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ABSTRACT: We describe conventional orientifold and orbifold quotients of string and M-
theory in a unified approach based on exceptional field theory (ExFT). Using an extended
spacetime, ExFT combines all the maximal ten and eleven dimensional supergravities into
a single theory manifesting a global symmetry corresponding to the exceptional series
of Lie groups. Here we will see how this extends to half-maximal theories by showing
how a single Zs generalised orbifold (or O-fold), of ExFT gives rise to M-theory on an
interval, type II with orientifold planes and the heterotic theories in an elegant fashion.
We study in more detail such orbifold and orientifold actions preserving half-maximal
supersymmetry, and show how the half-maximal structure of ExFT permits the inclusion
of localised non-Abelian vector multiplets located at the orbifold fixed points. This allows
us to reproduce for the Zs example the expected modifications to the gauge transformations,
Bianchi identities and actions of the theories obtained from the single ExFT starting point.
We comment on the prospects of studying anomaly cancellation and more complicated,
non-perturbative O-folds in the ExF'T framework.
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1 Introduction

Despite substantial effort during the 23 years since the inception of M-theory [1], it remains
an open problem to provide a complete account of the theory beyond its low energy limits
or its perturbative vacua described by critical superstring theories. Whatever form this
final answer takes, it seems likely that duality symmetries will play an essential role [2—4].
Indeed, a significant enterprise has been to develop a theory that captures the low energy
effective dynamics of M-theory i.e. supergravity, but in way that promotes dualities to
manifest symmetries.

This approach has centred on the development of double field theory (DFT) [5-7]
and exceptional field theory (ExFT) [8, 9]. These theories provide linear realisations of
O(d — 1,d — 1) (T-duality) or Eqyq (U-duality) acting on an extended space obtained by
augmenting the coordinates of the regular maximal supergravity theories with additional
spatial coordinates.

This gives a unified description of the standard 10- and 11-dimensional supergravity
theories, which are related by duality upon dimensional reduction. The bosonic supergrav-
ity degrees of freedom are combined into common Fjy4y or O(d — 1,d — 1) multiplets, while
the fermions transform under the double cover of the maximal compact subgroups of these
groups. The bosonic local symmetries, including both diffeomorphisms and p-form gauge
transformations, combine into so-called “generalised diffeomorphisms” [10-12]. In order to
obtain formal Ey4) or O(d —1,d — 1) covariance, we allow all fields and gauge parameters
to depend in principle on any of the extended coordinates. However, we must impose a
constraint on the coordinate dependence, which restricts the total number of “physical”
coordinates, on which fields can depend, to 10 or 11.

This constraint is known as the section condition. A solution of the section condition
(or SSC, for short)! amounts to a choice of which 10 or 11 coordinates the fields may
depend on, and which can be viewed as the coordinates of physical spacetime. The section

!We shall eschew the usual language whereby solutions of the section condition are referred to as “sec-
tions” to avoid a clash of terminology when we introduce genuine sections of bundles.



condition of ExFT admits inequivalent SSCs, which correspond to either 11-dimensional
supergravity, ten dimensional type IIA supergravity or type IIB supergravity. We will often
refer to the 11-dimensional SSC as the M-theory SSC. The type IIB SSCs are inequivalent
to the M-theory/type IIA SSCs in that they cannot be related by an Fjg) transformation.
We can view changing the choice of SSC as a form of duality in the general sense. This
interchanges M-theory, type ITA and type IIB descriptions.

These are the theories with mazimal supergravity, and the full duality web contains
also theories with less supersymmetry. Recently, [13—15] has provided an ExFT description
of half-maximally supersymmetric backgrounds, and shown how this leads to an ExFT
description of heterotic SUGRA compactifications.? The subject of this paper is to push
this correspondence further, and to establish a connection within ExF'T between M-theory
and the heterotic and unoriented superstring theories in 10 dimensions. In particular, we
will explore how to capture the non-Abelian gauge fields within ExFT.

Famously, the Eg x FEg heterotic string is obtained from M-theory by an orbifold
reduction on S!/Zy [20, 21]. From there the SO(32) heterotic theory can be obtained by
T-duality and, as conjectured in [1], the type I by a subsequent S-duality [22-24]. A second
route to the type I theory is its construction as an orientifold of IIB [25].

We will demonstrate how this picture can be understood naturally in the ExFT context,
by quotienting by elements of E;4), which generalise and combine standard orientifold and
orbifold actions on supergravity fields. All these half-maximal theories — M-theory on
an interval, type II with orientifold planes, and the heterotic theories — can be obtained
from a Zsy quotient of ExFT, with the additional gauge fields appearing via a twist ansatz
similar to [13-15].

We will also discuss quotients of ExF'T by more general discrete subgroups of Ejy(g).
Depending on the choice of SSC, these will correspond generically to non-geometric and
non-perturbative “generalised orientifolds” (as termed in [26]) of string theory and M-
theory, where the spacetime coordinates will be identified with brane wrapping coordinates.
In some cases, the identification may be between 10-dimensional coordinates and string
winding coordinates, which should correspond to asymmetric orbifolds of strings.

In ExFT, we would rather call the result of such quotients a generalised orbifold or an
O-fold. ExFT involves an extended spacetime and E;4) multiplets of generalised tensors
defined on this background, on which the Ey4) quotient acts entirely geometrically. We
contrast this with the situation in an orientifold, or the Hotava-Witten orbifold, where one
has to supplement the spacetime reflections with additional transformations of the space-
time fields - as we will see, these together generate an E;(g) transformation. Just as DFT
and ExFT should be the natural setting in which to define T- and U-folds (non-geometric
backgrounds where one patches by duality transformations), it should then provide a way
to study quotients leading to “O-folds”. Indeed, there is a close relation between non-
geometric compactifications with duality twists and duality quotients [27], with O-folds as

2In the context of half-maximal DFT, heterotic SUGRA can be accommodated as shown in [5, 6, 16, 17]
by extending O(d, d) to O(d,d+ N), which also allows for a description of the gravitational contribution to
the Bianchi identity, both in DFT [18] and generalised geometry [19].



we are defining them here appearing at the fixed points in moduli space of U-fold compact-
ifications.
In order to obtain half-maximal theories, we will restrict to quotients which are com-
patible with the structures associated to half-maximal supersymmetry in ExFT [13-15].
More specifically, in this manuscript we shall show that:

(1) conventional orbifolds [28] and orientifolds [25, 29, 30] can be given a common origin
in ExFT as an orbifold action of the extended space,

@ for a particular, simple, Zs quotient one can recover variously Type I, Type I’, het-
erotic Eg x Eg, heterotic SO(32) as well as type II theories in the presence of other
orientifold planes, depending on the alignment of orbifold of the extended space and
the chosen solution to the section condition,

@ more generally, one can define orbifold and orientifold actions preserving half of the
supersymmetry by requiring compatibility with an ExFT half-maximal structure [15],

@ furthermore, one can use this half-maximal structure to include “twisted sector”
degrees of freedom which go beyond maximal supergravity at the O-fold fixed points,
such as gauge fields living on D-branes, or vector multiplets of the type I and heterotic
theories,

@ admissible half-maximal orbifold actions are described by discrete subgroups of the
stabiliser of the half-maximal structure. For the case of SL(5) ExFT, where the
stabiliser is SU(2), this means they admit an ADE classification,

@ generically these quotients are non-geometric, i.e. they involve identifications between
the physical coordinates in spacetime and dual (string winding and brane wrapping)
coordinates. We expect that these quotients can in some cases be related to usual
asymmetric orbifolds [31, 32], or to (non-perturbative) generalisations thereof.

Mostly the results we give are general and will apply to the ExFT corresponding to
any of Eyg) series for d > 4. In some cases, minor modifications following [15] may be
necessary, and will we indicate where this is necessary in the text. For illustrative purposes,
we will mostly discuss the case of Fyyy = SL(5) in detail, though we will also study the
different chiral and non-chiral half-maximal structures of Ej) = Spin(5,5) in the first
appendix.

Compelling though these results are, there remains a challenging question that we will
not address in the present work. Although we will here refer to the theories obtained by
this quotient as heterotic SO(32) or heterotic Eg x Eg, when we eventually add the vector
multiplets for these theories we will not be precise about what the gauge group actually
is. While we do recover expected features of localised vector multiplets such as modified
Bianchi identities and appropriate Yang-Mills terms in the action, in this paper we will not
provide a direct way to constrain the number of vector multiplets or their gauge group from
first principles within ExFT. Possibly, the entire framework of anomaly cancelation may



need to be considered from an ExFT perspective. We leave this as an enticing challenge
for the future.

There has been some previous work on the incorporation of orientifold projections in
generalised geometry (to which DFT and ExFT reduce on solving the section condition).
Orientifolds in O(d, d) generalised geometry can be accommodated as in [33], allowing for
transformations which do not preserve the O(d, d) structure but scale it by a constant. A
description of orientifolds in E7(7) generalised geometry appeared in [34] in which the ori-
entifold projection was required to be compatible with D = 4 A/ = 1 and N/ = 2 structures.
Meanwhile, in ExFT itself, a Z projection of the Ey7) ExF'T was used in [35] on the way
to obtain the “SL(2) DFT”, and it was noted there that this projection corresponded to
orientifolding.

Here we go further, in several ways. Firstly, we show how different half-maximal
theories, including the 11-dimensional Hotfava-Witten theory, 10-dimensional type I and
heterotic supergravities, and various lower-dimensional theories, are unified in ExFT upon
imposing the O-fold quotient. Secondly, we provide evidence that orientifolds and orbifolds
should be understood as generalised orbifold acting on the extended space. In particular,
as we will show in the half-maximal case, the inclusion of “twisted sectors” at the O-
fold fixed point will give rise to the required vector multiplets. Thirdly, we show how to
systematically construct orientifolds and orbifolds preserving half-maximal supersymmetry
in generalised parallelisable backgrounds, including quotients that should correspond to
asymmetric orbifolds.

Let us now outline the form of this paper. In section 2, we discuss immediately how
a Zg orbifold of the SL(5) ExFT reproduces the field content and quotients that appear
in what we might call the half-maximal duality web, uniting M-theory on an interval, the
heterotic theories, and type II in the presence of orientifold planes. We present here a short
reminder of this duality web in section 2.1, and a brief introduction to the core concepts of
ExFT in section 2.2 to allow us to emphasise its utility here with a minimum of background.

In section 3, we explain more fully how to define generalised orbifolds of ExFT which
preserve half the supersymmetry. We first review more details of the ExFT framework,
including the notion of a half-maximal structure [13, 15]. We then explain how to quotient
by discrete subgroups of the stabiliser of such a structure, and go into more detail on the
classification of such subgroups for the case of SL(5).

In section 4, we discuss how one can expand all the ExFT fields in order to include
additional (localised) gauge fields via a “twisted” ansatz. We discuss how this enables us to
include modifications to the gauge transformations, field strengths and Bianchi identities
of the ordinary ExFT fields, that for the Zs generalised orbifold on choosing an SSC
correspond to the expected modifications in the different half-maximal theories. We also
discuss how one obtains the contributions of the additional gauge fields to the action.

We conclude in section 5 with a summary of our findings, and a discussion of what we
feel are the interesting and natural questions that should be followed up.

A number of appendices cover additional material. Firstly, in appendix A we study
some Zo and Z,4 generalised orbifolds of the Spin(5,5) ExFT. Here there are two inequiva-
lent half-maximal structures, linked to the appearance of chiral and non-chiral theories in



D = 6. We also discuss the description of orientifolds in double field theory in appendix B.
The remaining appendices include information on the relationship between ExFT and su-
pergravity, and provide useful expressions for the SL(5) ExFT.

2 The half-maximal duality web and a Zs orbifold of exceptional field
theory

Our goal is to study orbifold and orientifold actions in string and M-theory from a unified
perspective, using exceptional field theory. In this section, we want to focus on how this
works for a simple Zso orbifold, which allows one to explore the half-maximal duality web
within ExFT.

2.1 The duality web

First, let us recall the standard picture of dualities that connects string and M-theory [1].
There are two 10-dimensional string theories with maximal (A = 2) supersymmetry. These
are the type IIA and type IIB theories. The corresponding low energy supergravities contain
the same NSNS sector fields — a metric, two-form and dilaton — and different RR sectors,
consisting of odd p-form gauge fields in the ITA case and even p-form gauge fields in the
IIB case, and their supersymmetric fermionic counterparts. Compactifying on a circle, the
two theories are related by T-duality.

At strong coupling, type IIA is described by an 11-dimensional theory, M-theory, with
the radius of the eleventh dimension related to the ITA string coupling. Its low energy limit
is 11-dimensional supergravity, whose bosonic degrees of freedom consist just of a metric
and a three-form.

In addition, there are three 10-dimensional string theories with half-maximal (N = 1)
supersymmetry. These are the heterotic string theories with gauge groups SO(32) and
FEs x Eg, and the type I superstring. The two heterotic theories are related by T-duality
after compactifying on a circle with Wilson lines, while the type I theory and the SO(32)
heterotic string are related by S-duality.

The IIB superstring is self-S-dual, while the strong coupling limit of the Fg x Fg het-
erotic string [36] is given by 11-dimensional M-theory on an interval, as described by Hotava
and Witten [20, 21]. In this case, the length of the interval determines the heterotic coupling
constant. We can view this interval as the result of orbifolding a compact 11th direction y*
by the Zsy reflection y* — —y®. This is a symmetry of 11-dimensional supergravity when
combined with an action of the three-form, C(3) — —C(3) (and an appropriate lift to the
fermions). The fixed points of the reflection symmetry are the loci of two 10-dimensional
“end-of-the-world” branes. On these branes, extra degrees of freedom appear, consisting
of gauge fields for the group Eg at each boundary, as mandated by anomaly cancellation.
These supply the gauge fields of the Fg x Fg heterotic string. As the length of the interval
is shrunk, the surviving components of the 11-dimensional metric and three-form become
the metric, dilaton and two-form of the weakly-coupled heterotic string.

Return now to the type I superstring. This can be obtained by orientifolding the type
IIB superstring. In general, an orientifold is obtained by quotienting string theory on some



background M by a group G U G2f2, where G and G2 are discrete groups, and {2 is the
worldsheet parity transformation. Worldsheet parity is a symmetry of the type IIB string,
and quotienting by this leads to the type I superstring. Of the bosonic massless states,
the NSNS 2-form and RR 0- and 4-forms are projected out. The resulting theory can be
thought of as type IIB superstring theory in the presence of a spacetime filling orientifold
plane. In general, these O-planes couple to the RR fields and carry negative tension. This
forces the inclusion of D-branes of the same dimension, in order to cancel the overall charge
(when the transverse space is compact). This introduces a “twisted sector”, consisting of
the open strings which end on the D-branes. For the type I theory, 16 D-branes are needed
and the open strings lead to the gauge group SO(32).

Under T-duality, the worldsheet parity symmetry of type IIB becomes a symmetry of
type IIA consisting of the composition of worldsheet parity with reflection in the dual space-
time direction. Orientifolding by this leads to the type I’ theory. The fixed points of the
spacetime reflection at the endpoints of the resulting interval are O8-planes. This can be
related to the reduction of the Hofava-Witten setup on a circle, with the end-of-the-world
branes there reducing to the O8-planes. Further T-dualities lead to Op planes for p < 8§,
corresponding to quotients of the type II theory by additional spatial reflections, world-
sheet parity and (in some cases) spacetime left-moving fermion number (—1)fZ (see [37-39)
for relevant pedagogical reviews). To be specific,® one obtains 09 and O5 planes by ori-
entifolding IIB with Qo, where o is the appropriate spacetime reflection, while to obtain
O7 and O3 planes one orientifolds with (—1)fZQc. Meanwhile one obtains O6 planes from
orientifolding IIA by (—1)2Q0, while to get O8 planes one uses just Qo. We should note
that all the orientifolds we consider in this paper are those with negative RR charge and
which then give rise to gauge groups SO(2n) when coincident with n Dp-branes.

In addition, one can consider other orbifolds of M-theory and their relationship to type
IT [40-42], for example the T°/Zy orbifold of M-theory which leads to a six-dimensional
fixed point with a chiral theory, dual to IIB on K3 (we will encounter this in appendix A).

2.2 Field content of exceptional field theory

We shall unify the description of these orbifold and orientifold quotients, by making use of
exceptional field theory. First, we will provide a theoretical minimum of exceptional field
theory (ExFT): we introduce the idea of the extended coordinates, the field content and
how it fits into ExFT representations, and the so-called section condition which restricts
how the fields depend on the coordinates. We first explain the set up in general and then
illustrate this explicitly for the case of the ;4 = SL(5) ExFT. Differential and dynamical
considerations will be postponed until later in the paper where they are needed.

The principle underlying ExF'T is that one can reorganise the fields and gauge param-
eters of supergravity into multiplets of the groups Ey(g), which become the duality groups
when we toroidally reduce. The relevant representations of Ey4) are found in table 1.

3In HA, Q- (B(Q),C(g)) — (73(2), *0(3)), while in HB, Q- (B(g), C(O),C(4)) — (73(2), 70(0), 70(4)).
In both, (—1)> = —1 on RR states and +1 on NSNS.



Consider 10- or 11-dimensional supergravity on a background M which can be viewed

as a fibre bundle

My —— M

|

M, ext

with local trivialisations X# = (X*,Y?), where p=0,...,D—1landi=1,...,dord—1
depending whether we are considering 10- or 11-dimensional supergravity (the final con-
struction is identical in each case). Following the nomenclature of [9], we will refer to the
D = 11 — d coordinates X* on the base, Mqy, and any fields on the base, as “external’
although importantly no compactification or truncation is assumed on the remaining di-
mensions. We now extend the coordinates Y by introducing a number of extra “dual”
coordinates, generically carrying antisymmetric covector indices, such that the complete
set YM = (Y)Y

can be viewed as conjugate to winding modes of branes, however this interpretation is not

Lowdipy + - .) furnishes a representation, R, of Eqa)- These dual coordinates
needed to construct and use the formalism (though we will in section 2.4 see a benefit of
this viewpoint).

The perspective we will adopt is that ExFT is a theory which can be formulated in
terms of extended coordinates (X*,Y™), but with the actual dependence of all fields and
gauge parameters on the Y restricted such that the theory reduces locally (but not nec-
essarily globally) to either 11-dimensional supergravity or 10-dimensional type IIA or type
IIB supergravity, depending on how exactly one chooses the allowed coordinate depen-
dence. This restriction, which is required for closure of the algebra of local symmetries,
can be formulated in an Eygy covariant manner as

8@6’32 =0 < YMNPQ6M®6N:0, (2.1)

where YMN b is an invariant of Eg(ay, given explicitly in [12]. This somewhat heuristic
equation requires explanation. It is meant to mean that the projection on to some repre-
sentation Ry of Eyq), given in table 1, of two derivatives with respect to YM acting on
fields or the product of fields must vanish.

A solution of the section condition (or SSC) means a choice of d or d — 1 coordinates
of the total Y™ on which we allow all fields to depend, such that (2.1) is satisfied. This
choice breaks g4 to GL(d) or GL(d — 1).

Now we turn to the field content of ExF'T. We will only consider the bosonic sector (but
note that the Ey,) symmetry “knows” about supersymmetry, and can be used to fix all
relative coefficients in the bosonic Lagrangian without appealing to the latter. The explicit
supersymmetrisation can be carried out as e.g. in [43]). The ExFT fields are written as
(9ws MmN Ay, Buws Cup, - - - ), and lie in Ey gy representations as we now explain.

The “external metric” g,,, and coordinates X* are singlets. The “generalised metric”
M N carries a symmetric pair of Ry indices and has determinant one: it is a representative
of the coset Fyq)/Hq where H, is the maximal compact subgroup of Ey(g), given in table 1.



D | Egu Hy Ri| Ry | R3 Ry R
7 SL(5) USp(4)/Zs 10| 5 5 10 0
6 | Spin(5,5) | USp(4) x USp(4)/Z2 | 16 | 10 | 16 45 1
5 Eq(6) USp(8)/Zs 27 | 27 | 78 351/ 27
4 E7(7) SU(8)/Zq 56 | 133 | 912 | 8645 133 | 1539

Table 1. The split real form of the exceptional groups, their maximal compact subgroups and
representations appearing in the tensor hierarchy, as well as the additional representation R, used
to define a certain purity condition required later in the definition of half-maximal structures.

The remaining fields play the role of gauge potentials in the external space: they are
antisymmetric in their external indices (u, v, ...) and lie in a set of representations of Fy g
denoted by R,, thus A, € Ry, By, € Ra, Cup € Rs3,.... These fields, which constitute
the “tensor hierarchy” of ExFT [9, 44-47], are local sections of vector bundles R, with
fibre R,,.

2.3 The SL(5) EXFT in brief

To illustrate the set up we will take the example of the SL(5) ExFT corresponding to
the group Ey4), which was developed in [8, 10, 48]. Let a,b,c,... = 1,...,5 denote
indices in the fundamental 5. The extended coordinates Y™ are in the 10; we will write
YM =y — _yb with ab antisymmetric such that the total coordinates are (X*,Y ),
with 4 = 0,...,6. By convention we write VMU, = %V“bUab for contractions of indices.

The generalised metric in this case can be decomposed as Mg cq = MacMpg — MadMipe
in terms of a symmetric unit determinant “little metric” mg, [10]. The tensor hierarchy
fields are Auab, also in the antisymmetric 10, Byyq, Cuvp® in the 5 and 5 respectively, and
D,vpoab in the 10. The Y-tensor appearing in eq. (2.1) can be expressed in terms of the
invariant alternating symbol, defined with 79345 = 1, via

VMY oo =n"™Nnapo (2.2)

such that the section condition constraining the coordinate dependence of all fields and
gauge parameters is equivalent to

8[ab ® acd] =0, (23)

acting on fields/products of fields.

We consider ways to satisfy eq. (2.3) for which a subset of the d,, are not identically
vanishing; i.e. dependence is allowed only on a subset of the Y. We shall call such
coordinates with non-vanishing derivatives “physical” and refer to the other coordinates
within Y% as “duals”. For SL(5), there are allowed solutions of the section condition
(SSCs) with four physical coordinates, corresponding to 11-dimensional supergravity, or
with three, corresponding to 10-dimensional type ITA or type IIB. In preparation for our
treatment of ExF'T orbifolds, let us exhibit the form of these different SSCs, and show how
the ExFT generalised gauge fields encode components of the supergravity fields.



M-theory SSC. The fields of 11-dimensional supergravity are (s, éﬂpﬁ, CA'ﬂl__ﬁ().), where
it is convenient to also include the six-form which is dual to the three-form. In an M-theory
SSC, we split the 5-dimensional SL(5) index a = (i,5) with ¢ = 1,2,3,4. The physical
coordinates are y' = Y with the remaining six derivatives, 055, vanishing on all fields and
gauge parameters. We let /% = nikl5 denote the four-dimensional alternating symbol.
The ExFT fields can be easily identified with the decompositions of the supergravity
fields: .
A//B = Aui Buyi ~ éuw‘ Cw/pi ~ %}nijklcijkl

= i 2.4)
1 kl 1 kl 5 ( :
A,LLZ] ~ 577” C,ukl B,uu5 ~ IUU C;wijkl C;wp ~ C,uup .

Here A,' = §,j(gi;)~" is the “Kaluza-Klein” vector of a standard decomposition of the
metric, see equation (C.1) for more details. For the form field identifications, note that
we write ~ to denote that the precise identification makes use of redefinitions of the com-
ponents involving Aui (there may also be numerical factors depending on the choice of
normalisation convention for the SUGRA fields). The form of these redefinitions can be
found in appendix D but will not be important to us here. The field D, p5qp in the 10
includes only components dual to those of the three-form (and in principle to the metric),
and is omitted for concision as it does not contain any independent dynamical degrees of
freedom. The generalised metric encodes the internal components of the 11d metric and
three-form as detailed in eq. (D.13).

ITA SSC. The fields of IIA supergravity, including dual form fields, are (gus, Bus, @,
C'ﬂ, éﬂ,}ﬁ, Bﬂlm%, CA'ﬂlmﬂ?, CA'[“MM). In a ITA-theory SSC, we split the 5-dimensional SL(5)
index a = (i,4,5) with i = 1,2,3. The three physical coordinates are y* = Y. We let

ik = piik45 denote the three-dimensional alternating symbol.

n
The ExFT-supergravity identification is:
AP = A0 A 1 LA
A~ Lpisk¢r Byvi ~ C:uw‘ Cuvp" ~ 517727. qﬂijk
AM45 N é, " Buva ~ Buy pr4 ~ jU”kBuupijk (2.5)
1 1 A

Auij L B“k: Byws ~ %nwkcwijk C/U/P5 ~ Cuvp
Again, Aﬂi is the KK-style vector coming from the metric decomposition (C.1), we suppress
numerical factors and redefinitions involving A,f in the other components, and omit the
details of Dy peap, Which describes only dual degrees of freedom. The generalised metric
encodes the internal components of the 10-dimensional metric, NSNS two-form, RR one-
and three-form potentials and the dilaton as detailed in eq. (D.14).

ITB SSC. The fields of IIB supergravity (excluding duals of the scalars) are:
(G35 Bao» ®, C 0y, Ciivs Cin..ia> B s Cin i) -

We denote by Bﬂ{,d = (C’ﬂg, B'[U)) the SL(2) doublet of two-forms, and similarly Bﬂl._.f%\d‘
the doublet of dual six-forms.

In a IIB SSC, we split the 5-dimensional SL(5) index a = (i,&) with i = 1,2,3 and
& = 1,2 transforming under the unbroken SL(2) S-duality. It is convenient to take the



i index to be naturally down, thus V¢ = (V;,V%). The SL(5) invariant tensor n.pede

decomposes as a product 7% kd/g = nijkna i where 7% is the three-dimensional alternating
symbol and N the antisymmetric SL(2) invariant. The physical coordinates are then

y' = 21 %Y}, The ExFT-supergravity identification is:

Apij = nijkAuk j ijk A
A~ Bt B 17 Clwite Cuvps ~ G (2.6)
ue 1'u" L Buve ~ 1, -BIW/J’ Chuwp® ~ %nwkcuupijka
Auoz,B ~ ?””knaﬁcuijk af !
Here it is also convenient to note prmﬁ ~ no.éBCA’ng. Once more Aui is the KK-style
vector arising from the metric and we suppress redefinitions involving it, and numerical
factors. The generalised metric encodes the internal components of the 10d metric, NS
two-form, RR potentials and the dilaton as detailed in eq. (D.15).

2.4 A Z, generalised orbifold of the SL(5) ExFT

Now we wish to impose a certain equivalence relation in the ExFT space and see how it
cascades to identifications in the various different SSCs described above.
Let us consider the following Zo action:

Z% = diag (—1,—1,-1,—1,+1) (2.7)

which is an element of SL(5) and hence a symmetry of ExFT. We have made a choice
here to pick a diagonal matrix but within that the reader may wonder why exactly four
negative signs enter. As we will show in the next section, requiring the quotient to preserve
half-maximal supersymmetry uniquely fixes this as the only allowed diagonal Zs.

We will quotient by making the identification on the coordinates

Y~ z0. 720 ved (2.8)

From the form of Z%, it immediately follows that of these ten coordinates exactly four will
be odd (i.e. be identified with a minus sign in the above) and six even. If the Y% were
coordinates on a torus, we would end up with eight fixed points. It is tempting to view these
fixed points as 7+ 6-dimensional “generalised O-planes” in the 7+ 10-dimensional extended
space of this ExFT. The overlap of the six of the extended directions corresponding to the
fixed point with the (three or four) physical coordinates chosen to be the SSC then produces
different sorts of fixed point planes in spacetime. This is reminiscent of how D-branes may
be viewed as half-dimensional subspaces of the doubled geometry of DFT, and indeed the
structure of the generalised O-planes should naturally generalise this, given that in type 11
SSCs they will produce orientifold planes which exactly coincide with D-branes. Here, the
ExFT fixed points describe not only O-planes/D-branes but the end-of-the-world planes
in 11-dimensions, while in SSCs corresponding to heterotic strings the fixed point could as
in [49] be considered to coincide with spacetime filling “NS9A” or “NS9B” branes.
On fields we similarly demand that

mab(X7 Y) ~ (Z_l)ca(Z_l)dbmcd(Xa ZZY)
A(X YY)~ 20200 AN X, Z2Y), (2.9)
Bua(X,Y) ~ (Z 10 uBun(X,Z2Y),
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and so on. By choosing different alignments of the plus sign of Z¢;, with the decomposition
of SL(5) into physical and dual directions, we can obtain from the single ExFT approach
quotients giving rise to all the half-maximal theories in the standard duality web. We will
now discuss how this works in each case. For now, we will show that this reproduces the
correct bulk field content excluding the “twisted sector” gauge fields. We will treat the
theory at the fixed points in section 4 and show how to include the twisted sectors.

The Z2 orbifold and M-theory SSCs. The M-theory SSC is determined by the choice
of one direction in the 5 representation, such that a = (¢,5), with ¢ a four-dimensional
index. Then the physical coordinates are Y and the duals, which we can think of as
conjugate to M2 winding modes, are Y% = %nijklffkl.

There are two types of orbifolds in the M-theory section, determined by whether the
special direction a = 5 has even or odd parity under the identification, i.e. we can have
755 = £1. These are:

e Hoiava-Witten: when Z°; = —1, exactly one of the physical directions i must have
odd parity, such that
physical: Y 4 4+ +—

. 2.1
dual: YV + ++ — —— (2:10)

Thus in this case one physical direction, let us call it y®, is reflected by the orbifold
action. In addition, using (2.4), one finds that in addition one must take C'(g) —
—C3). This is precisely the “upstairs” picture in [20, 21]. Note that the extra C)
identification means that this is not just a geometric action, but does correspond
precisely to an SL(5) element.

e Strong coupling limit of O6: when Z°5 = +1, the coordinate parities are

physical: Y — — ——

3 (2.11)
dual: Y9 + + + + ++

Hence the orbifold acts by reflection in all internal directions. Using (2.4), one finds
that there is no additional action on the supergravity fields beyond the orbifold
quotient, so this is a purely geometric action, corresponding in effect to T*/Zy (the
orbifold limit of K3). This is the correct description of the strong coupling limit of
the O6 plane in ITA [50] (notice that it is not the T3/Zy x S! that might naively be
expected).

The Z2 orbifold and ITA SSCs. One can analyse these by taking the two types of
M-theory SSCs, described above and imposing an additional isometry. In the first case,
where the coordinates have parities given in (2.10), we can choose this M-theory direction
to either be reflected or not by the orbifold action. In the second case, with the parities
in (2.11), the M-theory direction necessarily has parity odd.

The resulting ITA SSCs have physical coordinates Y, where i = 1,2,3. We denote
the M-theory direction by Y45, and the remaining dual coordinates are Y% = %n"jkf/k,
conjugate to F1 winding modes, and Y = %nijkf’jk, conjugate to D2 winding modes.

— 11 -



Starting with (2.10), we find the following:

e Heterotic Fg x FEg: in this case, we pick the M-theory Y#® to have odd parity.
This corresponds to splitting a = (¢,4,5) with parity (— — — 4+ —). The resulting
physical ITA coordinates and duals transform under the orbifold action according to
the following:

physical: Y% + 4+ +
M-theory: Y45 —

dual: Y9 4 + +

dual: Y — — —

(2.12)

None of the physical coordinates, the Y, are reflected, thus in this case the “orbifold”
action acts just on the field content. We find that g, 3(2), ® are even while C’(l) and
C(3) are odd and so are projected out. This truncated field content matches that of
the heterotic string, excluding the gauge vectors whose introduction will be discussed
later, consistent with the reduction of M-theory on an interval to heterotic string
theory.

e ITA with O8 planes (Type I'): in this case, we pick the M-theory direction to
have even parity. This corresponds to splitting a = (7,4, 5) with parity (+ — — — —).
We have:

physical: Y — 4+ 4+
M-theory: Y45 +

dual: Y¥ — — 4

dual: Y — + +

(2.13)

The physical direction Y!? is reflected here. The action on the fields is (g, C'(l), d) —
(9,C1), ®) and (B(a),C(3)) — (—B2), —C(3)). These identifications are consistent
with those of the type I theory with O8 planes at the fixed points Y!® = 0 and
Y5 = 1R, corresponding to orbifolding by Qo where o : Y1° — —Y!5 and Q is the
string worldsheet parity transformation.

Next, starting with (2.11), we have:

e ITA with O6 planes: in this case, we split a = (i,4,5) with parity (— — — —+) so
that the M-theory direction Y%° is again of odd parity. We have:

physical: Y% — — —
M-theory: Y45 —

dual: Y9 + + +

dual: Y# 4 + +

(2.14)

We have (Q,C’(3),<I>) — (g,C'(3),<I>) and (B(Q),é(l)) — (—B(Q),—é(l)). This corre-
sponds to orientifolding by Q(—1)f2o where o : Y% — —Y?®. This describes type
ITA with O6 planes at the fixed points.

— 12 —



The Z2 orbifold and IIB SSCs. We split a = (4, &) where 7 is a three-dimensional index
and ¢ is a two-dimensional S-duality index. There are two types of section, depending
on whether the positive component of Z%, is taken to correspond to one of the three-
dimensional directions or the S-duality directions. In the former case, the SL(2) S-duality
is unbroken, while in the latter case it is broken.

The type IIB SSC physical coordinates are Y;; = %mjkyk (recall we write the index 4
down in IIB SSCS), while the duals are Y;%, conjugate to F1 and D1 winding modes, and
Yeh = %n"jkndﬁ ffijk, conjugate to the single D3 winding mode in three dimensions.

Starting with the case where the S-duality is broken, and concretely identifying & = 1
with the RR fields, & = 2 with the NSNS fields, we find:

e Heterotic SO(32): this corresponds to splitting a = (i, &) with parity (— — — + —).
The coordinates have parity given by

physical: Y;; + + +
mm:nd{lll (2.15)
dual: Y& —

There is no reflection on the physical coordinates. We find that C’(O), C’(g) and C’(4)
are odd and projected out. The resulting field content matches that of the heterotic
string. (Note that counter-intuitively it is actually & = 1, the RR index, that has
even parity.)

e IIB with O9 plane (Type I): this corresponds to swapping the parities of the &
indices relative to the above case. The result is that now B’(Q) is odd, and is truncated
out, while C(y is even. The resulting field content is (g, C(), ®), matching that of
type IIB in the presence of an O9 plane, corresponding to type I string theory. This
is in agreement with the fact that type I and heterotic SO(32) are interchanged by
S-duality.

e IIB with O7 planes: in this case, the SL(2) is unbroken, where a = (i,¢&) has
parity (— — + — —). The coordinates have parity given by:

physical: Y, ——+
dmk%d{ii_ (2.16)

dual: Yé‘B +

Therefore two of the physical coordinates are reflected. The fields transform such
that B(Q) and C'(Q) are odd. This corresponds to orientifolding IIB by Q(—1)Zo
where o reflects two of the coordinates. This gives IIB with O7 planes at the (four)
fixed points.

,13,



Comment on S-duality. It is interesting to make a further comment on how the above
Zs acts on the SL(2) doublet directions indexed by ¢ in the above. In the O7 case, we have
Z4 5= —I5, which is an element of SL(2), and which then exactly matches the action of
Q(—1)Fr on the worldsheet. In the O9/heterotic case, we have instead ZdB = diag(1,-1)
or diag(—1,1). This is no longer an element of SL(2). We note that if one considered the
D =9 ExFT based on SL(2) x R* [51], this would be exactly the Zs transformation used
to obtain the Hofava-Witten configuration in the M-theory SSC, and the type I/heterotic
pair in the ITB SSC. So in this case the Zs generalised orbifold quotient does not exactly
correspond to an SL(2) x RT element, but is instead in GL(2). One could view this as
extending the global symmetry of the ExFT from SL(2) x RT to GL(2) in this case. Indeed,
this argument has recently been made for the actual ten-dimensional SL(2) S-duality of
type IIB in [52].

Comment on (—1)fZ. As discussed in for instance [49, 53], the type IIA superstring
modded out by (—1)fZ leads to the type IIB superstring, and vice versa. One might view
(—1)Fr as appearing in the IIA SSC where our Zy acts as (2.12), and in the IIB SSC where
our Zso acts as (2.15): in these two cases we project out the RR fields, which are odd under
(—1)fL. We have labelled these cases as heterotic. This anticipates the inclusion of the
non-abelian gauge fields in section 4. It is possible that there is another way to include
a “twisted sector” in ExFT, which would restore the missing maximal SUGRA degrees of
freedom such that quotienting by (2.12) or (2.15) leads to type IIB or type IIA respectively
instead. In the remainder of the paper, we assume that the orbifolding procedure preserves
only half-maximal SUSY.

Note that including a twisted sector that takes ITA to IIB directly in these two SSCs
would have to be interpreted in other SSCs, and this is not completely clear. Indeed, naively
acting with dualities on the perturbative (—l)F L quotient predicts for instance that M-
theory on an interval gives the type IIB theory [49, 53]. Perhaps from the ExFT perspective,
as we discuss in the conclusions, what we are lacking is a tool (anomaly cancellation) to
determine the twisted sector unambiguously, which may provide some clarity.

Alternatively, one could view the interchange of IIA and IIB under (—1)f% orbifolding
as being realised as an outer automorphism of the Spin(d—1,d—1) C Ey(g), which exchanges
A and IIB SSCs, as in [54]. In this case, the transformation is not an element of Fyg),
unlike the Zs we consider in this paper.

BPS brane spectrum. Let us also make some comments about the ExFT perspective
on the (BPS) brane spectrum. As ExFT conveniently describes the content and symmetries
of the supergravity p-form gauge fields, to which the BPS branes couple, it is fairly obvious
that understanding which form components are projected out in the above quotient tells us
which branes are lost in the same procedure. In any case, we wish to make some comments
about this quotient works on the known brane spectrum in ExFT language. (Ultimately,
of course, one hopes to use the ExFT description as a tool to understand various exotic or
non-geometric branes, which are still BPS, though we will not encounter such objects in
this paper.)
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M ITA 11B
Pis pp Pis pp | pY ~p; pp
pij ~w” M2 on ij D45 DO Pla F1/D1 on i
Dij ~ w'  Floni Pag D3 on ijk
pia ~ w" D2 on ij
Table 2. Totally wrapped branes (particles): pgp.
M ITA 1B
q M2 on ¢ q D2oni | ¢ ~w? D3onij
¢ M5 onijkl | ¢* F1 q© F1/D1
¢ D4 on ijk

Table 3. Partially wrapped branes (strings): ¢®.

Let us first emphasise one nice aspect of ExFT. In a reduction, branes which completely
wrap the internal space appear as particles in the external spacetime. In the extended
space of ExFT, we can associate such wrapped branes to momentum or wave states in the
extended directions. Quite simply, a wave in a dual direction corresponds (on choosing an
SSC) to a wrapped brane of some sort; a wave in a physical direction meanwhile remains a
pp-wave on choosing an SSC. This perspective has been developed at the level of solutions
of DFT/ExXFT in [55-57] and in terms of particle actions in [58].

One can classify these particle states in terms of charges p € R; which are thought of
as generalised momenta conjugate to the extended coordinates Y™ . Directions with fixed
points will have no conserved momenta and correspondingly correspond to missing brane
wrappings. For example, in an M-theory SSC, whenever a coordinate Y% = %nijklffkl is
odd, the corresponding M2 winding on the directions kl # ij is absent. This gives quite
a nice perspective on how to extract some information about the brane spectrum directly
from our Zs quotient.

More generally, it is well known that the BPS brane spectrum of string or M-theory
forms multiplets of Ey4) after reducing on tori (see for instance the comprehensive review
and discussion in [59]). Branes which totally wrap the internal space fill out the particle
multiple Ry, as we have explained, while branes which have one spatial world-volume
direction unwrapped fill out the string multiplet, Ry, and so on. A quick fix to determine
the brane spectrum after carrying out a generalised orbifold is simply to act on the brane
charges p € Ry, q € Ry, ..
(linear combinations of) branes which are preserved by the quotient action will continue

., with the transformations with which we are quotienting. Only

to be present in the resulting theory.

For the example of SL(5), the tables 2, 3, 4 and 5 exhibit the decomposition of the SL(5)
covariant charges pas, ¢% ¢o and ¢* which describe wrapped branes producing particles,
strings, membranes and three-branes in the external space.
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M 1A 1IB
¢ ~w9* M5 on ijk | ¢~ w” D4 on ij q D3 on i
s M2 qu ~w9* NS5onijk | g5 NS5/D5 on ijk
qs D2

Table 4. Partially wrapped branes (membranes): g,.

M ITA 1B

¢® KKM on ijkl | ¢ KKM onijk | ¢j~w' KKM on ijk
q9 M5 on ij ¢® D6onijk | ¢%~q7* NS5/D5 on ij
g NS5 ij q%8 D3

gt D4 on 12

Table 5. Partially wrapped branes (three-branes): ¢°.

So, we can easily extract information from this about the brane spectrum allowed by
the orbifold quotient.
For the Zy orbifold, let’s consider first ITA SSCs, letting a = (4,4, 5):

e for the heterotic Eg x Eg SSC, when Z%, = diag(—1,—1, -1, 41, —1), then both p;;
and ¢* are even, and so fundamental strings can appear. We also have momentum
states, as p;5 is even, and the states corresponding to NS5 and KKM wrappings - all
D-branes are removed, as we would expected.

e for the SSC with O6 planes, when Z¢, = diag(—1, -1, -1, —1,+1), then p;; is even,
and we can have fundamental strings wrapping the transverse directions of the O6
plane; but no fundamental strings wrapping other directions. As p;5 is odd, there is
no conserved momentum states transverse to the plane.

e for the SSC with O8 planes, when Z% = diag(+1, —1, —1, —1, —1), then po3 ~ w' is
even, and so we can have fundamental strings wrapping the transverse direction of
the O8 plane; but no fundamental strings wrapping other directions. Similarly to the
above, p15 is odd but pos, p35 are even, so there is no conserved momentum transverse
to the plane.

Meanwhile, on the IIB side, letting a = (;, &):

e for the SSCs corresponding to the heterotic/type 1 pair, when Z% =
diag(—1,—1,—1,+£1,F1), in the case corresponding to heterotic SO(32) we can have
strings wrapping all directions and all D-branes are projected out. Conversely, in the
case corresponding to type I, there is no string wrapping, and the NSNS branes are
removed. There is, however, momentum as p” is always even.

e for the SSC with O7 planes, when Z%, = diag(+1,—1,—1,—1,—1), we can have
strings wrapping the directions transverse to the O7 plane, and no momentum in
these directions.
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For completeness, we can consider M-theory SSCs, letting a = (7, 5):

e for the SSC corresponding to the Hofava-Witten configuration, when Z%, =
diag(+1,—1,—1,—1,—1), then there is no momentum along the odd direction Y15,
and the only M2 wrapping states allowed are those that stretch along this direction
and one other. This is just what is expected, as then these M2 states suspended
between the end-of-the-world branes give rise to the heterotic string on reduction
along the interval direction, and other M2s would reduce to D2 branes, which are not
present in the heterotic spectrum.

e for the remaining SSC interpreted as the strong coupling limit of ITA with O6 planes,
when Z%, = diag(—1,—1,—1,—1,+41), then there is no momentum along the four odd
directions Y, and the allowed M2 states must wrap zero or two of these directions.

Summary. We learn from the above that a single element of the ExF'T structure group
encodes the action on spacetime and the massless fields of string/M-theory of all the orbifold
and orientifold quotient actions that appear in the half-maximal duality web. This includes
the Horava-Witten reflection on the same footing as the orientifolds of the type II theory,
and also produces the heterotic and type I string theories when there are no reflections in
the physical spacetime.

This captures only how the quotient plays out in the degrees of freedom that are
already present in the maximal theory. We know however that consistency — anomaly
or tadpole cancellations in particular — requires there to be additional “twisted sectors”
present, which are gauge fields for generically non-Abelian gauge groups, and which appear
localised at the fixed points (in spacetime) of orbifold actions. In order to introduce these
gauge fields, we must use some additional ExFT machinery.

This leads us to study how one can describe half-maximal configurations in the (naively
maximally supersymmetric) language of ExFT. This also provides us with a general way
to find and classify possible quotients of ExFT by discrete groups which break half the
supersymmetry. For this, we make use of the notion of a “half-maximal structure” [13—15],
which we will require to be preserved by generalised orbifold quotients.

3 Exceptional field theory, half-maximal structures and generalised orb-
ifolds

3.1 Differential content of ExFT

Having previously introduced the field content and representation theory underpinning
ExFT we now turn to differential concepts namely the local symmetry structure and tensor
hierarchy. This will be vital in order to introduce half-maximal structures and understand
how localised vector multiplets enter.

Supergravity is a theory invariant under diffeomorphisms and p-form gauge symme-
tries; in ExFT such symmetries are united into so-called generalised diffeomorphisms.
These realise infinitesimal local Eq(4) transformations via a generalised Lie derivative, de-
fined naturally in terms of the action of gauge parameters A € R; on a generalised vector
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V € Ry [10-12]:
SAVM = LAVM = ANoNVM VNN AM L Y MN o dn AP VO + Ay +w)an AN VM L (3.1)

The deformation from the usual Lie derivative is written here in terms of a Y-tensor YN PQ
which is formed in each case (see [12]) from invariants of the group Ed(d).4 Here Ay denotes

— %5 (where

the weight of the vector V', while there is also an intrinsic weight term w =
recall D +d = 11).

The generalised Lie derivative can be extended to act on the other representations
Ry, R3, ... which appear in the theory. The generalised diffeomorphism parameter A is
itself taken to have weight —w, while the tensor hierarchy field transforming in R, carries
weight —pw. The generalised metric and external metric transform as a tensor and scalar
of weights 0 and —2w respectively. Requiring the generalised Lie derivative to lead to
a closed algebra motivates the imposition of the section condition introduced previously
in eq. (2.1).

The transformation of the external metric and generalised metric under generalised
diffeomorphisms is defined to be exactly as given by (3.1), i.e. dp(g, M) = La(g, M). The
tensor hierarchy fields transform in a more complicated manner. The starting point is to
require .AuM to serve as a gauge field for these transformations, such that derivatives with
respect to the X* coordinates can be covariantised using

D, = au — L4 (3.2)

.
This requires that 6p.A, = D,A. In addition, we have one-form gauge transformations
with parameter =, € I'(R2), under which é=.A4, = —d=,,. Here d is a nilpotent derivative
(with respect to the extended coordinates) which is defined [15, 45-47] for 2 < i < D — 3
such that

Alongside d one can introduce a product operation [15, 46] analogous to the wedge product,
defined for i < D —4 and j < D — 3 — i such that

AR ® Rj — 'Ri.:,_j . (3.4)

Note that in the literature the notation e and 9 is frequently used instead of A and d.
The construction of an invariant field strength for A, leads to

Fw = 20,4, — [Au, Alg + dByuy (3.5)

where [A,, A)]p = (L4, A, — L4,A,). We see that the two-form potential B € I'(R;)
appears in the field strength for the one-form potential A € I'(R;). For F,, to trans-
form covariantly under generalised diffeomorphisms, and invariantly under the other gauge

4The form of the derivative as an E 4y transformation can be made explicit by rewriting in terms of
projectors onto the adjoint,

L‘,AVM = AN(BNVM — Oc(Padj)MNPQapAQVN + AVONANVM s

where « is a constant that can be determined case-by-case.
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transformations, we require the transformation of B, to be given by:
ABuy = AN Fuy +2D,E)) — dOpy (3.6)

where the “covariant variation” of By, is ABu, = 6B, + Ay AdA,), and Oy, € ['(R3).
The field strength for B, can then be constructed as:

Hywp = 3D B,y — 30, A0 A Ay + A A [A, .Ap]]E +dCpup (3.7)

where we see the appearance of the third field, C,,, € I'(R3). In principle, the tensor
hierarchy then continues with the introduction of a field strength 7,0 in which the four-
form D,,,, € T'(R4) appears, and so on. In practice, not all of the gauge fields are
dynamical and so not all the field strengths appear with a kinetic term in the action.
Hence, a given ExFT will only involve some part of the tensor hierarchy. We refer the reader
to [9, 44, 45, 47, 51] in which the specific and general details are worked out more fully.
In addition to generalised diffeomorphisms and gauge transformations, ExFT is fur-
ther invariant under external diffeomorphisms parameterised by external vectors &* [9].
Requiring invariance under all these local symmetries fixes the bosonic part of the action.®
Furthermore, the supersymmetric completion has been constructed [43, 60, 61]. Thus ExFT
provides a full reformulation of the maximally supersymmetric 10- and 11-dimensional su-
pergravities, treating them simply as different solutions to the section condition.

3.2 Half-maximal structures in ExFT

Our goal now is to deal with supergravities which have half-maximal supersymmetry. We
will be able to do this purely bosonically (assuming the underlying manifolds to be spin),
using the appropriate language of half-maximal structures introduced in [13-15].

In order to describe backgrounds and theories with half-maximal supersymmetry in
ExFT, we must ensure that they admit globally well-defined spinors (in the exceptional
sense as sections of vector bundles associated to the double cover of the maximal compact
subgroup of Fjyq)). As in conventional geometry without fluxes, the global existence of
such spinors implies that the structure group can be reduced to the stabiliser group of
the necessary spinors. Including fluxes and moving to the ExFT setting, a background
with half-maximal SUSY must have an “exceptional generalised Spin(d — 1) structure”,
i.e. the structure group of the exceptional generalised tangent bundle can be reduced to
Spin(d — 1) C Eyg) [15]. Equivalently, this means that the manifold admits the following
well-defined and nowhere-vanishing generalised tensors [15]

J,eT(R1), KeT(Rp_4), (3.8)

where u =1, ..., d—1, and the R; are the generalised bundles appearing in the tensor
hierarchy whose fibres are the vector spaces listed in table 1.

5Technically for D even one only has a pseudo-action combined with an appropriate chirality constraint.
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To define a Spin(d — 1) C Ey(q) structure, the J, and K have to further satisfy the
following algebraic compatibility conditions

d—
(K@K) ’RZX32D78 =0,
KA AT >0,

(5;;”5;’5 - 11%5”) Jo Ay =0,
(3.9)

where S denotes a vector bundle of rank zero and weight 1/(D — 2) and R} is the bundle
with fibre R} that is the dual of R, as defined in the final column of table 1. For many
applications, it is often useful to define

1 5
K=——JuNJ" €T (Rs), KAK =AP2 (3.10)

which given (3.9) automatically satisfy
JuNK =0, (K®K)|g,xs+=0. (3.11)

We can additionally define
Ju=JuNK €T(Rp_3), (3.12)

which we will frequently use below.

To gain some intuition of these definitions it is helpful to understand that the existence
of K, K, A reduce the structure group Eg(q) X R* — Spin(d — 1,d — 1). The introduction
of the d—1 vector fields J,, then further reduce this down to Spin(d—1) C Spin(d—1,d—1)
(a detailed explanation of this can be found in the appendix of [15]). Thus the structures
will be stabilised (left invariant) by a Spin(d — 1)g symmetry which we will make use of
below. Note that in order to have a %—maximal vacuum, these tensors must also satisfy
certain differential, or “integrability” conditions [15].

One virtue of this approach is that it provides a ready starting point to perform
consistent truncations of supergravity which break half of the supersymmetry [13, 15]
and e.g. can be used to connect K3 compactifications of M-theory to the heterotic theory
in seven dimensions within ExFT [14]. Furthermore, it also provides a characterisation
of half-maximally supersymmetric AdS vacua [15] and can be used as a starting point
for studying these.® Rather elegantly the metric of a compactification manifold can be
expressed in terms of the tensors introduced above [64]. For example, as shown in [64], in
SL(5) ExFT the generalised metric and its inverse can be constructed as

Mah = A_4 (KaKb + 4\3/§A_5 nuiju,acjv,dede) )

s (3.13)
o rary  2V2 .

mab — A 6 (KaKb + 3 nuvauaCJ’Udew,cd> ,

See also the description of 1/4-maximal AdS vacua in D = 4,5 dimensions in generalised geome-

try [62, 63]
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or in the 10 x 10

A N _ N 1 _ . .
Mab,cd =8A 8Ju,abJucd -A 377(11700[61(e - EA 377abefg7lcdhijnuijuefJvhlng] ;

,Efjv,hijw,gj :

(3.14)
Similar expressions exist for the other ExFT’s. The “fully internal” SUGRA fields can be
read off from the above once a solution to the section condition has been chosen.

Mab,cd _ 2A—2JuabJu,cd _ A—QnabcdeKe _ 2\3/§A—12nuvwnab6f9ncdhijju

Our objective now is to search for generalised orbifolds that are constructed making
use of discrete subgroups of the Ey4) symmetry of ExF'T. We will require that we preserve
half-maximal supersymmetry, i.e. that the subgroup that we quotient by preserves the
existence of the half-maximal structure of [15] and reviewed in the previous subsection.
The half-maximal structure is stabilised by an Spin(d — 1) C FEgyyq), so in practice we
consider discrete subgroups of Spin(d — 1). We will illustrate this in the case of SL(5) for
which the stabiliser is SU(2) and, as is well known, its discrete subgroups — the binary
polyhedral groups — admit an ADE classification via the McKay correspondence.

3.3 Half-maximal orbifolds of generalised parallelisable spaces

In this subsection, we will describe how to construct general O-folds of “generalised paral-
lelisable spaces” [65], i.e. those on which a maximal set of (not necessarily Killing) spinors
can be defined, that preserve half-maximal supersymmetry. This of course includes flat
space, or tori, as well as certain spheres, especially those which give rise to maximally
supersymmetric AdS vacua upon compactifying 10- or 11-dimensional SUGRA. We choose
this class of backgrounds because the generalised parallelisation defines a global action of
Eq4(q) on the geometry and fluxes, which allows us to write down a general formula for the
orbifold / orientifold action. There may be other backgrounds which admit an action of
E4y but are not generalised parallelisable. Even more general backgrounds (with fluxes)
will only admit an action of a subgroup of Eq(4) which can be used to quotient the space.

Generalised parallelisable backgrounds admit a globally well-defined “generalised
frame”, i.e. dim R; nowhere-vanishing globally well-defined generalised vector fields. From
these we can always pick out 2 x (d — 1) generalised vector fields satisfying

JANJp — napn P JoNJp =0, (3.15)

1
2(d— 1)

where n4p is a constant O(d—1,d—1) metric. Furthermore, the generalised parallelisation
gives us a globally well-defined basis for any exceptional vector bundles. Thus, we can
always construct a K € T'(Rp_4) such that

(n“PJc A Jp) NK > 0. (3.16)
The d — 1 generalised vector fields satisfying

1
Ju/\Jv:ﬁéquw/\Jxéww, u,v,w,x=1,...,d—1, (3.17)
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together with K define a half-maximal structure. On the other hand the d — 1 generalised
vector fields satisfying

o 1 -
Jﬁ/\J{):—ﬁéfme/\Jj(swm, ﬂ, 17, ’LZ),Q_TZ].,...,d—]., (318)
can be used to define the Spin(d—1)g stabiliser group of the half-maximal structure defined
by the J, and K, as follows. Following [15], we define

a3

Jo=JaANK €T (Rp_3) . (3.19)

We can then introduce the Spin(d — 1)g generators

Jaw = Ja Ap Jy (3.20)
where Ap : R1 ® Rp_3 — Rp maps onto the adjoint representation of Ed(d). One can
verify that these generate the Spin(d — 1) algebra

(Taw, Taz) = 2AP2 (OufaTole — OzjaTolw) » (3.21)
and leave invariant (stabilise) the half-maximal structure
Jao o =0, Juw K =0, (3.22)

where - denotes the adjoint action.

Having explicitly constructed the Spin(d — 1)g stabiliser group of the half-maximal
structure we can write down the most general Ey4) element that leaves invariant the half-
maximal structure as

Z = exp [A*(D*)jmem . (3.23)

Given a discrete subgroup of such elements, we can then consider quotienting the ExFT
by said subgroup. The result will be a generalised orbifold.

In section 2.4 we considered a Zs quotient and showed that this allows us to recover
the 10-dimensional A/ = 1 supergravities. At this stage, one may wonder if there are other
quotients that in a suitable choice of SSC could give rise to a 10-dimensional theory. To
answer this, we note that the only known 10-dimensional N' = 1 theories have a common
bosonic sector parameterising the coset space O(10,10)/0(1,9) x O(1,9), which after quo-
tienting must live at the fixed point of the O-fold action. In our split into D “external”
and internal dimensions, this means that we must have a remnant O(d—1,d—1) symmetry
at the O-fold fixed point.

In particular, this means that at the fixed point we must have more than a half-
maximal structure: instead we require 2 X (d — 1) generalised vector fields J4 (as well as
a K € T'(Rp_3)) that obey eqs. (3.15) and (3.16). As discussed in [15], if there were
d — 1+ N such generalised vector fields with constant O(d — 1, N) metric n4p, then this
would be stabilised by a Spin(d — 1 — N) group. Correctly taking into account discrete
factors, we find that when N = d — 1, the stabiliser group is Z,. This implies that only
when we consider a quotient by a Zs C FEy(4) action, can we obtain a 10-dimensional N=1
theory at the O-fold fixed point.
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3.4 An SL(5) ExFT example

Half-maximal structure and its stabiliser. Let us give an explicit example of the
above construction for the SL(5) ExFT. The half-maximal structure consists of three vec-
tors J,%, with v = 1...3 in the 10 of SL(5), together with K, K% and A. The condi-
tions (3.9) that must be obeyed here are

1 .
nabcdeJubCJvde = gduvnabcdejwbcjw de7 nabcdeKaJubCJUde >0. (324)
In flat space, we can without loss of generality take
K,=(0,0,0,0, A%f),  K*=(0,0,0,0, A%f71). (3.25)

The factors of A are to ensure the correct weights of these vectors. Let us say that this
corresponds to the index split a = (i,s), where ¢ = 1,...,4, so that K; = 0, K5 # 0.
Making use of the 't Hooft symbols’ we introduce two sets of vectors:

1 1
Af2 y _ Af2 =
Juab — 5 Thu,ij 0 ’ Jﬁab — 3 Na,ij 0 ) (326)
0 0 0
From these we can define
A 1 N 2 1 _ N
(Ju)ab = ZnabcdeJquKea ( ﬂ)ab = ZnabcdeJﬂCdKe . (327)

The J,% by construction satisfy the conditions in eq. (3.24) and can be used to construct
the three generators of the SU(2)r symmetry [15]

A 1 A
(Tuw)™s = (Jju)be(Jy))* — 551(;1(J[v)cd(=]u])6d7
Tu = €uvwTuw » [ju; \71;] = A5€uijw .

(3.28)

Under the action of J,, the K, K and A are singlets but J, is a triplet. Conversely the
Ja®% can be used to construct the three generators of the SU(2)g symmetry under which
Jw, K, K and A are all left invariant:

_ 2 1 _
(Ja5)" = (Jja)ve(Jg)™ — 55§(J[a)cd(<7m)0d
ja = Emwjam [ja, j@] = —ASqumjw .

Having made explicit the construction of the stabilising SU(2)g we can immediately write

(3.29)

down the most general SL(5) element that leaves invariant the half-maximal structure as
Z% = exp [Ai‘:’jﬁgu]a b

_ [ cos gé; + sin gﬁu,ij%“ 0 (3.30)
0 1)’

"Recall the self-dual (SD) and anti-self-dual (ASD) ’t Hooft symbols
SD: Nu,ij = Nuija + 0uidja — 6u;dia,
ASD 1 Muyij = Nuija — Ouibja + Sujdia .
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where 62 = 62 + 63 + 3. For § = 27 we obtain Z%, = diag(—1,—1,—1, —1,+1), i.e. the Z>
generalised orbifold action considered earlier. This is clearly the only such diagonal Z.

Discrete subgroups of the SU(2)g C SL(5) stabiliser. We have found the explicit
expression for general elements of SU(2)g C SL(5). We want to further restrict to discrete
subgroups of the stabiliser, which can can be used to take quotients generalising orientifolds
and orbifolds. To do this, we recall the result that the discrete subgroups of SU(2) follow
an ADE classification.

The Ay series for k > 1 produces Zy11 subgroups, with each such subgroup gener-
ated by

' COS% —sinﬁ% 0 0
Uk)'; 0 sin 7~ cos 777~ 0 0
7 a _ ( J 7 U, = k+1 k+1 . 3.31
(Za)" < 0 1> F 0 0 cosk?T’_T1 sin,f—fl (3:31)
0 0 —sin/,f—f1 cos,f—fl
This corresponds to taking #3 = %~ and #; = 63 = 0. Note that the case k = 1

(k+1)
corresponds to the transformation Z%, = diag(—1,—1,—1,—1, 1), which, as we described

at the start of this paper, leads to the identifications of the standard half-maximal 10- and
11-dimensional theories including the Hotava-Witten configuration.

Similarly, there is a Dy series, k > 4, leading to the binary dihedral groups Dy_o,
which are generated by the elements

(Zp,)% = (w%k)ij ?) . R%= <R0ij 2) : (3.32)

with
cos 15 —sin 55 0 0 0001
- Sin +%=  €OS 2= 0 0 - 0 0-10
Up,)'j = k=2 k=2 .,  R;= 3.33
Un.)'s 0 0  coss sinZs 7“lo1o00 (3.33)
0 0 —sinﬁ cosﬁ —-10 0 0

The element R corresponds to taking ¢; = —m with 6, = 63 = 0. Note that the (Zp, )%
alone generate Zoj_4 subgroups.

Finally, there are also the Eg, F7, Eg discrete subgroups of SU(2) whose generators
can be read off from for example [66].

Note that when we decompose under an M-theory choice of SSC such that the physical
coordinates are Y, the above quotients are completely geometric and would lead to the
standard ALE spaces C?/I" with ADE singularities. In other choices of SSC, we have some
seemingly exotic set of quotients which are generically non-geometric in the sense that the
physical coordinates will be identified with the duals.
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A Z4 example. Consider the Z4 generated by the transformation J = Zp, (which is the
same as J = Z4,) under which a generalised vector V® = (V1 V2 V3 V4 V*) becomes
(—=V2, V1 V4 —V3 V%), Note that then (J?)% = diag(—1, -1, —1,—1, 1), which is the Zs
generator from before. Of course, J3 = J~! = —J.

Let us focus on the identification of the coordinates using J. They are identified
pairwise:

Y13 _Y24 Y14 Y23 Yls _Y23 YSS Y4s
Y24 - _Y13 ’ Y23 - Y14 ’ Y2s - Yls ’ Y4s - _Y3s ’
(3.34)

with Y2 and Y34 invariant.

We can extract from the above various possible forms of the quotient on choosing a
solution of the section condition. For instance:

e IIB SSCs: we could take (Y!2, Y23 Y13) ~ (Y12, Yy —y?4)  This is a non-
geometric quotient, with two of the coordinates identified with (F1 or D1) winding
coordinates. Another choice of SSC in which this quotient is non-geometric would
be (Y15, Y35 Y13) ~ (Y25, Y4 —Y?). The identification is with a mix of F1, D1
and D3 windings. However, we can also find an SSC in which the quotient acts
geometrically, given by for instance (Y12, Y15 V25) ~ (Y12, —Y25 Y'19),

e M-theory SSCs: one type of SSC is of the form (Y, Y12 Y13 y14)
~ (=Y25, Y12 Y24 y?23) where the quotient is non-geometric. The other type in-
volves a geometric quotient, (Y19, Y25 Y35 Y45) ~ (Y25 Y18 Y45 _Y39),

e ITA SSCs: there are no IIA SSCs in which the quotient is geometric. For instance,
we could pick (Y2, Y13 Y1) ~ (Y12 —Y24 Y23 where the identification is with F1
winding coordinates.

In the ITA or IIB cases when the physical coordinates of the SSC are identified solely
with F1 winding coordinates, the above quotients may correspond to asymmetric orbifolds
of type II or heterotic strings. In general, the identifications may be with winding coordi-
nates associated to D-branes, while in M-theory SSCs one may identify physical coordinates
with M2 winding dual coordinates. Thus generically we have very non-geometric quotients
which can be viewed as non-perturbative orbifolds of M-theory and string theory. Indeed,
this Z, was already considered in [26], where the resulting quotient is referred to as a
generalised orientifold. In the context of ExFT, we prefer to call it a generalised orbifold,
as thanks to the extended space and Eyg) multiplets of ExF'T the action of the quotient
becomes completely (generalised) geometric - we might also use the term “O-fold”. Just
as the extra coordinates of DFT and ExFT are expected to play an important role in
defining T-folds and U-folds (where a non-geometric background is patched together by
duality transformations), here we expect that they allow for a better understanding of
these quotients by the duality group.
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4 Localised vector multiplets and the Zs, orbifold

In this section we show how to use the half-maximal structure of ExFT to capture degrees
of freedom which do not descend from maximally supersymmetric SUGRA, by using a
technique analogous to the one employed in [14, 15] to reduce ExFT to heterotic DFT.
Here we will extend this technique to include “twisted sectors” at the fixed points of the
generalised orbifold action. In our half-maximal setup these will be vector multiplets,
corresponding to degrees of freedom living on D-branes on top of O-planes, Yang-Mills
multiplets living at “end-of-the-world” branes as in the Horava-Witten setup, gauge bosons
arising from branes wrapping shrinking cycles, or simply the vector multiplets of the 10-
dimensional heterotic or unoriented string. When the fixed points lie inside the physical
part of the SSC the vector multiplets are localised, while if the fixed points are only in
unphysical directions, the vector multiplets are delocalised over the physical spacetime and
the result is an /' = 1 10-dimensional theory with vector multiplets such as the heterotic
or type I supergravities. Throughout, we will always refer to these degrees of freedom as
“localised” even if they may be delocalised in the physical spacetime (since in that case
the “localisation” occurs in the unphysical dual directions of the extended space).

We will see that as a result, at the fixed points we are effectively enhancing the gen-
eralised tangent bundle by a vector bundle of the adjoint representation of some group
G. Such a generalised tangent bundle describes heterotic DFT [5, 6, 16-18] or generalised
geometry [19] and thus heterotic SUGRA and its o/-correction. Enlarging the tangent
bundle has also been used to study gauge enhancement in the bosonic and heterotic string
theories [67-70]. We will show that we can obtain these modifications such that they
only appear at the fixed points and in a way that is compatible with the Ey) structure of
ExFT. Furthermore, this modification will, analogous to [18, 19], yield precisely the correct
Bianchi identities taking into account the localised vector multiplets.

An important point is that the full modified Bianchi identities take the generic form

dH ~ tr(F A F) — tr(R A R) (4.1)

where the first term on the right-hand-side is the gauge anomaly contribution, with gauge
group G say, and the second is the gravitational contribution. We can think of the Lorentz
group SO(1,9) on the same footing as the gauge group, and in fact consider our additional
gauge fields to be those of the total group G = G x SO(1,9),® identifying the SO(1,9) gauge
fields with the spin connection. This allows us to treat the gravitational and gauge anomaly
together, which is also how we expect them to appear in ExFT. Indeed, this is how the
gravitational anomaly would appear in the description of heterotic strings in generalised
geometry [19] or double field theory [18]. In this paper, we will adopt this point of view
as a preliminary and simple way to include the tr(R A R) term at no extra cost (though in
general we will not explicitly distinguish between the gauge and gravitational parts of our

8When there are multiple fixed point planes in spacetime, the gravitational anomaly may be distributed
amongst these, e.g. each of the two end-of-the-world branes in the Horava-Witten configuration contributes
f%tr(R A R). In such cases, we have to take the normalisation of the trace of the full group G at each fixed
point to be different in the gauge and gravitational sectors.
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localised gauge group G below), however further work is required to completely develop
the treatment of this and anomaly cancellation in general within ExFT.

In the following, we will focus on the Zs orbifold and describe in detail how to include
the twisted sectors at the fixed points. The Zs orbifold is singled out because it contains
SSCs in which the half-maximal theory is 10-dimensional, as discussed previously. Although
we are really working with the SL(5) ExFT we will keep the discussion as general as
possible so that this procedure can be repeated mutatis mutandis in lower dimensions.
Some changes, which can be mostly be worked out using [15], will be required in D = 6 and
D < 4 due to the existence of chiral half-maximal supersymmetry in D = 6, electromagnetic
duality in D = 4, etc.

4.1 Expansion

To capture the localised degrees of freedom, we perform a half-maximal “twist”
ansatz [13-15]. The components of the fields and gauge parameters of the ExFT are
either even or odd under the Zs orbifold action. Our strategy will be to introduce a basis
of generalised tensors which are even under the Zs, and study the expansion of all the
objects in the ExFT in this basis. We will also need to keep track of the odd components,
to an extent — these will be treated more completely in appendix E.

For simplicity, let us for now focus on the theory in the vicinity of a single fixed point
at y = 0, where y denote the odd coordinates. Note that the y need not be physical
coordinates: if all y coordinates are dual coordinates in a given SSC then all of spacetime
belongs to the fixed point and thus the vector multiplets are in fact delocalised in spacetime.
As we discussed before, this occurs in the heterotic and type I theories. The generalisation
to multiple fixed points is straightforward and will be addressed at the end of section 4.5.

The even basis tensors are given by

wa€l(R1), nel(Ry), nel(Rp_y), (4.2)

where A = 1,...,2 x (d — 1) + dim G, with G some Lie group and R1 is effectively an
enlarged generalised tangent bundle, in several ways similar to that used in the double
field theory / generalised geometry description of heterotic SUGRA [16, 18, 19]. We will
write waq = (wﬁ, Wk | wa) withk=1,...,d-1and a=1,...,dimG. Of these, the wy, Wk
correspond to degrees of freedom descending from maximal SUGRA and are truly sections
of R4, while w, correspond to vector multiplets localised at the fixed point, and are the
crucial ingredient allowing us to go beyond the analysis of [14, 15].
These generalised tensors further satisfy the algebraic conditions

wa ANwp =naBn,

waAn=0, (4.3)
nAn=pP"2>0,
where p is a scalar density of weight ﬁ, while n4p has components
nd =nli =02, Nap=20kazd(y), (4.4)
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where kg is the Killing form of the Lie group G and o is a constant. In what follows we
shall also make use of the ‘inverse’ n4B

S w1

The basis tensors also satisfy the following differential conditions

Ly, wp=—fap‘we,
EwAﬁ =0, (46)
dn =0,
and
dn =20, for D=6,7, (4.7)

Lin=0, Lpwa=0 forD=5,

where the only non-vanishing components of f45¢ are fap”, the structure constants of the
Lie group G. Thus, we can see that the subbundle of R, spanned by the w4 has a similar
structure to the heterotic generalised tangent bundles used in DFT [16] and generalised
geometry [19], with the crucial differences that the gauge field contributions to the would-be
O(d—1,d — 1+ dim G) metric nap are localised at the O-fold fixed point.

Thus, for example, any generalised vector field V € I' (R;) is expanded as

V(X,Y)=VAX,Y)wa(Y) + VX, V) 71(Y)
= VEX,Y)wp(Y) + Vi(X, V) E(Y) + VX, Y) wo(Y) + VI(X,Y) 7 (Y),
(4.9)

where 77 are a basis for generalised vector fields that are odd at the fixed points, i.e.
V1 necessarily vanishes there. We further develop the treatment of these components in
appendix E and in what follows will frequently indicate the presence of such terms where
applicable with ellipsis. Note that we will denote the gauge field component with a tilde,

and we will write

tr (VW) = Kaﬁ‘*/aWﬁ’ (4.10)

as well as N
[f/, W} =[5, VP (4.11)

A generalised tensor E € I' (R2) is expanded as
2(X,Y)=E(X,Y)n(Y)+..., (4.12)

where the ellipsis refers to terms that are odd under the orbifold and hence vanish at the
fixed point. Similar expansions can be carried out for the other ExFT fields. For ExFT
“covectors” W € I' (Rp—3), it is worthwhile introducing the objects

wa=waAn €T (Rp_3), (4.13)
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which provide a basis for the even components. Note that these satisfy
. _ D-2 ~ -
WA NWB =1NAB P , waANR=0. (4.14)

In particular, the half-maximal structure J,, K , which capture the fully internal degrees
of freedom, are expanded as
Ju(X,Y) = LAX,Y)wa(Y) + L (X, V)7 (Y)
= JAX,Y)wp (V) + T (X, V) GE(Y) + X, V) wa (V) + ...,
K(X,Y)=e 22X pyy+ ...,
A(X,Y) = e 2UXN/(D=2) ()

(4.15)

with
Ju AT Bnap = bus (4.16)

and where we have decided to label the even part of K by e~2¢ (this field d is not to be
confused with that denoting the dimension of the internal physical space: it will correspond
to a generalised dilaton in the half-maximal theory) and expanded A accordingly in p so
that the compatibility conditions (3.10) are automatically satisfied. Note that we have
required the half-maximal structure to be preserved by the quotient. This simply means
that J and K must not vanish identically at the fixed point. The ellipsis in the above
expansions corresponds to the components of J and K which do vanish at the fixed points,
and which encode additional internal degrees of freedom present in the “bulk”. In SSCs
without fixed points in the physical directions, of course, such components are identically
projected out. The modifications of the internal SUGRA fields due to the localised vector
multiplets can then be obtained from the generalised metric when parametrised in terms
of the half-maximal structure as in eqs. (3.13) and (3.14), as we will explicitly see below.
The expansion of the even components alone is precisely as if we were performing a half-
maximal consistent truncation [13, 15] although we allow for (almost) arbitrary coordinate
dependence in the coefficients. This method of expanding the ExFT fields in a basis that
is reminiscent of a consistent truncation while not truncating the coordinate dependence
has previously been used in the maximally supersymmetric case to obtain massive ITA
SUGRA [71] as well as generalised IIB SUGRA [72] from ExFT. Furthermore, the half-
maximal twist ansatz was used in [14, 15] to show how to reduce ExFT to heterotic DFT,
a new five-dimensional SO(5,5) DFT with a (10 + 1)-dimensional “doubled space” which
contains a new solution to the section condition corresponding to chiral six-dimensional
SUGRA, as well as the recently-constructed “double field theory at SL(2) angles” [35].
Finally, we also need to define the “twisted derivatives”

O = waMoyy, (4.17)

such that

—-(D-2)

o =p A Bogoa+...=p P 204,04+ ..., (4.18)

where again the ellipsis refer to derivatives with respect to coordinates that are not invariant
under the generalised orbifold action, and which we will deal with in detail in appendix E.
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We will always take
O0n=0. (4.19)

Thus, whenever we write 04 in reality the derivatives with respect to gauge components do
not appear. For instance, this allows us to invert (4.17) as in (4.18) — in doing so we must
also note that terms where w4 multiply the odd basis field 7y, i.e. the ellipsis suppressed
contributions, vanish as detailed in appendix E.

Focusing on the derivatives d4 only in (4.18), we can show that

YMNPQ wCP wDQ WcﬁNVD = wAMT]AB nco WcaBVD . (4.20)

To show this, note that YN PQ projects Ry ® Ry corresponding to the indices P, Q) (i.e here
wet and w DQ) to Ro and then tensors the result with the object in Rp_3, corresponding to
index N, onto R; corresponding to the index M. Now we use wc®p,wp = wcAwp =ncpn
so that

M _ D-2_AB

P oanos =P nep m@w)™ = pP 2P ncpwa™ . (4.21)

YMNPQ wo wp®
Furthermore, we demand that the 04 derivatives commute. Using eq. (4.6), together
with the assumptions that d, = 0 and f,3” are the only non-vanishing structure constants

we find this requires
YMN powa 0prwp@on = 0. (4.22)

Moreover, the ExFT section condition requires
nBo, @ dp =0, (4.23)

as well as the Jacobi identity
fiag" fep” =0, (4.24)

which ensures that we have a closed algebra. These conditions need to also be supplemented
by conditions involving derivatives with respect to coordinates that are odd under the
generalised orbifold which we present in appendix E. In particular, denoting such derivatives
by 0, away from the fixed point we require

yo, @0 =0, (4.25)

where ¥4/ is an O(d — 1,d — 1) gamma matrix as defined in E. An ExFT section choice
may involve some 97 # 0, in which case the above condition can in fact impose d4 = 0 for
some A. This corresponds to cases where the fixed point does not fill all of spacetime (for
instance, Horava-Witten, or Op planes for p < 9).

We will always choose to solve the section condition (4.23) such that 94 = (0, 0, 0).
The choice of solution to the full ExFT section condition, or equivalently to (4.25), may
further require that we drop the dependence on some or all of the 9. We can implement
such “additional isometries” reducing the dimension of the fixed point at the end of our
analysis.
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We now write the generalised Lie derivative as follows in order to display solely the

modifications:
LyW = Ly W + 20 0B 5(y) tr (Wag/) + wa ([v VV} S+ LW — wa/)a . (4.26)

where the very first term denotes the standard unmodified generalised Lie derivative of V'
and W excluding the V¢ W terms. More explicitly, we have

LyW = wy (vaﬁ +... ) + wk (LUWE + WL(0,V; — 0;Vi) + 20 6(y) tr (Waﬁf/) S )
o ([7, W] + L - va)a o (Ly W)
(4.27)

where v and w denote the vector component of V' and W respectively. The ellipsis here
hides all possible terms which do not involve solely components and derivatives carrying
the indices k associated to the components which are non-vanishing at fixed points. The
full expressions are contained in appendix E.

Let us also make a short comment on how to treat the case of multiple fixed points
in our analysis. Suppose there are K fixed points at y = y,(,), n = 1,..., K, and that
we want to localise the gauge fields at these points. Let us label the gauge indices at each
fixed point by a(,). Then, we simply write

ab _ ¢ (1) ab (K) ab
wa® = (wa(l) s Wa ), (4.28)
and take 7,3 to be block diagonal with blocks
(n)
aﬂa(n)ﬁ(n)é(y — Yu(n)) - (4.29)

Then our results will go through in very much the same manner, replacing 6(y)tr by
>on0 (y—y*(n))tr("), where tr(™) denotes the trace in the gauge group at the n'" fixed point.

4.2 Modified gauge transformations and Bianchi identities

The modification (4.27) of the generalised Lie derivative implies modified gauge transfor-
mations for the SUGRA fields. We will demonstrate this explicitly for the SUGRA fields
encoded in the generalised metric, as well as A, and B,,,. For the latter, we will also show
how their gauge invariant field strengths and Bianchi identities are modified as a result.

In the following we will not need to worry about the choice of SSC because as mentioned
at the end of the previous subsection, we can always take the derivatives along physical
coordinates to be a subset of the d—1 0y, i.e. the derivatives corresponding to the expansion
tensors wk. In turn, the SSC just determines — via the explicit form of wk as a generalised
vector field — which components of the SUGRA are modified. Indeed, we will show in
sections 4.4 and 4.5 that we obtain the correct modifications corresponding to the Horava-
Witten and heterotic/type I theories.

Note that using the form (4.27) of the modified generalised Lie derivative, while ig-
noring the terms indicated by + ... which do not play a role at the fixed points, means
that effectively we are dealing with an embedding of the gauge structure of heterotic DF'T
into our ExF'T, with the novelty that certain terms are in fact localised in certain SSCs.
Appendix (C.3) contains a review of the essential details of that theory.
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Generalised diffeomorphisms of generalised metric. We begin with the internal
degrees of freedom which are encoded in the generalised metric. We use the expansion of
the half-maximal structure (4.15) inserted into the expression (3.14) for the generalised
metric to relate this to the generalised metric. First we note that the term cubic in J in
the expansion of the generalised metric of (3.14), i.e.

MG T J g T g (4.30)

is odd under the O-fold action and vanishes at the fixed point.” Thus at the fixed point
the generalised metric is simply given by

Mab’Cd‘y:O _ ZA_2JuabJu’Cd _ A—QnabcdeKe ) (431)
Using the expansion (4.15) we find that
Mab’Cd‘y:() _ (QJUAJ“B . nAB) 64d/5p_2LL)AawaCd _ /HAB64d/5p—2wAawacd ) (432)

The analogue also holds in D < 7, with the aforementioned subtleties in D = 6 and D < 4.
The term inside the brackets is precisely the half-maximal O(d—1,d—14dim G) generalised
metric, HAB, with J,4 the ‘left-moving’ vielbein [5]. After expanding the parameter of
generalised diffeomorphisms in the standard way,

AM = ANX, V)™ (V) + ALX, Y M (Y, (4.33)
then HAB will transform as:
SAHAB = ACOHAP — 2HCMAGAD) + 20ANHPIC — 2fcpAINCHIPID . (4.34)

where the dots denote extra transformations involving the components A which are only
relevant away from the fixed point.

Let us write the components of A4 = (v%, A;, A%). Starting with the expression (4.34),
one can work out a parameterisation which is essentially that appearing in discussions of
heterotic supergravity and T-duality [5, 16, 73]. For instance, one has immediately that
A HY = L,HY prompting the identification H¥ = ¢¥, which we take to be the inverse of
¢;j, some symmetric tensor. When all ), derivatives are non-zero, this can be interpreted
asi(proportional to) the “internal” components of a spacetime metric. When some or all
of the 0y are zero by the SSC, ¢;; instead consists of certain components of spacetime
fields (including possibly both metric and form components), which are scalars, covectors
or metric components from the point of view of the theory at the fixed point. We will
discuss how this works in different SSCs in sections 4.3—4.5.

Then one can consider

5A7_[1'04 — LvHio‘ — aEA"Hﬁ — fgq,a/\ﬁ}[m (4.35)

9To see this is true we note that M(3)“b‘[CdKE] = 0 which implies by [15] that MB)abed i purely a metric
on the 4 of SL(4) ~ Spin(3, 3). However, this is the irrep which contains the spinors of Spin(3)s ~ SU(2)s
that are projected out at the half-maximal orbifold fixed point.
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which leads to H* = —¢* A,* with
(5/\121&0‘ = Lv/i@a + 8&/&& — [Akv /N\] . (4.36)

This shows that when J;, # 0, the AEO‘ are gauge fields for the gauge group G with structure
constants f,3” as in equation (4.6). When some, or all, of the derivatives 0) are vanishing
by the section condition, some, or all, of the AEO‘ are scalars transforming in the adjoint of
the group G, instead.!® We will explore this in more detail in sections 4.3-4.5.

The transformation of the remaining degrees of freedom follows from considering

SAHL = LyHL + HIE(0;Ay, — Oy + 200 (y) ;Ao HI (4.37)

where the delta function appears owing to the form of n,g. If we then parameterise the
generalised diffeomorphism parameter A; as

A =X+ 00(y)tr(A4;), (4.38)

we find that we can write H;Z = —¢?%(Q; + 06(y)tr(ALA;)), with the standard Green-
Schwarz transformation

691& = LUQZE + 28[1/\@ + 20’(5()’)'61‘([\8[1[1@) y (439)

which tells us that when all 9 # 0 that ;; can be identified as an internal two-form
potential. When some or all of the derivatives are zero, then ;; encodes some collection of
internal components of the surviving field components, which are then either scalars, one-
forms or two-forms from the point of view of the theory at the fixed point. The remaining
components of HAB can be similarly worked out, but will not involve any new fields or
transformations.

We can similarly parameterise the vielbein J,4, if we introduce e"; such that
e"ie’j0uy = ¢ij. With e,t the inverse of e";, we can take

JA = \}Q (chur us — 2ul Qs + 08(y) (A A1), —e, A7) | (4.40)

This is consistent with its transformation under generalised Lie derivatives at the fixed
point, the condition (4.16) and with the above components of the generalised metric.

Tensor hierarchy and gauge transformations. Now, we similarly write the ExFT
one-form as

A, = WEAHE + Wk (AME + Jé(y)tr(fluflkw + wafl#a + 71'1121“[ , (4.41)

where the fl“o‘ that appear here are non-Abelian gauge fields (carrying an “external” index)
with gauge group G with structure constants f,3”. Similarly, for the ExFT two-form B,
and the one-form gauge parameter =, we write

B =By +n (BW + od(y)tr (AEA[“) AV]E)) ,
Zp = Zu 1 (20— o0(y)tr (A,4) = od(y)tr (A, A ) AF)

The barred quantities here are those that vanish at fixed points.

(4.42)

101f @ includes a Lorentz group factor to take into account gravitational anomalies, so G = G x SO(1,p)
for some p, then we should only consider adjoint scalars of G.
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We can now compute the gauge transformation for the ExFT gauge field A, which as
reviewed in section 3.1 is given by

0A, = 0N — Ly, A —d=, . (4.43)
Using the modification of the generalised Lie derivative (4.27) and (4.41) we now find
0A, = wy (DMUEJF . ) + Wa (D,J\ — {AM, ]\} + LAUAM)Q +rr(0aA,T).
k(D + 030 Ak — DApg) — DZ, (4.44)
+od(y)tr | (AgDuA + 08, ) + A (Dudy - 0eA, )| + . ).

Here the derivative D), = 8, — L ,,, where the Lie derivative L as above is with respect to
the AHE component. This is the “covariant external partial derivative” necessary due to
the Kaluza-Klein split we are employing. From this, we see immediately that

04,% = LA, + DA — [4,, &), (4.45)

i.e. the A, are gauge fields with gauge group G. Writing Z, = A, — viA#l-, we work
out that

A = LA + Duhi — O\, + 00 (y)tr (]\ (D,LAE - ayiu)) . (4.46)

From this we see explicitly that the components A, have modified gauge transformation
due to the localised gauge fields, and that the modifications take the same form as the
transformations of the “internal” components €;;, written down in (4.39).

One can similarly work through the calculation of the transformation of By, as defined
in (4.42), finding

0By = LuByu — vl Ay
+ QD[MAV} + )\zFuyi + A[Mi (8|1|)\V] — DV} )\1) (4‘47)
+oo(y)tr (A (2D, 4y + AiFut + A0 Ay - DyAs) )+

This also displays modified localised gauge transformations of a similar type, however
adapted as we are to the conventions of heterotic DFT there is an extra piece involving

AMZ. This simply suggests that the combination B, + A[MiA which will appear in

V]l'v
the field strengths below, is in a sense more natural. This amounts to little more than a

different choice of field redefinitions.

Field strengths. We now compute the gauge-covariant field strengths. Recall that we
were able to include the localised vector multiplets by the “twist ansatz” which generated
an effective modification of the generalised Lie derivative. This implies that we can work
with the usual ExFT definitions, and the modifications due to localised vector multiplets
only appear when we express the fields in terms of SUGRA components. We begin by
computing the gauge-covariant field strength from equation (3.5). First, we work out the
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general form of the expansion of F,,,. We know that this transforms as a generalised vector.
This implies that

. R 1 -
Fuw = Wi, (FME) + Wk <HM — Fu 205 4+ 208(y)tr <AkFW - 2FWm]Ak))
- - (4.48)
+ wq (ija — F,uz/EAE> + W[Fu,,[ ,

where the components FWE, H,,k, and F/w are all tensors under v diffeomorphisms, and
invariant under gauge transformations Aj. The full expressions (again, up to additional
contributions involving fields or derivatives which are odd under the Zs and not relevant
to the modifications at the fixed points) for these can be worked out to be:

Fut = 20, A% — Ay Lo AR+ . (4.49)
Fw® — Fu kA, = 2Dy, A" — [A,, A, (4.50)
and
HMVE = QD[#AV]E — F/WlQEZ + (9& (BNV + A[“lAl,]l> — U(S(y) WSVSE + ..., (4.51)
where
Wi = tr (3P Ay + [ Ay, 4] Ay) (4.52)

11

is the Chern-Simons-like 3-form."" Note here the antisymmetrisation over mixed index

types, leading to the appearance of a field strength
Fup = DyAy — O A, — [A,, Ag] . (4.53)

Observe that these equations are written in a way that is covariant with respect to our split
into “internal” and “external” directions, which is, for example, why the €2 transforming
as in (4.39) appears. This is independent of the existence of the localised vector multiplets.
More importantly, the field strength H,,,;, has obtained a localised contribution at the fixed
points.

Similarly for H,,, one has H,,, = Huvp + H,,,n, with the component proportional
to n given by

H/WP = BD[MBVP] — BA[MEDVAP]E — 36[;¢AVEA/)]E — 0’5(}7) wgy‘i) + ..., (454)
where
wfjp =tr (BF[WAM + [Au, A,,] Ap) , (4.55)

is the fully external Chern-Simons-like 3-form.

"'We say “Chern-Simons-like” because in some SSCs AM are actually adjoint-valued scalars rather than
gauge fields.
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Bianchi identities. Since the ExFT field strengths F,,,, and H,,, are gauge-covariant
by construction, we did not have to modify their definition in terms of the ExFT fields.
This further implies that the ExFT Bianchi identities are unmodified and given by [47]

3D Frp) = AHyurp

(4.56)
ADyHopo) + 3F[uw N Fpo) = 0

Let us begin by showing how the first one gives a modified Bianchi identity for H,, . For
Huwp = Hyvpn + Hw,p, we have that dH,, = W= 8k uvp + - ... This therefore contributes
only to the terms proportional to w® and not to those 1nv01v1ng Wk Or Wo. We then calculate
Dy, Fyp), using (4.41), (4.48) and the generalised Lie derivative (4.27). From the resulting
expressions for the wy and w, terms we find the Bianchi identities

Dy Fypf+- =0, (4.57)

and
Dy F Vp] (A Fupll = F[/WEFIJ]E =0. (4.58)

Using these two to simplify the form of the w® component leads to
3Dy Hyg — BF[HVlHﬁ]iE — OxHywp + -+ = =606 (y)tr (F[ulklﬁvp}) ; (4.59)

where we defined the combination

Hyji = Dk — 200 Ay — 06 (y)wii + - (4.60)
with
Wiy = tr <3F[/@‘Ag] + [Ay AJ Au) , (4.61)

where the antisymmetrisation on mixed indices leads to the appearance of the internal field
strength
Fyj = 20,45 — A3, A)). (4.62)

We then consider the second equation in (4.56). We find for the n component alone that
4D[,U,Hupa} + 6F[,LLVEHpO']E + = —605(y)tr(ﬁ[#ypyp]) , (4.63)
while the other components are not modified.

Summary. The fields displaying modified gauge transformations were: ();;, from the
internal sector, A,; and B, from the tensor hierarchy. We found

5locQLl' =20i(y )tl"(]\a[;lk])
StocApk = 00(y ( D, A — 0 A )) (4.64)
010eB w = 0’5 ( 2D[H V] + A — A[Ml(l),/]z‘i1 - amjl,/})) .

/—\/—\
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Our calculation led to field strengths for these fields, namely: H;;, Hywi and Hy,)p, defined
in (4.60), (4.51) and (4.54), respectively. Each of these came with a localised contribution,
Which letting 1 = (u, 1), took the same form

HY = —66(y) trw$s (4.65)

avp avp >

with the Chern-Simons-like 3-form

CS A 1 A
Wigp = =tr <3F[ JAs g+ [A[L, Af,] Aﬁ) , (4.66)
involving field strengths F,,, F,;, and Fjj, defined in equations (4.50), (4.53) and (4.62),
respectively. Then, we found modified Bianchi identities in the tensor hierarchy

3DuHygp — 3FutHj — Oy + . = —600(y)tr (FluiFy)

. o (4.67)
4D[,qusz] + GFUW*HF,J]E +...= —605(y)tr(F[WF,,p]) .

The above box summarises the modifications of the bulk gauge fields that we found due to
the inclusion of localised vector multiplets.

We have not yet discussed the fully internal H;;;, field strength, but this would appear
in a “flux formulation”, e.g. via the torsion of the Weitzenbéck connection [74-76], while its
Bianchi identity is related to the closure of the generalised Lie derivative. For simplicity, we
ignored it here by focusing solely on the modifications of Bianchi identities appearing in the
tensor hierarchy. This is enough to allow us to make contact with standard formulations
of supergravity, and relate the field components involved, which is what we will do next.
We will properly encounter Hjjj; in section 4.6 when we discuss the contributions of the
localised field strengths to the action.

4.3 Comparison with heterotic SUGRA

Decomposition of heterotic SUGRA. In heterotic SUGRA, the bosonic field content
consists just of the metric, g, 2-form, B%,;, dilaton, ®, and the gauge fields, flﬂa. In this
subsection, /i is the 10-dimensional index, which we will split as i = (u,2) into external
and internal indices. Commensurate with this split, we will make a Kaluza-Klein inspired
decomposition of our fields, while retaining the full coordinate dependence. This is a
standard procedure to make contact with double field theory or exceptional field theory,
which is described in more detail in appendix C.

Note that here we anticipate the result by automatically identifying the internal index
¢ with that appearing in the expansion of the even components of the ExFT fields (in
section 2 and appendix C we use ¢ for the internal index for the 10-dimensional theories).

In particular, the metric g;, gives rises to (g, A, gij) according to (C.1) (with the
conformal factor Q there equal to 1). The “Kaluza-Klein vector” has a field strength
Ft (covarlant under diffeomorphisms in the internal directions) given by (C 2). The 2-
form Bw/ gives fields (B, Ay, Bij) as in (C.19). Similarly the gauge field A,f‘ leads to
(A% A;®), as in (C.4).
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With the gauge fields present, the B-field has a modified gauge transformation:
(SB[U; = 2ctr(8[ﬂflﬁ]A) 5 (468)

which leads to the modified gauge transformations (C.19). (Here ¢ is a constant propor-
tional to o’.) The field strength
can be decomposed to give covariant field strengths H,,,, Hywi, H uig' HQE , given by equa-
tion (C.23). The decomposition of the Chern-Simons three-form involves the field strengths
F, F,; and FQ’ of the gauge fields, defined in (C.6).

The Bianchi identity which the field strength (4.69) obeys is

48[ﬂﬁ9ﬁ6] = —Gctr(ﬁ[ﬂﬂﬁ‘ﬁ(}]), (470)

leading on decomposing i = (p,7) to the set of equations (C.24), of which the relevant
ones involving three and four external indices are:

3D[NHVP}Z - 3F[NV1HP}11 - 81H,wp = —6¢ tr(F[Wth-) 5

Z, ™ (4.71)
4D[“Hl,pg] + GF[/U/fHPU]Z = —Gctr(F[#pro]) .

In fact, as we discussed at the start of this section, we can actually take the gauge group
to be G = G x SO(1,9), where G should be SO(32) or Eg x Eg, and the SO(1,9) leads to
the inclusion of the gravitational contribution to the anomaly on the same footing as the
gauge contribution.

The ExFT SSCs. The ExFT SSCs that correspond to the heterotic theory, as listed in
section 2.4, are those in which the Zs reflection only acts on dual directions, with all the
spacetime coordinates being even. Thus we drop the d(y) from all our expressions.

We consider first the ITA SSC, in which the “M-theory index” s in a = (i,s,5) is even
under the Zy. We take

wp® =0, W =R o = 1 =n%. (4.72)

These obey the constraint (4.3), taking 7;jkss = 7ijk, the three-dimensional alternating
symbol. Therefore, it is the components

A =P (A +..), Bus=ns(Buw +...) (4.73)

which contain A, and B, and thus have modified gauge transformations. The ExFT to
ITA dictionary of section 2.3 also allows us to confirm that .Al}i ~ T)QEBME, Bups ~ BW,
i.e. that it is indeed the NSNS 2-form that is appearing here.

Next, we consider the ITB SSC. Recall here we had an SL(2) doublet & = (1,2) in which
1 indicated the “RR” component and 2 the “NSNS” component. To obtain a heterotic SSC,
we take the Zs to act on the 1 index as +1. We take

Whij = Mkij » w%ﬁ = (55 ny=—-1= Al (4.74)

obeying (4.3) with 1725 = 725, ny5 = —myy = +1.
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Thus we find modified gauge transformations associated to the components
A#g :wEiQ(AME—I—...), B,ul/i :ni(BW—i—...), (475)

which according to the dictionary of section 2.3 indeed correspond to Auf ~ B,@-,
B,,i~ Buv.

Comparison. Comparing the transformations we found in the previous section, (4.64),
and the expressions for the field strengths, (4.65), shows that we can match €;; = B,
while the A,; and B, coming from the expansion of the ExFT fields are exactlyithe A;ﬁ-
and B, coming from the decomposition of the supergravity fields. Similarly, the gauge
fields correspond to each other. We can also take ¢;; = g;;, the internal components of
the 10-dimensional string frame metric. Next one sees ‘that the ExFT field strengths, H,;;,
H,, and H,,, also match identically with the SUGRA ones and similarly the Bianchi
identities (4.67) coincide with (4.71) (taking our constant o = ¢).

As for the gauge group: at the level of our present analysis, we should think that this
can be specified by hand alongside the choice of SSC. It would be desirable, and interesting,
to have access to an ExF'T version of anomaly cancellation conditions which allowed one to
specify more precisely the gauge group in different SSCs, as we discuss in the conclusions.

Type I SUGRA. The type I theory is S-dual to the heterotic SO(32), i.e. to the heterotic
theory obtained from a IIB SSC. We instead need
. L ¥

Whij = Mhij» W' =0; ny=1=n> (4.76)
The result is just to replace everywhere the B-field with the RR 2-form to obtain the desired
modifications to the Bianchi identities. The only subtlety is that one should now identify
¢ij with the S-dual to the string frame metric of the heterotic case, as one can explicitly
see by studying the generalised metric decomposition in this case in appendix D.5.

4.4 Comparison with Hofava-Witten

Decomposition of 11-dimensional SUGRA on interval. We will now compare with
11-dimensional SUGRA on the interval S1/Zy [20, 21], where the circle coordinate y* is

S

subject to the orbifold identification y®* ~ —y®. Under this reflection we require also the
11-dimensional three-form be transformed as C'(g) — —C’(g). The fixed points are at y* = 0
and y° = mR,, and can be viewed as 10-dimensional boundaries or “end-of-the-world
branes”. At these fixed points, Hofava and Witten showed that there must exist additional
degrees of freedom, namely an Eg gauge multiplet at each one. Here we will concentrate
solely on the modifications at y® = 0, and as discussed at the start of this section, we can
think of the gravitational contribution as being included by taking the gauge group to be
Eg xS0O(1,9), with an appropriate normalisation in the trace such that that of the SO(1,9)

group is normalised with a factor of 1/2 relative to that of the Fg gauge group.

-39 —



The three-form’s gauge transformations, field strength and Bianchi identities are mod-

ified as follows. Firstly, the three-form transforms as'?
~ /{2 ~
010cCpp = F5(3/3)Géf’;l‘cr(A@,;AP]) . (4.77)

under gauge transformations 5/1,1 = O\ — [A A] of the 10-dimensional gauge fields flﬂ.

e
(In order to write the gauge transformations in the form (4.77) we abuse notation by using
the same index [ on the localised gauge fields, with the understanding that there is no

component fls.) The modified field strength invariant under this gauge transformation is:

Fops = 40:Cp6) + izé(ys)éléfﬂd)gﬁ%] , (4.78)
where
s = tr (3ApFoy + Aplds, Ag)]) - (4.79)
The Bianchi identity is then:
. K2 LA
SG[QFW&;\] = —6ﬁ5(ys)55[s&tr(Fﬁ,;Fﬁ&}) . (4.80)

We see that in all cases, it is components carrying the index s that are modified.

To make contact with ExFT, we follow the standard procedure of [9], as described in
more detail in appendix C. We split X# = (X*,Y?), where we further let Y = (Y% y*).
This means that the interval direction is chosen to be “internal” and so becomes part of the
extended space of ExFT. The metric decomposes as g5 — (guvs Au', gij) using (C.1). The
three-form splits as C’ﬂ,gﬁ — (Aijks Apijs Avis Auwp), after making certain field redefinitions
as explained in appendix C: the precise definitions here are given in equation (C.7). Simi-
larly, we obtain flu and fli , as in (C.4), from the decomposition of the localised gauge field.

The modified gauge transformations of the three-form components are now provided
by (C.9), while the field strengths, F),, o0, Flupi, etc. are defined in (C.16), making use of the
decomposition of the Chern-Simons three-form given by (C.15), where the field strengths
F,, F,; and F; (see (C.6)) of A, and A; appear. The Bianchi identities include:

2

3D[,LLF1/p}Es — 3F[MV1FPMES — %Fw,ps + 85FHVPE =—6 5(ys)tr(F[u|E|pr})

A (4.81)

K s ~ -
ADyFypoys + 6F B F s + O0sFupe = —6p5(y Ver(Fl F o) -

Note that we see here components of Fw/i7 the field strength associated to the vector Aui
arising from the metric, defined in (C.2).

!2Note that the conventions in the original paper are somewhat different. Their (unmodified) field
strength is G*W = 6(dCT"). The three-form here is related to theirs by CHW = ﬁé Hence, our
SUGRA bosonic action is S = fﬁ fan\/g (R+ Tlst + ﬁeCFF) with F' = dC, and the bosonic

Yang-Mills action is Syy = —55 [ d'%z,/g3F*. Anomaly cancellation determines x*/\* = K2/3 J2m (4m)?/3.
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The ExFT SSC. The SL(5) ExFT SSC corresponding to the Horava-Witten configura-
tion, as explained in section 2.4 involved splitting a = (i, s, 5) with (Z,5) having odd parity
under the Zs and s even parity. The physical coordinates are then Y? = (Y*5 Y$5) of
parity (+ -+ +4—), and can be identified with the physical coordinates (Y%, y®) in the above
split. We therefore replace d(y) with §(y®) in all expressions that we obtained.

A choice of basis for the well-defined generalised tensors is

(,‘.)kz5 = 5Ela wﬁi = nﬁla ng=—1=n" ) (482)

taking n*9%5 = kU5 Hence, we find modified gauge transformations in the components
A =B (A +..0), Buws =ns(Bu +...). (4.83)

Using the ExFT to SUGRA dictionary of 2.3, we know that .A;}i ~ UQESCA'#ES, Buys ~ CA'WS.
We therefore see that it is the components of three-form carrying the index s that come
with a modified gauge transformation, exactly as expected.

Comparison. We can then be precise about the identification. Firstly, we note that
the 11-dimensional supergravity metric has non-vanishing internal components g;; and gss.
The latter is just a scalar as far as the theory at the fixed point is concerned. It is natural
to identify ¢;; which appeared in the generalised metric of the ExFT as being proportional
to gij. From appendix D.5, we find the precise identification is ¢;; = (gss)l/ 29@7‘: which
is eXf;ctly such that ¢;; becomes the internal components of the 10-dimensional heterotic
string frame metric after reducing on the interval direction s.

Now we turn to the components which had modified gauge transformations. In ExFT,
these were €;;, A,; and By, as summarised in (4.64). Comparing with the gauge transfor-
mations of the three-form components (C.9) we see that we have the following identification:

Qij = Aijs
Api = Apis » (4.84)
By = Aps — ApAugis

Similarly we can compare the field strengths (4.65) with the decompositions (C.16). We
see that we ought to have

Hﬂii = FMQS s
H,u,ug’ = F;wg's ) (485)

Hywp = Flups -

The Hotava-Witten Bianchi identities (4.81) then agree exactly with what we found, (4.67),
for o = k2/A\?, and after noting that the terms in (4.81) involving the d; derivatives would
come from the omitted “ellipsis” terms in the calculations leading to (4.63) and (4.59).
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4.5 Modifications in other SSCs and the general structure

Having described in detail how our ExFT mod Zs description reproduces the modified
gauge transformations, field strengths and Bianchi identities of heterotic SUGRA, as well
as the Horava-Witten description of 11-dimensional SUGRA on an interval, we will now
sketch how the modifications we found appear in other SSCs. In these cases, the fewer
than three of the d can be non-zero, and thus at least some of the flﬁa are adjoint scalars
rather than components of gauge fields. We will discuss what these fields and what the
bulk fields that obtain modified gauge transformations, A, and B, correspond to. The
fields in €2;; (which also have modified gauge transformations and Bianchi identities) and
¢ij will be dealt with in appendix D.5.

We begin by discussing the localised fields flﬂ, where i = 0,...,p, where in our SL(5)
example we have here p = 6,7,8. As we saw in section 4.2 the external ones, flﬂ, are always
components of gauge fields, while the internal ones flE are components of gauge fields of the
localised gauge group G if the corresponding 9, # 0 by the section condition and adjoint
scalars if 0, = 0. To be precise, if we want to obtain the gravitational contribution to the
modified Bianchi identities, we take the gauge group G = G x SO(1,p) and assume that
we only have adjoint scalars of G, which will have a physical interpretation in string theoy,
and not of the Lorentz group on the fixed point plane.

Thus, for the different SSCs we find a total number of gauge fields in adjoint scalars as
listed in table 6. As we already mentioned in the preceding sections for the Hofava-Witten
orbifold and heterotic theories we obtain 10-dimensional gauge fields (in the Hotava-Witten
case they are localised on the “end-of-the-world-branes” while in the heterotic theories they
are purely localised in the dual directions and thus delocalised in spacetime). For the SSCs
corresponding to Op-planes, we correctly find the field content living on Dp-branes (i.e.
p + 1-dimensional gauge fields and 9 — p adjoint scalars), while in the SSCs describing M-
theory on T#/Zs, i.e. the strong-coupling limit of O6-planes, we have 7-dimensional gauge
fields and 3 adjoint scalars. The gauge fields are the non-Abelian gauge bosons coming
from membranes wrapped on shrinking 2-cycles of 7% /Z,, while the 3 x dim G scalar fields
are part of the moduli space describing of Einstein metrics 7%/Z5, the orbifold limit of K3
(for dim G = 16). In this case, the remaining scalar fields of the moduli space reside in ¢;;.

Let us now outline how to identify which fields obtain localised modifications to their
gauge transformations due to equation (4.64). Firstly, note that in order to calculate the
modified gauge transformations and Bianchi identities, we assumed that the gauge fields
were localised at the fixed points. This means we restrict ourselves to describing situations
where all the D-branes sit on top of the O-planes so that the charges cancel locally. This
implies that we must always take all the adjoint scalars that are in fl&a to be vanishing.

We can see what the €);; correspond to from the action of the generalised Lie derivative
as discussed in section 4.27, or alternatively directly from the parameterisations of the
generalised metric in appendix D.5. On the other hand, for the fields living in the tensor
hierarchy we need to first use the basis tensors wk, wy, n for the various SSCs, which we
list in table 7, to identify which components of the ExFT tensor hierarchy fields contain
Ak, Byuw. Then, we compare with the ExFT «» SUGRA dictionary for the different SSCs,
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Dim fixed point ExFT SSC Theory Transverse dirs Field content of flﬂ

7+3 M HW 1 10-d gauge fields

7+3 ITA het Eg x Eg 0 10-d gauge fields

7+3 I1B type I (O9) 0 10-d gauge fields

7+3 I1B het SO(32) 0 10-d gauge fields

7+2 ITA type I' (O8) 1 9-d gauge & 1 scalar fields

T+1 I1B o7 2 8-d gauge & 2 scalar fields
7 M 06 (gs — o) 4 7-d gauge & 3 scalar fields
7 ITA 06 3 7-d gauge & 3 scalar fields

Table 6. Different theories captured by the Zy orbifold of the SL(5) ExFT. Depending on the
number of the transverse directions (which are always reflected), only a subset of the 9 # 0 by the
section condition. The corresponding Ay are either components of gauge fields or adjoint scalars.

SSC (yH, yL) Wk, W n, N
A type T (08) (12, y°)  wP@=np Pyl B —65 =1 n,=h"=-1
IIB O7 (y°, y2) wsP=noB, w’if:é% Ws,pg =Npqs wg,gl =Tpg nNs=n"=1
M 06 (g = 00) (0, yf) whi=1 (b 4+ 5i0) | i =L (i — ghid) pg=pd=1
1A 06 (@, ) WA =k =5t ns=n’=1

Table 7. We list the only non-vanishing components of the basis forms w®, wy, n, and 2¢ for SSCs
in which the fixed point is less than 10-dimensional. The y / y1 denote the physical coordinates
which are tangent and transverse to the fixed point, respectively. The index p = 1,2 label tangent
/ transverse coordinates in the O8/07 case. -

SSC O, #£07 Ak Ay B
TIA type I' 0 #0 AL Cy  CupsiBus  Chus
IIB 07 9,20 AY.Cup CupgysBup  Chuvpg
M O6 (gs = 00) =0  Chi Cui;  Chvijri
ITA O6 =0  Cuy By Chviji

Table 8. Field components in the expansion: A, for d; # 0 and By, have modified Bianchi
identities. For the O8 case and O7 case, this means the RR field components in A,;. Notation as
in table 7.

which we reviewed in section 2.3, to identify the SUGRA fields which have modified gauge
transformations. This information is contained in table 8. We find in the type II sections
with O-planes that as expected the RR gauge fields whose duals C' couple to the D-brane
via a term ~ [ C A tr(F A F) have modified gauge transformations and thus modified
Bianchi identities [77], thus this is C(3) in the O8 case, C(y) in the O7 case, and so on.
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4.6 Modified action

We can also describe how the localised vector multiplets appear in the ExF'T action. The
ExFT Lagrangian [9, 44, 48, 78] can be generally written as

1 1 -1
Lexrr=1/19] (Rg+4agWDuMMNDuMMN—4fuuM-7:“VNMMN+v 19 Ltop—V+.. >
(4.86)

Here g, is the external metric, R4 is the external Ricci scalar, Loy, is a topological term
involving only the ExFT gauge fields but not the generalised metric and V' is the “scalar
potential” which is normally given by internal derivatives of the generalised metric and
guv- The constant a depends on the group. The ellipsis denotes gauge kinetic terms for
the other gauge potentials B,,, etc. which appear in high enough dimensions such that
their field strengths are not dual to the other potentials appearing in the action. In even
dimensions, one can actually only obtain a pseudo-action, which must be supplemented by
a twisted self-duality condition as in [44].

We will now discuss the modifications of these various terms due to the localised
vector multiplets. Here we will make use of the results of [13, 15]. We begin with the
scalar potential V' which in fact can be written in terms of the half-maximal structure J,,
K (instead of in terms of the generalised metric) in the following manner.

One can build a particular set of combinations first order in derivatives of J, and K
which provide the “intrinsic torsion” of the half-maximal structure. These can be thought
of as analogous to the torsion of the Weitzenbock connection [74-76] (and thus contain the
internal fluxes of the theory). Following [13, 15], where the complete definitions can be
found, we denote these by R4y, R2wvw, 11, 1o and U,,.

For instance, the tensors 17, 15, appear as independent components in an expansion
of d(Jy, NJ"). However, from the expansion (4.15) one can easily see that J, A J* =
(d—1)n(Y)+ ... with ... as before standing for terms that vanish at the fixed point.
Furthermore, dn = 0 and hence T; = T3, receive no modifications and we will ignore
them. From this point forward, we will drop the ellipsis which we normally use to hide all
possible terms which do not involve solely components and derivatives carrying the indices
k associated to the components which are non-vanishing at fixed points, in the interests of
legibility. We will comment on how such terms appear at the end of this subsection.

Bearing this in mind, the other quantities can be expressed simply as

R2 wow — AD_3»CJu Jv A jw
Rl uv — AiQﬁJuJU - AilRquwaa (487)
U, = AP, AP,

The scalar potential of [13, 15] can be simplified for our purposes to
1 .
V =2k R + AY PR AR AK —2U, U —4AT2L; (UYA),  (4.88)

(note here there could also be further dimension-dependent pieces which receive no modi-
fications at the fixed point, as discussed in section 5.1 of [14] and 6.3 of [15]).
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We can then compute the scalar potential using the parametrisation (4.40) of J,4.
Inserting (4.40) into (4.87) and focusing on the expansion of Rj,,™ in terms of the basis
w4 for the even components,

Ry uvM = p_264d/(D_2)R1 uvAWAM s (489)

one finds that

Riwt = %ﬁwi,
Riuwi = —%(Q@ + 00(y)tr(ApAy)) Funk — iHu ~ od(y)tr (A
+ % <2e[uE ((9@6”]1 — 8mev]k) — Bewiei[uekva‘k‘ew]i> , (4.90)
Riw® = _%Fuva - %Auvklzlﬁaa
Ry o = 2\1/5/)_1 /0= (el ek Deni — Huvw)

where we have defined the quantities

Hyjp = 3051 — 08(y)wijp -
. (4.91)

o A o 1.
Tuvl = 26E[ua|ﬁ| elv} - 3elwel[uebv8|ﬁ| ew]l» + §eleuvw

and used et, to “flatten” indices. After a short calculation with many nice cancellations
we find that
_ _ 1 L~ o 1 o
pPe D=2y 5 500()tr (FQFM) Pl — EH@Hlméf)%lm#*". (4.92)

Here we are omitting also terms involving derivatives of ¢;;, that we are not interested in,
choosing to display only the terms in which the gauge fields fl&o‘ appear.
Next we consider the gauge kinetic term

1
Lkin,g = _Z]:,LWM]:MV NMMN, (493)

which can be rewritten in terms of the half-maximal structure [13, 15] as
1 - - 1 A
Lkin,g = §A27D (fw/ A Ju) (JT'LW A Ju) - Z‘FNV NFFNK . (494)

Using (4.48) and (4.15) as well as rewriting the external metric (since it carries a weight
under generalised diffeomorphisms) as

9T (X,Y) = g (X, Y)A(Y), (4.95)

where in turn we expand A as in (4.15), we find, displaying again only the terms involving
the extra gauge vectors,

1 y .
p2e_4d/(D—2)Lkin,g D ZHW; H" ¢t — 35(}’)tr (FWFW) : (4.96)
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Similarly, we calculate the modifications of the scalar kinetic term

1
Lyin,s = EQWDMMMNDVMMN~ (4.97)

We again begin by rewriting it in terms of the half-maximal structure, such that it takes
the form

Ligns = —A2Pgm <DMJU ADI" 4 k2P (Jy A D" ) (oA DT

4.98
L D=2 g (Ju A J) A DK -
4d—1) )
as shown in [13, 15]. To evaluate this we first compute
DyJy = DuJwa, (4.99)
to find
i 1 i
DuJu* = EDIUIC*“ s
1 /. - - .
Dyl = == (B + A Dyety ) |
V2 I (4.100)

1
%
+20d(y) tr ([1&}1”) eiu) .

(Dﬂeug - (sz’ +od(y)tr (Ailez)) Dyely + el Hy;

After a straightforward calculation one then finds the localised gauge contributions are

1

pRe1d/(D=2p S oyt ( F Ful) o :

Hy HV gt (4.101)

Finally, the topological term could also in principle receive modifications. However,
one can easily check using the explicit expressions of the topological term found
in [9, 44, 46, 48, 51, 78] and the results of 4.2 that no modifications are generated in the
topological term.

We can now summarise the way in which the localised gauge fields fl#a, flf appear in

the action. We have found that the Lagrangian contains the terms:!?

h_ -1 1 . ) . o
P (D 2)62d |g’ EEXFT D E <3Hw/;’ H#qu[)ll + 3H;@1Hﬂﬂ¢m(ﬁﬂ + Hﬂﬁﬂwﬂﬂmgékj)

—320 5(y) (tr(ﬁuuﬁ’“’) +tr (FQFM> ¢l + 2tr (E@Fﬂ) ¢ii) ;
(4.102)

13We have not discussed how the kinetic term for the external field strength H,,, would appear: this
would arise automatically from the kinetic term for the ExF'T two-form B, in D = 6 and above. In lower
dimensions, there is no such kinetic term in the action, with the degrees of freedom of B,, being dual to
degrees of freedom in A, or the generalised metric.
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where the field strengths are as in (4.50), (4.53) and (4.62),

F,uu = 2D[MA1/} + FMVEAE — [A’u,fiy] ,
e = DAy — kA — (A, Ayl (4.103)
i = 20345 — [Ay Aj,

and as in (4.51), (4.60) and (4.91)

HMVE = 2D[MAV]E — FHVZQEZ + 8E (BFW + A[MlAV]Q> — 0‘5(}’) wf,jgk + ...,
Hﬂiﬁ = DMQJE — 28[114‘”‘@ — aé(y)wﬁﬁ —+ ... s (4~104)

Hiji = 3005 — 00(y)wiip + -

with w® defined as in (4.66). We think of the field strengths (4.103) as being localised
at the fixed points in spacetime of the Zo generalised orbifold action, while the field
strengths (4.104) are not themselves localised but contain localised contributions as in-
dicated. The field strengths (4.104), as we have discussed, can be identified with certain
components of field strengths of the supergravity theory in a particular SSC, in which
case they may contain additional terms (involving derivatives and field components which
are odd under the Zj), denoted here by the ellipsis. These all contribute to the action
as in (4.102) in exactly the expected manner, with the kinetic terms for the gauge fields
appearing automatically with a delta function (if necessary) to localise them to the fixed
points in spacetime.

In particular, in heterotic SSCs, where we set §(y) — 1, we have immediately found the
expected kinetic term for the NSNS two-form (note the field strengths H, .. are the result
of certain redefinitions of the 10-dimensional field strengths as explained in appendix C,
hence the particularly nice factorisation of the 10-dimensional H? term using just ¢,
the internal metric components, to contract internal indices). In the Hofava-Witten SSC,
setting d(y) — d(y®), the terms in the first line of in (4.102) come from the kinetic term of
the modified field strength of the three-form (only components carrying the interval index
s are modified, and here we find all terms quadratic in such components only), while the
second line leads to the expected 10-dimensional Yang-Mills action living on the “end-of-
the-world branes”.

5 Conclusion and discussion

Summary. Let us first briefly summarise the findings.

In this work we have seen how a variety of orientifold and orbifold constructions are
unified in ExFT as a simple geometric quotient acting in the extended space — we call this
a “generalised orbifold” or O-fold. Demanding the preservation of a %—maximal structure
in ExFT provides an elegant way to determine compatibility of such generalised orbifolds
with supersymmetry. Thus with a single Zs quotient we can capture HW /heterotic setups
as well as Type I, Type I’ and a varied spectrum of orientifolds planes depending on how
the solution to the section condition is aligned with the generalised orbifold action. This
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accounts for degrees of freedom that are already present in the maximal theory and are
preserved by the quotient.

New degrees of freedom will also be present in the generalised orbifold theory arising
from twisted sectors localised on “generalised O-planes” i.e. on the fixed points of the O-
fold action in the extended space. Here the sense of localisation needs to be understood in
the context of the extended spacetime of ExFT; depending on the alignment of solution to
the section condition with the O-fold these additional degrees of freedom can be localised
in the physical space (e.g. Yang-Mills multiplets on end of the world branes) or not (e.g.
vector multiplets in heterotic theories).

Using a twist ansatz analogous to that of half-maximal consistent truncations [13-15]
we are able to accommodate exactly such localised vector multiplets. When the ExFT
gauge fields are expanded in this twist ansatz, one finds that their gauge transformations
are modified at the location of the generalised O-planes by the localised vector multiplets.
One can define a properly covariant field strength under this transformation but for which
the Bianchi identity receives a modification sourced by the vector multiplets localised on
O-planes. When evaluated on a particular solution to the section condition, and expressed
in terms of conventional supergravity fields, this can give rise to appropriate modifications
to the field strengths and Bianchi identities. For instance in the Horava-Witten solution to
the section condition the field strength of the 11-dimensional three-form is modified such
that its Bianchi identity receives a term 0(y®) A tr(F A F), in which the delta function
localises to the end-of-the-world branes.

This work leads to a number of interesting questions that we hope will form the basis
of further investigation by the community.

Gauge groups and anomalies. We have shown how to produce from ExFT the addi-
tional vector multiplets, either present throughout spacetime or localised at the presence
of orientifold planes or end-of-the-world branes, that are present in the half-maximal the-
ories in 10- and 11-dimensions. However, we seem to have a lot of freedom in how we
introduce these.

Normally, the gauge group is fixed by anomaly cancellation or by placing the appro-
priate number of branes to cancel the tadpole associate to the charged orientifold planes.
A compelling challenge, therefore, is to understand the origin of these powerful consistency
requirements within ExFT.

First, one might imagine carrying out an anomaly analysis in ExFT. Of course this is
challenging since many of the presumably required topological concepts are not presently
understood in ExFT. Should this be possible though it would be very interesting to see
how such a calculation manifests itself in different choices of SSC. Already before taking
any generalised orbifold, one might want to see how ExFT treats the possible appearance
of anomalies in type IIB SSCs (a chiral theory in ten dimensions) when these would triv-
ially not appear in M-theory or ITA SSCs (an 11-dimensional or non-chiral 10-dimensional
theory). This may suggest that the ExF'T perspective on anomalies is a very powerful one:
the existence of the trivially anomaly free IIA SSC may mean that an ExFT analysis of the
potential IIB anomaly is very easy, or trivial, to establish. Furthermore, as ExFT serves to
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unify the gauge and gravitational sectors into common FEg(4) multiplets, one might expect
that this unification may simplify such calculations. While mechanically it is quite easy to
embed the gravitational spin connection into the gauge sector of the ExFT by including
an SO(1,n) factor in the gauge group, as for example in heterotic DFT or generalised ge-
ometry [18, 19], it would be interesting to understand the necessity of such a contribution
to the “gauge group” within an ExFT analysis.

The obvious question would then be to take the Zo quotient as we have done, and
study the interplay between potential ExFT anomaly cancellation and the variable number
of fixed points in different SSCs (and hence different gauge groups). We can mention any
number of ways this is intriguing. For instance, why should Fg x Eg be associated to the
ITA heterotic SSC but SO(32) with the IIB heterotic SSC? Presumably this has something
to do with the existence of the 11-dimensional SSC into which the former can be embedded,
but how exactly does this consequence of string duality manifest itself in our formalism.

A second route may be to consider the equivalent of a tadpole cancelation in ExFT.
We would need to examine the charge of the O-planes in the appropriate ExFT sense.
Once this is established it may be possible to apply the standard charge cancellation on a
compact space at ExFT by including an appropriate number of its %—BPS objects.

Ultimately of course the expectation is that distinction between the ExFT origin of
gravitational anomaly cancelation and tadpole cancelation becomes moot. Here we mainly
focused on explicit examples in Ey4) ExFT but the technology provided is, modulo small
adjustments, applicable in this context. When making this leap we will also encounter
conventional Op planes with p < 5. This presents new features; first that the O-planes
violate a naive Dirac quantisation recently resolved in [52] and secondly that there are
additional variants on O-planes arising from the discrete torsion of the transverse space [42].
One hopes to give an elegant interpretation of such charges in ExF'T as well as the tension
of these objects.

An important point to reiterate is that in the ExFT generalised oribfolds considered
here the distinction between string theory orientifolds and orbifolds is not apparent. A
single discrete identification of the ExFT extended space can appear, depending on the
solution to the section condition, as either a conventional orientifold or an orbifold back-
ground. In section A.2 we provide a further example of this feature with a generalised
orbifold that can appear as either a T%/Zs orbifold of IIA or ITA with O6 planes. Consis-
tency of string theory necessitates the inclusion of extra degrees of freedom for both orbifold
and orientifold constructions but for seemingly distinct reasons; for orbifolds twisted sec-
tors restore modularity whereas for orientifolds D-branes cancel the tadpole. Our current
understanding of ExFT provides a natural way of including vector multiplets that can
capture the low energy dynamics of such degrees of freedom but, as with the discussion of
anomalies above, we do not yet have a clear way to constrain the precise field content. It
is not too fanciful to suggest that with sufficient understanding of the constraints placed
upon inclusions of vector multiples in ExFT generalised orbifold, one would be able to
make a precise match to either to the twisted sector of closed string orbifolds or the open
sector invoked by orientifolds.
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Moduli space. The expectation from perturbative string theory is that when orientifold
planes are present, there exist special configurations in which the negative RR tension of
the O-planes is cancelled locally by distributing the necessary D-branes symmetrically at
each fixed point where each plane is situated.

However, we can engineer other gauge groups by positioning D-branes away from
the fixed points. Omne can further obtain enhancements to exceptional groups non-
perturbatively. For instance, for the type I’ theory, one can obtain, at particular values
of the radii and brane positioning, an Fg gauge group at one orientifold plane, thanks to
extra states coming from DO branes stuck at the fixed point (at which the string coupling
diverges). This is T- and S-dual to gauge enhancement in the compactified heterotic string
with Wilson lines.

Meanwhile, the charge cancelling configuration consisting of an O7-plane and 4 D7-
branes at each of 4 fixed points can be obtained as a particular point in the moduli space
of F-theory on K3 [79], which one can then view as providing the full non-perturbative
description of O7 and D7 configurations. The full moduli space of O6 and D6 configurations
meanwhile can be argued to be M-theory on K3 [50].

One exciting direction is to give a unified description of this rich perturbative and
non-perturbative information within ExFT. We could consider compactifications of ExF'T
that involve K3. The theory of consistent truncations of ExFT on K3 has been established
in [13-15] — one should like to develop this further to study the full low energy theory
on K3. One could choose an M-theory solution to the section condition in which K3 lies
entirely in the physical space. Alternatively one could choose a IIB SSC in which two
directions of the K3 are physical and the other two lie in the dual directions, and can be
identified with the F-theory torus embedded in the extended space of ExFT. As a step
towards this it may be enlightening to consider ExFT on not just the singular generalised
orbifold but also its smooth blow-up. One would then be able to examine the interplay of
the various choices of the solution to the section condition with e.g. the intersection matrix
on two-cycles.

Even without considering such F-theory-esque setups, it may be interesting to consider
the simple example of the type I’ theory with D8 branes positioned arbitrarily on the
interval. The theory between the branes will then be the Romans massive ITA. This does
not have a conventional 11-dimensional uplift, but can be described as a generalised Scherk-
Schwarz reduction of ExFT, corresponding to ExFT on a twisted torus [71, 80]. This is
a prototypical situation in which dual coordinate dependence is needed, and it would be
interesting to study generalised orbifolds of such configurations. Specifically here it could
be a simple case in which to approach issues of gauge enhancement in moduli space, and
may be related directly to the next point.

Heterotic gauge enhancement. Gauge enhancement in the heterotic theory can be
dualised and mapped to particular arrangements of D-branes in the type I’ theory. Recently,
progress has been made in describing first bosonic string and subsequently heterotic gauge
symmetry enhancement in double field theory [67-70]. A concrete problem could be to
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embed or adapt these approaches in our setup, and interpret them in different SSCs. For
instance, we would hope to see the duality between positions of the D-branes in O-plane
SSCs and Wilson lines in heterotic SSCs, related to the appearance of certain gauge groups.

Beyond Zs: generalised orbifolds. We have seen that there is plenty to work with
simply to understand the complete ExF'T description of the Zo generalised orbifold that
gives rise to the half-maximal 10- and 11-dimensional theories. However, in this paper we
uncovered a general procedure to study generic half-supersymmetric orbifolds or ExFT by
quotienting with discrete subgroups of the stabiliser of the half-maximal structure. These
represent geometric or non-geometric orbifolds, depending on whether in a particular SSC
physical coordinates are identified with other physical coordinates only or with dual co-
ordinates. In the latter case, the generalised orbifold may only involve at most identifi-
cations between physical coordinates and string winding coordinates, or between physical
coordinates and more general (solitonic) brane winding coordinates. It would be exciting
to establish the consistency of such scenarios, however since they transcend perturbative
string theory it would certainly be a challenge. They could lead to rather interesting set-
ups that may even provide phenomenological value. Of course to make contact with more
phenomenological approaches one should develop specific examples directly in the context
of four dimensional compactifications and harness the power of Ey7) ExFT. It may be of
interest to connect such O-folds with non-geometric flux backgrounds as for instance done
in the string theory context in [81, 82], perhaps first in the relatively simple SL(5) example
using the fluxes described in [76].

Acknowledgments

We would like thank David Berman and Dieter Liist for helpful comments on the
manuscript.

DCT is supported by a Royal Society University Research Fellowship Generalised
Dualities in String Theory and Holography URF 150185 and in part by STFC grant
ST/P00055X/1. EM is supported by the ERC Advanced Grant “Strings and Gravity”
(Grant No. 320045). CB is supported by an FWO-Vlaanderen Postdoctoral Fellowship.
This work is supported in part by the Belgian Federal Science Policy Office through the In-
teruniversity Attraction Pole P7/37, in part by the ‘FWO-Vlaanderen through the project
G020714N, and in part by Vrije Universiteit Brussel through the Strategic Research Pro-
gram “High-Energy Physics”.

EM wishes to thank Vrije Universiteit Brussel for hospitality during this project and
the authors would like to thank the organisers of the following conferences where much of
this work was completed: “Recent Advances in T /U-dualities and Generalized Geometries”
(Rudjer Boskovié¢ Institute), “Multi Facets of Extended Duality” (Institute for Basic Sci-
ence, Seoul National University), and “String Dualities and Geometry” (Centro Atomico
Bariloche).

— 51 —



A Chiral and non-chiral O-folds in the Spin(5,5) ExFT

The case of the Es5i) = Spin(5,5) ExFT displays some differences to the general story
discussed so far, due to the existence of chiral and non-chiral half-maximal supersymmetry
in six dimensions.

A.1 Details of the Spin(5,5) ExFT

We begin with a review of the basics of the Spin(5,5) ExFT. We denote a vector in the
coordinate representation R; = 16 by VM and let B! be a tensor in Ry = 10. The
Spin(5,5) invariant tensor 7y can be used to raise and lower Ry indices. The Majorana-
MN (

Weyl gamma matrices, v/ y/n and 7 symmetric in M, N'), which form the off-diagonal

blocks of Dirac matrices I'! in the Weyl basis obey

JNP+,YJMN71NP:2nIJ116 ) (Al)

v Ny
The section condition of this theory is
MV ® Oy = 0. (A.2)
The M-theory SSC is induced by the decomposition under SL(5) x GL(1):
16 5530101 d1 5, 1035205 5. (A.3)

In this SSC the coordinates Y™ = {Y? ¥};;,Y.} (with here i = 1...5) can be identi-
fied with physical space, membrane wrappings and five brane wrapping respectively. A
representation of the gamma matrices adapted to this decomposition is provided by

(MY () = V28, () jeim = V20km s (V) = V2 (51@5{ — 510 ) :

. . y y (A.4)
(aan s (07);F = V285, (PR = gk ()4 = V3 ok — o)
and the non-vanishing components of !/ are n'; =n;" = 5;
The IIB SSC is induced by the decomposition under SL(4) x SL(2) x GL(1):
16 - (4,1)19(4,1)_18(4,2), 10— (1,2);18(1,2)_1®(6,1) . (A.5)

We will let 4,4 = 1...4 be SL(4) indices and a,a& = 1,2 identify the SL(2) doublets.
In this SSC the coordinates YM = {Y, Y;, Yia} can be identified with physical space, D3
wrappings and an SL(2) doublet of F1-D1 windings. In the 10 we have X! = (X, Xa, X¥).
The invariant tensor n;; has components 775‘6 = ¢*# and Nij kl = %eijkl.

The gamma matrix components can be taken to be

(MY ()e = V2505, (1%)'5s = V20,05

(Vij Jkats = €ijricas, (i) = =201, (A6)
(Dun = ()77 =-V2005, ()" = V25167,
(,}/ij)koa,l,é’ _ Eijkleoz,b” <7ij>El _ _26]?[' )
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In studying O-folds in this context there are two crucial points to make: first, the extended
coordinate representation is spinorial and therefore SO(5,5) actions on the fundamental
representation, the 10, lead to two different possible O-fold actions which are necessarily
defined on the double cover, and second, there are two inequivalent ways to preserve half-
maximal supersymmetry. Together these enhance the range of O-fold actions available.

For the first point, consider a Zsy element of SO(5,5) defined by its action Z!; in the
10. We can then establish an action Z™ y on the 16 by essentially looking at the top-left
component of {2 defined via the standard Clifford relation

o 'ria=2z1,r’. (A7)

However ZM 5 and —ZM y are equally valid choices and within a given SSC could lead
to different identifications. Moreover, depending on the specific choice of Z!; we could
find that Q2 = 1 or Q2 = —1, and in the later case this means that ZM y would provide
a Z4 identification in the 16. In a similar vein we could consider the case where ZM =
—6M 5 providing a Zs identification on the coordinate representation where there is no
identification imposed on the Rs.

For the second point, there are two different types of half-maximal structures in
Spin(5,5) ExFT, as shown in [15]. These are a Spin(4) structure and a USp(4) struc-
ture, corresponding in six dimensions to the non-chiral and chiral half-maximal theories
respectively. We can therefore consider half-maximal O-fold actions that are discrete sub-
groups of the stabiliser of either structure.

In order to understand the ExFT quotients in terms of supergravity fields, we can
write down the schematic dictionary between the ExFT fields and these. For simplicity,
we consider here just the tensor hierarchy fields AMM and B,,,7. In an M-theory SSC, we
have, with ¢ a five-dimensional internal index,

A o
o al 1j1..ja
pigklm

As usual, this can easily be reduced to obtain the identifications for a ITA SSC. In a IIB
SSC, with ¢ a four-dimensional internal index and & the SL(2) S-duality index, we have:

~

:AMi AC}U/d
AM = Chuijk | » B = Cuviia | - (A.9)
Clia Clvij

(Note here that the SL(2) doublet index « in the decomposition of the 10 is associated to
the IIB S-duality SL(2) index & on the two-forms, while the doublet index & is associated
to the IIB S-duality index & on the dual six-forms.)

A.2 The Spin(4) half-maximal structure

This non-chiral structure is the direct generalisation of the half-maximal structure we
studied in the main part of this paper for the group SL(5). It is defined here by Klerm (R2)
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and four nowhere vanishing generalised vector fields J,™ € I' (R1), satisfying (3.9), which
explicitly becomes

wsz 1 wx
<5u 0" — 151“}5 ) JwMJa:N (FYI)MN =0,

KR =0, (A.10)
(V") 3y K1 JuM TN > 0.
It is also helpful to introduce a K! € T'(Rz) such that
KK =AY, (1) 0 JM 1N = 26, K7 (A.11)
K then automatically further satisfies
(VI)MN JuN K1 =0, (A.12)

Kin K7 =0

M-theory SSC. In flat space there are two distinct ways to align the Spin(4) structure
relative to the basis adapted to the M-theory SSC.
First, we can take

K = (04,A%04,0), K = (04,0,04,A%). (A.13)
The first of eq. (A.12) implies that the eight non-vanishing components of J are

Jusy J2, T = (A.14)

U uig )

in which 7 = 1...4. Now the second of eq. (A.12) require that

VT sy ii+ Tuoy 2 = V20700, (A.15)
We solve this with
Jo ~ Dbuza,  Juz ~ Dbuza, Ty~ Ay (A.16)
Then
7'y = diag(~14,1,-14,1), ZMy=]] %( = )My (A.17)

i
is a Zs action that stabilises the structure.'* The overall sign of ZM y is fixed by requiring
that Z - J, = J,,. We find the parities of the extended coordinates YM to be as follows (we
refer to the coordinates as being physical, or conjugate to M2 or M5 windings):

physical : 4+ —-———
dual M2: ++4++++———— (A.18)
dual M5 : +

This is a geometric action, which we can view as involving a T%/Zy x S! physical space.

14 A second Zs action available here acts in the 10 by sending X' o X; leaving X®, X5 invariant. The
resulting Z* y again has an equal number of positive and negative eigenvalues but in this case results in a
non-geometric identification of physical coordinates with both membrane and fivebrane wrappings.
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~

K K
(0,0) (0,0)

(a)

(b) | (=1,-1) | (1,1)
case (c) (1,1) (—1,-1)

(d)

(e)

(—1,1) (1,-1)
(1,-1) (—1,1)

Table 9. We display the SL(2) x GL(1) charge for both K and K in each of the cases considered.
Case (a) breaks the SL(4) symmetry whilst the remainder preserve it.

This corresponds just to the M-theory orbifold on T*/Zs, with no additional reflection
of the three-form. We can reduce this to a ITA SSC in two ways. If the physical direction
which we require to be an isometry is the single one with even parity, then we obtain a ITA
orbifold. Alternatively, if the isometry direction has odd parity, then we obtain the ITA
orientifold with O6 planes.

Now we switch the alignment of the Spin(4) structure by taking

K = (04,A%,04,0), K = (04,0,04, A?). (A.19)

In this case the eight non-vanishing components of J are the complement to those of
eq. (A.14). As a result the Zs action that stabilises the structure is

ol Ty 1. —T 1. i
7'y = diag(—14,1,-14,1), ZMy=-]] SO =y M, (A.20)

%

in which we see a crucial minus sign difference acting in the 16. Accordingly we have the

parities
physical : —+4+++
dual M2: — — ———— ++ ++ (A.21)
dual M5 : —

Again, this is a geometric reflection. It corresponds to the Hofava-Witten configuration.
Reducing to IIA, we obtain either the heterotic Fg x Eg theory or the orientifold of ITA
with O8 planes.

ITB SSC. In the IIB SSC there are several ways to align the Spin(4) structure relative
to the SL(4) embedding of eq. (A.5). We take Z!; to be a reflection in the eight directions
orthogonal to the plane defined by K, K. We can specify the vectors K, K simply by giving
their charges under the Cartan subgroup of SL(2) x GL(1). There are multiple possibilities
here that we summarise in table 9. The corresponding action in the 16 is displayed in
table 10.

From the parity assignments in the above, and the general dictionary (A.9) for the
tensor hierarchy fields we have that case (a) corresponds to O7 planes; cases (b) and (e)
correspond respectively to the Type I (09) / heterotic pair and cases (c¢) and (d) to an
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physical | dual D3 dual D1 dual F1
case (a) | ——++ | ——++ | ++—— | ++——
case (b) | +4+++ | ————| ++++ |—————
case (¢) | == —= |+ 44+ | ————— ++ ++
case () | ———— | ++4++ | ++++ | ————
case (e) | ++++ | ————| ———— | ++++

Table 10. The action of the Zy on the extended coordinates YM.

SL(2) multiplet of O5’s. One can view the S-dual of the O5 as a type of orientifold plane
carrying NSNS charge. In this case, this is the ONS5p discussed for instance in [42].
More general O-folds can be constructed following the recipe given in section 3.3.

A.3 The USp(4) half-maximal structure

The existence of a second type of half-maximal structure is tied to the fact that one can
have both chiral (2,0) and non-chiral (1,1) half-maximal theories in six-dimensions. This
case corresponds to the chiral theories. As described in [15], the half-maximal structure is
defined by five nowhere vanishing tensors .J,/ € ' (Rs) satisfying

1
(55}535 — 55m,5~’0w> JoinrgJe’ =0. (A.22)
Thus, one can define a scalar density A such that
Ju nrrdy” = 6 At . (A.23)

Evidently the J,! span the positive eigenspace of the Spin(5,5) invariant 7 with a corre-
sponding SO(5) g symmetry and are stabilised by USp(4)gs rotations acting in the negative
eigenspace. Since it should have positive unit determinant, the element Z!;, it can have
either (a) zero, (b) two or (c) four negative eigenvalues. These cases, (a)-(c), need to be
analysed in turn in each SSC.

M-theory SSC. Here there is no ambiguity in the alignment of the USp(4) structure
to the M-theory basis; the SL(5) used to perform the branching eq. (A.3) has a maximal
compact subgroup identified with the SO(5)s and so there is essentially only one way this
Z!; can be embedded.

(a) We choose Z!; = §'; and ZM™ 5 = —6M 5. This corresponds to M-theory on T°/Zs
combined with the transformation C'(3) — —0(3) of the three-form. Upon compactifi-
cation this gives the chiral 6d theory which is dual to IIB on K3 [40, 41]. We can also
reduce this SSC to get ITA on T*/Zy with a further quotient by (—1)% (changing the
sign of the RR fields). This corresponds to IIA with an orientifold 5-plane carrying
NSNS charge, the ONS54 of [42].

(b) When Z!; has two negative eigenvalues the corresponding ZM y actually has eight
+i and eight —i eigenvalues and generates a Z4 action. This can be seen quite easily
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by considering a basis in which 7’7 is diagonalised and Z'; acts by reflecting two of
the directions, X' and X? say, in which n'! = 1?2 = —1. The corresponding € has
the form I';T"y and obeys Q2 = —1. In the M-theory SSC this action has a component
that acts geometrically in the physical space as a T?/Z4 but non-geometrically on
the remaining three physical coordinates identifying them with membrane winding
charges.

¢ en Z' y has four negative eigenvalues the correspondin ~ produces a Zg action
When Z!; has f gative eig lues th ding ZM d Zo acti

on the extended space but one that acts entirely non-geometrically; its eigenvectors

consist entirely of linear combinations of the physical coordinates and those conjugate

to brane windings.

IIB SSC. In theIIB SSC the situation is a bit more subtle since there are various choices
depending on how the two minus directions of Z!; are distributed relative to the SL(4)
embedding of eq. (A.5). This can produce some further sub-cases.

(a) We choose Z!'; = §'; and ZMy = —6M . This is the orbifold of IIB on T%/Z,
(and could also be thought of here as an orbifold limit of K3). This is consistent
with the fact that in the M-theory section we found the dual description of M-theory
on T°/Zs.

(b) When both minus signs of Z!; act inside the 6 we have a geometric Z; quotient
on the physical space, which also acts to identify F1 windings amongst themselves
ditto D1 and D3 windings. With exactly one minus sign acting inside the 6 the Z4
identifies the physical space with F1 windings and D3 with D1 windings.

(¢) With no minus signs acting inside the 6 the Z, identifies physical space with D3

windings and separately F1 and D1 windings amongst themselves.

Just as for the non-chiral O-folds, one can construct general half-maximal chiral O-folds
of generalised parallelisable background by appropriately constructing a chiral half-maximal
structure and its associated stabiliser out of the generalised parallelisation.

A.4 Twisted sectors

For six-dimensional non-chiral O-folds, i.e. those preserving a Spin(4) structure, one can
include localised vector multiplets as outlined in section 4. The only equations which need
modifying are the expressions for the generalised metric which can be found in [64].

For chiral O-folds, i.e. those preserving a USp(4) structure, one can use a similar
strategy to include localised tensor multiplets at the O-fold fixed point. We would again
expand all the ExFT fields in terms of an appropriate basis of even and odd generalised
tensors. The even expansion would now be similar to the chiral consistent truncation
described in section eight of [15], but appropriately “enlarged” to capture the twisted sector.

Because the USp(4) structure consists only of generalised tensors in I' (R3), the even
expansion would only occur for ExFT fields valued in R2. These would now be expanded in
termsof wa € I (7@2) , where R is the appropriately enlarged bundle and A = 1,...,10+N
with N the number of tensor multiplets thus obtained.
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B Doubled orientifolds

The main focus of this paper was the description of orientifolds and orbifolds in exceptional
field theory. We could also consider doing the same in double field theory. In this appendix,
we will explain how to construct and view the Zsy orbifold action associated to the 10-
dimensional half-maximal theories in this theory.

B.1 The doubled worldsheet and double field theory

Worldsheet parity, Q@ : (r,0) — (7,—0), interchanges left- and right-movers, P
(X1, XRr) = (Xg,Xr). T-duality meanwhile acts as T : (X, Xgr) — (X1, —Xg). After
T-duality, the original action of parity now acting on the dual coordinate X = X; — Xp
amounts to worldsheet parity combined with a spacetime reflection, X — —X. Thus one
passes from a setup with unoriented strings and a spacetime filling orientifold plane to one
with orientifold planes at the fixed points of this reflection of the dual coordinate.

The doubled worldsheet allows one to describe original and dual configurations on
an equal footing. We take d coordinates X’ and combine them into an O(d,d) vector
XM = (X? X;) involving the duals X;. In order not to introduce new degrees of freedom,
we should impose a chirality constraint, which in the simplest case takes the form 9, XM =
HMNpnpOy XT, where the background metric and B-field appear in the generalised metric,
Huyn, and O(d, d) structure, narn,

g—Bg™'B Bg~! 01
H = , = . B.1
MN ( —gle gfl M N 70 (B.1)

This constraint can either be imposed on top of an action for the doubled coordinates, as
in [83, 84], or, as was originally done, as the equation of motion for the worldsheet Lorentz
non-covariant action'® of [86, 87]

S~ / 0 (0 XM a0 XN — 0y XM Hp w0, XN | (B.2)

In either case, we see that the action of parity is only a symmetry if we simultaneous send
nunN — —nun- Equivalently, all the dual coordinates )N(Z- must be reflected as Xi — —)N(Z-.
We can write this in terms of a 2d x 2d matrix ZM 5 as

P:XM(r.0) = ZMNXN (1,21 — 0), ZMN:<é 0]) . (B.3)
Note that, unlike the Zs C Ey(q) transformation considered in the main part of this paper,
this matrix is not an element of O(d, d), as it does not preserve ny/ny but instead sends it
to minus itself. (One can accommodate this in generalised geometry by introducing the
notion of a “conformal Courant algebroid” [33] in which one allows also for transformations
which send 7 — an, for a some real number.)

15 A PST-style Lorentz covariant version of this action is provided in [85]. Note that one should also add
a “topological term” which is a total derivative classically but important quantum mechanically. We omit
this here.
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The construction [7, 88] of the double field theory spacetime action made use of the
observation that worldsheet parity corresponded to nyny — —nam N, with the spacetime
action required to contain only terms containing an even number of 7s in order to be
invariant under this transformation. In addition, the generalised Lie derivative of DFT
has YMN PQ = nM N npq. So the full spacetime theory is invariant under nyny — —numn,
allowing us to implement this as the transformation Z* y and gauge this symmetry.

The discussion continues then similarly to the ExF'T situation that was analysed in
the main part of this paper. In general, the section condition of DFT, nMN9,; ® Oy = 0,
is solved by allowing the background fields to depend on at most half the coordinates.

As a consequence, when we gauge the action of parity on the coordinates and gener-
alised metric

XM ZM XN HuN(X) = (Z7TTHZ Y un(ZX), (B.4)

we find that — prior to a choice of which half of the coordinates are physical — these
identifications lead to

9(X, X) =+9(X,-X), B(X,X)=-B(X,-X). (B.5)

If the section condition is such that the fields only depend on X, then there is no identifica-
tion of points in spacetime, and the B-field is eliminated everywhere. This corresponds to
the type I theory. Alternatively, we could choose the fields to depend only on the X. In this
case, we have the spacetime identification X ~ —X, and the B-field is only eliminated at
the fixed points, which are spacetime non-filling orientifold planes, like the type I’ theory.
If we depend on some of the X and some of the X, then some components of the metric
and B-field will be eliminated at the fixed points.

The fixed points occur at X; = 0 and X; = WR(i), assuming we are orbifolding a doubled
torus. Thus there are 2% fixed points. Each of these fixed points can be viewed as a d-
dimensional O-plane, filling half of the directions of the doubled geometry. Unsurprisingly,
this is similar to how D-branes appear in the doubled description.

Thus we see that the orientifold action (B.3) and (B.4) acts in a very simple manner
on the doubled geometry introduced as the target for the doubled worldsheet, or as the
background described by double field theory. By making different choices of SSC, one can
obtain from the single doubled orientifold action, different spacetime descriptions which
are conventionally thought of as related by duality.

B.2 The RR sector

We can also extend the doubled orientifold action to the RR fields. These appear as
spinors of O(d,d), and can be encoded in DFT as follows [89]. The Clifford algebra of
gamma matrices, {I'py7,'n} = 2nyn], has a useful fermionic realisation in a Majorana
representation
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with v* viewed as creation operators and v; = (¢*)1 annihilation operators. Thus a spinor
can be expressed as

1 ) .
X=10)=>" G [0). (B.7)
p

Chiral spinors are obtained by restricting the summation in the above to range over only
even or odd values, or equivalently by taking projectors under (—1)V* where the number
operator is

Ne =Y ' (B.8)

In a frame in which 8" = 0 we can represent ¢' = da’ and positive chirality spinors consist
of the sum of even forms and negative the sum of odd forms. The Dirac operator is given
as @ = '0; + wiéi and, using the Clifford algebra, is nilpotent when subject to the section
condition. In the standard way there is a two-to-one group homomorphism p : Pin(d, d) to
O(d, d) defined as is familiar by S~!I'M§ = OM \T'V,

The RR fields in DFT can then be described as a spinor x = |C') of a particular chirality,
obeying a self-duality constraint (as in the democratic formalism of type II supergravity).

Now, the Zy transformation ZM y is not an element of O(d,d), so its lift to the RR
sector is somewhat subtle. Suppose that we want to encode the action of ZM y correspond-
ing to orbifolding in n directions in spacetime, so that ZM y = (Ip,—Ipn,—1I,,I,). Let us
write i = (u,a), where p =0,...,p—1,and a = 1,...,n. Define

p—1 n
N =) @+ va" = Ny +n— Ny (B.9)
u:O a=1

where N(,) and N(,) denote the number operators for the (Y, ) and (1Pq,h®) subsets.
Then B
Z = (—1)2N+! (B.10)

gives the action of the doubled orbifold on the RR spinor.
Note that Z2 = (—1)NF+", 5o this squares to one only if Np and n are both even or
both odd — this distinguishes the ITA and IIB cases. In ITA we have n odd (leading to Op

Np _

planes with p even) and chiral spinors with (—1) —1, while in IIB we have n even, Op

planes with even p, and (—1)V7 = 41, We can write

Z=(-DJ[a+ G- [T+ 6= Dvar?) (B.11)
" a

77 = ()] =G+ v [T - G+ Dearr®) (B.12)
7 a

and thus compute that
ZYZ7 V=i, ZYiZ 7 =~ ZZ = —iy,  ZaZ Y =i, (B.13)
The relationship between the vector transformation ZM y and Z turns out to be

iZM TN = ZzrM 771, (B.14)
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(Note that this is almost the usual relation between elements of O(d,d) and elements of
Pin(d,d). It may be interesting that iZ™ y is an element of O(d,d;C). Acting on a spinor
state of the form x = Cuy.. ypnar...ag®'t - . YFmap . 4p%|0), Z gives

Zx = (—1)tHmtn=a)/2, (B.15)
It is straightforward to cycle through the possibilities. For instance:

e n = 0: we take the RR spinor to have even chirality, x = >_, cven C(m)- We have
ZC(m) = (—1)1+m/2C(m) and so the 0-, 4- and 8-forms are odd. There is no action in
spacetime, so these are projected out — we also know that the NSNS 2-form is odd,
so this is exactly the case corresponding to the orientifold of type IIB leading to the
type I theory.

e n = 1: we take the RR spinor to have odd chirality, x =}, ,qq C(m)- The individual
spinor states can either have ¢ = 0 (do not contain the single ¥* creation operator),
or ¢ = 1 (do contain the single 1* creation operator). When ¢ = 0, ZC(m) =
(—1)1+(m+1)/20(m), so that the 3- and 7-forms are odd and projected out at the
fixed points in the X* direction. When q = 1, ZC(mm = (—1)1+m/2C(m)7a, which
is consistent with this parity assignment (the index a transforms with odd parity).
This corresponds to the type I theory with O8 planes, which is here the T-dual of
type I on the X* direction.

B.3 Relation with ExFT

To close let us explicitly show how the above DFT picture arises from ExFT specialised
to the case of SL(5). Using equations (D.18), (D.20), (D.22) we can perform the reduction
of the ExFT generalised metric myp (a,b = 1...5) to yield the O(3,3) generalised metric
Hyn (M, N =1...6) and the Spin(3, 3) Majorana-Weyl spinor Cy, (I =1...4) encoding
internal components of the RR fluxes.

The Zs action in ExFT descends to three distinct possibilities in DFT depending on
how the positive eigenvalue is situated in the dimensional reduction ansatz D.18. We denote
the cases:

zWay = diag(—1, -1, -1, -1, +1),

Z@e, = diag(—1, -1, 1,41, 1), (B.16)

Z®9e, = diag(—1,-1,+1,-1,-1) .
Each of these cases will produce an action on the DFT generalised metric and RR spinor
according to 7D Hyn — ZMPZNQ'HPQ and C; — ZIJC[. We also have to keep track
of the different parameterisation of ITA and IIB. The resulting diagonal 6 x 6 and 4 x 4
matrices in each of the 6 cases are displayed in table 11.

Note that these Zs actions, while always an element of SL(5) are not necessarily ele-
ments of O(3,3). Instead they will in general induce an additional Zy action on nysn, as
in cases 1 and 3 which take ny;y —> —nasn. In fact, only case 2 corresponds to an O(3, 3)
action: it acts as the identity on the fundamental but acts as multiplication by —1 on the
spinors, i.e. the RR sector.
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ITA I1B
Case 1 diag(—1,—-1,—-1,+1,4+1,+1) | diag(+1,+1,+1,—-1,—1,-1)
diag(+1, +1, +1, —1) diag(+1, +1,+1, —1)
Case 3 | QBCHL AL L +1 4 1,41) [ diag(+1,+1,+1, 1+ 1, +1)
diag(—1,—-1,—-1,-1) diag(—1,—-1,—-1,—1)
o 3 | G8BCHLAL =1, —1,—1,+1) | diag(~L,—L,+1,+1,+1,-1)
diag(+1,+1,—-1,+1) diag(+1,+1,—-1,+1)

Table 11. Reduction of the ExFT Z, producing DFT actions Zy;" and Z4 5.

The two Case 2 theories project out the RR fields as would be required of a heterotic
background. Cases 1 and 3 correspond to DFT orientifolds described above.

Consider for instance the example of Case 3 in IIA. When acting on the generalised
metric the Zsy action is of the DFT form ZM 5 = (Ip, —In,—1I,, 1) with p=1,2 and n = 3
(time and other spatial coordinates left un-doubled are external to this argument). Let us
now verify that the action on the RR sector defined in eq. (B.11). To show this we need
to use the basis of Dirac gamma matrices induced by the ExFT to DFT reduction [10]

0 ,.YMIJ
M= . B.17
( AMp; o 0 ( )

The MW blocks are defined by
Y = =2y, v = —2\/55[[35?] T 2\/5555?}]] . Yirg =V2nirs,  (B.18)

in which the alternating symbol is extended such that n;;;y = 0 when I =4 or J = 4.
In this case we have from eq. (B.11),

=0 IT (145609 TT (14 56-00%) . a9

pn=1,2 a=3

which when evaluated in this basis of gamma matrices indeed yields Z;7 =
diag(+1,+1,—1,+41) agreeing with that obtained from the dimensional reduction of the
ExF'T action.

C Decompositions of supergravity

C.1 General features

The usual procedure to connect the ExFT formulation with SUGRA is the following. First,
a solution of the section condition is picked. This corresponds to breaking Eq.4) — GL(d)
(for an M-theory SSC) or GL(d — 1) (for a ITA SSC) or GL(d —1) x SL(2) (for a IIB SSC).
All the fields and gauge parameters can be decomposed under this split. Then, one can
check the action of generalised diffeomorphisms and generalised gauge transformations on
the fields, and identify the transformations of the ExFT field components under spacetime
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diffeomorphisms and the usual p-form gauge transformations. This allows one to make
a precise map to (a convenient decomposition of) the SUGRA fields in some standard
formulation.

The purpose of this appendix is to provide general details of these supergravity de-
compositions. We will follow the standard procedure [9] to carry out a Kaluza-Klein-esque
decomposition of the 11-dimensional fields in order to arrive at objects which more natu-
rally can be identified (by further field redefinitions) with those of ExFT.

First consider the metric, g;z, of the 11- or 10-dimensional supergravity theory. After
splitting the coordinates X# = (X Y?), we partially fix the Lorentz gauge, breaking
SO(1,10) — SO(1,D — 1) x SO(d) (or SO(1,9) — SO(1,D — 1) x SO(d — 1)) making a
choice of the vielbein such that the metric has the form

Gap = Qg,ul/ +gklAukAul gjkAuk (C 1)
" gik:Auk 9ij . '

If the original metric g, is Einstein frame (as is usually the case for 11-dimensional SUGRA
and IIB SUGRA in a manifestly S-duality invariant formulation), we take the conformal
factor to be 2 = (det g;;)*. Alternatively, if it is the 10-dimensional string frame metric,
then Q = (det g;;)“e~*®*. The constant w = 0 in DFT and w = — 515 in ExFT.

The vector A, has a field strength given by
Fu' =20,4A," —2A,70;A,". (C.2)

It is convenient to redefine the components of the form fields to obtain quantities which
transform covariantly under internal diffeomorphisms, i.e. according to the internal Lie
derivative acting in the standard way according to the internal indices carried by the field.

So for a p-form, Cjp, one defines

el

Apyppin g = € Meg, M éppapéapﬂpéﬂl...ﬂpil...iq (C.3)
where éﬂ& is the vielbein for the metric g;5, and a the flat n-dimensional index. The above
choice of metric/vielbein is such that é,%¢;” = (6,”, —A,%).

These redefinitions make it relatively straightforward to match the ExFT fields with
those of SUGRA, by for instance comparing their symmetry transformations or by matching
the invariant field strengths. In some cases, care must be taken to remove components of
dual gauge fields from the ExFT action.

We will also apply the same procedure to the additional gauge fields that are present
in the half-maximal theories. If the 10-dimensional gauge field is Aﬂ and we split i1 = (u,1)
then we let

(C.4)
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where A/} are the KK vector components coming from the metric decomposition. We
similarly define field strengths for the gauge fields via

= Fy
Fly = Fu+ AJFy (C.5)
ij = ~/W + QAU}FVE + AMEAVJFQ

such that
Fyj = 6[1AJ]—[[11,/~1],
Fo = DyAs — A, — [A,, Ad, (C.6)
FL :2D[MA,,] Fw;jlé—[le#,jly].

In the above D), = 0, — La,, where L is the ordinary Lie derivative.

C.2 11-dimensional SUGRA on an interval

Field content and decomposition. The 11-dimensional bosonic fields are the metric
Jpp and the three-form Cm/p We consider the theory on an interval Z = S'/Zs, which we
take to be the direction y°. Under y* — —y°® we simultaneously reflect C( 3) — C(3), which
is a symmetry of the action. The fixed points of the reflection are y* = 0 and y* = 27 R;.
At each fixed point, we have an Eg gauge multiplet, which we denote by /1,;"‘ where i here
excludes i = s.

Now we split the coordinates X# = (X*,Y?) with i = 1,...,d, such that y® is one
of the internal directions. We decompose the metric according to (C.1), and make the
Kaluza-Klein inspired field redefinitions for the three-form:

Aijk = Clji ,
Apij = Cuij — AL Crij
: b o (C.7)
A = C — 2A[H C,,]lk + AM AV Cikl )
A# = é —3ALRC, gk +3ALR A Coy — AP A A Crg

These redefinitions produce fields which transform covariantly (i.e. via the internal Lie
derivative) under internal diffeomorphisms. Similar redefinitions of the field strengths are
made, leading to (C.16) below.

Decomposition: modified gauge transformations. Under gauge transformations
(5121/1 = Op\ — [flﬂ, A] (here ji # s) the three-form transforms as:

2 ~ ~
L56(y*)607,tr (A, Agy) (C.8)

5C'Wp 2
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It is straightforward to write down the gauge transformations of the components (C.7)
under the transformations of the gauge field. We have:

2
K s S A A
K2 ~ ~ ~
645 = 5300")20%tr (A0 4, = Dy dy)) - ©9)
K2 ~ ~ PR
6 Ay = 55055t (A@Dy Ay + Fu b Ay)) |
A, =0,
while also
5A; = 0;A — [A;, A],
- - [ (C.10)
0A, =D\ —[A, Al
Note that these decompositions rely on the fact that
0,5 = 0,5 — A6y = —A,° =0 (C.11)

which is true at the boundary.

Decomposition: modified field strengths. The field strength of the three-form has

a localised contribution:
2

A N K s
Frope = 40[uCps) + )\*5( Y 40505 (C.12)

where
a5 = tr (6405 Ay — 24l A5, Az)) . (C.13)

Note
Agfp =tr (314[ op) A[M[A,,,A ]]) = tr (3121[;1}%,;/;] + Aﬂ[z‘i,}, Aﬁ]) , (C.14)

which is a tensor and so leads automatically (using the same redefinitions as (C.7)) to
g}j = tr <3A[¢ng} + /L;[Aj, Ak]) s

WG = tr 34y, Py + Au[Ai, Aj]) |

Wpij
cs L (C.15)
wm,l- =tr <3A[HFVi] + A [A Al,]]>
iy = tr (34 Fuy + AulAy, 4)))
so that the redefined field strength components after the decomposition are
2
K S
Fz]kzl = 48[1"4]]61} + 22 6( )45[z jcl;% )
2
K S S
Fluije = Duijie = 30):Au 55 — 130y )385 (k)
2
C.16
Fuvij = 2D Aygi + Fuu* Apij + 20 A 5 + A25( y*) 205 ) (€10
2
K S
F,uzzpi = 3D[MA1/p}i + 3F[quAp]ik - aiA,uup - ﬁé( )51 SVi’

Fuvpo = AD Ay po) + 6F1,™ A poim
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Decomposition: Bianchi identities. The Bianchi identity is:

N 52 o 1 o N
500 = 6550y )55”( r(Epp F) — tr(RﬂpR[;&})> . (C.17)
One finds
K2 -
5a[anpqr] = 6/\ 5( )56[m ( qr])

2

K s s I

D,uanpq — 48[m‘F|u|npq] = —Gﬁ(S(y )45[mtr(anF|M|q]) N

2
K S S
2D Fyjmnp + Fuv* Faigh + 30m Fluving) = —6350(y°)7,, (tr( Frp) Fuw)

= - C.18
— 0 (Fppn Flopp)) + tr(Flon Fup) » (C.18)

2 ~
3D Eyplmn — 3F[W plkmn = 200 Elwpjn) = /\25( )25[m ( lutve)
2 ~ ~
ADyFypoim — 6F "™ Fyojmn + Om Fluvpe = _Gﬁ(s(yS)émstr(F[WFpa}) )

5D Fypor) — 10F,," Fpoxm = 0.
C.3 10-dimensional heterotic SUGRA and heterotic DFT
Field content and decomposition. The bosonic fields of 10-dimensional heterotic su-
pergravity are the metric, gzz, 2-form, Bﬂ,;, dilaton, @, and the gauge fields, flﬂo‘ for the

gauge group G.
It is conventional to decompose the two-form as [73] by defining the fields

Bij = Bij, Awi=Bu—AJ B, Buw=Bu+A, A —A'AB;.  (C.19)

v]j

Note that this is not the same as the decomposition used in obtain exceptional field theory,
as the A[ﬂj A,jj term in By, is different. Meanwhile the gauge fields and their field strengths

are redefined according to (C.4), (C.5) and (C.6).
Decomposition: modified gauge transformations. Under gauge transformations of
Au , we have:

6Bps = 2ctr(9 An*A) (C.20)
implying
6By = 2etr (94 4 ) |
64, = ctr ((Dudi = 0,4,) R) | (C.21)
6B = ctr (2D, Ay + AiF' + A7 (954, — Dy ApR) |

Decomposition: modified field strengths. The field strength is defined in the usual
way, leading to

ﬁﬂpﬁ = 38“131; p| — CL:JSZ;S;), (C.22)
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where the Chern-Simons three-form takes the same form as (C.14). With the redefini-
tions (C.15), we find

Hyij = DyBij — 20A)5) — cwis

, . oS (C.23)
H,um’ = QD[MAV}Z' - F,ul/jBij + 81'(B,uu + A[MJAV]j) — CWui s
Hywp = 3Dy, Byp) — 3A[ukDVAp]k — 301, A7 Ayl — ngusp‘
Decomposition: modified Bianchi identities. The Bianchi identity is
4a[ﬂﬁﬁﬁﬁ'] = —C 6tr(ﬁ[ﬂﬂﬁﬁ&]) . (C24)

Hence we have

40 H jiy) = —6etr( )
Dy Hiji — 30;:H,y 1) = —6ctr( )
2Dy, H,i; + Fou" Hyij — 203 H),) = —6ctr(F, Fy) (C.25)
3Dy, H, i — 3Fy Hpypji — 0iH e = —6ctr( )
(

ADy, Hypol

Heterotic DFT parameterisation. The fields of heterotic DFT [5, 16], here written in
an external/internal split as in [90], consist of an external metric, g,,,,, one-form, .ANA, two-
form, B, generalised metric, H 4p, and generalised dilaton e~24. The generalised metric
now parameterises the coset O(d,d + N), where N will be the dimension of the gauge
group of the heterotic theory, and the generalised Lie derivative includes a term £§]f) VA =
—fBc*UPBVC encoding the structure constants of this gauge group. The external metric

is identified with the components g,,, arising from the decomposition (C.1), while e~2¢ =
e~2%,/|det g;j|. We also have
Al o '
AA =1 Au | . Buw=DBu +ctr(A4A,)A,°, (C.26)
A oY
i
and the (inverse) generalised metric can be parameterised as [16, 73]
gii —gihey; —gh AP
HAP = —gjkfki 9ij ":Ckigklclj RA)) —Af + Ckz'gjclAlB ) ; (C.27)
—g]kAka —Aja + ijgklAlB —(26)_11%‘16 -+ AkagklAlﬁ
with
Cij = Bij + ctr(AiAj) . (C28)

Note the above parametrisation is consistent with taking nap to have 1,5 = 2ckog. In our
conventions, kg is negative definite, and so to have a positive definite generalised metric
we use —kKqog. Hence there are some different signs in the above parametrisation to that
of [16] (for which we would also take ¢ = 1/2), for example.

— 67 —



The tensor hierarchy field strengths can be checked to be:

fuyi = F,ul/i )
a_ 5 oa I A«
Fuv™ = Fuy Fu? A (C.29)
. /. 1 .
JT_‘,LLV?: = H/in _— F,LLV]Bji + 2Ctr (AZ <F‘uya - 2FﬂVJA]>> 5
and
H,u,up = Hp,l/p . (C?)O)
The tensor hierarchy Bianchi identities are
3D[u]:up}M = aMH,uupa (C.31)
4Dy Hypo) + 3]:[WM]:,DU]M =0. (C.32)

Using the above identifications, we find that these correspond to the following. The ¥, «
components of (C.31) are:

3Dy F,," =0, (C.33)
3Dy Fyp® + 3fa, AL F,," — 3F,,  F,* =0, (C.34)
which imply from the ; component the Bianchi identity:
3D, H, i — 3F Hyji — 0iHuw, — 6ctr(Fy, Fyp) =0, (C.35)
The Bianchi identity (C.32) leads to
AD(,H,yp) + 6F,, H o) + 6ctr(F,, F,p) = 0. (C.36)

D The SL(5) ExFT dictionary

D.1 Wedge, nilpotent derivative and generalised Lie derivatives

We consider the specific details of the SL(5) ExFT. Let A € Ry, B € Ry, C € R3, D € Ry,
where recall a quantity in I, has weight —pw. The wedge products are defined as
1
(Al AN Ag)a = ZAleAZdenabcde7
(AANB)" = A"B,,
1
(A A C)ab = 777abcdeACdCe )

4

AND = AyD?,
) (D.1)
(AAp D)*y = Apc D — g5abAcdDCd 7

(Bl A BQ)ab = BQ[QB\Hb] )
BAC = B,C"

1
(B Ap C)ab = B,C* — 55%3006.
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Here Ap is a wedge product onto the generalised adjoint bundle of weight 1. We use 7gpede
to represent the alternating symbol with 719345 = 7'23%® = 1. Additionally, the nilpotent
derivatives are

1
(dB)ab _ 517abcdeache ’

(dC)a = DpaC”, (D.2)
a 1 abcde
(dD) = 577 abche .

Meanwhile the generalised Lie derivative acts as [10, 47]

1 1 1 .
ﬁAAab — 5Acdacd14ab _ §Acdachab + gnadeenfghieachnghl

. . (D.3)
— 5Acdachab + 5achchab _ achacAbd _ achbdAac ’
1 cd cd
LB, = iA OcdBa + BeOgg A, (D4)
a 1 cd a cad 1 cd a
LAC? = 51\ 0cdC®" — Opg A C* + iach c*, (D.5)

1 1 1 1 )
LADgp = §A0dacdDab + §DcdaabACd + 58chCdDab - gnabcdinef 9, A Dy, . (D.6)

One can use these to write out explicitly the forms of the field strengths of the tensor
hierarchy. For instance,

1
Fu™ = 20, A" — [Au, A ™ + §nabcd@acd5’w, (D.7)

3 c e 1 c e
H;wpa = 3D[;,LBV,O](I - Znabcdea[uAub Ap]d + ZnabcdeA[ub [AuaApﬂEd + abac,uz/pby (D'S)

and so on.

D.2 SL(5) ExFT to SUGRA dictionary: tensor hierarchy fields

In the M-theory SSC, one can work out the following dictionary between ExFT field compo-
nents and the physical 11-dimensional degrees of freedom, decomposed according to (C.7),
finding

- ,
-Alul = A,LLZ I

1 1 ... A
A = inwklAukl — 5nukl(cﬂkl — A" Crat) 5

Bw/i = _A/uxi - A[,ukAV]zk = _(éuui - A[,ukéz/]zk) )
C#l/ps = —Auwp + A[M]AVkAP]jk = —Clp+ 3A[ukCVp]k’ - QA[MkAVlCP}kl )

(D.9)
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from which we can directly reduce the 11-dimensional fields to a IIA SSC with now a =
(1,4,5), giving there

A 5 A i
A =G AIC
AN’L] — nwk( uk — A Bmk‘)
1 A ~
.A 4 _ zgk(c ik — Aumcmjk — C'#Bjk + ClAﬂlBjk) ’

2
By = _(Cul/i — Ay kéu]ik — CluBui + €A/ By,
B = ( Ay V]J)
Cuw)5 = _CMVP + 3A[u OVp}k - 2A[MkAVlép]k‘l )
+3(C — AIC)B, ) — 4A,MC, — AJCH) B

(D.10)

Let us give also a partial IIB dictionary, excluding the self-dual four form. We have

Ayij = miju Ak
A = A, (D.11)
& _ a k &
n ﬁBHVB =A% — A[M A,,]k, ,

where here the decomposition used for the two-form doublet was

Aij® = Cy,
A = G — A0 (D.12)
ijd = CA'/WO'C — 2A[Hjé|j|y]d -+ Auiijéijd

D.3 SL(5) ExFT to SUGRA dictionary: generalised metric

The full generalised metric of the SL(5) ExFT can be factorised as Hap,ca = 2mqacMmapp-

The “little metric” mg;, admits the following conventional parameterisations.
In the M-theory SSC, with a = (4, 5),

—1/2 . oy
g gi Ui
Map — gl/lO ( , J 91/2(1 + 1)2)> ) (D.13)

where g = detg;; (note that only the internal components, §;; = g¢;;, appear in this
subsection, the external metric does not, so there should hopefully be no confusion with
using g to denote this determinant) and v’ = 3—e”leJ;€l (so ngk = €KV 1) where €ijkl 1S
the 4d epsilon tensor with €, = g 1/2 Nijkl-

In the ITA SSC, with a = (7,4, 5), the usual reduction of the above M-theory generalised
metric gives

6—2q>g—2/5gij 4 9_2/5Ci0j g=250; gl/10(—e=22 B, + Cy(C — C,BY))
Map = 82/5 g2/ gl/lo(C’ — CwB")

g*5(e?*(1+ B?) + (C - CyB")?)
(D.14)
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where C; = C’i, B = %eijkBjk and C' = %eijkéijk. Now the internal components of the
10-d string frame metric are g;; = g;j. We have €;;, = gl/Qnijk. Note this is not the same
g as in the M-theory case!

In the 1IB SSC, with a = (;, &), with & an SL(2) fundamental index,

My = g4/t 92" + Nago" o) A?’“Z”” : (D.15)
Nz 97 N

Here v® = %eijijkd. We have Cz-jd = (Cjj, Bij) and

1 C
N, =e® © . D.16

The internal components of the 10-d Einstein frame metric are g;; = g;j. For string frame,
one uses g;;j = e¢/2gij, and then

§3/5€—2<I>/5§ij + i§—2/563@/5nimnnquN’y80mn*/0pq$ %§_2/563¢/5No'fy77imncmn;y
m = . . )
ab %§—2/5€3®/5N5&n]mncmnﬂy §—2/563¢’/5Nd6,
(D17)
where 7%¥ is the alternating symbol n'?® = 1.

D.4 SL(5) ExFT to DFT dictionary: generalised metric

It is convenient for us to consider the reduction of the generalised metric of the SL(5) ExFT
into DFT wvariables.

To reduce to double field theory, one splits a = (I,4) where I, J are indices labelling
a four-component O(3,3) Majorana-Weyl spinor representation. One uses the following
Kaluza-Klein-esque decomposition (as in [91] but now applied to the proper unit determi-
nant generalised metric):

. (e—zd/sH” + 50,0, eSd/5CI>
ab =

S5, (8d/5 (D.18)

The scalar d is the generalised dilaton, and the matrix Hj;; has unit determinant and
is related to the usual DFT generalised metric Hysn by further decomposing I = (i, #)
so that

. . 1
Hij = HUH## — Hi#Hj# , HI = T]jmnHimHn#, HY = inzmnn]pq'Hmp'an (D.lg)

In terms of the above ITA and IIB parameterisations, one finds for ITA that

“12g.. =B C;
g Gij 7 i
Hiy = , Cr= . ) D.20
7 ( ~B; 91/2(1+32)> ! <?}mwk(cijk—3ci3jk)> (D-20)
where B! = %eijkBjk. The generalised dilaton is e 24 = ¢~2%¢1/2. This means we get as
standard
g—Bg™'B Bg~!
H = . D.21
MN ( —g-'B g ( )
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Meanwhile for IIB, if we first raise the spinor indices I, J in (D.18) (as the IIB spinor is
of opposite chirality to the ITA one), we can write the resulting quantities derived from
Mgp as

~1/2(~ij i RJ B 1, imn B
1J g/°(g"” + B'B’) I 3N (Crmn C’(O) mn)
= . = D.22
H ( B §71/2 , C C(o) , ( )

and e=2¢ = ¢72%31/2 Observe the IIB parameterisation of the 0O(3,3) generalised metric
takes the same form as the inverse (or equivalently, the T-dual) of that obtained in ITA. In
both cases.

D.5 Generalised metric decompositions at fixed points

In this subappendix, we want to consider the form of the generalised metric at the fixed
points of the Zs O-fold in different SSCs. The idea is to write the generalised metric in
the form (D.18), after splitting a = (I, s), with s the direction which is even under the Zs.

Setting C7 = 0 we then identify e =24

with the generalised dilaton appearing in the theory
at the fixed point, and the components of H; with the remaining “internal” components
coming from the original maximal degrees of freedom surviving the truncation at the fixed
point. In particular, we want to identify the quantities ¢;; and €;; discussed at the start
of section 4.2. We can do this by, depending on the SSC, \;Vriting the spinorial generalised

metric appearing in myy, as either

HIJ:( —Qf ¢>1/2(1+92)> o HUZ( 0f pz) s (D:23)

where Q! = %qb_l/QniiEQiE, and reading off what the fields are. We start with the SSCs in
which the fixed point is 10-dimensional.

Heterotic SSCs. In the IIA heterotic SSC, the direction s corresponds to the usual
M-theory index in the decomposition of the 5. Thus the reduction is as above, leading
to (D.20), and we automatically have ¢;; = gij, ij = Bij.

Similarly, in the IIB heterotic SSC the direction s C(;rresponds to & = 1, which leads
to (D.22) and the identifications ¢;; = §;; (this is again the string frame metric) and

Horara-Witten SSC. We write a = (i, s,5) and want to take I = (4,5). The M-theory
parameterisation at the fixed point only involves g;; — (gij, gss) and vt = % gV QnQECA’jES,
where g = (det g;j)gss. We find that

-1/2,.. — gk
17 = (9gss) —QJEUE gl/z(l—l-gﬂvkvl) € (de 94) (9ss) ( )

This leads to:
d)il = (938)1/29127 le = Cgls . (D‘25)
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Type I SSC. We now have a = (i,1,2) and I = (i,1). At the fixed point, we have
B@f =0, C(p) = 0. In terms of the Einstein frame metric components g;;, letting Ct =
%g_l/QnijkC'izi (the RR two-form) we have

1/2( ij ® i v o i
_ ge(gv +e®CrC?) e®C _
M=t < 2 g2 | e 2 = gl/2ePP/4 (D.26)
We find then '
d)U = e_q)/le'j y QZ = é&ll 5 (D27)

and in terms of the string frame metric components g;; = e®/ Qgij we have
bij = e_cpgij . e = gl/2e%/2 (D.28)

08 SSC. Here we have a = (p,s,4,5) and so I = (p,4,5). Essentially this follows from
the Hotava-Witten SSC by letting k = (p,4) and requiring 04 = 0. In IIA variables, at
the fixed point we still have g,q, gss, Cp and C = g~ /2945 C,s, BP = g~ /2022 B, where
g = (det gpq)gss. This leads to - N B

e *Pgpg + CpCy Cy
Cy 1

bij = (gss)'/2e® ( ) Qg =Cpgss pa=—Bps. (D.29)

while e=2¢ = (det gm)1/26¢/2(gss)*3/4.

O7 SSC. Here we take a = (y,p, &), with the (y,p) the physical directions, and the p
odd. The surviving fields are gyy, gpq, P = n@yé’gyd, and the scalars NV - We find that

P4 N GEVED A Y
M = (gyy) ™ (det gys) M ((gyydetg”>g ¥ NP0 Nad ) (D.30)

Nﬁﬁﬁ@ Nag
e = (gyy)"/*(dlet gpg) /" (D.31)
This gives
_ gpq —ngBE
by = (detgns) | _ W, mB ) (03
N a —9qr B e®gyy(det Ipq) + grs B*B*
.. ~p. RP
nzigﬂ'k _ C + C(O)B ‘ (D‘33)
- Co)

p — Py 1 B — paylr 2
where CF = nPYC, ", BE = nPYC,".

06 (gs — o0) SSC. Here we naturally have a = (7,5) and I = i. We have v’ = 0 at the
fixed points, so
Miy=g gy, e =g (D.34)

The form of ¢ij and Qij then depends on how one chooses to parametrise g;;.
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E The SL(5) Z2 orbifold in O(3,3) language

E.1 Expansion

In this appendix we present more details on the expansion of the SL(5) ExFT that we
used to describe the Zo generalised orbifold. In section 4 we introduced the Zo invariant
tensors ng, 1% wa®, obeying (4.3). We define also &aq = inabcdew 4%%7¢. The expansion
of a generalised vector was

Ve = wp VA 4 VT (E.1)

with the V4 and V! respectively even and odd under the Zy. To describe the structure of
the odd field components, we first introduce a projector

PP =68 — pPngnt (E.2)

a a

onto the four-dimensional space orthogonal to the 1 or n, inside the 5 or 5. This projector
acts as the identity on both w and w. We have

wa®eA g = PPl (E.3)
Then we can define
w1 = er*Plal, il = el Pony (E.4)
introducing ¢, which obeys
€[céJdPCd = 2,055IJ, ejaé]b = 2,05PI;1. (E.5)

The factors of 2 here are included in order to be consistent with the definition of w4,,. One
can think of e;¢ as a sort of vielbein transforming (projected) 5-dimensional indices into
four-dimensional O(3,3) spinor indices. (Note that away from the fixed points, there are
no additional vector fields, and the group is really O(3,3).) Indeed, we can define gamma
matrices as follows. One can show that

4w A" OBed + 4wB* O pcq = *2p577ABP5 . (EG)
Then
yal? = pPel e ywa, 4 = —pPerte s ot ey (E.7)

provide the off-diagonal blocks of O(3,3) gamma matrices, satisfying
1A " 48K s+ 78" YAk s = 2naBdY . (E.8)

The full gamma matrix is given by

_ (o
FA_<&A 0). (E.9)

Shortly, we will need the antisymmetrisation

1 R R N
48t = 5(’YAIK’YBKJ — PR g ) = nAP6h — PR (E.10)
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We define derivatives

0a = %WAabaab, or = %ﬂ'labaaba (E.11)
so that we can expand partial derivatives as
Oap = 2020 04 + 20271 0 . (E.12)
Finally, some useful identities are:
w7 gy = Dawmr® =0, inabcdeﬂ'labﬂ'JCd =0= iﬁaba{eﬁébﬁjcd- (E.13)

E.2 The modified generalised Lie derivative

Consider the generalised Lie derivative of a generalised vector V% of weight 1/(D — 2),
with both V% and the generalised diffeomorphism parameter A% expanded as in (E.1).
This is given by:
LAV =wa®™ (APOpVA — VBOpA? + A0, VA — V7 0,A%)

+ 1% (A0 VT = VI9;M + APopV! — VEapAT)

+ Lo WEAWE £, 7PNV 4 L 0PANVA L 7P ATV

1 AN ! ! AN, ! gl
+ gnadeeﬁa’b’c’d’e <WBa Yo 9 gABVE + wp® Y (9,4APVE + achKVB)) :
(E.14)
We set!6
Lo w¥ = —fapCwc®, Lo, 7% =L, =L,m%=0. (E.15)

Next we insert the expression (E.12) for 0 into the last line of (E.14). We find for the
first term that

1 AN, ! ! _ A A~
gnadeena’b’c’d’ewBa b WCC d 8chBVC’ _ nadeenBC,O 5”3 (chdaDABVC + ﬂ_]cda]ABVC)

= wa”n*Pnpeop APV
(E.16)

The remaining terms give contributions involving the gamma matrix combination (E.10).
After a short calculation, we find that

LAV = ws®LAVA + L\ (E.17)
with
LAVA = ABogVA — VBagAL + 04ARVE — fpctAPVC
+ A9 VA~ V7oA 4 %FABI 7 (O1APVT + oAV B 4 %OIAAVI + %OIAIVA
(E.18)

Y5More generally, we could take L, , w¥ = —faBwe® + f[AwB]“b + %nABwac“b. However we will only
consider the case fa4 = 0 as is natural to make contact with heterotic theories.
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and

LAV =AM,V — V79,0 + APogV! — VEBopA!

+ %FABIJ (0aMPV7 + 040 VE) 4 %6AAAVI + %GAAIVA (49)
In fact, aside from the modification fpc? due to the inclusion of the gauge fields, this
matches what one would get on rewriting the generalised Lie derivative of SL(5) in O(3,3)
language (compare with the expressions in [10] — here we have the generalised Lie deriva-
tive acting on the spinor coming from the 10, which has weight 1/2 in O(3, 3)).

One should think of the terms involving I'4 g, and the gamma matrices themselves, as
really only being present away from the fixed points (where A’ = VI = 0), so that they
are always gamma matrices of O(3,3).

We should also require some consistency conditions. We would like the derivatives 04
and 97 to commute. This can be achieved by taking

YMN powalopwp@on =0,  fap®dc =0, (E.20)
YMNPQW[PGMW[Q@V =0, (E.21)
YMN powal oyn@oy = 0= YMN pom P opywSoy . (E.22)

Closure of the algebra of generalised diffeomorphisms can be ensured by requiring the
section condition and Jacobi identity:

n"Pos0op =0, YMos@0r=0. fap”fop” =0. (E.23)
Recall that we always take 9, = 0.
E.3 Modified field strengths and Bianchi identities
We simply feed the ansatz
A'uab _ wAabAHA n ﬂ_IabA“I’
Buva = Buuna + 202" 0y B (E.24)

~ -5 b I
Cuupa = uupna +2p npmr” C,ul/p )

into the definitions of the field strengths. We take!”

1
in“deeacdne =0= 8abﬁb (E.25)
and notice that
1
Znabch/bcwde = nanagVAWE — p750% L Aar (VAW + VIWAY (E.26)

In this way, one finds for instance

f#l/ab _ WAab]:;wA + Wlabf,uzll (E27)

n principle, one can take these to be non-vanishing, but this would introduce extra gaugings fa, 6,
which we do not want.
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with

]:M/A = 28[MAV]A - [Auv AI/]EA + aABHV ’ (E'28)
Fu' = 20p,A0" - (A, AJlET (E.29)

where the E-bracket is defined through (E.18) and (E.19) in the usual way.

In principle it is straightforward but tedious to obtain similar expressions for the higher
rank field strengths. However, ultimately we are only interested in the modifications to
the gauge structure that occur at the fixed points of the generalised orbifold action, where
we are going to take the localised extra vector multiplets to appear. In this case, we only
need to know that

Hyvpa = Huvpnia + 20 0% sy Hywpr (E.30)

where
Hywp = 3D, B,y — 30, A0 Ay Pnas + A Av, Al Bnas + . .. (E.31)

where the dots indicate additional terms which vanish at the fixed point.

Similarly, we would only be interested in the modifications to the Bianchi identities
which occur at the fixed points. We need consider just the (4,4, B,,) fields which at the
fixed points obey the standard Bianchi identities (C.31) and (C.32) of heterotic DFT. This
would then lead to the results we found in section 4.
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any medium, provided the original author(s) and source are credited.
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