

Cronfa - Swansea University Open Access Repository

This is an author produced version of a paper published in:

PRIMA 2018: Principles and Practice of Multi-Agent Systems

Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa43698

Book chapter :

Fan, X. (2018). On Generating Explainable Plans with Assumption-Based Argumentation. PRIMA 2018: Principles

and Practice of Multi-Agent Systems, (pp. 344-361). Tokyo: The 21st International Conference on Principles and

Practice of Multi-Agent Systems (PRIMA2018).

http://dx.doi.org/10.1007/978-3-030-03098-8_21

This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

Permission for multiple reproductions should be obtained from the original author.

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

http://www.swansea.ac.uk/library/researchsupport/ris-support/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/187088037?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa43698
http://dx.doi.org/10.1007/978-3-030-03098-8_21
http://www.swansea.ac.uk/library/researchsupport/ris-support/

On Generating Explainable Plans with
Assumption-based Argumentation

No Author Given

No Institute Given

Abstract. Planning is a classic problem in Artificial Intelligence (AI). Recently,
the need for creating “Explainable AI” has been recognised and voiced by many
researchers. Leveraging on the strength of argumentation, in particular, the Re-
lated Admissible semantics for generating explanations, this work makes an ini-
tial step towards “explainable planning”. We illustrate (1) how plan generation
can be equated to constructing acceptable arguments and (2) how explanations
for both “planning solutions” as well as “invalid plans” can be obtained by ex-
tracting information from an arguing process. We present an argumentation-based
model which takes plans written in a STRIPS-like language as its inputs and re-
turns Assumption-based Argumentation (ABA) frameworks as its outputs. The
presented plan construction mapping is both sound and complete in that the plan-
ning problem has a solution if and only if its corresponding ABA framework has
a set of Related Admissible arguments with the planning goal as its topic. We use
the classic Tower of Hanoi puzzle as our case study and demonstrate how ABA
can be used to solve this planning puzzle while giving explanations.

1 Introduction

Planning, known as the “reasoning side of acting” [16], has been long studied in ar-
tificial intelligence and seen its applications in many areas form robot navigation to
manufacturing scheduling. Much research has been devoted to the development of ex-
pressive planning languages and efficient planners, e.g. [17, 19]. Recently, we see that
the need for developing transparent and explainable autonomous intelligent systems has
been recognised and voiced by many researchers [5, 20]. At the same time, argumen-
tation [14], a knowledge representation and modelling technique in rapid development,
for reasoning with incomplete and inconsistent information with its ability in explaining
the results and processes of computation, has seen its use in many applications.

In this work, we present a study on modelling and solving planning problems with
Assumption-based Argumentation (ABA) [4]. We establish the correspondence be-
tween ABA arguments and plans such that a planning problem has a solution (plan)
if and only if the argument representing this solution is acceptable. On the front of plan
explanation, we observe that a plan solution (1) meets all of its goals while (2) satisfying
all pre-conditions of its actions. Thus, explanations for “successful” plans are focused
on justifying these two criteria; and explanations for “failed” plans are focused on iden-
tifying unmet pre-conditions. The tasks of generating plans and explanations are unified
under the computation of Related Admissible set of arguments using dispute trees [6].

To make our argumentation-based planning study concrete, we take a version of a
classic planning puzzle, Tower of Hanoi, as a case study example. This example, though
conceptually simple, exhibits typical planning characteristics and challenges. Roughly
speaking, a plan takes a world containing multiple objects in the world’s initial state
to its goal state via a sequence of actions in discrete time steps. In each time step,
multiple actions, subject to various pre-conditions, are possible to be performed. A
search for suitable actions is needed to find solutions. By developing argumentation-
based approaches to Tower of Hanoi, we establish the feasibility of using argumentation
to plan and reveal the strength and potential future development for argumentation-
based planning.

ABA is selected as the modelling and computation vehicle as it is a versatile struc-
tured argumentation framework with many successful applications. Roughly, ABA as-
sumptions represent actions (in the sense that we assume actions are valid unless its
pre-conditions are not met), invalidity of world states (in the sense that we assume the
environment is not in a specific state unless we prove it is in). Acceptable arguments
correspond to planning solutions. We use well-defined argumentation semantics with
sound computation tools to generate plans and explanations.

2 Background

Assumption-based Argumentation (ABA) frameworks are tuples 〈L,R,A, C〉, where

– 〈L,R〉 is a deductive system, with L the language andR a set of rules of the form
s0 ← s1, . . . , sm(m ≥ 0, si ∈ L);

– A ⊆ L is a (non-empty) set of assumptions;
– C is a total mapping from A into 2L − {{}}, where each s ∈ C(a) is a contrary of
a, for a ∈ A.

Given ρ = s0 ← s1, . . . , sm, s0 is referred to as the head and s1, . . . , sm as the body.
Arguments are deductions of claims using rules and supported by sets of assump-

tions; Attacks are targeted at the assumptions in the support of arguments:

– an argument for (claim) s ∈ L supported by ∆ ⊆ A (denoted ∆ ` s) is a finite
tree with nodes labelled by sentences in L or by τ 1, the root labelled by s, leaves
either τ or assumptions in ∆, and non-leaves s′ with, as children, the elements of
the body of some rule ρ with head s′;

– an argument A = ∆1 ` s1 attacks an argument ∆2 ` s2 if and only if s1 is a
contrary of some assumption α in ∆2, and we say A targets at α.

A set of arguments As is admissible if and only if As is conflict-free (i.e. no argu-
ment in As attacks any argument in As) and all arguments attacking some argument in
As are counter attacked by arguments in As; an argument is admissible if and only if it
belongs to an admissible set of arguments.

We will use the notion of Related Admissible and Argument Explanation introduced
in [7] for some of our results, defined as follows. Given an ABA framework F =

1 τ /∈ L represents “true” and stands for the empty body of rules.

〈L,R,A, C〉, AGF denotes the set of all arguments in F . Let X,Y ∈ AGF . X defends
Y if and only if: (1) X = Y ; or (2) ∃Z ∈ AGF , such that X attacks Z and Z attacks
Y ; or (3) ∃Z ∈ AGF , such that X defends Z and Z defends Y . S ⊆ AGF defends
X ∈ AGF if and only if ∀Y ∈ S: Y defends X . Let s ∈ L and A,B ∈ AGF , A
defends s if and only if s is the claim of B and A defends B.

A set of arguments As is Related Admissible if and only if: (1) As is admissible,
(2) there exists a topic sentence χ (of As), χ is the claim of some argument in As, such
that for all B ∈ As, B defends χ. As is an explanation of χ.

We will use the abstract dispute trees of [6] to compute explanations for our plans.
An abstract dispute tree for an argument A is a (possibly infinite) tree T a such that:2

1. every node of T a holds an argument B and is labelled by either proponent (P) or
opponent (O), but not both, denoted by L : B, for L ∈ {P,O}; (a node labelled by
P/O is called a P/O node, respectively);

2. the root of T a is a P node holding A;
3. for every P node N holding an argument B, and for every argument C that attacks
B, there exists a child of N , which is an O node holding C;

4. for every O node N holding an argument B, there exists at most3 one child of N
which is a P node holding an argument which targets some assumption α in the
support of B; if N has a child attacking α, then α is said to be the culprit in B;

5. there are no other nodes in T a except those given by 1-4 above.

The set of all assumptions in (the support of arguments held by) the P nodes in T a is
called the defence set of T a. In an abstract dispute tree T a, a P node N is defeated if
and only if N is the root of a sub-tree in T a such that the defence set of the sub-tree is
not admissible. A winning attacker N ′ of N is a child node of N such that either (1)
there is an O leaf node in the tree rooted at N ′ or (2) there is an argument held at both
a P node in the tree rooted at N ′ and an O node in T a. Abstract dispute trees can be
used to compute (related) admissibility semantics:

– Let an abstract dispute tree T a be admissible if and only if each O node has exactly
one child and no culprit in the argument of an O node in T a belongs to the defence
set of T a. If a dispute tree is not admissible, it is non-admissible.

– The defence set of an admissible abstract dispute tree is admissible (Theorem 5.1
in [6]), and thus the root node of an admissible dispute tree is admissible.

– The defence set of an admissible abstract dispute tree is Related Admissible (The-
orem 1 in [7]) with the claim of the argument held by the root of the tree being the
topic sentence (Theorem 5 in [7]).

2 Here, a stands for ’abstract’. Also, ‘proponent’ and ‘opponent’ should be seen as
roles/fictitious participants in a debate rather than actual agents.

3 In the original definition of abstract dispute tree [6], every O node is required to have exactly
one child. We incorporate this requirement into the definition of admissible dispute tree given
later, so that our notion of admissible abstract dispute tree and the admissible abstract dispute
trees of [6] coincide.

Fig. 1. A Tower of Hanoi game with two discs d1 and d2 and three rods r1, r2 and r3. The initial
state is shown on the left hand side and the goal state is shown on the right hand side.

3 Planning Preliminaries

We consider an instance of the standard, also the most widely used, planning represen-
tation, STRIPS, as given in [16]. A planning problem P is a tuple P = (Σ, s0, Sg);
Σ = (S,A, γ) is the planning domain, S the set of states, A the set of actions, γ the
deterministic transition function, s0 the initial state, and Sg the set of goal states. Each
state in S is described by a set of predicates and each predicate is either a flexible rela-
tion or a rigid relation. The transition function γ is specified through a set of planning
operators, each representing an action. A planning operator is given by name, precond
and effects, where name is syntactically a predicate, precond and effects are sets of
predicates, describing the pre-conditions and the effects of the action, respectively. A
plan is a sequence of actions; and a solution to a planning problem is a plan from the
initial state to the goal state.

We use the following classic Tower of Hanoi example to illustrate.

Example 1. As in a classic Tower of Hanoi game, we have three rods, r1, r2, r3. To sim-
plify the example, we use only two disks d1 and d2. The problem states S is described
by two flexible relations clear and on, as well as a rigid relation smaller. The initial
and the goal states are shown in Fig. 1. Specifically, the initial state s0 is described with
the following predicates:

clear(r2) clear(r3) clear(d1) on(d1, d2)
on(d2, r1) smaller(d1, r1) smaller(d1, r2) smaller(d1, r3)
smaller(d2, r1) smaller(d2, r2) smaller(d2, r3) smaller(d1, d2)

The goal state sg is described by: on(d1, d2) on(d2, r3).
There is a single planning operator:

move(D, A, B)
precond : smaller(D, B), on(D, A), clear(D), clear(B)
effects : clear(A), on(D, B),¬on(D, A),¬clear(B)

The action sequence (move(d1, r2), move(d2, r3), move(d1, d2)) is a solution.

To model planning with argumentation, we take the bounded planning approach as
in SAT based planners [16]. Namely, we focus on finding plans of some known length
n for some fixed n. Each i, 0 ≤ i ≤ n is a step of the planning problem, and for each
step k there is one and only one action taking place.4 Specifically,

– we denote each predicate with k variables representing a flexible relation as a new
predicate with k + 1 variables, where the last variable is the step;

4 This is a standard approach in planning as it allows the complete specification of the planning
search space. Techniques have been developed to estimate the step bound, see e.g. [16].

– we leave all predicates representing rigid relations unchanged;
– for each action taking place at step k, its pre-conditions are composed of predi-

cates representing rigid relations and predicates representing flexible relations with
their last variables k; effects of this action are composed of predicates representing
flexible relations with their last variables k + 1.

Effectively, a bounded planning problem can be described with a tuple 〈A, s0, sg,F,R,K〉,
a set of actions A, the initial state s0, the goal state sg , a set of flexible relation F, a set
of rigid relation R and the step bound K. The goal state is a set of goals denoted by
flexible relations with their last variable (the step variable) specified as K.

Given a plan (m1, . . . ,mn) in a bounded planning problem, we say that a flexible
relation FR(A, K)5 holds at step k if and only if either (1) FR(A, 0) ∈ s0, or (2) FR(A, i)
in the effects of some action mi, i ≤ k and ¬FR(A, j) is not in the effects of any action
mj for i < j ≤ k.

For each action m in a plan P , we use S(m) to denote the step of action m in P .

Example 2. (Example 1 continued.) With step introduced, the three predicates are:
clear(X, K), on(X, Y, K), smaller(X, Y).
The planning operator is:

move(D, A, B, K)
precond : smaller(D, B), on(D, A, K), clear(D, K), clear(B, K)
effects : clear(A, K+ 1), on(D, B, K+ 1),¬on(D, A, K+ 1),¬clear(B, K+ 1)

Suppose that K = 3, a plan taking the initial state
clear(r2, 0) clear(r3, 0) clear(d1, 0) on(d1, d2, 0) on(d2, d1, 0)

to the goal state
on(d1, d2, 3) on(d2, d1, 3)

is the sequence (move(d1, d2, r2, 0), move(d2, r1, r3, 1), move(d1, r2, d2, 2)). Clearly,
this plan is a solution to this planning problem.

4 Plan Explanations

Given a bounded planning problem introduced in the previous section, we make the
following observation:

A plan is a solution if the following two conditions hold:

C1. All pre-conditions hold for all actions in the plan.
C2. All goals in the goal state hold at the end of plan.

Thus, to “explain” why a plan is a solution, we want to show that both (C1) and (C2)
are satisfied in the sense that an “explanation” should justify that all pre-conditions and
goals are met at the right steps, formally:

Definition 1. Given a bounded planing problem P with a solution P . An explanation
for P being a solution to P is the set S = sg ∪ {C|C is a precondition for an action in
P} such that every predicate in S holds at its respective step.

5 We use the convention that the over-line on A denotes that A represents a list of variables of
unspecified length. Variables without over-lines are “normal” variables.

We illustrate Definition 1 with the following example.

Example 3. (Example 2 continued.) To simplify the illustration, we let the step bound
K = 2 and the goal state sg = {on(d1, r2, 2), on(d2, r3, 2)}. To see that (move(d1, r2, 0),
move(d2, r3, 1)) is a solution, we observe that:6

– all predicates in sg hold at step 2; and
– all pre-conditions hold for mv(d1, d2, r2, 0) at step 0:

on(d1, d2, 0), sm(d1, r2), cl(d1, 0), cl(r2, 0)
– all pre-conditions hold for mv(d2, r1, r3, 1) at step 1:

on(d2, d1, 1), sm(d2, r3), cl(d2, 1), cl(r3, 1)

Definition 1 specifies explanations for solutions to planning problems. On the other
hand, to explain “why a plan fails to be a solution”, we introduce “invalidity” of plans
by identifying actions not meeting their pre-conditions or occurred at the same step as
other actions. These invalid actions “explain” the invalidity of a plan.

Definition 2. Let P = (m1, . . . ,mn) be a plan. An action mi is invalid in P if either
one of the following two conditions holds.

1. There exists a pre-condition C of mi such that C does not hold at step S(mi). In
this case, C is an explanation for the invalidity of mi.

2. There exists an action mj in P , j < i, such that S(mi) = S(mj). In this case mj

is an explanation for the invalidity of mi.

If a plan P contains no invalid action, then P is valid; otherwise, P is invalid.

We illustrate Definition 2 with the following example.

Example 4. (Example 2 continued.) With the Tower of Hanoi game as specified, let the
step bound K = 2. Given a plan P = (move(d1, d2, r3, 0), move(d2, r1, d1, 1)), the ac-
tion move(d2, r1, d1, 1) is invalid as small(d2, d1), a pre-condition of move(d2, r1, d1, 1),
does not hold at step 1. (Note that since small(A, B) is a rigid relation, small(d2, d1)
never holds.) We thus have small(d2, d1) as an explanation for move(d2, r1, d1, 1).
Since P contains an invalid action, P is invalid.

For P ′ = (move(d1, d2, r2, 0), move(d1, d2, r3, 0)), the action move(d1, d2, r3, 0)
is invalid, and its explanation is move(d1, d2, r2, 0). This is easy to see as both actions
occur at step 0. As previously, P ′ is invalid.

5 Planning with ABA

Thus far, we have reviewed bounded planning problems and presented several defi-
nitions of explanations. We show how ABA can be used to solve bounded planning
problems in this section and how explanations can be extracted from an arguing pro-
cess in the next section. To model planning with ABA, the main task is to represent
bounded planning problems with ABA frameworks. Formally,

6 mv, cl and sm are short-hands for move, clear and smaller, respectively.

Definition 3. Given a bounded planning problem P = 〈A, s0, sg,F,R,K〉, let the fol-
lowing denote a generic action in A,

act(A, K)
precond : PreC1(C1, K), . . . , PreCw(Cw, K)
effects : Ef1(E1, K+ 1), . . . , Efm(Em, K+ 1),

then the ABA framework corresponding to P is F = 〈L,R,A, C〉, in which7

• R is constructed as follows.

1. Let sg = {g1, . . . , gn}, insert the rule: goal← g1, . . . , gn.
2. For each action in A, insert rules:

aE(act, A, K+ 1)← act(A, K); hasAct(K)← act(A, K).
Ef1(E1, K)← aE(act, A, K); . . . ; Efm(Em, K)← aE(act, A, K).

3. For each flexible relation FR(A, K) in F, insert a rule:
FR(A, K+ 1)← FR(A, K), hasAct(K), df(FR, A, K+ 1).

4. For each rigid relation RR(A) in R, insert the rule: RR(A)←.
5. Let s0 = {P1(I0, 0), . . . , Pn(In, 0)}, insert rules P1(I0, 0)←; . . . ; Pn(In, 0)←.

• A is constructed as follows.

1. For each action in A, insert the following assumptions:
act(A, K), not_PreC1(C1, K), . . . , not_PreCw(Cw, K)

2. For each flexible relation FR(A, K) in F, insert df(FR, A, K) to A.

• C is such that:

1. For each action let act′ be the name of an action in A, then
– C(act(A, K)) = {act′(B, K) |act′ 6= act or B 6= A}∪

{not_PreC1(C1, K), . . . , not_PreCw(Cw, K)};
– for i = 1, . . . , w, C(not_PreCi(Ci, K)) = {PreCi(Ci, K)}.

2. C(df(FR, A, K)) = {¬FR(A, K)}.

In Definition 3, reaching the goal state sg is modelled with the rule
goal← g1, . . . , gn

such that to reach the goal state, we need to prove each of its goals in the goal set.
Then, for each action act(A, K), taking a list of variables A at step K, we use the rule

aE(act, A, K+ 1)← act(A, K);
to describe that effects of act can be realised by performing act. Note that act has
step variable K whereas aE has step variable K+ 1, indicating the advance in time. Rule

hasAct(K)← act(A, K)
states that there is an action taking place at step K if there is an action act at K. Rules

Ef1(E1, K)← aE(act, A, K); . . . ; Efm(Em, K)← aE(act, A, K)
describe each and every predicate listed as an effect of act can be derived from aE, at
the same time step as aE. Rule

7 When defining ABA frameworks, we omit to indicate the language component, as this can be
easily inferred from the other components (being the set of all sentences occurring in rules,
assumptions, and contraries). Also, we use rule schemata to simplify the notation. Each rule
schema represents the set of grounded rules.

FR(A, K+ 1)← FR(A, K), hasAct(K), df(FR, A, K+ 1)

describes that for every predicate FR describing a flexible relation, it is the case that if
FR(A) holds at step K, and there is some action taking place at step K, then it is assumed
that, FR(A) holds at step K+ 1. The assumption df(FR, A, K+ 1) states that, by default,
FR can be carried forward from K to K+ 1. hasAct(K) is introduced in the body of the
rule to enforce that at least one action has taken place during this step. Rule

RR(A)←
specifies that all rigid relations RR hold at all steps. Rules

P1(I0, 0)←; . . . ; Pn(In, 0)←.
specify that all predicates in the initial state s0 hold at step 0.

Assumptions and contraries are such that:

– all actions are assumptions with contraries being either
1. any other action at the same step or
2. failure of meeting pre-conditions of the action.

We enforce that any two different actions are in conflict at the same step; and if any
pre-condition does not meet for an action, then the action cannot be performed.

– C(not_PreCi(Ci, K)) = {PreCi(Ci, K)} specifies that the contrary of not meeting
a pre-condition is meeting it.

– C(df(FR, A, K)) = {¬FR(A, K)} specifies that the assumption df(FR, A, K) does not
hold if it can be shown explicitly that FR(A, K) does not hold, at step K.

Example 5. (Example 2 continued.) Let the step bound K = 3. The ABA framework
corresponding to this planning problem is 〈L,R,A, C〉, given as follows.8

– R is composed of the following rules.
goal← on(d1, d2, 3), on(d2, r3, 3);
hA(K)← mv(D, A, B, K); aE(mv, D, A, B, K)← mv(D, A, B, K);
cl(A, K+ 1)← aE(mv, D, A, B, K); ¬cl(B, K+ 1)← aE(mv, D, A, B, K);
on(D, B, K+ 1)← aE(mv, D, A, B, K); ¬on(D, A, K+ 1)← aE(mv, D, A, B, K);
cl(A, K+ 1)← cl(A, K), hA(K), df(cl, A, K+ 1); sm(d1, d2)←;
on(D, A, K+ 1)← on(D, A, K), hA(K), df(on, D, F, K+ 1); sm(d2, r3)←;
sm(d1, r1)←; sm(d1, r2)←; sm(d1, r3)←; sm(d2, r1)←; sm(d2, r2)←;
cl(r2, 0)←; cl(r3, 0)←; cl(d1, 0)←; on(d1, d2, 0)←; on(d2, r1, 0)←;

– A is composed of the following assumptions.
mv(D, A, B, K), df(on, D, F, K), df(cl, A, K), not_on(D, F, K), not_cl(A, K)

– C is such that:
C(mv(D, A, B, K)) = {not_sm(D, B), not_on(D, A, K), not_cl(D, K), not_cl(B, K)}

∪ {mv(D′, A′, B′, K)|mv(D′, A′, B′, K) 6= mv(D, A, B, K)}
C(df(on, D, F, K)) = {¬on(D, F, K)} C(not_on(D, F, K)) = {on(D, F, K)}
C(df(cl, A, K)) = {¬cl(A, K)} C(not_cl(A, K)) = {cl(A, K)}

Now we are ready to present our main results on the correspondence between plan-
ning problems and ABA frameworks, with the next two theorems.

8 hA is shorthand for hasAct.

Theorem 1. Given a bounded planning problem P with a solution S = (m1, . . . ,mn),
let F be the ABA framework corresponding to P . Then, there is a related admissible set
of arguments RF in F with its topic sentence goal such that mi in S are assumptions
supporting arguments in RF .

Proof. (Sketch.) We need to show that (1) RF is admissible, (2) all arguments in RF
defend goal. Note that each mi in S is of the form act(A, i). To show (1), we start by
observing that since S is a solution, there is an argumentA = {act(An, n), . . .} ` goal
in F . Arguments attacking A are in the following three forms:

1. {acti(A′i, n)} ` acti(A′i, n), targeting at the assumption act(A, n), representing
alternative moves one can make at step n,

2. {not_PreCi(Ci, n)} ` not_PreCi(Ci, n), also targeting at act(A, n), representing
challenges to pre-conditions of the action at n,

3. ∆′ ` ¬FR(A, n), targeting at assumptions df(FR, A, n), representing challenges to
flexible relations that they may not hold from one step to the next.

Attacking arguments in form (1) can be counterattacked by arguments {act(A, n)} `
act(A, n) inRF . This can be read as, although it is possible to make some other actions
at step n, we can always choose to make action act. Attacking arguments in form (2)
can be counterattacked by arguments ∆∗ ` PreCi(Ci, n) in RF . Since S is a solution,
all pre-conditions at each step must be met. This can be read as, each action at step n

meets all of its pre-conditions. Attacking arguments in form (3), if they exist, indicate
that there is some other plan S′ such that ¬FR(A, n) is in the goal state of S′ and S′ is
not part of S. Since S is a solution, all pre-conditions in all of its actions must hold, for
any S′ composed by actions act′(B, L) ∈ ∆′ differ from the ones in S (up to step n),
act′(B, L) can be targeted by argument {act(A, L)} ` act(A, L) inRF for act(A, L) in
S. This can be read as, although there are some other plans S′ such that S′ invalidates
some pre-condition of an action in S, S withstands such attacks as all of its actions
meet their pre-conditions. With this reasoning, we can see that all arguments in RF
defend goal, thus meeting the second condition.

Theorem 2. Given a bounded planning problem P with its corresponding ABA frame-
work F , letRA be a related admissible set of arguments with topic sentence goal, S =
{act(A, K)|act(A, K) is the name of an action in A and act(A, K) is an assumption of
an argument in RA}, then the sequence (m1, . . . ,mn), for which {m1, . . . ,mn} = S
and S(mi) < S(mj) if and only if i < j is a solution to P .

Proof. (Sketch.) From Definition 3 we can see thatRF is related admissible only when
there is a sequence of actions taking the initial state to the goal state. Thus, all actions
in assumptions defending goal consist a solution.

Theorem 1 and 2 sanction that bounded planning problems can be modelled with
ABA frameworks such that solutions correspond to related admissible arguments. We
illustrate these results with the following example.

Example 6. (Example 5 continued.) An argument for goal is A = ∆ ` goal with
∆ = {mv(d1, r2, d2, 2), mv(d2, r1, r3, 1), df(on, d2, r3, 3)} (see Fig. 2). Arguments tar-
geting mv(d1, r2, d2, 2) include

B = {mv(d1, r2, r1, 2)} ` mv(d1, r2, r1, 2) C = {mv(d2, r3, r1, 2)} ` mv(d2, r3, r1, 2)
D = {not_on(d1, r2, 2)} ` not_on(d1, r2, 2) E = {not_cl(d1, 2)} ` not_cl(d1, 2)
F = {not_cl(d2, 2)} ` not_cl(d2, 2) G = {not_sm(d1, d2)} ` not_sm(d1, d2)
Arguments B and C can be attacked by H = {mv(d1, r2, d2, 2)} ` mv(d1, r2, d2, 2).
Arguments D can be attacked by
I = {mv(d1, d2, r2, 0), mv(d2, r1, r3, 1), df(on, d1, r2, 2)} ` on(d1, r2, 2) (Fig. 3)
Arguments E can be attacked by
J = {mv(d1, d2, r2, 0), mv(d2, r1, r3, 1), df(cl, d1, 2), df(cl, d1, 1)} ` cl(d1, 2) (Fig. 4)
Arguments F can be attacked by
K = {mv(d1, d2, r2, 0), mv(d2, r1, r3, 1), df(cl, d2, 2)} ` cl(d2, 2) (Fig. 5)
Arguments G can be attacked by L = {} ` sm(d1, d2).
We can see that arguments H, I, J,K and L all defend A. Arguments targeting
mv(d2, r1, r3, 1) and df(on, d2, r3, 3) can be counter-attacked similarly. H,J,K can
also be defended with arguments in similar patterns. Overall,A is in a related admissible
set with its topic goal and assumptions in ∆ form a solution to the planning problem.

goal

on(d1, d2, 3)

22

on(d2, r3, 3)

kk

aE(mv, d1, r2, d2, 3)

OO

on(d2, r3, 2)

33

hasAct(2)

OO

df(on, d2, r3, 3)

kk

mv(d1, r2, d2, 2)

OO

aE(mv, d2, r1, r3, 2)

OO

mv(d1, r2, d2, 2)

OO

mv(d2, r1, r3, 1)

OO

Fig. 2. An argument for goal in Example 6.

on(d1, r2, 2)

on(d1, r2, 1)

33

hasAct(1)

OO

df(on, d1, r2, 2)

jj

aE(mv, d1, d2, r2, 1)

OO

mv(d2, r1, r3, 1)

OO

mv(d1, d2, r2, 0)

OO

Fig. 3. An argument for on(d1, r2, 2) in Example 6.

By Theorem 5 of [7], we know that assumptions in arguments held by proponent
nodes of an admissible dispute tree are related admissible with the claim of the argument
held by the root of the tree as the topic sentence. Thus, given Theorem 2, the following
corollary holds.

Corollary 1. Given a bounded planing problem P = 〈A, s0, sg,F,R,K〉 with F the
ABA framework corresponding to P , if there is an admissible abstract dispute tree T a

cl(d1, 2)

cl(d1, 1)

44

df(cl, d1, 2)

OO

hasAct(1)

jj

cl(d1, 0)

66

df(cl, d1, 1)

OO

hasAct(0)

jj

mv(d2, r1, r3, 1)

OO

τ

OO

mv(d1, d2, r2, 0)

OO

Fig. 4. An argument for cl(d1, 2) in Example 6.

cl(d2, 2)

cl(d2, 1)

33

hasAct(1)

OO

df(cl, d2, 2)

jj

aE(mv, d1, d2, r2, 1)

OO

mv(d2, r1, r3, 1)

OO

mv(d1, d2, r2, 0)

OO

Fig. 5. An argument for cl(r2, 2) in Example 6.

for goal, then {act(A, K)|act(A, K) is a name of action in A and P : {act(A, K), . . .} ` _
is in T a} is a solution to P .9

Proof. Follows directly from Theorem 5 of [7] and Theorem 2.

Corollary 1 sanctions that abstract dispute trees can be used to compute solutions
for bounded planning problems. This is a useful result as it allows us to use a semantics
computation tool to compute plan solutions.

6 Extracting Explanations from ABA

In the previous section, we have shown how ABA can be used to compute solutions
for bounded planning problems by identifying a related admissible set of arguments for
the topic goal. Corollary 1 establishes the connection between solutions and abstract
dispute trees. In this section, we focus on extracting explanations from dispute trees.

Proposition 1. Given a bounded planning problem P with corresponding ABA frame-
work F , let E be an explanation for _ ` goal in F . Then, S = sg ∪ {s|_ ` s ∈ E}
contains an explanation for a plan P being a solution to P , where P consists of actions
represented by action assumptions supporting arguments in E.

Proof. (Sketch.) By Theorem 2, and the definition of explanations for argument in ABA
frameworks (see the Background section), P is a solution to P . Since P is a solution,
all pre-conditions of all actions in P must hold at their respective steps. By Definition 3,
each action in the plan is mapped to an assumption with contraries being assumptions
not_PreCi for all of its pre-conditions. Since the contrary of not_PreCi is PreCi, there
must be an admissible argument for each PreCi. Thus, S by containing all goals in sg
and all pre-conditions of all actions, contains an explanation for P , by Definition 1.

9 Throughout, _ stands for an anonymous variable.

Proposition 1 sanctions that, given a bounded planning problem P with its corre-
sponding ABA framework F , by computing an explanation for the argument _ ` goal,
we not only compute a solution to P , but also an explanation for this solution. We
illustrate Proposition 1 with the following example.

Example 7. (Example 3 continued.) The ABA framework corresponding to this bounded
planning problem (with K = 2, sg = {on(d1, r2, 2), on(d2, r3, 2)}) is the ABA frame-
work shown in Example 5 with the rule

goal← on(d1, d2, 3), on(d2, r3, 3)
replaced by

goal← on(d1, r2, 2), on(d2, r3, 2)
and everything else unaltered. The argument A for goal is shown in Fig. 6. Arguments
attackingA are summarised in Table 1. ArgumentB targets at assumption df(on, d1, r2, 2).
Arguments C1-C5 target at assumption mv(d1, d2, r2, 0). Arguments D1-D5 target at
assumption mv(d2, r1, r3, 1). Note that B,C1 and D1 represent sets of arguments with
A unified to different ris and djs.

Arguments attacking B,C1-C5 and D1-D5 are shown in Table 2. Here, X ′ at-
tack X , for X = B, C1-C5, D1-D5. Arguments attacking B′ and D1′ are D1-D5.
Arguments attacking C1′ are C1-C5. Arguments attacking D2′ are: C1 - C5 and
E = {mv(d2, r1, A, 0)} ` ¬on(d2, r1, 1). Arguments attacking D3′ are: C1 - C5
and F = {mv(A, B, d2, 0)} ` ¬cl(d2, 1). Arguments attacking D4′ are: C1 - C5 and
G = {mv(A, B, d3, 0)} ` ¬cl(r3, 1). Argument C1′ attacks E, F and G. In summary,
we can see that the related admissible set of arguments, which is the defence set of the
tree, together with the goal set, contains explanations for the plan being a solution.

goal

on(d2, r3, 2)

22

on(d1, r2, 2)

kk

aE(mv, d2, r1, r3, 2)

OO

on(d1, r2, 1)

33

hasAct(1)

OO

df(on, d1, r2, 2)

kk

mv(d2, r1, r3, 1)

OO

aE(mv, d1, d2, r2, 1)

OO

mv(d2, r1, r3, 1)

OO

mv(d1, d2, r2, 0)

OO

Fig. 6. An argument for goal in Example 7.

Proposition 2. Given a bounded planning problem P with corresponding ABA frame-
work F , let P = (m1, . . . ,mn) be an invalid plan. If there is a non-admissible dispute
tree T a for _ ` goal such that m1, . . . ,mn support arguments held by P nodes in T a.
Then, if a node N = P : {mi, . . .} ` _ is defeated and A = {not_PreCi(Ci, K)} `
not_PreCi(Ci, K) held byN ’s winning attacker, then PreCi(Ci, K) is in an explanation
for the invalidity of P .

Proof. (Sketch.) By Definition 2, to show that PreCi(Ci, K) is in an explanation for
the invalidity of P is to show that PreCi(Ci, K) is not held at K. This is achieved by

Table 1: Arguments attacking A in Example 7.
B = {mv(d1, r2, A, 1)} ` ¬on(d1, r2, 2)
C1 = {mv(A, B, C, 0)} ` mv(A, B, C, 0) C2 = {not_on(d1, d2, 0)} ` not_on(d1, d2, 0)
C3 = {not_cl(d1, 0)} ` not_cl(d1, 0) C4 = {not_cl(r2, 0)} ` not_cl(r2, 0)
C5 = {not_sm(d1, r2)} ` not_sm(d1, r2) D1 = {mv(A, B, C, 1)} ` mv(A, B, C, 1)
D2 = {not_on(d2, r1, 1)} ` not_on(d2, r1, 1) D3 = {not_cl(d2, 1)} ` not_cl(d2, 1)
D4 = {not_cl(r3, 1)} ` not_cl(r3, 1) D5 = {not_sm(d1, r3)} ` not_sm(d1, r3)

Table 2: Arguments attacking B,C1-C5 and D1-D5 in Example 7.
B′ = {mv(d2, r1, r3, 1)} ` mv(d2, r1, r3, 1) C1′ = {mv(d1, d2, r2, 0)} ` mv(d1, d2, r2, 0)
C2′ = {} ` on(d1, d2, 0) C3′ = {} ` cl(d1, 0)
C4′ = {} ` cl(r2, 0) C5′ = {} ` sm(d1, r2)

D1′ = {mv(d2, r1, r3, 1)} ` mv(d2, r1, r3, 1)
D2′ = {mv(d1, d2, r2, 0), df(on, d2, r1, 1)} ` on(d2, r1, 1)
D3′ = {mv(d1, d2, r2, 0), df(cl, d2, 1)} ` cl(d2, 1)
D4′ = {mv(d1, d2, r2, 0), df(cl, r3, 1)} ` cl(r3, 1) D5′ = {} ` sm(d2, r3)

showing that the argument A held in T a. Since A is held by a winning attacker of N ,
in T a, meaning that it cannot be disapproved, PreCi(Ci, K) cannot be held. Thus it is
in an explanation for the invalidity of P .

Proposition 2 sanctions that to identify explanations for invalid actions, we can look
at dispute trees and find non-admissible sub-trees and their successful attackers. We
illustrate Proposition 2 with the following example.

Example 8. (Example 4 continued.) Let the goal state sg = {on(d1, r3, 2), on(d2, d1, 2)}.
An argument for goal is A = ∆ ` goal with ∆ = {mv(d1, d2, r3, 0), mv(d2, r1, d1, 1),
df(on, d1, r3, 2)}. Arguments targeting at mv(d2, r1, d1, 1) include the following:
B = {mv(d2, r1, r2, 1)} ` mv(d2, r1, r2, 1),
C = {not_on(d2, r1, 1)} ` not_on(d2, r1, 1),
D = {not_cl(d1, 1)} ` not_cl(d1, 1),
E = {not_cl(d2, 1)} ` not_cl(d2, 1),
F = {not_sm(d2, d1)} ` not_sm(d2, d1).
G = {mv(d2, r1, d1, 1)} ` {mv(d2, r1, d1, 1)} attacks B.
H = {mv(d1, d2, r3, 0), df(on, d2, r1, 1)} ` on(d2, r1, 1) attacks C.
I = {df(cl, d1, 1), mv(d1, d2, r3, 0)} ` cl(d1, 1) attacks D.
J = {mv(d1, d2, r3, 0)} ` cl(d2, 1) attacks E. However, no argument can attack F
as there is no argument for sm(d2, d1). Thus, O : F is a winning attacker and P : A
is defeated. A fraction of the abstract dispute tree for A is shown in Fig. 7. Thus, we
conclude that the unmet pre-condition sm(d2, d1) is in an explanation for the invalidity
of the plan.

For simplicity, we only present results for plan invalidity due to unmet pre-conditions.
In general, however, by Definition 2, a plan is invalid if there are multiple actions take
place at the same time. It is easy to see that such invalidity can be easily captured in
dispute trees as the contrary of an assumption representing an action includes all other

P : A

O : B

22

O : C

66

O : D

OO

O : E

hh

O : F

ll

. . .

mm

P : G

OO

P : H

OO

P : I

OO

P : J

OO

O : B

OO

. . .

OO

. . .

OO

. . .

OO

Fig. 7. An illustration of a fraction of the non-admissible dispute tree for ∆ ` goal with ∆ =
{mv(d1, d2, r3, 0), mv(d2, r1, d1, 1), df(on, d1, r3, 2)} in Example 8. Since O : F has no P
child, O : F is a winning attacker.

actions taking place at the same step. Therefore, if a defeated node labelled by an ar-
gument supported by an action assumption and the winning attacker holds an argument
with an action as its claim, then the action in the winning attacker is in an explanation.

7 Related Work

Very recently, [9] presented a study on “Explainable Planing”. Not connected to ar-
gumentation, the authors proposed six questions to be answered by “explainable plan-
ners”. That paper focuses on high level discussion with no theoretical result. The two
forms of explanations presented in this work can be viewed as (at least partial) answers
to three of their questions: Q1: Why did you do that? (because such moves are valid),
Q2 Why didn’t you do something else? (because “something else” is not valid) and Q4:
Why can’t you do that? (because certain precondition does not meet), as our explana-
tions justify actions in plans and identify invalid ones.

Argumentation has seen its use in planning since 1980s (see e.g. [11, 13]), in the
context of urban planning. Formal arguments are constructed to evaluate the pros and
cons of urban plans. Our work differs from theirs as we view plans as sequences of
actions and argumentation is used to generate these sequences.

Connection between planning and defeasible argumentation has been made in [10]
with an application in [8]. Their works are based on DeLP where arguments are in the
level of actions and a tailored algorithm has been developed for searching the suitable
plans. Our work differs from theirs as we use ABA arguments to represent plans with
existing argumentation semantics computing techniques so that explanations can be
obtained along the course.

Conflict resolution in goal selection and planning has been studied by researchers
in argumentation [1, 12]. Our work differs from theirs as, in addition to using entirely
different argumentation languages, we use argumentation as a modelling tool for solv-
ing planning problems and derive explanations from our solutions; whereas they use
argumentation to model agent actions and desires so that more suitable actions can be
selected.

In multi-agent negotiation, there are works on connecting argumentation with the
classic planners [15, 18]. There, argumentation-based negotiation is viewed as a plan-
ning problem with negotiation utterances being agents’ actions. Under such modelling,
negotiation is then solved with existing planner, e.g., HTN. Similarly, argumentation-
based persuasion can be viewed as a planning problem and solved with existing plan-

ning techniques [3]. Our work is orthogonal to those as we use argumentation to plan
instead of using planner to argue.

Agent planning has been studied in [2]. There, agents’ beliefs and actions are anal-
ysed in a single argumentation framework, such that plans satisfying agents’ desires can
be directly generated. Our work differs from theirs as, instead of studying BDI agent
planning in a specifically defined language, we present a generic representation for
planning problems represented in STRIPS. Moreover, by explicity representing plan-
ning steps, our approach reasons with temporal information, which is not supported in
[2]. Thus, a better generalisation and improved applicability have been achieved.

8 Conclusion

Empowering AI techniques with the ability of generating explanations is central to
bringing trust to autonomous systems. In this paper, we have looked at how to use
ABA to model planning problems and to generate explanations. The aim is to develop
planning techniques which not only produce solutions, but also generate explanations
for solutions (and non-solutions). Taking a generic planning problem represented in
a standard STRIPS-like language, our model generates an “ABA counterpart” of the
problem. The correspondence is realised such that plan solutions correspond to Related
Admissible arguments with the topic being the goal state. The proposed plan construc-
tion method is both sound and complete in the sense that a solution exists if and only if
the corresponding Related Admissible arguments exist.

To generate planning explanations, we again rely on the Related Admissible seman-
tics and its computation means, dispute trees. We observe that a plan is a solution if and
only if all goals are met at the end of the plan and there is no unmet pre-condition in
any action in the plan. Related Admissible set of arguments computed with dispute trees
contain justifications for all actions meeting their pre-conditions. Moreover, by looking
at “defeated nodes” in non-admissible dispute trees, we identify unmet pre-conditions,
which explain why some plans are not solutions.

In future, we will further explore argumentation-based explanations in planning.
Namely, we would like to study explanations for questions such as “Why plan A is bet-
ter than plan B?”, “Why certain goal can never be reached by any plan?”. We will also
study argumentation-based dialectical explanation, which can be used in multi-agent
planning. Moreover, we will look at mapping other planning languages with argumen-
tation, e.g. support partial order planning and conditional-effects of actions.

References

1. L. Amgoud and C. Cayrol. On the use of an ATMS for handling conflicting desires. In Proc.
of KR, pages 194–202, 2004.

2. L. Amgoud, C. Devred, and M. Lagasquie-Schiex. Generating possible intentions with con-
strained argumentation systems. IJAR, 52(9):1363–1391, 2011.

3. E. Black, A. J. Coles, and C. Hampson. Planning for persuasion. In Proc. of AAMAS, pages
933–942, 2017.

4. K. C̃yras, X. Fan, C. Schulz, and F. Toni. Assumption-based argumentation: Disputes, ex-
planations, preferences. IfCoLog JLTA, 4(8), 2017.

5. D. Doran, S. Schulz, and T. R. Besold. What does explainable AI really mean? A new
conceptualization of perspectives. CoRR, abs/1710.00794, 2017.

6. P.M. Dung, R.A. Kowalski, and F. Toni. Dialectic proof procedures for assumption-based,
admissible argumentation. AIJ, 170:114–159, 2006.

7. X. Fan and F. Toni. On computing explanations in argumentation. In Proc. of AAAI, pages
1496–1502, 2015.

8. S. P. Ferrando and E. Onaindia. Defeasible argumentation for multi-agent planning in am-
bient intelligence applications. In Proc. of AAMAS, pages 509–516, Richland, SC, 2012.
IFAAMS.

9. M. Fox, D. Long, and D. Magazzeni. Explainable planning. CoRR, abs/1709.10256, 2017.
10. D. R. García, A. J. García, and G. R. Simari. Defeasible reasoning and partial order planning.

In Proc. of FoIKS, pages 311–328, Berlin, Heidelberg, 2008. Springer-Verlag.
11. H A Goldstein. Planning as argumentation. Environment and Planning B: Planning and

Design, 11(3):297–312, 1984.
12. J. Hulstijn and L. W. N. van der Torre. Combining goal generation and planning in an

argumentation framework. In Proc. NMR, pages 212–218, 2004.
13. K Lapintie. Analysing and evaluating argumentation in planning. Environment and Planning

B: Planning and Design, 25(2):187–204, 1998.
14. S. Modgil, F. Toni, F. Bex, I. Bratko, C. Chesñevar, W. Dvořák, M Falappa, X. Fan, S. Gaggl,

A. García, M. González, T. Gordon, J. Leite, M. Možina, C. Reed, G. Simari, S. Szeider,
P. Torroni, and S. Woltran. The added value of argumentation. In Agreement Technologies,
volume 8, pages 357–403. Springer, 2013.

15. A. Monteserin and A. Amandi. Argumentation-based negotiation planning for autonomous
agents. Decision Support System, 51(3):532–548, June 2011.

16. D. Nau, M. Ghallab, and P. Traverso. Automated Planning: Theory & Practice. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

17. N. J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1980.

18. A. R. Panisson, G. Farias, A. Fraitas, F. Meneguzzi, R. Vieira, and R. H. Bordini. Planning
interactions for agents in argumentation-based negotiation. In Proc. of ArgMAS, 2014.

19. M. Vallati, L. Chrpa, M. Grzes, T. L. McCluskey, M. Roberts, and S. Sanner. The 2014
international planning competition: Progress and trends. AI Magazine, 36(3):90–98, 2015.

20. S. Wachter, B. Mittelstadt, and L. Floridi. Transparent, explainable, and accountable ai for
robotics. Science Robotics, 2(6), 2017.

