
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Communications in Statistics - Theory and Methods

                                                       

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa40957

_____________________________________________________________

 
Paper:

Song, J. & Wu, J. (2018).  A detection algorithm for the first jump time in sample trajectories of jump-diffusions driven

by -stable white noise. Communications in Statistics - Theory and Methods, 1-14.

http://dx.doi.org/10.1080/03610926.2018.1500602

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Cronfa at Swansea University

https://core.ac.uk/display/187088094?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa40957
http://dx.doi.org/10.1080/03610926.2018.1500602
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

A detection algorithm for the first

jump time in sample trajectories of

jump-diffusions driven by α-stable

white noise

Jiao Song and Jiang-Lun Wu

Department of Mathematics, Swansea University, Swansea SA2 8PP, UK

Email: jiao.song@swansea.ac.uk; j.l.wu@swansea.ac.uk

Abstract

The purpose of this paper is to develop a detection algorithm for

the first jump point in sampling trajectories of jump-diffusions which

are described as solutions of stochastic differential equations driven

by α-stable white noise. This is done by a multivariate Lagrange

interpolation approach. To this end, we utilise computer simulation

algorithm in MATLAB to visualise the sampling trajectories of the

jump-diffusions for various combinations of parameters arising in the

modelling structure of stochastic differential equations.
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1 Introduction

With the passage of time, modelling time evolution uncertainty by stochastic

differential equations (SDEs) appears in many diverse areas such as stud-

ies of dynamical particle systems in physics, biological and medical studies,

engineering and industrial studies, as well as most recently micro analytic

studies in mathematical finance and social sciences. Beyond modelling un-

certainty by Gaussian or normal distributions, there is a large amount of

sample data featured with heavy-tailed distributions. On the other side,

it is necessary to admit symmetry for the mean (average) by using Gaus-

sian models while asymmetry and/or skewness are accepted by non-Gaussian

models, for instance, the generalised hyperbolic distribution (in particular,

the normal-inverse Gaussian distribution) discovered by Barndorff-Nielsen,

see Barndorff-Nielsen (1997) and references therein. In some applications,

asymmetric or heavy-tailed models are needed or even inevitable, in which a

model using stable distributions could be a viable candidate. Another impor-

tant feature of such non-Gaussian models is the use of probability distribu-

tions with infinite moments which turns to be more realistic than Gaussian

models from the view point of heavy tail type data (cf. e.g. (Samorodnitsky

and Taqqu, 1994)). The research on modelling uncertainty using stable dis-

tributions and stable stochastic processes have been increased dramatically,

see e.g. (Giacometti, Bertocch, Rachev, and Fabozzi, 2007), (Zopounidis

and Pardalos, 2013), (Dror, L’Ecuyer, and Szidarovszky, 2002) and (Fiche,

Cexus, Martin, and Khenchaf, 2013). The self-similarity property of stable

distributions has drawn more and more attention from both theoretical and

practical view points, i.e (Campbell, Lo, and MacKinlay, 1997; Mandelbrot,

1960) and (Zolotarev, 1986; Leland, Taqqu, Willinger, and Wilson, 1993;

Shlesinger, Zaslavsky, and Frisch, 1995). We refer the reader to (Du, Wu,
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and Yang, 2010) for discussions of utilising α-stable distributions to model

the mechanism of Collateralised Debt Obligations (CDOs) in mathematical

finance.

Historically, probability distributions with infinite moments are also en-

countered in the study of critical phenomena. For instance, at the critical

point one finds clusters of all sizes while the mean of the distribution of

clusters sizes diverges. Thus, analysis from the earlier intuition about mo-

ments had to be shifted to newer notions involving calculations of exponents,

like e.g. Lyapunov, spectral, fractal etc., and topics such as strange kinetics

and strange attractors have to be investigated. It was Paul Lévy who first

grappled in-depth with probability distributions with infinite moments. Such

distributions are now called Lévy distributions. Today, Lévy distributions

have been expanded into diverse areas including turbulent diffusion, polymer

transport and Hamiltonian chaos, just to mention a few. Although Lévy’s

ideas and algebra of random variables with infinite moments appeared in

the 1920s and the 1930s (cf. (Lévy, 1925, 1937)), it is only from the 1990s

that the greatness of Lévy’s theory became much more appreciated as a

foundation for probabilistic aspects of chaotic dynamics with high entropy

in statistical analysis in mathematical modelling (cf. (Samorodnitsky and

Taqqu, 1994; Shlesinger, Zaslavsky, and Frisch, 1995), see also (Mandelbrot,

1960; Zolotarev, 1986)). Indeed, in statistical analysis, systems with highly

complexity and (nonlinear) chaotic dynamics became a vast area for the ap-

plication of Lévy processes and the phenomenon of dynamical chaos became

a real laboratory for developing generalisations of Lévy processes to create

new tools to study nonlinear dynamics and kinetics. Following up this point,

SDEs driven by Lévy type processes, in particular α-stable processes or α-

stable white noise, and their influence on long time statistical asymptotic
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will be unavoidably encountered. Comparing to the continuity feature of

trajectories of diffusions – solutions of SDEs driven by Brownian motion or

Gaussian white noise, jump-diffusions possess a feature that trajectories are

with jumps which seem to be more natural when volatile noise influence be-

comes extremely high. The nature of trajectories of jump-diffusions is that

there are countable jump times and there are diffusion trajectories between

any two jump times. For SDEs driven by α-stable noise, the solution trajecto-

ries enjoy certain self similar property. Therefore, from modelling aspect, to

detect the first jump time is crucial, as one can treat the model as a diffusion

model before that time. With self similar property, one can further infer the

structure of trajectories of jump-diffusions driven by α-stable noise. Due to

high uncertainty, the first jump time is of course a random time (also called

stopping times). Theoretically, it is not possible to get the first jump time

analytically, but one could try to simulate sampling trajectories to get an

algorithm towards statistical detection of the (random) first jump time. The

motivation of this paper is to obtain a critical link among the parameters in

the SDEs driven by α-stable white noises to develop a detection algorithm for

the first jump time. This can be further linked to sampling data analysis af-

ter model identifications (i.e., through certain specification of the parameters

in the equations). We mainly focus on testing two typical SDEs in modelling,

one class is the SDEs with linear drift coefficient and additive α-stable white

noise and the solutions are called α-stable Ornstein-Uhlenbeck processes and

the other class is the linear SDEs (i.e., SDEs with linear drift and diffusion

coefficients or the linear SDEs with multiplicative α-stable noise) and the so-

lutions are called α-stable geometric Lévy motion. As the chaotic structure

of sample trajectories of α-stable processes are varying for α in the different

intervals (0, 1) and (1, 2) with α = 1 being critical (see, e.g., (Janicki and
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Weron, 1994)), respectively, we have performed our simulations of the sample

solution trajectories with the sample size of 29 = 512, which yields a clear

picture to identify successfully the first jump time for each simulated trajec-

tory. Furthermore, we use such sample data to find the critical link of the

parameters arising in the coefficients of the SDEs. We hope that our results

obtained in this paper would lead to further investigations for more general

models, such as those determined by SDEs with affine coefficients or with

periodic coefficients (treated as bounded coefficients over the whole spaces),

as well as higher order representations of the first jump time in terms of the

parameters and rigorous estimates of the first jump time. We will carry out

these studies in our forthcoming papers. To the best of our knowledge, there

is not any work in the literature addressing such problem. To end up our in-

troduction, we would like to mention that the study of SDEs driven by Lévy

processes is well presented in the monograph (Applebaum, 2009). Numerical

solutions and simulations of α-stable stochastic processes were carried out in

(Janicki and Weron, 1994).

2 Preliminaries

Given a probability space (Ω,F , P ) endowed with a complete filtration {Ft}t≥0.

We start with recalling the definition of Lévy process and some theorems,

see (Applebaum, 2009), (Janicki and Weron, 1994) and (Samorodnitsky and

Taqqu, 1994) for details.

Definition 2.1. A stochastic process {Xt}t≥0 is called Lévy process if:

1. X0=0 almost surely;

2. X has independent and stationary increments;
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3. X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (|Xt −Xs| > a) = 0.

Every Lévy process has a cádlág (i.e., right continuous with left limits)

modification. The associated jump process {∆Xt}t≥0 is defined as

∆Xt = Xt −Xt−

where Xt− stands for the left limit of Xt at the point t. Fix t ∈ [0,∞) and

a Borel measurable set A ∈ B(R \ {0}), set

N(t, A) = #{0 ≤ s ≤ t; ∆Xs ∈ A} =
∑
0≤s≤t

χA(∆Xs)

where #{...} stands for the cardinal number of set {...} and χA denotes the

indicator function of A. If A is bounded Borel set, then N(t, A) <∞ almost

surely for all t ≥ 0. N is a Poisson random measure with intensity measure

ν(A) = E(N(1, A)) and Ñ is a compensated Poisson martingale measure

Ñ(t, A) = N(t, A)− tν(A).

Lévy processes enjoy the celebrated Lévy-Itô decomposition, see e.g. (Ap-

plebaum, 2009), which we state as follows. For any (real-valued) Lévy process

X, there exist a constant b ∈ R, a Brownian motion B and a Poisson random

measure N on [0,∞) × (R \ {0}) which is independent of B such that, for

each t ≥ 0,

Xt = bt+Bt +

∫
0<|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx).

Next, we introduce α-stable Lévy processes. We have first the following

Definition 2.2. A random variable X is said to have a stable distribution if

there are parameters 0 < α ≤ 2, σ ≥ 0, −1 ≤ β ≤ 1, and µ ∈ R such that
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its characteristic function has the following form

E exp iθX =

exp
{
− σα|θ|α

(
1− iβ(signθ) tan πα

2

)
+ iµθ

}
if α 6= 1

exp
{
− σ|θ|

(
1 + iβ π

2
(signθ) ln |θ|+ iµθ

}
if α = 1

where

signθ =


1 if θ > 0,

0 if θ = 0,

−1 if θ < 0.

We denote X ∼ Sα(σ, β, µ).

The parameter α is the index of stability, β is the skewness parameter,

σ is the scale parameter and µ is shift. β is irrelevant when α =2. When

β = µ = 0, X is a symmetric α-stable random variable and is denoted by

X ∼ SαS. We focus our attention on symmetric case in this paper.

Definition 2.3. A stochastic process {Lt}t≥0 is called the (standard) α-

stable Lévy motion if

1. L0=0 almost surely;

2. L has independent increments;

3. Lt − Ls ∼ Sα((t− s)1/α, β, 0) for any 0 ≤ s < t <∞.

In this paper, we are concerned with the following SDE driven by α-stable

Lévy motion

dXt = b(Xt)dt+ σ(Xt)dBt + c(Xt−)dLt

where b, σ, c : R → R are measurable coefficients, {Bt}t≥0 is an {Ft}-

Brownian motion, and {Lt}t≥0 is an α-stable {Ft}-Lévy process with the

following Lévy-Ito representation

7



Lt =

∫ t+

0

dLs =

∫ t+

o

∫
0<|z|<1

zÑ(ds, dz) +

∫ t+

0

∫
|z|≥1

zN(ds, dz)

with N : B([0,∞)×R\{0})→ N∪{0} being the Poisson random (counting)

measure on (Ω,F , P ) and

Ñ(dt, dz) := N(dt, dz)− dtdz

|z|1+α

the associated compensated martingale measure with density EN(dtdz) =

dtdz
|z|1+α , where α ∈ (0, 2) is fixed.

Under the usual conditions, like linear growth and local Lipschitz con-

ditions, for the coefficients b, σ, c, there is a unique solution to the above

SDE with initial data X0 (see, e.g., (Applebaum, 2009)). We then apply Itô

formula to obtain the solutions for this type of SDEs. In what follows, we

introduce two typical SDEs fulfilling the usual conditions.

2.1 The α-stable Ornstein-Uhlenbeck processes

The α-stable Ornstein-Uhlenbeck processes are solutions of the following type

SDEs

dXt = −λXtdt+ µdLt (1)

for λ > 0, where the α-stable white noise dLt is formulated as follows

dLt =

∫
0<|z|<1

zÑ(dt, dz) +

∫
|z|≥1

zN(dt, dz).
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By Itô formula (cf., e.g., (Applebaum, 2009)), the solution is explicitly given

as follows

Xt =e−λtX0 + µe−λt
∫ t+

0

∫
0<|z|<1

eλtzÑ(ds, dz)

+ µe−λt
∫ t+

0

∫
|z|≥1

eλtzN(ds, dz).

(2)

2.2 The α-stable geometric Lévy motion

Consider the following linear SDE

dXt = λXtdt+mXtdBt + µXt−dLt (3)

where λ > 0, m > 0 and µ > 0. Then by Itô formula, one can derive the

following explicit solution

Xt =X0 exp{(λ− 1

2
m2)t+mBt + µ

∫ t+

0

∫
|z|≥1

ln|1 + z|N(ds, dz)

+ µ

∫ t+

0

∫
0<|z|<1

ln|1 + z|Ñ(ds, dz)

+ µ

∫ t

0

∫
0<|z|<1

[ln|1 + z| − z]
dz

|z|1+α
ds}.

(4)

Due to the above expression, the solution is called an α-stable geometric

Lévy motion.

2.3 Sample trajectories

By applying simulation methods in MATLAB, sample trajectories can be

generated and codes are listed in Appendix A. Following graphs illustrate

a few sample trajectories of α-stable Ornstein-Uhlenbeck processes and α-

stable geometric Lévy motions respectively with a number of parameters

combinations. Also, a few first jump points are marked in both graphs.
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Figure 1: α-stable Ornstein-Uhlenbeck processes

Figure 2: α-stable geometric Lévy motions

Remark 2.1. Given interval [0, t], a mesh {mi = iτ, i = 0, 1, . . . , n} on [0, t]

with fixed natural number n and τ = t/n. Simulation results presented in

this paper are based on t = 1, n = 512 and τ = 1/512.

Our aim is to develop an algorithm of detecting first jump point in the
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sample trajectories. Links among parameters in SDEs driven by α-stable

Lévy motions will be given. These links could then be adopted for and

implemented in model/data fitting purpose in future.

3 Simulations and examples

In this section, by utilising a multivariate Lagrange interpolation method

(see for example references (De Boor and Ron, 1990), (Saniee, 2008), (Calvi,

2005),(Liang, Cui, and Zhang, 2006) and (Sauer and Xu, 1995)), links will

be obtained for α-stable Ornstein-Uhlenbeck process and α-stable geometric

Lévy motion respectively to detect first jump point from simulations by in-

terpolation method introduced in the previous section. Sample trajectories

of α-stable Ornstein-Uhlenbeck process described by Equation (1) with dif-

ferent combinations of parameters in its SDE are included in Appendix B.

And the case for α-stable geometricLévy motion can be found in Appendix

C. We could clarify the model into different perspectives by observations and

general characteristics of trajectories are summarised as follows,

1. Fix λ and µ, sample trajectories {Xt}t≥0 become more tempered as

the stability index α increases, but the jump size becomes smaller and

smaller so that the trajectories become less and less volatile. In other

words, for smaller stability index α, the trajectories of {Xt}t≥0 are

generally more tough than those of bigger stability index α.

2. Fix µ and α, trajectories look more likely deterministic exponential

paths along with the increase of λ. As for bigger α, the trajectories are

chaotic more sharply.

3. Fix λ and α, increasing the volatility parameter µ indicates higher
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chaoticity.

3.1 α-stable Ornstein-Uhlenbeck process

For the triple (λ, µ, α), there is a link among the three parameters λ, µ and α

towards first jump point detection of the sample trajectories. By substantial

amount of simulations, we randomly choose the situations and keep records of

values of the parameters λ, µ and α when the first jump appears. Especially,

the degree 1 linear relationship among these three parameters is useful in

data modelling for uncertainty targeted problems in reality.

λ µ α t Xα
t

1 0.25 1 0.06055 0.4198

1 1 1.75 0.003906 -0.1551

1 100 0.75 0.03125 18.82

10 0.25 0.5 0.02148 0.4561

1000 0.25 1.75 0.001952 0.0374

We have degrees n = 1, variables m = 4, so terms=
( 1 + 4

1

)
= 5. If we

have g = f(a, b, c, d) which is a degree 1 function with 4 parameters, and

gi = β1ai + β2bi + β3ci + β4di + β5

where β1, β2, · · · , β5 are coefficients, 1 ≤ i ≤ 5.

0.4198 = β1 + 0.25β2 + β3 + 0.06055β4 + β5

−0.1551 = β1 + β2 + 1.75β3 + 0.003906β4 + β5

18.82 = β1 + 100β2 + 0.75β3 + 0.03125β4 + β5

0.4561 = 10β1 + 0.25β2 + 0.5β3 + 0.02148β4 + β5

0.0374 = 1000β1 + 0.25β2 + 1.75β3 + 0.001952β4 + β5
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By calculation

g = 0.00034a+ 0.18b− 0.52c+ 5.76d+ 0.54.

Then

Xα
t = 0.00034λ+ 0.18µ− 0.52α + 5.76t+ 0.54.

If we take the average value of t, we have

t̄ = 0.0238276

and average value of Xα
t , we have

Xα
t = 3.91564.

Therefore

0.00034λ+ 0.18µ− 0.52α = 3.24.

We summarise our deviation as

Proposition 3.1. The link among parameters for first jump point detection

of the sample trajectories of α-stable Ornstein-Uhlenbeck process is given by

the following liner equation

0.00034λ+ 0.18µ− 0.52α = 3.24.

3.2 α-stable geometricLévy motion

Similarly, for the triple (λ, µ, α) described in Equation (3), we are working

on determining a link among these three parameters towards first jump time

detection. The data and calculations have been processed to obtain the

degree 1 linear relationship are as follows.
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λ µ α t Xα
t

1 0.5 1.25 0.001952 1.043

1 1 1 0.007813 1.372

100 0.5 1.75 0.001953 0.9523

100 10 1.25 0.005859 0.5114

1000 1 0.75 0.001796 -0.7903

We have degrees n = 1, variables m = 4, so terms=
( 1 + 4

1

)
= 5. If we

have g = f(a, b, c, d) which is a degree 1 function with 4 parameters, and

gi = β1ai + β2bi + β3ci + β4di + β5

where β1, β2, · · · , β5 are coefficients, 1 ≤ i ≤ 5. We have

1.043 = β1 + 0.5β2 + 1.25β3 + 0.001952β4 + β5

1.372 = β1 + β2 + β3 + 0.007813β4 + β5

0.9523 = 100β1 + 0.5β2 + 1.75β3 + 0.001953β4 + β5

0.5114 = 100β1 + 10β2 + 1.25β3 + 0.005859β4 + β5

−0.7903 = 1000β1 + β2 + 0.75β3 + 0.001796β4 + β5

By calculation

g = −0.0017124a− 0.066287b+ 0.15752c+ 68.508d+ 0.74723.

Then

Xα
t = −0.0017124λ− 0.066287µ+ 0.15752α + 68.508t+ 0.74723.

If we take the average value of t, we have

t̄ = 0.0038746
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and average value of Xα
t , we have

Xα
t = 0.61768.

Therefore

−0.0017124λ− 0.066287µ+ 0.15752α = −0.3949911.

Proposition 3.2. The link among parameters for first jump point detection

of the sample trajectories of α-stable geometricLévy motion is given by the

following liner equation

−0.0017124λ− 0.066287µ+ 0.15752α = −0.3949911.

Remark 3.1. Here we only consider linear Lagrange interpolation. One can

extend to higher order polynomial interpolation in which more computation

is needed. Our consideration gives a simple yet efficient calculation.

Appendices

A α-stable random variable generator

Following codes are used to generate sample trajectories (Veillette, 2014).

f unc t i on r = s tb l rnd ( alpha , beta , gamma, de l ta , vara rg in )

i f narg in < 4

e r r o r ( ’ s t a t s : s tb l rnd : TooFewInputs ’ , ’ Requires at l e a s t f our

input arguments . ’ ) ;

end
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i f a lpha <= 0 | | alpha > 2 | | ˜ i s s c a l a r ( alpha )

e r r o r ( ’ s t a t s : s tb l rnd : BadInputs ’ , ’ ” alpha ” must be a s c a l a r

which l i e s in the i n t e r v a l ( 0 , 2 ] ’ ) ;

end

i f abs ( beta ) > 1 | | ˜ i s s c a l a r ( beta )

e r r o r ( ’ s t a t s : s tb l rnd : BadInputs ’ , ’ ” beta ” must be a s c a l a r

which l i e s in the i n t e r v a l [ −1 , 1 ] ’ ) ;

end

i f gamma < 0 | | ˜ i s s c a l a r (gamma)

e r r o r ( ’ s t a t s : s tb l rnd : BadInputs ’ , ’ ”gamma” must be a

non−negat ive s ca l a r ’ ) ;

end

i f ˜ i s s c a l a r ( d e l t a )

e r r o r ( ’ s t a t s : s tb l rnd : BadInputs ’ , ’ ” d e l t a ” must be a s ca l a r ’ ) ;

end

[ err , s izeOut ] = genOuts ize (4 , alpha , beta , gamma, de l ta , va ra rg in { : } ) ;

i f e r r > 0

e r r o r ( ’ s t a t s : s tb l rnd : InputSizeMismatch ’ , ’ S i z e in fo rmat ion i s

i n c o n s i s t e n t . ’ ) ;

end

i f alpha == 2

r = s q r t (2 ) ∗ randn ( s izeOut ) ;

e l s e i f alpha==1 && beta == 0

r = tan ( p i /2 ∗ (2∗ rand ( s izeOut ) − 1) ) ;
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e l s e i f alpha == . 5 && abs ( beta ) == 1

r = beta . / randn ( s izeOut ) . ˆ 2 ;

e l s e i f beta == 0

V = pi /2 ∗ (2∗ rand ( s izeOut ) − 1 ) ;

W = −l og ( rand ( s izeOut ) ) ;

r = s i n ( alpha ∗ V) . / ( cos (V) . ˆ ( 1 / alpha ) ) .∗ . . .

( cos ( V.∗(1− alpha ) ) . / W ) . ˆ ( (1−alpha )/ alpha ) ;

e l s e i f alpha ˜= 1

V = pi /2 ∗ (2∗ rand ( s izeOut ) − 1 ) ;

W = − l og ( rand ( s izeOut ) ) ;

const = beta ∗ tan ( p i ∗alpha / 2 ) ;

B = atan ( const ) ;

S = (1 + const ∗ const ) . ˆ ( 1 / ( 2∗ alpha ) ) ;

r = S ∗ s i n ( alpha∗V + B ) . / ( cos (V) ) . ˆ ( 1 / alpha ) .∗ . . .

( cos ( (1−alpha ) ∗ V − B ) . / W ).ˆ((1− alpha )/ alpha ) ;

e l s e

V = pi /2 ∗ (2∗ rand ( s izeOut ) − 1 ) ;

W = − l og ( rand ( s izeOut ) ) ;

p iover2 = pi /2 ;

s c l s h f t V = piover2 + beta ∗ V ;

r = 1/ p iover2 ∗ ( s c l s h f t V .∗ tan (V) − . . .

beta ∗ l og ( ( p iover2 ∗ W .∗ cos (V) ) . / s c l s h f t V ) ) ;
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end

i f alpha ˜= 1

r = gamma ∗ r + de l t a ;

e l s e

r = gamma ∗ r + (2/ p i ) ∗ beta ∗ gamma ∗ l og (gamma) + de l t a ;

end

end

B Sample trajectories of α-stable Ornstein-

Uhlenbeck process

Figure 3: Fix λ=1 and µ=1 with α increases
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Figure 4: Fix λ=1 and µ=10 with α increases

Figure 5: Fix λ=10 and µ=1 with α increases
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C Sample trajectories of α-stable geometricLévy

motion

Figure 6: Fix λ=1 and µ=0.5 with α increases

Figure 7: Fix λ=1 and µ=10 with α increases
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Figure 8: Fix λ=10 and µ=10 with α increases
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