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ABSTRACT 

Process FMEA is a well-established technique for failure analysis widely used to 
systematically improve manufacturing processes. Despite its widespread adoption process 
FMEA effectiveness is hindered by the fact that often root causes are not correctly 
identified. For complex industrial processes, such as casting processes, root cause analysis is 
challenging because defects are caused by complex interactions between several process 
inputs. This paper extends previous work and improves the co-linearity index methodology to 
provide automatic selection of principal components to discover correlations in a reduced 
dimensional space. It also describes the steps to generate hypotheses about root causes and 
discover actionable process knowledge that can be used in FMEA studies or broadly as part of 
process improvement activities. The described 7Epsilon methodology provides a pathway to 
leverage Product Lifecyle Management in foundries by integrating design and manufacturing 
knowledge and contributes to the realisation of more sustainable manufacturing processes.  
The proposed concepts are illustrated using a realistic but anonymised case study from a 
steel casting foundry.  

Keywords: Process Optimisation, Principal Component Analysis, Penalty Matrix Approach, 
Data Mining, Manufacturing Informatics 

 

1 INTRODUCTION 

Quality control and process improvement activities are nowadays standard practices in many 
organisations. A number of approaches have been developed to support continual process 
improvement. ISO9001 is the most well-known and adopted Quality Management Standard. 
Alongside this set of standards foundries also use methodologies such as Six Sigma [1] or 
7Epsilon [2] to control process variations and reduce defects. Regardless of the chosen 
methodology, root cause analysis is at the heart of any process improvement activity. 
Identification of root causes of defects is the first step to devise preventive and corrective 
action plans as required by ISO9001.  

Process Failure Mode and Effect Analysis (PFMEA) is an engineering technique used to define, 
identify, and eliminate known and/or potential failures from processes [3]. In addition to 
processes, FMEA can also be applied to systems, designs and services. FMEA was firstly 
introduced in 1940s for military usage and subsequently was formalised as a risk assessment 
tool by NASA in the mid-1960s to satisfy their stringent safety requirements. Nowadays, the 
use of FMEA has gone beyond the aerospace industry and it is now a very powerful tool 
widely adopted in the automotive industry, in medical device manufacturing and chemical 
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processing. From 2002, the implementation of FMEA for quality assurance has become a 
requirement of the ISO/TS 16949 automotive standard, hence it is a widely adopted in 
foundries who are suppliers of automotive industry. 

The FMEA process itself is straightforward, but carrying out an FMEA is far from being a 
trivial task. An FMEA is a time consuming and tedious activity that requires team effort and 
extensive domain knowledge [4]. An important step of an FMEA is to identify root causes of 
failures so that appropriate actions can be taken. Identification of root causes can be 
performed using a range of approaches some of which rely on team subjective knowledge 
such as 5 Whys and Cause and Effect Diagrams. Alternatively root cause reasoning can be 
supported by data analysis techniques that can be used to discover new process knowledge. 

Foundry processes are complex manufacturing process with several sub-processes such as 
patternmaking, molding, coremaking, melting and pouring, heat treatment, welding and 
finishing. In a foundry situation the effectiveness of FMEA is hindered by the fact that it is 
difficult to perform root cause analysis because casting defects are often caused by complex 
interactions of process variables. Furthermore the lack of process knowledge and adequate 
personnel trained in process control, as described in [2, 5], is another obstacle for the 
successful implementation of FMEA. As a result of this, when FMEA activities are based on 
subjective team knowledge, only generic root causes are identified.  

In recent years several attempts have been made to discover new process knowledge by 
analysing patterns in data. In the literature a variety of data mining and statistical 
techniques have been successfully employed in foundries to discover new process 
knowledge. These methods include techniques rooted in Statistics such as analysis of 
variance (ANOVA) [6-8] and methods based on Artificial Intelligence such as Genetic 
Algorithms and Artificial Neural Networks [9-15]. For foundry processes the influence of 
design and process parameters has also been quantified via numerical simulation methods 
and results stored in a database [16-19] or using Bayesian Networks [20]. Typically these 
methods attempt to model the complex relationships between process inputs and outputs 
either to characterise or sometimes predict process behaviour and find improvement 
opportunities. Unfortunately, in foundries, the practical implementation of these methods is 
hindered by the fact that process knowledge is foundry, product and process specific [21] 
and data sets are noisy and heterogeneous [22]. Recently the 7Epsilon approach has been 
proposed to promote discovery, retention and reuse of product specific process knowledge in 
foundries [2, 23].  In a recent application Principal Component Analysis has been used as 
part of the co-linearity index methodology to quantify noise free correlations among process 
factors and responses and discover product specific process knowledge in foundries [21]. In 
the calculation of the co-linearity index PCA is employed to filter out noise and display 
correlations in a reduced dimensional space that accounts for most of the variance. The 
method has also been recently extended to a mixture of categorical and continuous variable 
by using Multiple Factor Analysis (MFA) [22].  

In this paper a novel approach for the discovery of root causes of defects in the foundry 
industry is presented. It overcomes current limitations of FMEA practices by promoting the 
discovery of new product specific process knowledge that can support root cause reasoning 
during FMEA meetings. Hypotheses about root causes are discovered from in-process data 
and then validated during confirmation trials. The knowledge loop is closed by ensuring that 
FMEA knowledge is re-used for future purposes.  

This paper is structured as follows. A general literature review of FMEA is presented in 
Section 2 which also describes the motivation of this work and limitations of current FMEA 
approaches in the foundry industry. In Section 3 the proposed methodology is illustrated 
through an industrial case study and the paper is concluded in Section 4. 
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2 FAILURE MODE AND EFFECT ANALYSIS (FMEA) AND RELATED WORK 

The main objective of FMEA is to identify potential failure modes of a systems or process, 
analyse the effects and identify actions to mitigate risks associated with the failure modes. 
While doing an FMEA risks are prioritised according to defined criteria and actions are taken 
starting from the higher priority failure modes. The process of conducting an FMEA consists 
of 10 steps summarized in Figure 1.   

 

 

Figure 1: The 10 steps of FMEA process.  

The risk priority number (RPN) is a key concept to FMEA analysis. This is calculated as  
𝑅𝑃𝑁 = 𝑆 ×  𝑂 × 𝐷 , where 𝑆  is the severity of the consequences of the failure, 𝑂  is the 
likelihood of occurrence of the causes of failure and 𝐷 is the likelihood of detection. In 
general these three factors, usually ranked from 1 to 10, are estimated by experts according 
to predetermined criteria. The FMEA is a cyclic process and does not terminate when RPNs 
are calculated, but actions must be taken to reduce the values of RPNs. Once actions have 
been taken, RPNs are computed again. The FMEA cyclic process is represented in Figure 2. 

 

Figure 2: The FMEA process is cyclic loop to support continual process improvement. 
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Despite the fact that the use of FMEA is very widespread in the industry, a great deal of 
research has highlighted and addressed various shortcomings. A major one is that the ranking 
system based on the calculation of the Risk Priority Number (RPN) relies on subjective 
judgment of the FMEA team members and it is often difficult for a team to agree on the 
ratings [24]. It is also argued that the mathematical formula for calculating the risk priority 
number is questionable and debatable [24, 25]. Also the effort to maintain an FMEA is not 
negligible, since a new analysis needs to be carried out each time changes are made to the 
design, process or service. The reuse of past FMEAs is made more difficult because the 
analysis is usually performed using spreadsheets in textual natural language. This poses 
limitations on computer-based extraction of knowledge for future use. 

Researchers have addressed the above issues in different ways and suggested improvements 
to classical FMEA. The intrinsic difficulties in evaluating and ranking failure modes have been 
addressed by several studies where researchers have used fuzzy logic to account for the 
uncertainty in evaluating the risk priority number. For instance, Braglia et al. [24] have 
developed a technique that uses fuzzy set theory to quantify and rank critical failures. In 
another paper the difficulty of predicting the occurrence score (O) is overcome by using a 
framework equipped with a fuzzy inference system based occurrence model [26]. Other 
researchers have suggested improvements to RPN calculations using a technique that 
combines Ordered Weighted Average (OWA) and Decision Making Trial and Evaluation 
Laboratory (DEMATEL) methodologies [27]. An improvement to calculations is also proposed 
by an approach that uses fuzzy rule base and grey relation theory to rank potential causes 
which would have identical RPN but different implications [28]. In addition Evidential 
Reasoning (ER) techniques are also adopted to capture FMEA team members diversity of 
opinions and prioritise failure modes under different types of uncertainty [29]. In order to 
take into account the relative importance of risk factors, researchers have suggested the use 
of Data Envelopment Analysis (DEA) to determine risk priorities of failure modes. In a recent 
paper the calculation of RPN using fuzzy variables is further refined to integrate the 
weighted least square method, the method of imprecision and the partial ranking method to 
improve risk priority calculations and better deal with uncertainty [30]. Finally to address 
economical aspects related to the FMEA, Hassan et al. [31] have suggested a cost based 
FMEA aimed at improving quality/cost ratio. 

In many manufacturing environments it is important to be able to carry out failure analysis 
earlier on during the development stage. To perform an FMEA during the conceptual design 
requires a great deal of expertise and knowledge. Sometimes this knowledge is not readily 
available within the company. To overcome this limitation Stone et al. [32] have proposed a 
novel knowledge-base design methodology called Function Failure Design Method that allows 
designers to perform failure analysis during conceptual phase. A knowledge base of historical 
failures is used to link failure modes to functionalities and guide the designer to an improved 
design by predicting failures on the basis of product's functionalities.  

The knowledge and information in the form of spreadsheets or tables accumulated while 
performing an FMEA may become vast and it is often unpractical to try to reuse this 
information. There is hence the need to develop strategies to reuse the FMEA knowledge so 
that the FMEA process can be automated. Automatic FMEA generation is particularly useful 
during conceptual design to overcome the issue of keeping the FMEA knowledge up to date. 
Researchers have demonstrated that FMEA knowledge can be reused through a knowledge 
modelling approach assisted by functional reasoning techniques to enable automated FMEA 
generation from historical data [33]. An alternative approach is to reuse FMEA knowledge for 
continuous process improvement. For instance, Xiuxu et al. [34] have demonstrated how the 
knowledge accumulated during FMEAs can be stored and retrieved to create an FMEA 
knowledge-base repository to assist operators in decision making to improve the reliability 
and quality of products.  
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2.1 Motivation of present work 

Process FMEA is widely used in foundries to systematically identify ways in which a process 
can fail and, once root causes have been established, devise corrective action. In a foundry 
situation typically casting defects are caused by multiple root causes which are the results 
of complex interactions of different process settings. Because of this, FMEA activities based 
solely on team member subjective knowledge are often unable to capture multiple root 
causes. In the case study presented in this paper a steel foundry had the requirement of 
achieving 0% fractured surface area with conchoidal nature during facture test. However 
fracture tests were failing on conchoidal fracture. As shown in the scatter diagram in Figure 
3, conchoidal fracture shows variability of values across heats.   

 

 

Figure 3: The scatter plot of response, namely conchoidal fracture, shows variability of 
response values. 

 

An FMEA applied to the melting process was conducted as part of the process improvement 
activities and it is shown in Figure 4.  Improper settings of chemistry parameters were 
identified as potential failure modes and lack of training in various melting practices was 
considered the only type of root cause. Although lack of training is one possible root cause, 
in order to achieve continual process improvement, process engineers need to be able to 
develop hypotheses about root causes that are specific for a given process and product. In 
the context of foundries product specific process knowledge is defined as actionable 
information, in terms of the optimal tolerance limits and target values for continuous factors 
and optimal levels for discrete factors, in order to achieve desired process response(s) [21]. 
Process knowledge can be obtained by developing a sound understanding of the relationships 
between process factors and responses for a specific casting. Knowing which ranges of 
process factors are associated with desired/undesired response values can help process 
engineers to develop hypotheses about root causes of defects. Such knowledge can be 
gained by analysing sometimes weak patterns in noisy in-process data and re-using existing 
product specific process knowledge.  

In the next section a novel approach for dynamic update and re-use of FMEA knowledge 
during process improvement activities is presented. This approach builds on existing 
research carried out as part of the 7Epsilon methodology to promote discovery and re-use of 
product specific process knowledge [2]. The product specific process knowledge discovered 
by analyzing in-process data is re-used in the context of FMEA to quantify potential causes of 
defects and find new tolerance limits of process parameters. The new tolerance limits can 
be adopted to devise preventive and corrective actions specific for a certain process and 
part. The newly discovered product specific process knowledge is then used to dynamically 
update FMEA tables stored in a knowledge base.  
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Figure 4 - FMEA applied to continual process improvement activities aimed at reduction 
percentage of conchoidal fractured surface of steel casting. When FMEA is based on 
subjective knowledge there is the risk that the identified causes are too generic.  

 

3 A SYSTEMATIC APPROACH TO ROOT CAUSE ANALYSIS BASED ON CO-LINEARITY INDEX 
AND PENALTY MATRICES 

In the next sections a novel approach for root cause analysis in the foundry industry is 
presented. It combines evidence obtained by analysing in-process data with systematic re-
use of process knowledge via a knowledge repository and consists of several steps: 

 Visualisation of noise free correlation using the co-linearity index methodology 

 Product specific process knowledge discovery with penalty matrices 

 Hypotheses validation and confirmation trials 

 Update and re-use of FMEA knowledge 

The steps are illustrated through an industrial process improvement case study aimed at 
reduction of percentage of conchoidal fractured surface area during melting sub-process in 
steel casting.  
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3.1 Mathematical formulation and notation 

In steel foundries data are routinely being collected as part of the requirement of ISO9001 
standard. A typical dataset contains about 20-40 process variables and a number of 
observations between 50 and 100. In-process multivariate data can be mathematically 
represented as a matrix 𝑋  of dimension 𝑚 × 𝑛  where 𝑚  is the number of process 
observations is and 𝑛 is the total number of process variables, including process inputs and 
process outputs (also referred as responses).  

 

𝑋 =  [

𝑥11 ⋯ 𝑥1𝑛

⋮ ⋱ ⋮
𝑥𝑚1 ⋯ 𝑥𝑚𝑛

]  (1) 

 

The matrix 𝑋 may contain a mixture of categorical variables such as operator name, shift, 
and days of the week as well as continuous variables like chemistry concentration, values of 
temperatures and moisture. Responses are typically occurrences of defects like shrinkage or 
inclusion as well as material properties such as yield strength, toughness or ductility. An 
example of mathematical representation of data sets is shown in Figure 5. 

Process Responses
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Figure 5: Multivariate in-process data consists of responses, categorical and continuous 
factors. 

Given in-process data where each column has been centred about the mean, the covariance 
matrix is defined as 

 

𝐶𝑜𝑣 =  
1

𝑚−1
𝑋𝑡𝑋. (2) 

 

The pair wise correlation of any two variables 𝑖 and 𝑗 can be estimated by calculating the 
sample correlation coefficient defined as 

 

 𝑟𝑖,𝑗 =
𝐶𝑜𝑣(𝑖,𝑗)

𝜎𝑖𝜎𝑗
        (3) 

 

where 𝜎𝑖  and 𝜎𝑗  are the standard deviations calculated from the set of observations (i.e. 

columns of the matrix 𝑋). The correlation coefficient is a number between zero and one and 
indicates the degree of linear dependency of the two variables. Geometrically, for centred 
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data, the correlation coefficient is the cosine of the angle formed by the two vectors 

representing the variables in the m dimensional space of the observations.  

3.2 Visualisation of noise free correlations via the co-linearity index 

When performing root cause analysis, hypotheses about potential root causes of defects can 
be generated by examining the correlations between process factors and responses from in-
process data. In particular the co-linearity methodology index has been developed to 
simultaneously visualise, in a simple two dimensional plot, noise free correlations between 
factors and responses [21, 22]. Although a causal relationship cannot be inferred by just 
looking at correlation, the co-linearity plots can support root cause reasoning during FMEA 
meetings. One advantage of the co-linearity index methodology is the ability to perform 
simultaneous analysis of categorical and continuous data as shown in [22].  In order to mix 
categorical and continuous data, pre-processing data transformations are applied as 
explained in detail in [22]. Also responses are transformed using a penalty matrix approach 
that penalises deviation from desired responses.  

3.2.1 Response transformation using penalty functions 

Responses are scaled using penalty functions which penalise deviation from desired 
responses [21]. If lower values of response correspond to a desirable outcome, a penalty 
value of 1 is given to response values above a certain threshold 𝑇𝑚𝑎𝑥 and penalty value 0 to 
response values below a certain threshold 𝑇𝑚𝑖𝑛 . Vice versa applies if higher values 
correspond to desirable outcomes. The full set of transformations is given in Table 1. 
Thresholds can be chosen based on subjective knowledge or some heuristic rules have been 
suggested [22]. The use of penalty functions help to highlight patterns related to 
desirable/undesirable responses. 

Table 1: Penalty functions scaling for responses 

Response Transformation 

Lower the better 

𝑥𝑖𝑗 = 0, if 𝑥𝑖𝑗 ≤  𝑇𝑚𝑖𝑛  

𝑥𝑖𝑗 = 1,  if 𝑥𝑖𝑗 ≥  𝑇𝑚𝑎𝑥 

𝑥𝑖𝑗 =
 𝑥𝑖𝑗− 𝑇𝑚𝑖𝑛

𝑇𝑚𝑎𝑥−𝑇𝑚𝑖𝑛
 otherwise. 

Higher the better 

𝑥𝑖𝑗 = 0, if 𝑥𝑖𝑗  ≥  𝑇𝑚𝑎𝑥  

𝑥𝑖𝑗 = 1,  if 𝑥𝑖𝑗 ≤  𝑇𝑚𝑖𝑛 

𝑥𝑖𝑗 =
 𝑥𝑖𝑗− 𝑇𝑚𝑎𝑥

𝑇𝑚𝑖𝑛−𝑇𝑚𝑎𝑥
 otherwise. 

In the current example, an upper threshold of 10% and lower threshold of 0% were chosen 
that correspond respectively to undesired and desired values of responses.  

3.2.2 Categorical and continuous data transformations 

If mixed data are present, a set of data transformations is applied to both categorical and 
continuous factors so that they can be analysed simultaneously. Detailed description of 
these transformations can be found in [22]. For continuous variables a data transformation 
based on median and quartile has been proved to be more effective compared to 
standardisation using mean and standard deviation. Categorical variables are transformed so 
that PCA can be carried out simultaneously with continuous variables. In the case study 
presented in this paper it was decided to include only continuous variables but the proposed 
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approach can be applied to the general case of heterogeneous data containing a mixture of 
categorical and continuous variables. 

3.2.3 Balancing group of variables 

The final step of data pre-treatment is to balance the influence of different group variables 
(responses, categorical and continuous variables). This is achieved by performing a separate 
PCA analysis of the groups and then dividing data columns of each set by the respective 
square root of their maximum eigenvalue [22]. 

3.2.4 Calculation of the co-linearity index 

Let us denote with 𝑋𝑇 the transformed and balanced in-process data matrix whose columns 
have been centered about the mean. The co-linearity index is an approximation of the 
correlation between two variables calculated in a reduced dimensional space obtained by 
means of PCA.  The co-linearity index is calculated by applying PCA to the covariance 
matrix. In order to reduce noise PCA seeks to find a new orthogonal basis (i.e. principal axis) 
where it is possible to filter out the noise [35]. The new basis is chosen so that the first axis 
maximises the variance of the projections of the observations to the axis, which is 

equivalent to finding a unit vector  that maximises the quadratic form 

[21]. By using simple linear algebra properties, it can be shown that the 

eigenvector of corresponding to the maximum eigenvalue is the direction that 

maximises . The second axis is then given by the eigenvector corresponding to the 

second highest eigenvalue and so on. PCA finds the eigenvectors of Cov  which are arranged 

in a matrix denoted as V  containing the eigenvectors as column vectors ordered by greatest 
eigenvalues. Let us denote with 𝐿 the loading matrix in full dimension as:  

 

𝐿 =  𝐷𝑠
−1𝑉 𝐷𝑒 (4) 

 

where 𝐷𝑠is the diagonal matrix containing the standard deviations of the columns of 𝑋𝑇 and 
𝐷𝑒 is the diagonal matrix containing the square roots of eigenvalues. The multiplication by 
the inverse of 𝐷𝑠 is due to the fact that the global analysis is performed on the covariance 
matrix rather than the correlation matrix. Using simple linear algebra properties it can be 
shown that 𝐿𝐿𝑡  is the correlation matrix of the dataset. In the lower dimensional space 
spanned by the first 𝑝 principal components the loadings are calculated by removing the last 

𝑛 − 𝑝 coordinates of each row vector of 𝐿. The resulting 𝑛 × 𝑝 matrix, denoted with 𝐿𝑝, is 

the loading matrix in the reduced space. The cosine of the angle between the reduced 

loadings (rows of 𝐿𝑝)  is an approximation of the correlation. This is calculated from the 

inner product of the reduced loadings as: 

 

𝑐𝑜𝑠𝑖𝑛𝑒(𝑖, 𝑗) =  
<𝑙𝑖,𝑙𝑖>

|𝑙𝑖||𝑙𝑗 |
 (5) 

 

For each variable 𝑗, the co-linearity index with respect to variable i  can be plotted in a 2D 
space by drawing a bi-dimensional vector with the same magnitude as the reduced loading 
vector of 𝑗 and angle equal to the cosine of the angle between the reduced loadings of 𝑖 and 
𝑗. By means of co-linearity plots process engineers are able to view correlations between 
process variables and response in a lower dimensional space where the noise has been 
filtered out by means of PCA. 
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3.2.5  How many principal components? 

The choice of the right number of principal components is critical to the successful 
implementation of the co-linearity index. If too many components are retained, noise is 
included causing a distortion of the correlations, while if too few variables are chosen 
important information may be lost. A great deal of literature has discussed the choice of 
principal components and several methods have been suggested [36-39]. These include “ad 
hoc” rules such as Kaiser’s and Joliffe’s rules suggesting to retain components whose 
eigenvalues are greater or equal than a given threshold (1 for Kaiser’s rule and 0.7 for 
Joliffe’s rule) and methods that use a more rigorous statistical approach, either based on  
resampling methods such as bootstrap and cross validation or on distributional assumptions. 
Although “ad hoc” methods seem to work well in most cases, they do not have any rigorous 
mathematical justification. Usually the analyst will decide which rules are more 
appropriated based on domain knowledge and the structure of the dataset. Stopping rules 
based on statistical foundations are often computationally expensive and more difficult to 
implement. Furthermore it is argued that the performance of different stopping rules may 
also be dependent on variable correlations and the number of observations and variables 
[37].  

When applying the co-linearity index to mixed and balanced data it has been suggested to 
use the rule of thumb of including all the components whose respective eigenvalues are 
greater or equal to 0.7 [22].   This rule was appropriate for data sets analysed in [22] but, 
for the dataset used in this case study, it seems to underestimate the number of principal 
components. In fact the suggested rule would only retain one component to account for 48% 
of the variance. Following a simulation study it was found that the best criteria for the 
choice of principal components, in the case of mixed data, is to take as a cut off the average 

eigenvalue �̅�. According to this rule, a component is retained if its corresponding eigenvalue 

is greater or equal to �̅�.  For the data set discussed in this paper this equates to retain three 
components to account for 75.7% of the variance. Further investigation is needed to find out 
whether rules based on bootstrap or cross-validation can provide more general purpose 
criteria to be applied to foundry in-process data.  

3.2.6 Co-linearity index plots 

An example of co-linearity index plot is displayed in Figure 6. It refers to data collected as 
part of process improving activities aimed at reducing the incidence of conchoidal fractured 
surface are in a steel casting process. Five regions are identified according to strength of 
correlation:  

 No correlation: one central region with co-linearity index between -0.2 and 0.2  

 Weak positive correlation: intermediate region between  0.2 and 0.5 

 Weak negative correlation: intermediate region between -0.5 and -0.2  

 Strong positive correlation: extreme region between 0.5 and 1 

 Strong negative correlation: extreme region between -1 and -0.5 
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Figure 6: The co-linearity plot is used during FMEA meetings to investigate noise free 
correlation between process factors and penalty values of response (conchoidal 

fracture). 

 

From the plot it can be noted that %Ti is identified as having strong positive correlation with 
conchoidal fracture penalty values. An hypothesis can then be formulated of the existence 
of a potential causal relationship between high values of %Ti and high values of conchoidal 
fracture. The co-linearity plots can be examined during root cause analysis meetings to 
identify potential roots causes. In the context of foundry processes, the latter are 
measurable factors being in a range associated with undesired responses. In order to 
associate ranges of factors with desired/undesired responses penalty matrices are 
subsequently used.  

3.3 Product Specific process knowledge discovery with penalty matrices 

Penalty matrices are a way to visually discover ranges of measurable factors that are 
associated with desired/undesired responses. The penalty matrix algorithm described in [21] 
bins data according to quartile of factor values and levels of responses. Responses are 
penalised using the approach described in Section 3.2.1. When performing root cause 
analysis, penalty matrices can be used to associate ranges of factors to desired/undesired 
responses. As shown in Figure 7, observations corresponding to Bottom 50% of Ti (Q1 and Q2) 
are associated with low values of penalty functions (desired response) while Top 50% Ti (Q3 
and Q4) are associated with high values of penalty function (undesired response). In this 
case evidence from data suggests that a possible root cause for high conchoidal fracture is 
%Ti being in the Top 50% range, namely 0.011 < %𝑇𝑖 ≤  0.016. 
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Figure 7: The Penalty Matrix of Conchoidal Fracture for %Ti shows regions of desired 
and undesired response.  

 

3.4 Hypotheses validation and confirmation trials 

Correlations discovered with the co-linearity index and penalty matrices are not sufficient to 
infer causal relationships between ranges of factors and desired/undesired responses.  
Findings of the analysis need to be discussed during process improvement meetings so that 
hypotheses can be validated by re-using domain knowledge. Optimal and avoid ranges 
discovered by analysing patterns in data are compared with trends found during past process 
improvement activities and available literature review accessed via a knowledge repository. 
Causation is then inferred if the results of the analysis are supported by the knowledge base, 
otherwise it is suggested that correlations should be dropped. Following a brainstorming 
session a few hypotheses are selected to be verified during confirmation trials.   

3.5 Update and re-use of FMEA knowledge 

Upon successful completion of confirmation trials the newly discovered root causes can be 
used to update the FMEA spreadsheet. Potential root causes are ranges of factors that are 
associated with undesired responses. A corrective action can be devised by changing the 
specification range of this factor to being outside the range associated with undesired 
response values. An updated FMEA table is displayed in Figure 8. The new root cause and 
corrective action have been included in the table. 

 

Figure 8: Improved FMEA table: %Ti in Top 50% range has been identified as a root cause 
for high incidence of conchoidal fracture. A new tolerance limit is suggested to prevent 

the occurrence of the failure. 
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It is recommended that the new knowledge embedded in the FMEA table is stored in a 
knowledge repository for future re-use so that the knowledge loop is closed and existing 
FMEA knowledge can be used to continually improve the process. As part of the 7Epsilon 
initiative a knowledge repository for re-use of product specific process knowledge is 
currently under development [2]. 

4 CONCLUSION 

In this paper a systematic approach to discover root causes of defects during process FMEA in 
the foundry industry has been illustrated. This work builds on previous research focused at 
developing data driven methodologies to discover product specific process knowledge in 
foundries. It overcomes limitations of current FMEA approaches in foundries because it 
facilitates the discovery of product and process specific root causes that are quantifiable in 
terms of measurable factors being in an unsuitable range. This approach enables quality 
engineers to find improvement opportunities and refine current tolerance limits of process 
factors to achieve continual process improvement. 
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