual coordinate dependence is needed, and it would be

interesting to study generalised orbifolds of such configurations. Specifically here it could

be a simple case in which to approach issues of gauge enhancement in moduli space, and

may be related directly to the next point.

Heterotic gauge enhancement. Gauge enhancement in the heterotic theory can be

dualised and mapped to particular arrangements of D-branes in the type I′ theory. Recently,
progress has been made in describing first bosonic string and subsequently heterotic gauge

symmetry enhancement in double field theory [67–70]. A concrete problem could be to
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embed or adapt these approaches in our setup, and interpret them in different SSCs. For

instance, we would hope to see the duality between positions of the D-branes in O-plane

SSCs and Wilson lines in heterotic SSCs, related to the appearance of certain gauge groups.

Beyond Z2: generalised orbifolds. We have seen that there is plenty to work with

simply to understand the complete ExFT description of the Z2 generalised orbifold that

gives rise to the half-maximal 10- and 11-dimensional theories. However, in this paper we

uncovered a general procedure to study generic half-supersymmetric orbifolds or ExFT by

quotienting with discrete subgroups of the stabiliser of the half-maximal structure. These

represent geometric or non-geometric orbifolds, depending on whether in a particular SSC

physical coordinates are identified with other physical coordinates only or with dual co-

ordinates. In the latter case, the generalised orbifold may only involve at most identifi-

cations between physical coordinates and string winding coordinates, or between physical

coordinates and more general (solitonic) brane winding coordinates. It would be exciting

to establish the consistency of such scenarios, however since they transcend perturbative

string theory it would certainly be a challenge. They could lead to rather interesting set-

ups that may even provide phenomenological value. Of course to make contact with more

phenomenological approaches one should develop specific examples directly in the context

of four dimensional compactifications and harness the power of E7(7) ExFT. It may be of

interest to connect such O-folds with non-geometric flux backgrounds as for instance done

in the string theory context in [81, 82], perhaps first in the relatively simple SL(5) example

using the fluxes described in [76].
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A Chiral and non-chiral O-folds in the Spin(5,5) ExFT

The case of the E5(5)
∼= Spin(5, 5) ExFT displays some differences to the general story

discussed so far, due to the existence of chiral and non-chiral half-maximal supersymmetry

in six dimensions.

A.1 Details of the Spin(5,5) ExFT

We begin with a review of the basics of the Spin(5, 5) ExFT. We denote a vector in the

coordinate representation R1 = 16 by V M and let BI be a tensor in R2 = 10. The

Spin(5, 5) invariant tensor ηIJ can be used to raise and lower R2 indices. The Majorana-

Weyl gamma matrices, γIMN and γI
MN (symmetric in M,N), which form the off-diagonal

blocks of Dirac matrices ΓI in the Weyl basis obey

γIMNγJ NP + γJMNγI NP = 2ηIJ116 . (A.1)

The section condition of this theory is

γI
MN∂M ⊗ ∂N = 0 . (A.2)

The M-theory SSC is induced by the decomposition under SL(5)×GL(1):

16 → 5̄3 ⊕ 10−1 ⊕ 1−5 , 10 → 5̄+2 ⊕ 5−2 . (A.3)

In this SSC the coordinates Y M = {Y i, Y[ij], Yz} (with here i = 1 . . . 5) can be identi-

fied with physical space, membrane wrappings and five brane wrapping respectively. A

representation of the gamma matrices adapted to this decomposition is provided by

(γI)
MN : (γi)

j
z =

√
2δji , (γi)jk,lm =

√
2ηijklm , (γi)jkl =

√
2
(
δikδ

j
l − δjkδ

i
l

)
,

(γI)MN : (γi)j
z =

√
2δij , (γi)jk,lm =

√
2ηijklm , (γi)j

kl =
√
2
(
δki δ

l
j − δkj δ

l
i

)
,

(A.4)

and the non-vanishing components of ηIJ are ηij = ηj
i = δij .

The IIB SSC is induced by the decomposition under SL(4)× SL(2)×GL(1):

16 → (4,1)1 ⊕ (4,1)−1 ⊕ (4̄,2) , 10 → (1,2)1 ⊕ (1,2)−1 ⊕ (6,1)0 . (A.5)

We will let i, ī = 1 . . . 4 be SL(4) indices and α, ᾱ = 1, 2 identify the SL(2) doublets.

In this SSC the coordinates Y M = {Y i, Y ī, Yi α} can be identified with physical space, D3

wrappings and an SL(2) doublet of F1-D1 windings. In the 10 we haveXI = (Xα, Xᾱ, X
ij).

The invariant tensor ηIJ has components ηᾱβ = ǫαβ and ηij,kl =
1
2ǫijkl.

The gamma matrix components can be taken to be

(γI)
MN : (γα)ījβ = −

√
2δijδ

α
β , (γᾱ)ijβ =

√
2δijδ

α
β ,

(γij)kα,lβ = ǫijklǫαβ , (γij)
k̄l = −2δklij ,

(γI)MN : (γα)̄i
jβ = −

√
2δji δ

β
α , (γᾱ)i

jβ =
√
2δji δ

β
α ,

(γij)kα,lβ = ǫijklǫαβ , (γij)k̄l = −2δijkl .

(A.6)
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In studying O-folds in this context there are two crucial points to make: first, the extended

coordinate representation is spinorial and therefore SO(5, 5) actions on the fundamental

representation, the 10, lead to two different possible O-fold actions which are necessarily

defined on the double cover, and second, there are two inequivalent ways to preserve half-

maximal supersymmetry. Together these enhance the range of O-fold actions available.

For the first point, consider a Z2 element of SO(5, 5) defined by its action ZI
J in the

10. We can then establish an action ZM
N on the 16 by essentially looking at the top-left

component of Ω defined via the standard Clifford relation

Ω−1ΓIΩ = ZI
JΓ

J . (A.7)

However ZM
N and −ZM

N are equally valid choices and within a given SSC could lead

to different identifications. Moreover, depending on the specific choice of ZI
J we could

find that Ω2 = 1 or Ω2 = −1, and in the later case this means that ZM
N would provide

a Z4 identification in the 16. In a similar vein we could consider the case where ZM
N =

−δMN providing a Z2 identification on the coordinate representation where there is no

identification imposed on the R2.

For the second point, there are two different types of half-maximal structures in

Spin(5, 5) ExFT, as shown in [15]. These are a Spin(4) structure and a USp(4) struc-

ture, corresponding in six dimensions to the non-chiral and chiral half-maximal theories

respectively. We can therefore consider half-maximal O-fold actions that are discrete sub-

groups of the stabiliser of either structure.

In order to understand the ExFT quotients in terms of supergravity fields, we can

write down the schematic dictionary between the ExFT fields and these. For simplicity,

we consider here just the tensor hierarchy fields Aµ
M and BµνI . In an M-theory SSC, we

have, with i a five-dimensional internal index,

Aµ
M =




Aµ
i

Ĉµij

Ĉµijklm


 , BµνI =

(
Ĉµνi

1
4!η

ij1...j4Ĉµνj1...j4

)
. (A.8)

As usual, this can easily be reduced to obtain the identifications for a IIA SSC. In a IIB

SSC, with i a four-dimensional internal index and α̇ the SL(2) S-duality index, we have:

Aµ
M =




Aµ
i

Ĉµijk

Ĉµiα̇


 , BµνI =




Ĉµνα̇

Ĉµνijklα̇

Ĉµνij


 . (A.9)

(Note here that the SL(2) doublet index α in the decomposition of the 10 is associated to

the IIB S-duality SL(2) index α̇ on the two-forms, while the doublet index ᾱ is associated

to the IIB S-duality index α̇ on the dual six-forms.)

A.2 The Spin(4) half-maximal structure

This non-chiral structure is the direct generalisation of the half-maximal structure we

studied in the main part of this paper for the group SL(5). It is defined here by K̂I ∈ Γ (R2)
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and four nowhere vanishing generalised vector fields Ju
M ∈ Γ (R1), satisfying (3.9), which

explicitly becomes
(
δu

wδv
x − 1

4
δuvδ

wx

)
Jw

MJx
N
(
γI

)
MN

= 0 ,

ηIJK̂
IK̂J = 0 ,

(
γI

)
MN

K̂IJu
MJu,N > 0 .

(A.10)

It is also helpful to introduce a KI ∈ Γ (R2) such that

K̂IηIJK
J = ∆4 ,

(
γI

)
MN

Ju
MJv

N = 2δuvK
I . (A.11)

KI then automatically further satisfies
(
γI

)
MN

Ju
NKI = 0 ,

KIηIJK
J = 0

(A.12)

M-theory SSC. In flat space there are two distinct ways to align the Spin(4) structure

relative to the basis adapted to the M-theory SSC.

First, we can take

K = (~04,∆
2,~04, 0) , K̂ = (~04, 0,~04,∆

2) . (A.13)

The first of eq. (A.12) implies that the eight non-vanishing components of J are

Juz , J5
u , Ju ĩj̃ , (A.14)

in which ĩ = 1 . . . 4. Now the second of eq. (A.12) require that

ǫĩj̃j̃k̃Ju ĩj̃Jv k̃l̃ + J5
(uJv) z =

√
2∆2δuv (A.15)

We solve this with

J5
u ∼ ∆δu=4 , Juz ∼ ∆δu=4 , Ju ĩj̃ ∼ ∆ηu ĩj̃ (A.16)

Then

ZI
J = diag(−~14, 1,−~14, 1) , ZM

N =
∏

ĩ

1

2
(γ ĩγĩ − γĩγ

ĩ)MN (A.17)

is a Z2 action that stabilises the structure.14 The overall sign of ZM
N is fixed by requiring

that Z ·Ju = Ju. We find the parities of the extended coordinates Y M to be as follows (we

refer to the coordinates as being physical, or conjugate to M2 or M5 windings):

physical : +−−−−
dual M2 : + + ++++−−−−
dual M5 : +

(A.18)

This is a geometric action, which we can view as involving a T 4/Z2 × S1 physical space.

14A second Z2 action available here acts in the 10 by sending X ĩ ↔ Xĩ leaving X5 , X5 invariant. The

resulting ZM
N again has an equal number of positive and negative eigenvalues but in this case results in a

non-geometric identification of physical coordinates with both membrane and fivebrane wrappings.
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K K̂

case (a) (0, 0) (0, 0)

case (b) (−1,−1) (1, 1)

case (c) (1, 1) (−1,−1)

case (d) (−1, 1) (1,−1)

case (e) (1,−1) (−1, 1)

Table 9. We display the SL(2)×GL(1) charge for both K and K̂ in each of the cases considered.

Case (a) breaks the SL(4) symmetry whilst the remainder preserve it.

This corresponds just to the M-theory orbifold on T 4/Z2, with no additional reflection

of the three-form. We can reduce this to a IIA SSC in two ways. If the physical direction

which we require to be an isometry is the single one with even parity, then we obtain a IIA

orbifold. Alternatively, if the isometry direction has odd parity, then we obtain the IIA

orientifold with O6 planes.

Now we switch the alignment of the Spin(4) structure by taking

K̂ = (~04,∆
2,~04, 0) , K = (~04, 0,~04,∆

2) . (A.19)

In this case the eight non-vanishing components of J are the complement to those of

eq. (A.14). As a result the Z2 action that stabilises the structure is

ZI
J = diag(−~14, 1,−~14, 1) , ZM

N = −
∏

ĩ

1

2
(γ ĩγĩ − γĩγ

ĩ)MN , (A.20)

in which we see a crucial minus sign difference acting in the 16. Accordingly we have the

parities

physical : −++++

dual M2 : −−−−−−++++

dual M5 : −
(A.21)

Again, this is a geometric reflection. It corresponds to the Hořava-Witten configuration.

Reducing to IIA, we obtain either the heterotic E8 × E8 theory or the orientifold of IIA

with O8 planes.

IIB SSC. In the IIB SSC there are several ways to align the Spin(4) structure relative

to the SL(4) embedding of eq. (A.5). We take ZI
J to be a reflection in the eight directions

orthogonal to the plane defined by K, K̂. We can specify the vectors K, K̂ simply by giving

their charges under the Cartan subgroup of SL(2)×GL(1). There are multiple possibilities

here that we summarise in table 9. The corresponding action in the 16 is displayed in

table 10.

From the parity assignments in the above, and the general dictionary (A.9) for the

tensor hierarchy fields we have that case (a) corresponds to O7 planes; cases (b) and (e)

correspond respectively to the Type I (O9) / heterotic pair and cases (c) and (d) to an
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physical dual D3 dual D1 dual F1

case (a) −−++ −−++ ++−− ++−−
case (b) + + ++ −−−− ++++ −−−−−
case (c) −−−− ++++ −−−−− ++++

case (d) −−−− ++++ ++++ −−−−
case (e) + + ++ −−−− −−−− ++++

Table 10. The action of the Z2 on the extended coordinates Y M .

SL(2) multiplet of O5’s. One can view the S-dual of the O5 as a type of orientifold plane

carrying NSNS charge. In this case, this is the ONS5B discussed for instance in [42].

More general O-folds can be constructed following the recipe given in section 3.3.

A.3 The USp(4) half-maximal structure

The existence of a second type of half-maximal structure is tied to the fact that one can

have both chiral (2, 0) and non-chiral (1, 1) half-maximal theories in six-dimensions. This

case corresponds to the chiral theories. As described in [15], the half-maximal structure is

defined by five nowhere vanishing tensors Ju
I ∈ Γ (R2) satisfying

(
δwu δ

x
v − 1

5
δuvδ

xw

)
Jw

IηIJJx
J = 0 . (A.22)

Thus, one can define a scalar density ∆ such that

Ju
IηIJJv

J = δuv∆
4 . (A.23)

Evidently the Ju
I span the positive eigenspace of the Spin(5, 5) invariant η with a corre-

sponding SO(5)R symmetry and are stabilised by USp(4)S rotations acting in the negative

eigenspace. Since it should have positive unit determinant, the element ZI
J , it can have

either (a) zero, (b) two or (c) four negative eigenvalues. These cases, (a)-(c), need to be

analysed in turn in each SSC.

M-theory SSC. Here there is no ambiguity in the alignment of the USp(4) structure

to the M-theory basis; the SL(5) used to perform the branching eq. (A.3) has a maximal

compact subgroup identified with the SO(5)S and so there is essentially only one way this

ZI
J can be embedded.

(a) We choose ZI
J = δIJ and ZM

N = −δMN . This corresponds to M-theory on T 5/Z2

combined with the transformation Ĉ(3) → −Ĉ(3) of the three-form. Upon compactifi-

cation this gives the chiral 6d theory which is dual to IIB on K3 [40, 41]. We can also

reduce this SSC to get IIA on T 4/Z2 with a further quotient by (−1)FL (changing the

sign of the RR fields). This corresponds to IIA with an orientifold 5-plane carrying

NSNS charge, the ONS5A of [42].

(b) When ZI
J has two negative eigenvalues the corresponding ZM

N actually has eight

+i and eight −i eigenvalues and generates a Z4 action. This can be seen quite easily
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by considering a basis in which ηIJ is diagonalised and ZI
J acts by reflecting two of

the directions, X1 and X2 say, in which η11 = η22 = −1. The corresponding Ω has

the form Γ1Γ2 and obeys Ω2 = −1. In the M-theory SSC this action has a component

that acts geometrically in the physical space as a T 2/Z4 but non-geometrically on

the remaining three physical coordinates identifying them with membrane winding

charges.

(c) When ZI
J has four negative eigenvalues the corresponding ZM

N produces a Z2 action

on the extended space but one that acts entirely non-geometrically; its eigenvectors

consist entirely of linear combinations of the physical coordinates and those conjugate

to brane windings.

IIB SSC. In the IIB SSC the situation is a bit more subtle since there are various choices

depending on how the two minus directions of ZI
J are distributed relative to the SL(4)

embedding of eq. (A.5). This can produce some further sub-cases.

(a) We choose ZI
J = δIJ and ZM

N = −δMN . This is the orbifold of IIB on T 4/Z2

(and could also be thought of here as an orbifold limit of K3). This is consistent

with the fact that in the M-theory section we found the dual description of M-theory

on T 5/Z2.

(b) When both minus signs of ZI
J act inside the 6 we have a geometric Z4 quotient

on the physical space, which also acts to identify F1 windings amongst themselves

ditto D1 and D3 windings. With exactly one minus sign acting inside the 6 the Z4

identifies the physical space with F1 windings and D3 with D1 windings.

(c) With no minus signs acting inside the 6 the Z4 identifies physical space with D3

windings and separately F1 and D1 windings amongst themselves.

Just as for the non-chiral O-folds, one can construct general half-maximal chiral O-folds

of generalised parallelisable background by appropriately constructing a chiral half-maximal

structure and its associated stabiliser out of the generalised parallelisation.

A.4 Twisted sectors

For six-dimensional non-chiral O-folds, i.e. those preserving a Spin(4) structure, one can

include localised vector multiplets as outlined in section 4. The only equations which need

modifying are the expressions for the generalised metric which can be found in [64].

For chiral O-folds, i.e. those preserving a USp(4) structure, one can use a similar

strategy to include localised tensor multiplets at the O-fold fixed point. We would again

expand all the ExFT fields in terms of an appropriate basis of even and odd generalised

tensors. The even expansion would now be similar to the chiral consistent truncation

described in section eight of [15], but appropriately “enlarged” to capture the twisted sector.

Because the USp(4) structure consists only of generalised tensors in Γ (R2), the even

expansion would only occur for ExFT fields valued in R2. These would now be expanded in

terms of ωA ∈ Γ
(
R̃2

)
, where R̃2 is the appropriately enlarged bundle and A = 1, . . . , 10+N

with N the number of tensor multiplets thus obtained.
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B Doubled orientifolds

The main focus of this paper was the description of orientifolds and orbifolds in exceptional

field theory. We could also consider doing the same in double field theory. In this appendix,

we will explain how to construct and view the Z2 orbifold action associated to the 10-

dimensional half-maximal theories in this theory.

B.1 The doubled worldsheet and double field theory

Worldsheet parity, Ω : (τ, σ) → (τ,−σ), interchanges left- and right-movers, P :

(XL, XR) → (XR, XL). T-duality meanwhile acts as T : (XL, XR) → (XL,−XR). After

T-duality, the original action of parity now acting on the dual coordinate X̃ = XL −XR

amounts to worldsheet parity combined with a spacetime reflection, X̃ → −X̃. Thus one

passes from a setup with unoriented strings and a spacetime filling orientifold plane to one

with orientifold planes at the fixed points of this reflection of the dual coordinate.

The doubled worldsheet allows one to describe original and dual configurations on

an equal footing. We take d coordinates Xi and combine them into an O(d, d) vector

XM = (Xi, X̃i) involving the duals X̃i. In order not to introduce new degrees of freedom,

we should impose a chirality constraint, which in the simplest case takes the form ∂τX
M =

HMNηNP∂σX
P , where the background metric and B-field appear in the generalised metric,

HMN , and O(d, d) structure, ηMN ,

HMN =

(
g −Bg−1B Bg−1

−g−1B g−1

)
, ηMN =

(
0 I

I 0

)
. (B.1)

This constraint can either be imposed on top of an action for the doubled coordinates, as

in [83, 84], or, as was originally done, as the equation of motion for the worldsheet Lorentz

non-covariant action15 of [86, 87]

S ∼
∫

d2σ
(
∂τX

MηMN∂σX
N − ∂σX

MHMN∂σX
N
)
. (B.2)

In either case, we see that the action of parity is only a symmetry if we simultaneous send

ηMN → −ηMN . Equivalently, all the dual coordinates X̃i must be reflected as X̃i → −X̃i.

We can write this in terms of a 2d× 2d matrix ZM
N as

P : XM (τ, σ) → ZM
NXN (τ, 2π − σ) , ZM

N =

(
I 0

0 −I

)
. (B.3)

Note that, unlike the Z2 ⊂ Ed(d) transformation considered in the main part of this paper,

this matrix is not an element of O(d, d), as it does not preserve ηMN but instead sends it

to minus itself. (One can accommodate this in generalised geometry by introducing the

notion of a “conformal Courant algebroid” [33] in which one allows also for transformations

which send η → αη, for α some real number.)

15A PST-style Lorentz covariant version of this action is provided in [85]. Note that one should also add

a “topological term” which is a total derivative classically but important quantum mechanically. We omit

this here.
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The construction [7, 88] of the double field theory spacetime action made use of the

observation that worldsheet parity corresponded to ηMN → −ηMN , with the spacetime

action required to contain only terms containing an even number of ηs in order to be

invariant under this transformation. In addition, the generalised Lie derivative of DFT

has Y MN
PQ = ηMNηPQ. So the full spacetime theory is invariant under ηMN → −ηMN ,

allowing us to implement this as the transformation ZM
N and gauge this symmetry.

The discussion continues then similarly to the ExFT situation that was analysed in

the main part of this paper. In general, the section condition of DFT, ηMN∂M ⊗ ∂N = 0,

is solved by allowing the background fields to depend on at most half the coordinates.

As a consequence, when we gauge the action of parity on the coordinates and gener-

alised metric

XM ∼ ZM
NXN , HMN (X) = (Z−THZ−1)MN (ZX) , (B.4)

we find that — prior to a choice of which half of the coordinates are physical — these

identifications lead to

g(X, X̃) = +g(X,−X̃) , B(X, X̃) = −B(X,−X̃) . (B.5)

If the section condition is such that the fields only depend on X, then there is no identifica-

tion of points in spacetime, and the B-field is eliminated everywhere. This corresponds to

the type I theory. Alternatively, we could choose the fields to depend only on the X̃. In this

case, we have the spacetime identification X̃ ∼ −X̃, and the B-field is only eliminated at

the fixed points, which are spacetime non-filling orientifold planes, like the type I′ theory.
If we depend on some of the X and some of the X̃, then some components of the metric

and B-field will be eliminated at the fixed points.

The fixed points occur at X̃i = 0 and X̃i = πR̃(i), assuming we are orbifolding a doubled

torus. Thus there are 2d fixed points. Each of these fixed points can be viewed as a d-

dimensional O-plane, filling half of the directions of the doubled geometry. Unsurprisingly,

this is similar to how D-branes appear in the doubled description.

Thus we see that the orientifold action (B.3) and (B.4) acts in a very simple manner

on the doubled geometry introduced as the target for the doubled worldsheet, or as the

background described by double field theory. By making different choices of SSC, one can

obtain from the single doubled orientifold action, different spacetime descriptions which

are conventionally thought of as related by duality.

B.2 The RR sector

We can also extend the doubled orientifold action to the RR fields. These appear as

spinors of O(d, d), and can be encoded in DFT as follows [89]. The Clifford algebra of

gamma matrices, {ΓM ,ΓN} = 2ηMN I, has a useful fermionic realisation in a Majorana

representation

Γi =
√
2ψi , Γi =

√
2ψi , {ψi, ψ

j} = δji , {ψi, ψj} = {ψi, ψj} = 0, (B.6)
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with ψi viewed as creation operators and ψi = (ψi)† annihilation operators. Thus a spinor

can be expressed as

χ ≡ |C〉 =
∑

p

1

p!
Ci1...ipψ

i1 . . . ψip |0〉. (B.7)

Chiral spinors are obtained by restricting the summation in the above to range over only

even or odd values, or equivalently by taking projectors under (−1)NF where the number

operator is

NF =
∑

i

ψiψi. (B.8)

In a frame in which ∂̃i = 0 we can represent ψi = dxi and positive chirality spinors consist

of the sum of even forms and negative the sum of odd forms. The Dirac operator is given

as /∂ = ψi∂i +ψi∂̃
i and, using the Clifford algebra, is nilpotent when subject to the section

condition. In the standard way there is a two-to-one group homomorphism ρ : Pin(d, d) to

O(d, d) defined as is familiar by S−1ΓMS = OM
NΓN .

The RR fields in DFT can then be described as a spinor χ = |C〉 of a particular chirality,
obeying a self-duality constraint (as in the democratic formalism of type II supergravity).

Now, the Z2 transformation ZM
N is not an element of O(d, d), so its lift to the RR

sector is somewhat subtle. Suppose that we want to encode the action of ZM
N correspond-

ing to orbifolding in n directions in spacetime, so that ZM
N = (Ip,−In,−Ip, In). Let us

write i = (µ, a), where µ = 0, . . . , p− 1, and a = 1, . . . , n. Define

Ñ =

p−1∑

µ=0

ψµψµ +
n∑

a=1

ψaψ
a = N(p) + n−N(n) (B.9)

where N(p) and N(n) denote the number operators for the (ψµ, ψ
µ) and (ψa, ψ

a) subsets.

Then

Z̃ ≡ (−1)
1
2
Ñ+1 (B.10)

gives the action of the doubled orbifold on the RR spinor.

Note that Z̃2 = (−1)NF+n, so this squares to one only if NF and n are both even or

both odd — this distinguishes the IIA and IIB cases. In IIA we have n odd (leading to Op

planes with p even) and chiral spinors with (−1)NF = −1, while in IIB we have n even, Op

planes with even p, and (−1)NF = +1, We can write

Z̃ = (−1)
∏

µ

(1 + (i− 1)ψµψµ)
∏

a

(1 + (i− 1)ψaψ
a) , (B.11)

Z̃−1 = (−1)
∏

µ

(1− (i+ 1)ψµψµ)
∏

a

(1− (i+ 1)ψaψ
a) , (B.12)

and thus compute that

Z̃ψiZ̃−1 = iψi , Z̃ψaZ̃−1 = −iψa , Z̃ψiZ̃
−1 = −iψi , Z̃ψaZ̃

−1 = iψa . (B.13)

The relationship between the vector transformation ZM
N and Z̃ turns out to be

iZM
NΓN = Z̃ΓM Z̃−1 . (B.14)
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(Note that this is almost the usual relation between elements of O(d, d) and elements of

Pin(d, d). It may be interesting that iZM
N is an element of O(d, d;C). Acting on a spinor

state of the form χ = Cµ1...µma1...aqψ
µ1 . . . ψµmψa1 . . . ψaq |0〉, Z̃ gives

Z̃χ = (−1)1+(m+n−q)/2χ . (B.15)

It is straightforward to cycle through the possibilities. For instance:

• n = 0: we take the RR spinor to have even chirality, χ =
∑

m evenC(m). We have

Z̃C(m) = (−1)1+m/2C(m) and so the 0-, 4- and 8-forms are odd. There is no action in

spacetime, so these are projected out — we also know that the NSNS 2-form is odd,

so this is exactly the case corresponding to the orientifold of type IIB leading to the

type I theory.

• n = 1: we take the RR spinor to have odd chirality, χ =
∑

m oddC(m). The individual

spinor states can either have q = 0 (do not contain the single ψa creation operator),

or q = 1 (do contain the single ψa creation operator). When q = 0, Z̃C(m) =

(−1)1+(m+1)/2C(m), so that the 3- and 7-forms are odd and projected out at the

fixed points in the Xa direction. When q = 1, Z̃C(m),a = (−1)1+m/2C(m),a, which

is consistent with this parity assignment (the index a transforms with odd parity).

This corresponds to the type I′ theory with O8 planes, which is here the T-dual of

type I on the Xa direction.

B.3 Relation with ExFT

To close let us explicitly show how the above DFT picture arises from ExFT specialised

to the case of SL(5). Using equations (D.18), (D.20), (D.22) we can perform the reduction

of the ExFT generalised metric mab (a, b = 1 . . . 5) to yield the O(3, 3) generalised metric

HMN (M,N = 1 . . . 6) and the Spin(3, 3) Majorana-Weyl spinor CI , (I = 1 . . . 4) encoding

internal components of the RR fluxes.

The Z2 action in ExFT descends to three distinct possibilities in DFT depending on

how the positive eigenvalue is situated in the dimensional reduction ansatz D.18. We denote

the cases:
Z(1)a

b = diag(−1,−1,−1,−1,+1) ,

Z(2)a
b = diag(−1,−1,−1,+1,−1) ,

Z(3)a
b = diag(−1,−1,+1,−1,−1) .

(B.16)

Each of these cases will produce an action on the DFT generalised metric and RR spinor

according to Z(i) : HMN → ZM
PZN

QHPQ and CI → Z̃I
JCI . We also have to keep track

of the different parameterisation of IIA and IIB. The resulting diagonal 6 × 6 and 4 × 4

matrices in each of the 6 cases are displayed in table 11.

Note that these Z2 actions, while always an element of SL(5) are not necessarily ele-

ments of O(3, 3). Instead they will in general induce an additional Z2 action on ηMN , as

in cases 1 and 3 which take ηMN −→ −ηMN . In fact, only case 2 corresponds to an O(3, 3)

action: it acts as the identity on the fundamental but acts as multiplication by −1 on the

spinors, i.e. the RR sector.
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IIA IIB

Case 1
diag(−1,−1,−1,+1,+1,+1)

diag(+1,+1,+1,−1)

diag(+1,+1,+1,−1,−1,−1)

diag(+1,+1,+1,−1)

Case 2
diag(+1,+1,+1,+1 + 1,+1)

diag(−1,−1,−1,−1)

diag(+1,+1,+1,+1 + 1,+1)

diag(−1,−1,−1,−1)

Case 3
diag(+1,+1,−1,−1,−1,+1)

diag(+1,+1,−1,+1)

diag(−1,−1,+1,+1,+1,−1)

diag(+1,+1,−1,+1)

Table 11. Reduction of the ExFT Z2 producing DFT actions ZM
N and ZA

B .

The two Case 2 theories project out the RR fields as would be required of a heterotic

background. Cases 1 and 3 correspond to DFT orientifolds described above.

Consider for instance the example of Case 3 in IIA. When acting on the generalised

metric the Z2 action is of the DFT form ZM
N = (Ip,−In,−Ip, In) with p = 1, 2 and n = 3

(time and other spatial coordinates left un-doubled are external to this argument). Let us

now verify that the action on the RR sector defined in eq. (B.11). To show this we need

to use the basis of Dirac gamma matrices induced by the ExFT to DFT reduction [10]

ΓM =

(
0 γMIJ

γMIJ 0

)
. (B.17)

The MW blocks are defined by

γiIJ = −
√
2ηiIJ , γi

IJ = −2
√
2δ

[i
[Iδ

4]
J ] , γiIJ = 2

√
2δ

[i
[Iδ

4]
J ] , γiIJ =

√
2ηiIJ , (B.18)

in which the alternating symbol is extended such that ηiIJ = 0 when I = 4 or J = 4.

In this case we have from eq. (B.11),

Z̃ = (−1)
∏

µ=1,2

(
1 +

1

2
(i− 1)γµγµ

)∏

a=3

(
1 +

1

2
(i− 1)γaγ

a

)
, (B.19)

which when evaluated in this basis of gamma matrices indeed yields Z̃I
J =

diag(+1,+1,−1,+1) agreeing with that obtained from the dimensional reduction of the

ExFT action.

C Decompositions of supergravity

C.1 General features

The usual procedure to connect the ExFT formulation with SUGRA is the following. First,

a solution of the section condition is picked. This corresponds to breaking Ed(d) → GL(d)

(for an M-theory SSC) or GL(d− 1) (for a IIA SSC) or GL(d− 1)×SL(2) (for a IIB SSC).

All the fields and gauge parameters can be decomposed under this split. Then, one can

check the action of generalised diffeomorphisms and generalised gauge transformations on

the fields, and identify the transformations of the ExFT field components under spacetime
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diffeomorphisms and the usual p-form gauge transformations. This allows one to make

a precise map to (a convenient decomposition of) the SUGRA fields in some standard

formulation.

The purpose of this appendix is to provide general details of these supergravity de-

compositions. We will follow the standard procedure [9] to carry out a Kaluza-Klein-esque

decomposition of the 11-dimensional fields in order to arrive at objects which more natu-

rally can be identified (by further field redefinitions) with those of ExFT.

First consider the metric, ĝµ̂ν̂ , of the 11- or 10-dimensional supergravity theory. After

splitting the coordinates X µ̂ = (Xµ, Y i), we partially fix the Lorentz gauge, breaking

SO(1, 10) → SO(1, D − 1) × SO(d) (or SO(1, 9) → SO(1, D − 1) × SO(d − 1)) making a

choice of the vielbein such that the metric has the form

ĝµ̂ν̂ =

(
Ωgµν + gklAµ

kAν
l gjkAµ

k

gikAν
k gij

)
. (C.1)

If the original metric ĝµ̂ν̂ is Einstein frame (as is usually the case for 11-dimensional SUGRA

and IIB SUGRA in a manifestly S-duality invariant formulation), we take the conformal

factor to be Ω = (det gij)
ω. Alternatively, if it is the 10-dimensional string frame metric,

then Ω = (det gij)
ωe−4Φω. The constant ω = 0 in DFT and ω = − 1

D−2 in ExFT.

The vector Aµ
i has a field strength given by

Fµν
i = 2∂[µAν]

i − 2A[µ
j∂|j|Aν]

i . (C.2)

It is convenient to redefine the components of the form fields to obtain quantities which

transform covariantly under internal diffeomorphisms, i.e. according to the internal Lie

derivative acting in the standard way according to the internal indices carried by the field.

So for a p-form, Ĉµ̂1...µ̂p , one defines

Aµ1...µpi1...iq = êµ1
ā1 êā1

µ̂1 . . . êµp
āp êāp

µ̂pĈµ̂1...µ̂pi1...iq (C.3)

where êµ̂
â is the vielbein for the metric ĝµ̂ν̂ , and ā the flat n-dimensional index. The above

choice of metric/vielbein is such that êµ
āêā

ν̂ = (δµ
ν ,−Aµ

j).

These redefinitions make it relatively straightforward to match the ExFT fields with

those of SUGRA, by for instance comparing their symmetry transformations or by matching

the invariant field strengths. In some cases, care must be taken to remove components of

dual gauge fields from the ExFT action.

We will also apply the same procedure to the additional gauge fields that are present

in the half-maximal theories. If the 10-dimensional gauge field is Âµ̂ and we split µ̂ = (µ, i)

then we let

Ãi
α ≡ Âi

α ,

Ãµ
α ≡ Âµ

α −Aµ
iÂi

α ,
(C.4)
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where Aµ
i are the KK vector components coming from the metric decomposition. We

similarly define field strengths for the gauge fields via

F̂ij = F̃ij

F̂µi = F̃µi +Aµ
jF̃ji

F̂µν = F̃µν + 2A[µ
iF̃ν]i +Aµ

iAν
jF̃ij

(C.5)

such that

F̃ij = 2∂[iÃj] − [Ãi, Ãj ] ,

F̃µi = DµÃi − ∂iÃµ − [Ãµ, Ãi] ,

F̃µν = 2D[µÃν] + Fµν
iÃi − [Ãµ, Ãν ] .

(C.6)

In the above Dµ = ∂µ − LAµ , where L is the ordinary Lie derivative.

C.2 11-dimensional SUGRA on an interval

Field content and decomposition. The 11-dimensional bosonic fields are the metric

ĝµ̂ν̂ and the three-form Ĉµ̂ν̂ρ̂. We consider the theory on an interval I = S1/Z2, which we

take to be the direction ys. Under ys → −ys we simultaneously reflect Ĉ(3) → −Ĉ(3), which

is a symmetry of the action. The fixed points of the reflection are ys = 0 and ys = 2πRs.

At each fixed point, we have an E8 gauge multiplet, which we denote by Âµ̂
α where µ̂ here

excludes µ̂ = s.

Now we split the coordinates X µ̂ = (Xµ, Y i) with i = 1, . . . , d, such that ys is one

of the internal directions. We decompose the metric according to (C.1), and make the

Kaluza-Klein inspired field redefinitions for the three-form:

Aijk = Ĉijk ,

Aµij = Ĉµij −Aµ
kĈkij ,

Aµνi = Ĉµνi − 2A[µ
kĈν]ik +Aµ

kAν
lĈikl ,

Aµνρ = Ĉµνρ − 3A[µ
kĈνρ]k + 3A[µ

kAν
lĈρ]kl −Aµ

kAν
lAρ

mĈklm ,

(C.7)

These redefinitions produce fields which transform covariantly (i.e. via the internal Lie

derivative) under internal diffeomorphisms. Similar redefinitions of the field strengths are

made, leading to (C.16) below.

Decomposition: modified gauge transformations. Under gauge transformations

δÂµ̂ = ∂µ̂Λ̃− [Âµ̂, Λ̃] (here µ̂ 6= s) the three-form transforms as:

δĈµ̂ν̂ρ =
κ2

λ2
δ(ys)6δs[µ̂tr(Λ̃∂ν̂Âρ̂]) . (C.8)
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It is straightforward to write down the gauge transformations of the components (C.7)

under the transformations of the gauge field. We have:

δAijk =
κ2

λ2
δ(ys)6δs[itr(Λ̃∂jÃk]) ,

δAµij =
κ2

λ2
δ(ys)2δs[itr

(
Λ̃(∂j]Ãµ −D|µ|Ãj])

)
,

δAµνi =
κ2

λ2
δ(ys)δsi tr

(
Λ̃(2D[µÃν] + Fµν

kÃk)
)
,

δAµνρ = 0 ,

(C.9)

while also

δÃi = ∂iΛ̃− [Ãi, Λ̃] ,

δÃµ = DµΛ̃− [Ãµ, Λ̃] .
(C.10)

Note that these decompositions rely on the fact that

δµ
s = δ̂µ

s −Aµ
mδ̂m

s = −Aµ
s = 0 (C.11)

which is true at the boundary.

Decomposition: modified field strengths. The field strength of the three-form has

a localised contribution:

F̂µ̂ν̂ρ̂σ̂ = 4∂[µ̂Ĉν̂ρ̂σ̂] +
κ2

λ2
δ(ys)4δs[µ̂ω̂

CS
ν̂ρ̂σ̂] , (C.12)

where

ω̂CS
µ̂ν̂ρ̂ = tr

(
6Â[µ̂∂ν̂Âρ] − 2Â[µ̂[Âν̂ , Âρ̂]]

)
. (C.13)

Note

ω̂CS
µ̂ν̂ρ̂ = tr

(
3Â[µ̂F̂ν̂ρ̂] + Â[µ̂[Âν̂ , Âρ̂]]

)
= tr

(
3Â[µ̂F̂ν̂ρ̂] + Âµ̂[Âν̂ , Âρ̂]

)
, (C.14)

which is a tensor and so leads automatically (using the same redefinitions as (C.7)) to

ωCS
ijk = tr

(
3Ã[iF̃jk] + Ãi[Ãj , Ãk]

)
,

ωCS
µij = tr

(
3Ã[µF̃ij] + Ãµ[Ãi, Ãj ]

)
,

ωCS
µνi = tr

(
3Ã[µF̃νi] + Ãi[Ãµ, Ãν]]

)
,

ωCS
µνρ = tr

(
3Ã[µF̃νρ] + Ãµ[Ãν , Ãρ]

)
,

(C.15)

so that the redefined field strength components after the decomposition are

Fijkl = 4∂[iAjkl] +
κ2

λ2
δ(ys)4δs[iω

CS
jkl] ,

Fµijk = DµAijk − 3∂[iAµ|jk] −
κ2

λ2
δ(ys)3δs[iω

CS
|µ|jk] ,

Fµνij = 2D[µAν]ij + Fµν
kAkij + 2∂[iA|µν|j] +

κ2

λ2
δ(ys)2δs[iω

CS
|µν|j] ,

Fµνρi = 3D[µAνρ]i + 3F[µν
kAρ]ik − ∂iAµνρ −

κ2

λ2
δ(ys)δsiω

CS
µνρ ,

Fµνρσ = 4D[µAνρσ] + 6F[µν
mAρσ]m .

(C.16)
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Decomposition: Bianchi identities. The Bianchi identity is:

5∂[µ̂F̂ν̂ρ̂σ̂λ̂] = −6
κ2

λ2
δ(ys)5δs

[λ̂

(
tr(F̂µ̂ν̂F̂ρ̂σ̂])−

1

2
tr(R̂µ̂ν̂R̂ρ̂σ̂])

)
. (C.17)

One finds

5∂[mFnpqr] = −6
κ2

λ2
δ(ys)5δs[mtr(F̃npF̃qr]) ,

DµFmnpq − 4∂[mF|µ|npq] = −6
κ2

λ2
δ(ys)4δs[mtr(F̃npF̃|µ|q]) ,

2D[µFν]mnp + Fµν
qFqijk + 3∂[mF|µν|np] = −6

κ2

λ2
δ(ys)δs[m

(
tr(F̃np]F̃µν)

− tr(F̃|µ|nF̃|ν|p]) + tr(F̃|ν|nF̃|µ|p])
)
,

3D[µFνρ]mn − 3F[µν
kFρ]kmn − 2∂[mF|µνρ|n] = −6

κ2

λ2
δ(ys)2δs[mtr(F̃n][µF̃νρ]) ,

4D[µFνρσ]m − 6F[µν
nFρσ]mn + ∂mFµνρσ = −6

κ2

λ2
δ(ys)δm

str(F̃[µνF̃ρσ]) ,

5D[µFνρσλ] − 10F[µν
mFρσλ]m = 0 .

(C.18)

C.3 10-dimensional heterotic SUGRA and heterotic DFT

Field content and decomposition. The bosonic fields of 10-dimensional heterotic su-

pergravity are the metric, ĝµ̂ν̂ , 2-form, B̂µ̂ν̂ , dilaton, Φ, and the gauge fields, Âµ̂
α for the

gauge group G.

It is conventional to decompose the two-form as [73] by defining the fields

Bij ≡ B̂ij , Aµi ≡ B̂µi −Aµ
jB̂ji , Bµν ≡ B̂µν +A[µ

jAν]j −Aµ
iAν

jBij . (C.19)

Note that this is not the same as the decomposition used in obtain exceptional field theory,

as the A[µ
jAν]j term in Bµν is different. Meanwhile the gauge fields and their field strengths

are redefined according to (C.4), (C.5) and (C.6).

Decomposition: modified gauge transformations. Under gauge transformations of

Âµ̂
α, we have:

δB̂µ̂ν̂ = 2c tr(∂[µ̂Âν̂]
αΛ̃) , (C.20)

implying

δBij = 2c tr
(
∂[iÃj]Λ̃

)
,

δAµi = c tr
((

DµÃi − ∂iÃµ

)
Λ̃
)
,

δBµν = c tr
(
2D[µÃν] + ÃiFµν

i +A[µ
j(∂jÃν] −Dν]Ãj)Λ̃

)
.

(C.21)

Decomposition: modified field strengths. The field strength is defined in the usual

way, leading to

Ĥµ̂ν̂ρ̂ = 3∂[µ̂B̂ν̂ρ̂] − c ω̂CS
µ̂ν̂ρ̂ , (C.22)
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where the Chern-Simons three-form takes the same form as (C.14). With the redefini-

tions (C.15), we find

Hijk = 3∂[iBjk] − c ωCS
ijk ,

Hµij = DµBij − 2∂[iA|µ|j] − c ωCS
µij ,

Hµνi = 2D[µAν]i − Fµν
jBij + ∂i(Bµν +A[µ

jAν]j)− c ωCS
µνi ,

Hµνρ = 3D[µBνρ] − 3A[µ
kDνAρ]k − 3∂[µAν

jAρ]j − c ωCS
µνρ .

(C.23)

Decomposition: modified Bianchi identities. The Bianchi identity is

4∂[µ̂Ĥν̂ρ̂σ̂] = −c 6tr(F̂[µ̂ν̂F̂ρ̂σ̂]) . (C.24)

Hence we have

4∂[iHjkl] = −6c tr(F̃[ijF̃jk]) ,

DµHijk − 3∂[iH|µ|jk] = −6c tr(F̃[µF̃ijk]) ,

2D[µHν]ij + Fµν
kHkij − 2∂[iH|µν|j] = −6c tr(F̃[µνF̃ij]) ,

3D[µHνρ]i − 3F[µν
jHρ]ji − ∂iHµνρ = −6c tr(F̃[µνF̃ρi]) ,

4D[µHνρσ] + 6F[µν
iHρσ]i = −6c tr(F̃[µνF̃ρσ]) .

(C.25)

Heterotic DFT parameterisation. The fields of heterotic DFT [5, 16], here written in

an external/internal split as in [90], consist of an external metric, gµν , one-form, Aµ
A, two-

form, Bµν , generalised metric, HAB, and generalised dilaton e−2d. The generalised metric

now parameterises the coset O(d, d + N), where N will be the dimension of the gauge

group of the heterotic theory, and the generalised Lie derivative includes a term L(f)
U V A =

−fBC
AUBV C encoding the structure constants of this gauge group. The external metric

is identified with the components gµν arising from the decomposition (C.1), while e−2d =

e−2Φ
√

| det gij |. We also have

Aµ
A =



Aµ

i

Aµi

Ãµ
α


 , Bµν = Bµν + c tr(ÃiÃ[µ)Aν]

i , (C.26)

and the (inverse) generalised metric can be parameterised as [16, 73]

HAB =




gij −gikckj −gikÃk
β

−gjkcki gij + ckig
klclj − 2c(ij) −Ãi

β + ckig
klÃl

β

−gjkÃk
α −Ãj

α + ckjg
klÃl

β −(2c)−1καβ + Ãk
αgklÃl

β


 , (C.27)

with

cij ≡ Bij + c tr(ÃiÃj) . (C.28)

Note the above parametrisation is consistent with taking ηAB to have ηαβ = 2cκαβ . In our

conventions, καβ is negative definite, and so to have a positive definite generalised metric

we use −καβ . Hence there are some different signs in the above parametrisation to that

of [16] (for which we would also take c = 1/2), for example.
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The tensor hierarchy field strengths can be checked to be:

Fµν
i = Fµν

i ,

Fµν
α = F̃µν

α − Fµν
jÃj

α ,

Fµνi = Hµνi − Fµν
jBji + 2c tr

(
Ãi

(
F̃µν

α − 1

2
Fµν

jÃj

))
,

(C.29)

and

Hµνρ = Hµνρ . (C.30)

The tensor hierarchy Bianchi identities are

3D[µFνρ]
M = ∂MHµνρ , (C.31)

4D[µHνρσ] + 3F[µν
MFρσ]M = 0 . (C.32)

Using the above identifications, we find that these correspond to the following. The i, α

components of (C.31) are:

3D[µFνρ]
i = 0 , (C.33)

3D[µF̃νρ]
α + 3fβγ

αÃ[µ
βF̃νρ]

γ − 3F[µν
jF̃ρ]j

α = 0 , (C.34)

which imply from the i component the Bianchi identity:

3D[µHνρ]i − 3F[µν
jHρ]ji − ∂iHµνρ − 6c tr(F̃i[µF̃νρ]) = 0 , (C.35)

The Bianchi identity (C.32) leads to

4D[µHνρσ] + 6F[µν
iHρσ]i + 6c tr(F̃[µνF̃νρ]) = 0 . (C.36)

D The SL(5) ExFT dictionary

D.1 Wedge, nilpotent derivative and generalised Lie derivatives

We consider the specific details of the SL(5) ExFT. Let A ∈ R1, B ∈ R2, C ∈ R3, D ∈ R4,

where recall a quantity in Rp has weight −pω. The wedge products are defined as

(A1 ∧A2)a =
1

4
A1

bcA2
deηabcde ,

(A ∧B)a = AabBb ,

(A ∧ C)ab =
1

4
ηabcdeA

cdCe ,

A ∧D = AabD
ab ,

(A ∧P D)a b = AbcD
ac − 1

5
δabAcdD

cd ,

(B1 ∧B2)ab = B2[aB|1|b] ,

B ∧ C = BaC
a ,

(B ∧P C)a b = BbC
a − 1

5
δabBcC

c .

(D.1)
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Here ∧P is a wedge product onto the generalised adjoint bundle of weight 1. We use ηabcde
to represent the alternating symbol with η12345 = η12345 = 1. Additionally, the nilpotent

derivatives are

(dB)ab =
1

2
ηabcde∂cdBe ,

(dC)a = ∂baC
b ,

(dD)a =
1

2
ηabcde∂bcDde .

(D.2)

Meanwhile the generalised Lie derivative acts as [10, 47]

LΛA
ab =

1

2
Λcd∂cdA

ab − 1

2
Acd∂cdΛ

ab +
1

8
ηabcdeηfghie∂cdΛ

fgAhi

=
1

2
Λcd∂cdA

ab +
1

2
∂cdΛ

cdAab − ∂cdΛ
acAbd − ∂cdΛ

bdAac ,

(D.3)

LΛBa =
1

2
Λcd∂cdBa +Bc∂adΛ

cd , (D.4)

LΛC
a =

1

2
Λcd∂cdC

a − ∂cdΛ
caCd +

1

2
∂cdΛ

cdCa , (D.5)

LΛDab =
1

2
Λcd∂cdDab +

1

2
Dcd∂abΛ

cd +
1

2
∂cdΛ

cdDab −
1

8
ηabcdiη

efghi∂efΛ
cdDgh . (D.6)

One can use these to write out explicitly the forms of the field strengths of the tensor

hierarchy. For instance,

Fµν
ab = 2∂[µAν]

ab − [Aµ,Aν ]E
ab +

1

2
ηabcde∂cdBµνe , (D.7)

Hµνρa = 3D[µBνρ]a −
3

4
ηabcde∂[µAν

bcAρ]
de +

1

4
ηabcdeA[µ

bc[Aν ,Aρ]]E
de + ∂baCµνρb , (D.8)

and so on.

D.2 SL(5) ExFT to SUGRA dictionary: tensor hierarchy fields

In the M-theory SSC, one can work out the following dictionary between ExFT field compo-

nents and the physical 11-dimensional degrees of freedom, decomposed according to (C.7),

finding

Aµ
i5 = Aµ

i ,

Aµ
ij =

1

2
ηijklAµkl =

1

2
ηijkl(Ĉµkl −Aµ

mĈmkl) ,

Bµνi = −Aµνi −A[µ
kAν]ik = −(Ĉµνi −A[µ

kĈν]ik) ,

Cµνρ5 = −Aµνρ +A[µ
jAν

kAρ]jk = −Ĉµνρ + 3A[µ
kĈνρ]k − 2A[µ

kAν
lĈρ]kl ,

(D.9)
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from which we can directly reduce the 11-dimensional fields to a IIA SSC with now a =

(i, 4, 5), giving there

Aµ
i5 = Aµ

i ,

Aµ
45 = Ĉµ −Aµ

jĈj ,

Aµ
ij = ηijk(B̂µk −Aµ

mB̂mk) ,

Aµ
i4 =

1

2
ηijk(Ĉµjk −Aµ

mĈmjk − ĈµB̂jk + ĈlAµ
lBjk) ,

Bµνi = −(Ĉµνi −A[µ
kĈν]ik − Ĉ[µB̂ν]i + ĈjA[µ

jB̂ν]i) ,

Bµν4 = −(B̂µν +A[µ
jB̂ν]j) ,

Cµνρ5 = −Ĉµνρ + 3A[µ
kĈνρ]k − 2A[µ

kAν
lĈρ]kl ,

+ 3(Ĉ[µ −A[µ
jĈj)B̂νρ] − 4A[µ

k(Ĉν −Aν
jĈj)B̂ρ]k .

(D.10)

Let us give also a partial IIB dictionary, excluding the self-dual four form. We have

Aµij = ηijkAµ
k ,

Aµi
α̇ = Aµi

α̇ ,

ηα̇β̇Bµνβ̇ = Aµν
α̇ −A[µ

kAν]k
α̇ ,

(D.11)

where here the decomposition used for the two-form doublet was

Aij
α̇ = Ĉij

α̇ ,

Aµi
α̇ = Ĉµi

α̇ −Aµ
jĈji

α̇ ,

Aµν
α̇ = Ĉµν

α̇ − 2A[µ
jĈ|j|ν]

α̇ +Aµ
iAν

jĈij
α̇ .

(D.12)

D.3 SL(5) ExFT to SUGRA dictionary: generalised metric

The full generalised metric of the SL(5) ExFT can be factorised as Hab,cd = 2ma[cmd]b.

The “little metric” mab admits the following conventional parameterisations.

In the M-theory SSC, with a = (i, 5),

mab = g1/10

(
g−1/2gij −vi
−vj g1/2(1 + v2)

)
, (D.13)

where g ≡ det gij (note that only the internal components, ĝij = gij , appear in this

subsection, the external metric does not, so there should hopefully be no confusion with

using g to denote this determinant) and vi = 1
3!ǫ

ijklĈjkl (so Ĉijk = ǫlijkv
l) where ǫijkl is

the 4d epsilon tensor with ǫijkl = g1/2ηijkl.

In the IIA SSC, with a = (i, 4, 5), the usual reduction of the above M-theory generalised

metric gives

mab = e8Φ/5



e−2Φg−2/5gij + g−2/5CiCj g−2/5Ci g1/10(−e−2ΦBi + Ci(C − CkB

k))

g−2/5 g1/10(C − CkB
k)

g3/5(e−2Φ(1 +B2) + (C − CkB
k)2)




(D.14)
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where Ci = Ĉi, B
i = 1

2ǫ
ijkB̂jk and C = 1

3!ǫ
ijkĈijk. Now the internal components of the

10-d string frame metric are ĝij = gij . We have ǫijk = g1/2ηijk. Note this is not the same

g as in the M-theory case!

In the IIB SSC, with a = (i, α̇), with α̇ an SL(2) fundamental index,

mab = g1/10

(
g1/2(gij +Nγ̇δ̇v

iγ̇vjδ̇) Nα̇γ̇v
iγ̇

Nβ̇γ̇v
jγ̇ g−1/2Nα̇β̇

)
. (D.15)

Here viα̇ = 1
2ǫ

ijkCjk
α̇. We have Cij

α̇ = (Ĉij , B̂ij) and

Nα̇β̇ = eΦ

(
1 C(0)

C(0) C
2
(0) + e−2Φ

)
. (D.16)

The internal components of the 10-d Einstein frame metric are ĝij = gij . For string frame,

one uses g̃ij = eΦ/2gij , and then

mab =

(
g̃3/5e−2Φ/5g̃ij + 1

4 g̃
−2/5e3Φ/5ηimnηjpqNγ̇δ̇Cmn

γ̇Cpq
δ̇ 1

2 g̃
−2/5e3Φ/5Nα̇γ̇η

imnCmn
γ̇

1
2 g̃

−2/5e3Φ/5Nβ̇γ̇η
jmnCmn

γ̇ g̃−2/5e3Φ/5Nα̇β̇

)
,

(D.17)

where ηijk is the alternating symbol η123 = 1.

D.4 SL(5) ExFT to DFT dictionary: generalised metric

It is convenient for us to consider the reduction of the generalised metric of the SL(5) ExFT

into DFT variables.

To reduce to double field theory, one splits a = (I, 4) where I, J are indices labelling

a four-component O(3, 3) Majorana-Weyl spinor representation. One uses the following

Kaluza-Klein-esque decomposition (as in [91] but now applied to the proper unit determi-

nant generalised metric):

mab =

(
e−2d/5HIJ + e8d/5CICJ e8d/5CI

e8d/5CJ e8d/5

)
. (D.18)

The scalar d is the generalised dilaton, and the matrix HIJ has unit determinant and

is related to the usual DFT generalised metric HMN by further decomposing I = (i,#)

so that

Hij = HijH## −Hi#Hj# , Hi
j = ηjmnHimHn# , Hij =

1

2
ηimnηjpqHmpHnq (D.19)

In terms of the above IIA and IIB parameterisations, one finds for IIA that

HIJ =

(
g−1/2gij −Bi

−Bj g1/2(1 +B2)

)
, CI =

(
Ci

1
3!η

ijk(Cijk − 3CiBjk)

)
, (D.20)

where Bi ≡ 1
2ǫ

ijkBjk. The generalised dilaton is e−2d = e−2Φg1/2. This means we get as

standard

HMN =

(
g −Bg−1B Bg−1

−g−1B g−1

)
. (D.21)
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Meanwhile for IIB, if we first raise the spinor indices I, J in (D.18) (as the IIB spinor is

of opposite chirality to the IIA one), we can write the resulting quantities derived from

mab as

HIJ =

(
g̃1/2(g̃ij +BiBj) Bi

Bj g̃−1/2

)
, CI =

(
1
2η

imn(Cmn + C(0)Bmn)

C(0)

)
, (D.22)

and e−2d = e−2Φg̃1/2. Observe the IIB parameterisation of the O(3, 3) generalised metric

takes the same form as the inverse (or equivalently, the T-dual) of that obtained in IIA. In

both cases.

D.5 Generalised metric decompositions at fixed points

In this subappendix, we want to consider the form of the generalised metric at the fixed

points of the Z2 O-fold in different SSCs. The idea is to write the generalised metric in

the form (D.18), after splitting a = (I, s), with s the direction which is even under the Z2.

Setting CI = 0 we then identify e−2d with the generalised dilaton appearing in the theory

at the fixed point, and the components of HIJ with the remaining “internal” components

coming from the original maximal degrees of freedom surviving the truncation at the fixed

point. In particular, we want to identify the quantities φij and Ωij discussed at the start

of section 4.2. We can do this by, depending on the SSC, writing the spinorial generalised

metric appearing in mab as either

HIJ =

(
φ−1/2φij −Ωi

−Ωj φ1/2(1 + Ω2)

)
or HIJ =

(
φ1/2(φij +ΩiΩj) Ωi

Ωj φ−1/2

)
, (D.23)

where Ωi ≡ 1
2φ

−1/2ηijkΩjk, and reading off what the fields are. We start with the SSCs in

which the fixed point is 10-dimensional.

Heterotic SSCs. In the IIA heterotic SSC, the direction s corresponds to the usual

M-theory index in the decomposition of the 5. Thus the reduction is as above, leading

to (D.20), and we automatically have φij = gij , Ωij = Bij .

Similarly, in the IIB heterotic SSC the direction s corresponds to α̇ = 1̇, which leads

to (D.22) and the identifications φij = g̃ij (this is again the string frame metric) and

Ωij = Bij .

Hořara-Witten SSC. We write a = (i, s, 5) and want to take I = (i, 5). The M-theory

parameterisation at the fixed point only involves gij → (gij , gss) and vi = 1
2g

−1/2ηijkĈjks,

where g ≡ (det gij)gss. We find that

MIJ = (gss)
1/4

(
g−1/2gij −gikv

k

−gjkv
k g1/2(1 + gklv

kvl)

)
, e−2d = (det gij)

1/2(gss)
−3/4 . (D.24)

This leads to:

φij = (gss)
1/2gij , Ωij = Ĉijs . (D.25)
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Type I SSC. We now have a = (i, 1̇, 2̇) and I = (i, 1̇). At the fixed point, we have

B̂ij
2̇ = 0, C(0) = 0. In terms of the Einstein frame metric components gij , letting Ci ≡

1
2g

−1/2ηijkĈij
1̇ (the RR two-form) we have

MIJ = e−Φ/4

(
g1/2(gij + eΦCiCj) eΦCi

eΦCj g−1/2eΦ

)
, e−2d = g1/2e5Φ/4 . (D.26)

We find then

φij = e−Φ/2gij , Ωij = Ĉij
1̇ , (D.27)

and in terms of the string frame metric components g̃ij = eΦ/2gij we have

φij = e−Φgij , e−2d = g̃1/2eΦ/2 . (D.28)

O8 SSC. Here we have a = (p, s, 4, 5) and so I = (p, 4, 5). Essentially this follows from

the Hořava-Witten SSC by letting k = (p, 4) and requiring ∂4 = 0. In IIA variables, at

the fixed point we still have gpq, gss, Cp and C ≡ g−1/2ηpqsĈpqs, B
p ≡ g−1/2ηpqsB̂qs, where

g ≡ (det gpq)gss. This leads to

φij = (gss)
1/2eΦ

(
e−2Φgpq + CpCq Cp

Cq 1

)
, Ωpq = Ĉpqs , Ωp4 = −B̂ps . (D.29)

while e−2d = (det gpq)
1/2eΦ/2(gss)

−3/4.

O7 SSC. Here we take a = (y, p, α̇), with the (y, p) the physical directions, and the p

odd. The surviving fields are gyy, gpq, ṽ
pα̇ ≡ ηpqyĈqy

α̇, and the scalars Nα̇β̇ . We find that

MIJ = (gyy)
−1/2(det grs)

−1/4

(
(gyy det grs)g

pq +Nγ̇δ̇ṽ
pγ̇ ṽqδ̇ Nα̇γ̇ ṽ

pγ̇

Nβ̇γ̇ ṽ
qγ̇ Nα̇β̇

)
, (D.30)

e−2d = (gyy)
1/2(det gpq)

−3/4 . (D.31)

This gives

φij = (det grs)
−1/2

(
gpq −gprB̃

r

−gqrB̃
r eΦgyy(det gpq) + grsB̃

rB̃s

)
, (D.32)

ηijkΩjk =

(
C̃p + C(0)B̃

p

C(0)

)
. (D.33)

where C̃p ≡ ηpqyĈqy
1̇, B̃p ≡ ηpqyĈqy

2̇.

O6 (gs → ∞) SSC. Here we naturally have a = (i, 5) and I = i. We have vi = 0 at the

fixed points, so

MIJ = g−1/4gij , e−2d = g−3/4 . (D.34)

The form of φij and Ωij then depends on how one chooses to parametrise gij .
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E The SL(5) Z2 orbifold in O(3,3) language

E.1 Expansion

In this appendix we present more details on the expansion of the SL(5) ExFT that we

used to describe the Z2 generalised orbifold. In section 4 we introduced the Z2 invariant

tensors na, n̂
a, ωA

ab, obeying (4.3). We define also ω̂Aab = 1
4ηabcdeωA

cdn̂e. The expansion

of a generalised vector was

V ab = ωA
abV A + πI

abV I , (E.1)

with the V A and V I respectively even and odd under the Z2. To describe the structure of

the odd field components, we first introduce a projector

P b
a = δba − ρ−5nan̂

b (E.2)

onto the four-dimensional space orthogonal to the n̂a or na inside the 5 or 5̄. This projector

acts as the identity on both ω and ω̂. We have

ωA
abω̂A

cd = P [a
c P

b]
d . (E.3)

Then we can define

πI
ab = eI

cP [a
c n̂b] , π̂I

ab = êI cP
c
[anb] , (E.4)

introducing êI c which obeys

eI
cêJdP

d
c = 2ρ5δI

J , eI
aêI b = 2ρ5P a

b . (E.5)

The factors of 2 here are included in order to be consistent with the definition of ω̂Aab. One

can think of eI
c as a sort of vielbein transforming (projected) 5-dimensional indices into

four-dimensional O(3, 3) spinor indices. (Note that away from the fixed points, there are

no additional vector fields, and the group is really O(3, 3).) Indeed, we can define gamma

matrices as follows. One can show that

4ωA
acω̂Bcd + 4ωB

acω̂Acd = −2ρ5ηABP
a
d . (E.6)

Then

γA
IJ = ρ−5êIaê

J
bωA

ab , γ̂AIJ = −ρ−5eI
aeJ

bω̂A
ab (E.7)

provide the off-diagonal blocks of O(3, 3) gamma matrices, satisfying

γA
IK γ̂BKJ + γB

IK γ̂AKJ = 2ηABδ
I
J . (E.8)

The full gamma matrix is given by

ΓA =

(
0 γA

γ̂A 0

)
. (E.9)

Shortly, we will need the antisymmetrisation

ΓABI
J =

1

2
(γAIK γ̂BKJ − γBIK γ̂AKJ) = ηABδIJ − γBIK γ̂AKJ . (E.10)
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We define derivatives

∂A =
1

2
ωA

ab∂ab , ∂I =
1

2
πI

ab∂ab , (E.11)

so that we can expand partial derivatives as

∂ab = 2ρ−5ω̂A
ab∂A + 2ρ−5π̂I

ab∂I . (E.12)

Finally, some useful identities are:

ωA
abπ̂I

ab = ω̂AabπI
ab = 0 ,

1

4
ηabcdeπI

abπJ
cd = 0 =

1

4
ηabcdeπ̂I

abπ̂
J
cd . (E.13)

E.2 The modified generalised Lie derivative

Consider the generalised Lie derivative of a generalised vector V ab of weight 1/(D − 2),

with both V ab and the generalised diffeomorphism parameter Λab expanded as in (E.1).

This is given by:

LΛV = ωA
ab
(
ΛB∂BV

A − V B∂BΛ
A + ΛJ∂JV

A − V J∂JΛ
A
)

+ πI
ab
(
ΛJ∂JV

I − V J∂JΛ
I + ΛB∂BV

I − V B∂BΛ
I
)

+ LωAω
ab
B ΛAV B + LωAπ

ab
I ΛAV I + LπIω

ab
A ΛIV A + LπIπ

ab
J ΛIV J

+
1

8
ηabcdeηa′b′c′d′e

(
ωB

a′b′ωC
c′d′∂cdΛ

BV C + ωB
a′b′πK

c′d′(∂cdΛ
BV K + ∂cdΛ

KV B)
)
.

(E.14)

We set16

LωAω
ab
B = −fAB

CωC
ab , LωAπ

ab
I = LπIω

ab
A = LπIπ

ab
J = 0 . (E.15)

Next we insert the expression (E.12) for ∂ab into the last line of (E.14). We find for the

first term that

1

8
ηabcdeηa′b′c′d′eωB

a′b′ωC
c′d′∂cdΛ

BV C = ηabcdeηBCρ
−5ne

(
ω̂D

cd∂DΛ
BV C + π̂I

cd∂IΛ
BV C

)

= ωA
abηADηBC∂DΛ

BV C

(E.16)

The remaining terms give contributions involving the gamma matrix combination (E.10).

After a short calculation, we find that

LΛV
ab = ωA

abL̂ΛV
A + πI

abL̂ΛV
I (E.17)

with

L̂ΛV
A = ΛB∂BV

A − V B∂BΛ
A + ∂AΛBV

B − fBC
AΛBV C

+ ΛJ∂JV
A − V J∂JΛ

A+
1

2
ΓA

B
I
J

(
∂IΛ

BV J + ∂IΛ
JV B

)
+

1

2
∂IΛ

AV I +
1

2
∂IΛ

IV A

(E.18)

16More generally, we could take LωA
ωab
B = −fAB

CωC
ab+f[AωB]

ab+ 1
2
ηABf

CωC
ab. However we will only

consider the case fA = 0 as is natural to make contact with heterotic theories.
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and

L̂ΛV
I = ΛJ∂JV

I − V J∂JΛ
I + ΛB∂BV

I − V B∂BΛ
I

+
1

2
ΓA

B
I
J

(
∂AΛ

BV J + ∂AΛ
JV B

)
+

1

2
∂AΛ

AV I +
1

2
∂AΛ

IV A
(E.19)

In fact, aside from the modification fBC
A due to the inclusion of the gauge fields, this

matches what one would get on rewriting the generalised Lie derivative of SL(5) in O(3, 3)

language (compare with the expressions in [10] — here we have the generalised Lie deriva-

tive acting on the spinor coming from the 10, which has weight 1/2 in O(3, 3)).

One should think of the terms involving ΓA
B, and the gamma matrices themselves, as

really only being present away from the fixed points (where ΛI = V I = 0), so that they

are always gamma matrices of O(3, 3).

We should also require some consistency conditions. We would like the derivatives ∂A
and ∂I to commute. This can be achieved by taking

Y MN
PQωA

P∂MωB
Q∂N = 0 , fAB

C∂C = 0 , (E.20)

Y MN
PQπI

P∂MπQ
I ∂N = 0 , (E.21)

Y MN
PQωA

P∂MπQ
I ∂N = 0 = Y MN

PQπI
P∂MωQ

A∂N . (E.22)

Closure of the algebra of generalised diffeomorphisms can be ensured by requiring the

section condition and Jacobi identity:

ηAB∂A ⊗ ∂B = 0 , γAIJ∂A ⊗ ∂I = 0 , f[AB
DfC]D

E = 0 . (E.23)

Recall that we always take ∂α = 0.

E.3 Modified field strengths and Bianchi identities

We simply feed the ansatz

Aµ
ab = ωA

abAµ
A + πI

abAµ
I ,

Bµνa = Bµνna + 2ρ−5n̂bπ̂I
abBµνI ,

Cµνρa = Cµνρn̂
a + 2ρ−5nbπI

abCµνρ
I ,

(E.24)

into the definitions of the field strengths. We take17

1

2
ηabcde∂cdne = 0 = ∂abn̂

b (E.25)

and notice that

1

4
ηabcdeV

bcW de = naηABV
AWB − ρ−5nbπ̂I

abγ̂AIJ(V
AW J + V JWA) . (E.26)

In this way, one finds for instance

Fµν
ab = ωA

abFµν
A + πI

abFµν
I (E.27)

17In principle, one can take these to be non-vanishing, but this would introduce extra gaugings fA, θ,

which we do not want.
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with

Fµν
A = 2∂[µAν]

A − [Aµ, Aν ]E
A + ∂ABµν , (E.28)

Fµν
I = 2∂[µAν]

I − [Aµ, Aν ]E
I , (E.29)

where the E-bracket is defined through (E.18) and (E.19) in the usual way.

In principle it is straightforward but tedious to obtain similar expressions for the higher

rank field strengths. However, ultimately we are only interested in the modifications to

the gauge structure that occur at the fixed points of the generalised orbifold action, where

we are going to take the localised extra vector multiplets to appear. In this case, we only

need to know that

Hµνρa = Hµνρna + 2ρ−5n̂bπ̂I
abHµνρI , (E.30)

where

Hµνρ = 3D[µBνρ] − 3∂[µAν
AAρ]

BηAB +A[µ
A[Aν , Aρ]

B
EηAB + . . . (E.31)

where the dots indicate additional terms which vanish at the fixed point.

Similarly, we would only be interested in the modifications to the Bianchi identities

which occur at the fixed points. We need consider just the (Aµ
A, Bµν) fields which at the

fixed points obey the standard Bianchi identities (C.31) and (C.32) of heterotic DFT. This

would then lead to the results we found in section 4.
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[20] P. Hořava and E. Witten, Heterotic and type-I string dynamics from eleven-dimensions,

Nucl. Phys. B 460 (1996) 506 [hep-th/9510209] [INSPIRE].
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