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a b s t r a c t 

This work addresses the multi-objective optimisation of manufacturing strategies of monoclonal antibod- 

ies under uncertainty. The chromatography sequencing and column sizing strategies, including resin at 

each chromatography step, number of columns, column diameters and bed heights, and number of cycles 

per batch, are optimised. The objective functions simultaneously minimise the cost of goods per gram 

and maximise the impurity reduction ability of the purification process. Three parameters are treated as 

uncertainties, including bioreactor titre, and chromatography yield and capability to remove impurities. 

Using chance constraint programming techniques, a multi-objective mixed integer optimisation model 

is proposed. Adapting both ε-constraint method and Dinkelbach’s algorithm, an iterative solution ap- 

proach is developed for Pareto-optimal solutions. The proposed model and approach are applied to an 

industrially-relevant example, demonstrating the benefits of the proposed model through Monte Carlo 

simulation. The sensitivity analysis of the confidence levels used in the chance constraints of the pro- 

posed model is also conducted. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

The market of biopharmaceutical products is currently in a fast- 

development stage, in which the sales of monoclonal antibodies 

(mAbs) products, important biopharmaceutical drugs for the treat- 

ment of cancer, autoimmune diseases, cardiovascular disease, etc., 

have grown rapidly. There were approximately $90 billion global 

sales in 2015, representing about 58% of the sales of all biophar- 

maceuticals. It is expected that the worldwide sales will increase 

to $110 billion by 2018 and $150 billion by 2021 ( Levine and 

Cooney, 2017 ). In the manufacturing processes of the mAb prod- 

ucts, chromatography operations in the downstream processing 

(DSP) are critical steps, which not only represent a large proportion 

of the total manufacturing cost, but also play an important role in 

the determination of the purity of final products. Thus, it is critical 

to identify the chromatography purification process in the biophar- 

maceutical manufacturing processes to produce cost-effective and 

reliable high-purity biopharmaceutical drugs. 

Optimisation-based approaches exist in the literature for the 

optimal decision-making on downstream purification processes. 

The optimal synthesis of protein purification processes was ad- 

∗ Corresponding author. 
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(L.G. Papageorgiou). 

dressed by developing mixed integer programming models and 

solution approaches ( Vassquez-Alvarez et al., 2001; Simeonidis 

et al., 2005; Natali et al., 2009; Polykarpou et al., 2011 ). A meta- 

heuristic optimisation approach with genetic algorithms was pro- 

posed and applied to the production of mAbs to optimise pu- 

rification sequences and chromatography column sizing strategies 

( Simaria et al., 2012 ). Mixed integer optimisation models were also 

proposed to determine the optimal development of bioprocesses, 

using a hybrid simulation-optimisation decomposition algorithm 

for solution ( Brunet et al., 2012 ). Mixed integer programming tech- 

niques were applied for the optimal chromatography column siz- 

ing decisions in mAb manufacturing with different facility con- 

figurations, to minimise the cost of goods per gram (COG/g) ( Liu 

et al., 2013a,b ). The same authors further extended these mod- 

els to integrate both chromatography sequencing and column siz- 

ing decisions using mixed integer linear fractional programming 

(MILFP), where Dinkelbach’s algorithm was adapted for solution 

approach ( Liu et al., 2014, 2015 ). Integrated decision tools com- 

bining bioprocess economics and optimisation were developed for 

the most cost-effective process flowsheets in allogeneic cell ther- 

apy manufacturing ( Simaria et al., 2014; Hassan et al., 2015 ). Re- 

cently, another approach for the optimisation of biopharmaceuti- 

cal downstream processes was developed by integrating detailed 

mechanistic models and artificial neural networks to maximise the 

https://doi.org/10.1016/j.compchemeng.2018.09.015 

0098-1354/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Nomenclature 

Indices 

r resin 

s downstream step 

Sets 

CS set of chromatography steps including capture, inter- 

mediate purification, polishing 

R s set of resins suitable to chromatography step s 

Parameters 

A 

l 
s confidence level in chance constraint for LRV at chro- 

matography step s 

A 

t confidence level in chance constraint for titre 

A 

y 
s confidence level in chance constraint for yield at chro- 

matography step s 

brv bioreactor volume, L 

cy sr yield of resin r at chromatography step s 

cyd l s lower bound of triangular distribution of yield devia- 

tion at chromatography step s 

cyd 
p 
s peak of triangular distribution of yield deviation at 

chromatography step s 

cyd u s upper bound of triangular distribution of yield devia- 

tion at chromatography step s 

dem annual demand, g 

f parameter in Dinkelbach’s algorithm representing fac- 

tion from previous iteration 

lrv sr LRV of resin r at chromatography step s 

lrv d l s lower bound of triangular distribution of LRV deviation 

at chromatography step s 

lrv d p s peak of triangular distribution of LRV deviation at 

chromatography step s 

lrv d u s upper bound of triangular distribution of LRV devia- 

tion at chromatography step s 

maxbn maximum number of batches 

ncy s yield at non-chromatography step s 

titre upstream bioreactor titre, g/L 

titre l lower limit of triangular distribution of upstream 

bioreactor titre, g/L 

titre p peak of triangular distribution of upstream bioreactor 

titre, g/L 

titre u upper bound of triangular distribution of upstream 

bioreactor titre, g/L 

TLRV 

min minimum required total LRV of the process 

TLRV 

U upper bound of total LRV of the process 

α bioreactor working volume ratio 

δ parameter in Dinkelbach’s algorithm representing tol- 

erance of objective function 

�TLRV incremental step of total LRV of the process 

σ batch success rate 

� triangular cumulative distribution function of uncer- 

tain titre 

�̄s triangular cumulative distribution function of uncer- 

tain resin yield deviation 

˜ �s triangular cumulative distribution function of uncer- 

tain resin LRV deviation 

Continuous Variables 

AP annual product output, g 

COG annual cost of goods, £

LRV s LRV at chromatography step s 

M 0 initial product mass entering downstream processes 

per batch, g 

M s product mass per batch after step s , g 

OBJ 1 objective 1: COG/g 

OBJ 2 objective 2: total LRV 

Binary Variables 

U sr 1 if resin r is selected at chromatography step s ; 0 oth- 

erwise 

Auxiliary Variables 

UM s −1 ,r ≡ U sr · M s −1 

yield of a process with three different chromatographic columns 

( Pirrung et al., 2017 ). 

In addition, dealing with uncertainty is also an important is- 

sue investigated in the literature on the optimisation of biophar- 

maceutical manufacturing process, which is sensitive to uncertain 

process parameters. The cost-effective equipment sizing strategies 

of a real purification process were addressed and a combinatorial 

closed-loop optimisation problem was formulated and solved by 

evolutionary algorithm, considering uncertain titre ( Allmendinger 

et al., 2012, 2014a ). An optimisation framework was developed to 

address the integrated optimisation of both upstream processing 

(USP) and DSP of the mAb manufacturing, including bioreactor siz- 

ing and chromatography sequencing and column sizing strategies, 

under uncertainties in titre and chromatography yield. A chance 

constrained programming (CCP) based mixed integer linear pro- 

gramming (MILP) model was developed to tackle the uncertain- 

ties there ( Liu et al., 2016 ). A Markov decision model was devel- 

oped to identify the optimal condition-based bioreactor harvesting 

policies, and the IgG 1 antibody production was investigated as a 

case study ( Martagan et al., 2016 ). Ensemble modelling approach 

was used to account for uncertainties in bioprocess optimisation 

involving maximisation of the lower confidence bound of the de- 

sired bioprocess objective, using a mean-standard deviation util- 

ity function, and was applied to a mAb batch production problem 

( Liu and Gunawan, 2017 ). An optimisation framework, including a 

Markov decision model and state space structural analysis, was de- 

veloped to deal with the trade-offs between yield and purity, start- 

ing material uncertainties, purification capability limitations, and 

interlinked decisions involving multiple purification steps for engi- 

neered proteins ( Martagan et al., 2018 ). 

All above works considered only single objective for optimisa- 

tion, while in the real practice, there is more than one criterion to 

measure the performance of manufacturing processes, which need 

to be taken into account simultaneously when optimising the rel- 

evant strategies, in order to achieve a balance among them. An 

optimisation framework with an evolutionary multi-objective op- 

timisation algorithm was developed to consider multiple objec- 

tives, including COG/g, robustness in COG/g, and impurity removal 

capabilities, in the optimisation of mAb manufacturing process 

( Allmendinger et al., 2014b ) Another decision-making framework 

on rapid resin selection in biopharmaceutical purification process 

development considered both yield of purification process and pu- 

rity of the target protein as objective functions, which were op- 

timised by a mathematical programming model ( Liu et al., 2017 ). 

Recently, a deterministic multi-objective optimisation model of a 

biopharmaceutical manufacturing process was developed to opti- 

mise both the cost and impurity removal capabilities of the purifi- 

cation process ( Liu and Papageorgiou, 2018 ). 

In this work, the model in Liu et al. (2014) is ex- 

tended to address the multi-objective optimisation of bio- 
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Fig. 1. A typical mAb manufacturing process. 

pharmaceutical manufacturing processes under uncertainty. 

Both chromatography sequencing and column sizing strate- 

gies of a mAb purification process are determined in or- 

der to achieve optimal COG/g and impurity removal ca- 

pability at the DSP. Uncertainties in titre, chromatography 

resin yield and impurity reduction ability are taken into 

account, which have a significant impact on the economic 

and production efficiency of the process, respectively. A CCP-based 

multi-objective mixed integer optimisation model is proposed 

to handle the uncertainties, and efficient solution approaches 

are developed for Pareto-optimal solutions. To the best of our 

knowledge, it is the first attempt in the literature to develop 

mathematical programming-based models to solve multi-objective 

optimisation problems of biopharmaceutical manufacturing under 

uncertainty. 

The remaining of this paper is organised as follows: 

Section 2 describes the multi-objective optimisation problem. 

The mathematical formulation of the proposed optimisation model 

is given in Section 3 , followed by the proposed solution approach 

in Section 4 . Section 5 presents an industrially-relevant example, 

and the computational results of optimisation and simulation are 

shown and discussed in Section 6 . Finally, the concluding remarks 

are drawn in Section 7 . 

2. Problem statement 

In this work, a multi-objective optimisation problem of the mAb 

manufacturing strategies, including the chromatography sequenc- 

ing and column sizing strategies in the DSP, under uncertainty are 

addressed, to optimise both COG/g and impurity removal capability 

of a mAb purification process illustrated in Fig. 1 . In this process, 

after mammalian cells cultured in bioreactors at the USP, the mAb 

is recovered, purified and cleared from potential viruses and impu- 

rities in the DSP with three packed-bed chromatography steps for 

capture, intermediate purification and polishing, respectively. 

In each chromatography step, the resin is determined among 

a number of suitable candidates, which are categorised in to dif- 

ferent types. It is assumed that at most one resin is allowed to 

be selected from the candidates in each type into the sequence to 

utilities the orthogonal separation mechanisms. Besides the chro- 

matography sequencing decisions for resin selection, chromatogra- 

phy column sizing strategies are also to be determined, including 

the bed heights, diameters, number of chromatography columns, 

as well as the number of running cycles per batch. The optimal 

decisions are chosen from a set of given discrete candidate values. 

Similar to the previous work ( Liu et al., 2013a,b, 2014, 2015 ), the 

COG/g, which is equal to the annual total cost of goods (COG) di- 

vided by the annual total output, is aimed to be minimised in this 

work. In addition, the impurity removal capability of the purifica- 

tion process is maximised as another objective function. Therefore, 

a bi-objective optimisation problem is considered in this work. 

To model the impurity removal capability, the host cell proteins 

(HCPs), produced or encoded by the organisms and unrelated to 

the intended mAb product, are investigated as the critical impu- 

rity in this work, and must be removed during DSP ( Levy et al., 

2014 ), due to their antigenic effects in patients. Each candidate 

resin’s logarithmic removal value (LRV) of HCPs is given, a measure 

of the resin’s HCPs removal capability defined as the logarithm of 

the ratio of concentrations of HCPs in the outflow and inflow of 

the resin. The total LRV of the process is the summation of LRVs 

of all resins selected in the process, and therefore affected by the 

chromatography sequencing strategies. 

The key parameters in this problem, bioreactor titre and the 

chromatography yield and LRV of each resin, are associated with 

uncertainty, due to the fluctuations in USP and sensitivity of op- 

erating conditions. In this work, the above mentioned three uncer- 

tain parameters are assumed to follow triangular probability distri- 

butions ( Stonier et al., 2013; Allmendinger et al., 2012, 2014a,b ). It 

is also assumed that the realised values of each uncertain parame- 

ter remain the same in different batches ( Liu et al., 2016 ). 

The multi-objective optimisation problem addressed in this 

work can be described as follows: 

Given are: 

• manufacturing process of a mAb product; 
• upstream bioreactor titre; 
• candidate chromatography resins at each step, and their key 

characteristics, e.g., yield, linear velocity, buffer usage, dynamic 

binding capacity, and LRV of HCPs; 
• key characteristics of non-chromatography steps, e.g., yield, 

time and buffer usage; 
• relevant cost data, e.g., reference equipment costs, labour wage, 

resin, buffer and media prices; 
• candidate column diameters and heights, numbers of columns 

and cycles; 
• probability distributions of titre, chromatography yields and 

LRVs of HCPs; 

To determine: 

• chromatography sequencing strategies, i.e., resin at each chro- 

matography step; 
• chromatography column sizing strategies, i.e., column diameter 

and bed height, number of columns, and number of cycles per 

batch at each chromatography step; 
• product mass and volume, and buffer usage volume; 
• number of total completed batches; 
• annual total processing time; 

So as to: 

minimise the COG/g and maximise the total LRV of the whole mAb 

purification process. 
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3. Mathematical formulation 

In this section, a CCP-based multi-objective optimisation model 

for the optimal chromatography sequencing and sizing decisions is 

presented, to deal with uncertainties in titre and chromatography 

resin yields and LRVs of HCPs, based on the literature MILFP model 

for DSP purification process optimisation ( Liu et al., 2014 ), which is 

given in the Supplementary Material. There are a large number of 

constraints and variables for the modelling of the highly complex 

process, including the product masses and volumes, buffer volumes 

and processing times in downstream operations, the calculation of 

relevant cost terms, and the linearisation the nonlinear constraints 

in the proposed optimisation model. Only the newly developed 

constraints in this work are presented in this section. 

The uncertain upstream titre, chromatography resin yields and 

LRVs of HCPs are tackled using the classic CCP approach, in which 

a risk tolerance is determined by the decision maker as a per- 

missible probability of violation in the constraints involving uncer- 

tain parameters ( Charnes and Cooper, 1959 ). The developed chance 

constraints are transformed into their deterministic equivalent for- 

mulations using the expression of the inverse cumulative distribu- 

tion function. The chance constraints for three parameter sets in 

the CCP approach are presented next in this section. 

3.1. Chance constraints for uncertain titre 

In the deterministic model, the initial protein mass from the 

upstream processes in each batch, M 0 , is determined by the biore- 

actor titre, titre , and the working volume of bioreactor: 

M 0 = t it re · α · brv (1) 

where α is the working volume ratio of the bioreactor, and brv 

is the volume of the single bioreactor, estimated by a rule-based 

method ( Simaria et al., 2012; Liu et al., 2013a,b, 2016 ), as follows: 

brv = 

dem 

α · titre · maxbn · σ · ∏ 

s ∈ CS min 

r∈ R s 
cy sr ·

∏ 

s / ∈ CS nc y s 
(2) 

where dem is the target demand; maxbn is the maximum batches 

allowed, determined by the number of bioreactors utilised; σ is 

batch success rate; and cy sr and ncy s are the yields at chromatog- 

raphy and non-chromatography steps, respectively. 

When the parameter, titre , becomes uncertain, to develop a 

chance constraint to model uncertainty, Eq. (1) is firstly converted 

into an inequality, as shown in Eq. (3) in which M 0 is upper- 

bounded as it is maximised to achieve the minimum COG/g: 

M 0 ≤ t it re · α · brv (3) 

The corresponding chance constraint is formulated by enforcing 

the probability of the inequality above a certain limit, as follows: 

Pr ( M 0 ≤ t it re · α · brv ) ≥ A 

t (4) 

where A 

t is a minimum prespecified probability that Eq. (3) will 

hold true, as confidence level taking a value between 50% and 

100%. 

The above Eq. (4) can be written using the probability of the 

uncertain titre: 

1 − Pr 

(
t it re ≤ M 0 

α · brv 

)
≥ A 

t (5) 

Here, the upstream titre is assumed to follow a triangular 

probability distribution, Tr( titre l , titre p , titre u ), where titre l , titre p 

and titre u are lower bound, peak and upper bound, respectively. 

Its cumulative distribution function is denoted as �( titre ). Thus, 

Eq. (5) can be rewritten as Eq. (6) : 

�
(

M 0 

α · brv 

)
≤ 1 − A 

t (6) 

Using the inverse cumulative distribution function expression, 

the deterministic equivalent formulation of Eq. (3) is as follows: 

M 0 ≤ �−1 
(
1 − A 

t 
)

· α · brv (7) 

For an isosceles triangular distribution where t it r e u − t it r e p = 

t it r e p − t it r e l = �t it re , �−1 ( 1 − A 

t ) = t it r e l + 

√ 

2( 1 − A 

t ) · �t it re , if 

A 

t > 50%. The peak can also be used to estimate the bioreactor vol- 

ume in Eq. (2) . 

3.2. Chance constraints for uncertain yields 

The yield at a chromatography step links the product mass 

amount in the inflow and outflow of the step, determined by the 

selected resin’s yield: 

M s = 

∑ 

r∈ R s 
c y sr · UM s −1 ,r , ∀ s ∈ CS (8) 

where UM s −1 ,r is an auxiliary variable to represent U sr · M s −1 , in 

which U sr is a binary variable to indicate whether resin r is se- 

lected at chromatography step s , and M s is the mAb mass of each 

batch after step s . 

To model the uncertainty of resin yield, we introduce an uncer- 

tain parameter, cyd s , to denote the deviation of the selected resin’s 

yield from its standard value, cy sr , at chromatography step s . Thus, 

we can convert the constraint involving the uncertainty of resin 

yields into an inequality as follows: 

M s ≤
∑ 

r∈ R s 
c y sr · UM s −1 ,r · cy d s , ∀ s ∈ CS (9) 

Similarly, given a confidence level of Eq. (9) being true for each 

chromatography step s , A 

y 
s , its corresponding chance constraint can 

be formulated as: 

Pr 

( 

M s ≤
∑ 

r∈ R s 
c y sr · UM s −1 ,r · cy d s 

) 

≥ A 

y 
s , ∀ s ∈ CS (10) 

Here, the yield deviation, cyd s , is an uncertain parameter fol- 

lowing a triangular distribution, Tr ( cyd l s , cyd 
p 
s , cyd u s ) . The peak cyd 

p 
s 

is 100%, while cyd l s and cyd u s are lower and upper bounds of the 

yield deviation at chromatography step s . The cumulative distribu- 

tion function is denoted as �̄s ( cy d s ) . Thus, similar to the discus- 

sion to titre in Section 3.1 , Eq. (10) can be reformulated as below: 

M s ≤ �̄−1 
s 

(
1 − A 

y 
s 

)
·
∑ 

r∈ R s 
c y sr · UM s −1 ,r , ∀ s ∈ CS (11) 

where �̄−1 
s ( 1 − A 

y 
s ) = cyd l s + 

√ 

2( 1 − A 

t ) · �c y d s , if c yd u s − c yd 
p 
s = 

cyd 
p 
s − cyd l s = �cy d s and A 

y 
s > 50% . 

3.3. Chance constraints for uncertain LRVs 

To ensure the purity of the mAb product meets the target level 

after the purification process, HCPs, one of the critical impurities, 

must be removed during the process. The capability to remove 

HCPs of each resin is measured in terms of LRV, lrv sr . Thus, the LRV 

at each chromatography step is determined by the selected resin: 

LR V s = 

∑ 

r∈ R s 
lr v sr · U sr , ∀ s ∈ CS (12) 

To generate a chance constraint for uncertain LRV, Eq. (12) is 

converted into an inequality, with the introduction of an uncertain 

parameter, lrvd s , to represent the deviation of the selected resin’s 

LRV from its standard value at chromatography step s, lrv sr : 

LR V s ≤
∑ 

r∈ R s 
l r v sr · U sr · l rv d s , ∀ s ∈ CS (13) 
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where LRV s is restricted by an upper bound as it is aimed to be 

maximised at each step. 

Similarly, the corresponding chance constraint of Eq. (13) with 

a given confidence level of its being valid, A 

l 
s , is as follows: 

Pr 

( 

LR V s ≤
∑ 

r∈ R s 
l r v sr · U sr · l rv d s 

) 

≥ A 

l 
s , ∀ s ∈ CS (14) 

The uncertain LRV deviation, lrvd s , also follows a triangular dis- 

tribution, Tr ( l rv d l s , l rv d 
p 
s , l rv d u s ) , in which the peak, lrv d p s , is also 

100%, and lrv d l s and lrv d u s are the corresponding lower and upper 

bounds. Given its cumulative distribution, ˜ �s ( lrv d s ) , we have the 

following deterministic equivalent formulation of Eq. (13) : 

LR V s ≤ ˜ �−1 
s 

(
1 − A 

l 
s 

)
·
∑ 

r∈ R s 
lr v sr · U sr , ∀ s ∈ CS (15) 

Here, under an isosceles triangular distribution where 

l rv d u s − l rv d p s = l rv d p s − l rv d l s = �l rv d s , we have ˜ �−1 
s ( 1 − A 

l 
s ) = 

l rv d l s + 

√ 

2( 1 − A 

l 
s ) · �l rv d s when A 

l 
s > 50% . 

3.4. Objective functions 

This problem includes two objective functions to simultane- 

ously consider both cost and impurity reduction ability of the pu- 

rification process. The first objective, COG/g, i.e., the ratio of the 

total COG, COG , to the annual production, AP , is minimised: 

Min OB J 1 = 

COG 

AP 
(16) 

The second objective considers the maximisation of total impu- 

rity removal capability, which is represented by total LRV of the 

process, defined as the summation of the LRVs at all three chro- 

matography steps: 

Max OB J 2 = 

∑ 

s ∈ CS 

LR V s (17) 

Overall, the optimisation problem under uncertainty is for- 

mulated as a CCP-based multi-objective optimisation model (de- 

noted as MO 

–CCP) with chance constraints, Eqs. (7) , (11) , (15) , as 

well as other constraints, Eqs. (S.1)-(S.7), (S.9), (S.11)-(S.84) pro- 

vided in the Supplementary Material, and Eqs. (16) and (17) as 

the objective functions. When no uncertainty is considered, the 

deterministic optimisation model (denoted as MO-DET) includes 

Eqs. (12) , (S.1)-(S.84) in the Supplementary Material as constraints, 

and Eqs. (16) and (17) as the objective functions, which will be 

compared to the proposed MO 

–CCP model later in this work. 

4. Solution approach 

To solve the proposed multi-objective optimisation model in 

the above section, we adapt the classic ɛ -constraint method 

( Haimes et al., 1971 ; Chankong and Haimes, 1983 ), where only one 

objective is optimised and all other objectives are converted into 

constraints by setting an upper or lower bound to each of them, to 

achieve the minimum-cost solution under total LRV requirement. 

The obtained solutions are proven to satisfy the Pareto optimality 

( Miettinen, 1999 ). 

In the proposed multi-objective optimisation problem, between 

the two objectives, the COG/g is kept as the objective function, 

while the total LRV of HCPs is transformed as a constraint lim- 

ited by a lower bound. Thus, the multi-objective model MO-CCP is 

reformulated as a single-objective optimisation model, SO 

–CCP, as 

follows: 

Min 

COG 
AP 

s . t . 
∑ 

s ∈ CS 

LR V s ≥ T LR V 

min 

Eqs . ( 7 ) , ( 11 ) , ( 15 ) , ( S . 1 ) −( S . 7 ) , ( S . 9 ) , ( S . 11 ) −( S . 84 ) 

where TLRV 

min refers to the minimum required total LRV to ensure 

that the purity of final products is higher than the given target pu- 

rity level. By changing the value of TLRV 

min , a set of Pareto-optimal 

solutions can be achieved. The above SO 

–CCP model solved in each 

iteration of ɛ -constraint method is an MILFP model. Similar to the 

work of Liu et al. (2014, 2015, 2018 ), the Dinkelbach’s algorithm 

( Dinkelbach, 1967 ) is applied to the MILFP model by iteratively 

solving a number of MILP models, MILP-CCP, defined as follows: 

Min COG − f · AP 

s . t . 
∑ 

s ∈ CS 

LR V s ≥ T LR V 

min 

Eqs . ( 7 ) , ( 11 ) , ( 15 ) , ( S . 1 ) −( S . 7 ) , ( S . 9 ) , ( S . 11 ) −( S . 84 ) 

where f is a parameter whose value is updated by iterations. 

Overall, the proposed iterative solution approach integrating 

both ɛ -constraint method and Dinkelbach’s algorithm is illustrated 

in Fig. 2 . The proposed iterative solution procedure consists of 

solving a number of CCP-based MILP models iteratively, result- 

ing in a set of Pareto-optimal solutions of the developed multi- 

objective optimisation model under uncertainty, MO 

–CCP. Note 

that the similar procedure is also applicable to the deterministic 

multi-objective optimisation problem, MO-DET, by solving a collec- 

tion of deterministic MILP models. 

5. Case study 

In this section, an industrially-relevant example, based on a 

mAb purification process in a biopharmaceutical company, is intro- 

duced to examine the applicability of the proposed models and ap- 

proaches. There are 11 candidate commercial resins in two modes, 

binding-elution (BE) and flow-through (FT) and the following five 

types: 

• affinity chromatography (AFF); 
• cation-exchange chromatography (CEX 

• anion-exchange chromatography (AEX); 
• mixed-mode chromatography (MM); 
• hydrophobic interaction chromatography (HIC). 

The characteristics of these resin candidates are shown in 

Table 1 , where the standard values of yield and LRV of each resin 

are shown, and their actual values during production may vary 

from those. 

As to the chromatography column sizing decisions, 11 discrete 

potential bed heights and 10 discrete potential diameters are avail- 

able for selection, as shown in Table 2 . There also could be up to 

4 parallel columns utilised at each chromatography step and each 

batch could run in at most 10 cycles. 

Here, multiple USP trains could be used to feed one DSP train. 

According to the previous work ( Liu et al., 2013a,b, 2014, 2015, 

2016, 2017 ), single bioreactor has higher cost efficiency than other 

cases. Therefore, only one bioreactor is considered in this case 

study, while multiple bioreactors can be easily accommodated into 

the proposed models. Considering a target demand of 500 kg, the 

volume of the single bioreactor can be calculated using Eq. (2) , 

which is 25,017 L. More data in the case study are given in the 

Supplementary Material (Tables S1-S3). The three uncertain param- 

eters considered in this work all follow isosceles triangular prob- 

ability distributions, as described in Table 3 . It is assumed that 

different chromatography steps use the same distribution function 

considering uncertain yield and LRV deviation. 
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Fig. 2. The proposed iterative solution approach of the proposed MO –CCP model. 

Table 1 

Characteristics of resin candidates. 

Resin Type Mode Binding 

capacity 

(g/L) 

Eluate 

volume 

(CV) 

Buffer 

volume 

(CV) 

Linear 

velocity 

(cm/h) 

Matrix 

lifetime 

(cycle) 

Matrix 

price 

(£/L) 

Standard yield Standard LRV of HCPs 

Cap. Int. Pol. Cap. Int. Pol. 

R1 AFF BE 50 2.3 37 150 100 9200 91% 95% - 3 1.5 - 

R2 AFF BE 30 2.3 37 300 100 6400 91% 95% - 3 1.5 - 

R3 AFF BE 50 2.3 37 800 100 9900 91% 95% - 3 1.5 - 

R4 AFF BE 30 2.3 37 10 0 0 100 90 0 0 91% 95% - 3 1.5 - 

R5 CEX BE 120 1.4 26 500 100 2500 86% - - 2 - - 

R6 CEX BE 40 1.4 26 300 100 400 86% 92% 92% 2 1 0.5 

R7 AEX FT 100 0 10 300 100 700 - 95% 95% - 0.5 0.3 

R8 MM FT 150 0 10 375 100 3500 - 90% 90% - 1.2 0.6 

R9 MM BE 50 1.4 26 100 100 1900 - 90% 90% - 1.5 0.8 

R10 MM BE 35 1.4 26 250 12 2700 - 90% 90% - 2 1 

R11 HIC BE 27.5 1.4 26 175 100 2500 - 89% 89% - 2 0.5 

Table 2 

Chromatography column size candidates. 

Decision Candidate values 

Bed height (cm) 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 

Diameter (cm) 50, 60, 70, 80, 90, 100, 120, 160, 180, 200 

Number of cycles 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Number of columns 1, 2, 3, 4 

Table 3 

Triangular probability distributions of uncertainty parameters. 

Parameter Lower bound Peak Upper bound 

titre 2 (g/L) 3 (g/L) 4 (g/L) 

cyd s 95% 100% 105% 

lrvd s 80% 100% 120% 

6. Results and discussion 

In this section, the proposed optimisation model and solution 

approach are applied to the above case study. Then, the obtained 

optimal manufacturing strategies are examined through Monte 

Carlo (MC) simulation. At last, the sensitivity analysis of confidence 

level is conducted. All computational runs were implemented in 

GAMS 24.7 ( GAMS Development Cooperation, 2016 ) on a 64-bit 

Windows 7 based machine with Intel Core i5-3330 3.00 GHz pro- 

cessor and 8.0 GB RAM, using CPLEX as MILP solver. 

6.1. Optimal results 

The proposed multi-objective optimisation model, MO 

–CCP, as 

well as the deterministic model, MO-DET, as the base case for com- 

parison, are solved. The confidence level of chance constraint feasi- 

bility in the MO 

–CCP model is set to 95%, i.e., A 

t = A 

y 
s = A 

l 
s = 95% . 

With a 95% confidence level, �−1 ( 1 − A 

t ) in Eq. (7) , �̄−1 
s ( 1 − A 

y 
s ) 

in Eq. (11) and 

˜ �−1 
s ( 1 − A 

l 
s ) in Eq. (15) are approximately equal to 

2.32, 96.58%, and 86.32%, respectively. 

To implement the proposed solution approach, the minimum 

total LRV requirement of the purification process is initially set 

to 3.4 g/L, and then is gradually increased to 5 g/L ( TLRV 

U ) with a 

step of 0.2 g/L ( �TLRV ), and therefore a Pareto curve consisting of 

9 Pareto-optimal solutions is obtained. The Pareto frontier of the 

MO 

–CCP model is compared with that of the MO-DET model in 

Fig. 3 , where the optimal chromatography sequence of each Pareto- 

optimal solution is also presented. Table 4 shows the optimal chro- 

matography column sizing decisions under each minimum total 

LRV requirement. 

Firstly, the optimal chromatography decisions of the MO-DET 

problem are focused on. R5 (CEX) is selected at the capture step 

when the minimum required total LRV is low ( < 4), but R3 (AFF) 

with a higher standard LRV (3) is chosen when the minimum re- 

quired total LRV increases, even it is much more expensive than 

R5. Meanwhile, R7 (AEX) is used for polishing at all optimal solu- 

tions. The actual total standard LRV of the whole process increases 

from 3.5 to 5.3, to meet the impurity removal capability require- 

ment. As to the chromatography column sizing decisions, only one 

chromatography column is used at all steps in all solutions, while 

the other decisions vary, except that only the column with a diam- 

eter of 100 cm is always used at the capture step. With increas- 

ing minimum required total LRVs, COG/g increases by 10% from 

£68.4/g to £75.2/g. 

Next, by comparing the solutions of MO 

–CCP to those of MO- 

DET, it can be seen that, for each minimum required total LRV, 
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Fig. 3. The optimal COG/g and chromatography sequences of the MO –CCP and MO-DET models. 

Table 4 

Pareto-optimal solutions of the MO –CCP and MO-DET models. 

Minimum total LRV Total standard LRV COG/g (£/g) Column diameter ∗ (cm) Column bed height ∗ (cm) No. of columns ∗ No. of cycles per batch ∗

Model MO-DET 3.4 3.5 68.4 100/50/70 15/15/17 1/1/1 4/10/6 

3.6 3.8 69.6 100/90/70 20/23/18 1/1/1 3/6/6 

3.8 3.8 69.6 100/90/70 20/23/18 1/1/1 3/6/6 

4.0 4.3 70.3 100/120/70 18/17/16 1/1/1 8/6/7 

4.2 4.3 70.3 100/120/70 18/17/16 1/1/1 8/6/7 

4.4 4.5 70.7 100/70/80 24/20/21 1/1/1 6/4/4 

4.6 4.8 72.5 100/160/60 18/23/21 1/1/1 8/2/7 

4.8 4.8 72.5 100/160/60 18/23/21 1/1/1 8/2/7 

5.0 5.3 75.2 100/180/70 16/22/18 1/1/1 9/3/6 

Model MO –CCP 3.4 4.3 97.9 100/120/60 16/19/22 1/1/1 7/4/5 

3.6 4.3 97.9 100/120/60 16/19/22 1/1/1 7/4/5 

3.8 4.5 98.9 90/70/80 23/20/20 1/1/1 6/3/3 

4.0 4.8 100.9 10 0/20 0/60 16/22/18 1/1/1 7/1/6 

4.2 5.3 104.1 100/160/60 16/21/21 1/1/1 7/3/5 

4.4 5.3 104.1 100/160/60 16/21/21 1/1/1 7/3/5 

4.6 5.5 109.1 100/160/100 16/21/19 1/1/1 7/3/5 

4.8 5.6 110.1 100/160/50 16/21/17 1/1/1 7/3/6 

5.0 5.8 112.3 100/160/160 16/21/15 1/1/1 7/3/2 

∗ values at capture/intermediate purification/polishing chromatography steps 

Fig. 4. Average COG/g in MC simulation on the solutions of the MO –CCP (95% confidence level) and MO-DET models. 
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Fig. 5. Mean total LRVs and probabilities of failing to meet LRV requirement in MC simulation on the solutions of the MO –CCP (95% confidence level) and MO-DET models. 

Fig. 6. Mean total LRVs and probabilities of failing to meet LRV requirement in MC simulation on the solutions of the MO –CCP model under confidence levels of 90%, 95% 

and 98%. 

the MO 

–CCP model usually chooses a different chromatography se- 

quence with higher total standard LRV than that of MO-DET model. 

For example, when the minimum required total LRV is 3.8, the 

MO 

–CCP model chooses a sequence of R3-R8-R7, which has a total 

standard LRV of 4.5, in order to guarantee that the realised total 

LRV is no less than the required level at the given confidence level 

(95%), while the optimal sequence of the MO-DET model, R5-R3- 

R7, has a total LRV of 3.8 only, which will fail to meet the require- 

ment if the realisation is below expectation. Comparing the total 

standard LRVs in the solutions of two models, the sequence of the 

MO 

–CCP model is averagely 0.7 higher than that of the MO-DET 

model, and 0.8 higher than the minimum required total LRV. More- 

over, the selected sequence of the MO 

–CCP model is also more ex- 

pensive. Different from the solutions of MO-DET model, R5 is no 

longer a choice at the capture step, while R3 is used no matter 

whether the total LRV requirement is low or high. However, at the 

polishing step, although R7 (AEX) with relatively lower price and 

LRV is chosen in most cases, resins having higher LRVs are used 

when the impurity removal capability requirement increases. Due 

to the chance constraints on titre and yields, the selected column 

sizes of the MO 

–CCP model is smaller than the MO-DET model, 

leading to lower production. Similar to the deterministic case, the 

COG/g increases with increasing minimum required total LRV. Due 

to the higher cost and lower production, the obtained COG/g by 

optimising the MO 

–CCP model is over 40% higher than the MO- 

DET model. In the next section, we will conduct an analysis of 

MC simulation to highlight the benefits of the proposed CCP-based 

model. 

6.2. MC simulation 

Here, a stochastic analysis is conducted to examine the im- 

pact of variability on the solutions by implementing MC simulation 

( Kroese et al., 2011 ). MC simulation analysis was implemented on 

the solutions obtained by both MO 

–CCP and MO-DET models. After 
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Fig. 7. Mean COG/g in MC simulation on the solutions of the MO –CCP model under confidence levels of 90%, 95% and 98%. 

obtaining the optimal solutions of optimisation models, MC simu- 

lation analysis was conducted by solving the deterministic optimi- 

sation model, SO-DET, with fixed design variables, including vari- 

ables for chromatography sequence, column volume and number of 

columns, to re-optimise all other operational variables, dependent 

on different realisations of uncertain parameters, titre, cyd s and 

lrvd s . In the proposed MC simulation, a total of 10 0 0 simulation 

runs is implemented for each Pareto-optimal solution. Here, for 

the random realisation of each simulation run, it is firstly checked 

whether the realised total LRV meet the minimum required to- 

tal LRV. If the realised total LRV is less the minimum required 

total LRV, the single objective optimisation model subject to the 

minimum required total LRV constraint is infeasible, and the final 

product of the generated purification process cannot meet the tar- 

get purity level, which is treated as wastes. In this case, we take 

£10 0 0/g as COG/g of this simulation run ( Liu et al., 2016 ), which 

can be considered as the cost of outsourcing purchase. Otherwise, 

when the realised total LRV is no less than the minimum required 

total LRV, we run the deterministic model, SO-DET, to minimise 

the COG/g subject to the minimum total LRV and other constraints. 

The performance of the MC analysis is examined using the mean 

COG/g in all simulation runs, which mimics the expected value of 

COG/g. In addition, the probability of failing to meet the minimum 

LRV requirement is examined for the robustness of the selected 

chromatography strategies. The procedure of MC simulation is de- 

scribed as follows: 

STEP 1. Fix the optimal chromatography sequences, 
column volumes and the number of columns 
obtained from the optimisation models; 

STEP 2. Generate random titre, yield deviations 
and LRV deviations, all following 
triangular probability distributions as 
given in Table 4 ; 

STEP 3. If the total LRV is lower than the minimum 
required total LRV, COG/g is set to 1000; 
Otherwise, solve the model SO-DET with the 
random parameters by the proposed solution 
approach in Section 4 to obtain the optimal 
COG/g; 

STEP 4. Go to Steps 2 and 3 and repeat for 1000 
times. 

Fig. 4 shows the mean values of COG/g in the MC simulation. 

The mean values of COG/g in the MC simulation on the solutions 

of the MO 

–CCP model vary between £70/g and £90/g, which are 

lower than the optimal COG/g returned by the MO 

–CCP model, 

due to the underestimation of realisation of uncertain parame- 

ters in the chance constraints. Meanwhile, the mean values of 

COG/g in the MC simulation on the solutions of the MO-DET model 

are significantly higher by one order of magnitude, up to £560/g. 

Fig. 5 shows another benefit of the solutions MO 

–CCP model. The 

mean values of total LRV in the simulation on both MO 

–CCP and 

MO-DET models’ solutions are same as the total standard LRVs ob- 

tained by the optimisation models, as reported in Table 4 , which 

are all no less than the corresponding minimum required total 

LRVs. For the MO-DET model, the mean total LRV from the sim- 

ulation is not significantly higher than the minimum required total 

LRV, with a difference of 0.3 at most and 0.1 on average. There- 

fore, the realised total LRV has a lower chance to meet the LRV re- 

quirement. For 9 Pareto-optimal solutions, the probabilities of total 
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LRV being lower than requirement are all greater than 10%, and the 

probabilities for two solutions are even more than 50% when the 

mean total LRV is the same as the minimum required value (3.8 

and 4.8). In the meantime, the solutions of MO 

–CCP model obtain 

chromatography sequences with much higher total LRVs, at least 

16% higher than the required values. Thus, there are just few sim- 

ulation runs whose realised total LRV is less than the minimum 

required total LRV, and the probability of failing to meet the re- 

quirement is 0% except for two solutions. When the minimum re- 

quired total LRV is high (4.8 and 5), only 1 or 2 simulation runs 

out of 10 0 0 cannot meet the requirement. The relatively higher to- 

tal LRV and lower probability of not meeting required purity level 

lead to the advantage of the solutions of the MO 

–CCP model. With 

smaller COG/g and lower failure rates, the MO 

–CCP model shows 

higher robustness, compared to the MO-DET model, to deal with 

the uncertainties in titre, resin yield and impurity removal capa- 

bility. 

Overall, the proposed MO 

–CCP model is able to cope with the 

uncertainties of the parameters, i.e., titre, resin yields and LRVs in 

this problem, to achieve significant economic benefits than the de- 

terministic counterpart. 

6.3. Sensitivity analysis of confidence levels 

In the proposed CCP-based model, the confidence levels in the 

chance constraints impact the probabilities of the solutions be- 

ing feasible. A risk-averse decision with a higher confidence level 

makes the chance constraint to be held with higher probability. 

Here, it is assumed that the same confidence level is implemented 

in all chance constraints. Three different confidence levels, 90%, 

95% and 98%, are considered in this section. The optimal solutions 

obtained by the proposed MO 

–CCP model are examined using the 

MC simulation as described in the previous section. The details 

of the obtained optimal solutions with the 90% and 98% confi- 

dence levels are provided in the Supplementary Material (Tables 

S4 and S5). In order to cope with low LRV realisation, the optimal 

solutions with higher confidence levels select chromatography se- 

quences with higher total LRV, which are also more expensive, and 

incur lower probabilities of being lower than the requirement, as 

shown in Fig. 6 . When the confidence level is 90%, the total LRVs of 

the chromatography sequence in the optimal solutions are smaller 

than the other two, and there are 6 solutions (out of 9) whose 

simulation runs cannot meet total LRV requirement, although the 

probability is quite low, only up to 2.5%. For the confidence level 

of 98%, the selected sequences have the highest total LRVs, and the 

simulation runs of all solutions generate higher total LRVs than the 

minimum requirement. 

Consequently, as presented in Fig. 7 , a confidence level of 90% 

achieves higher mean COG/g than the other two, except when the 

minimum required total LRV is 5, much more expensive resins 

are selected under the conference level of 98%, resulting in higher 

COG/g. The COG/g in the simulation under the conference levels 

of 95% and 98% are comparable to each other. It can be observed 

that the achieved mean values are quite similar. When the mini- 

mum required total LRVs are high (4.8 and 5), the confidence level 

of 95% gets slightly smaller mean COG/g than the conference level 

of 98%, but has higher chance not to meet the minimum total LRV 

requirement. Especifically for this problem, confidence levels rang- 

ing from 95% to 98% are applicable to chance constraints for high 

quality solutions. 

7. Concluding remarks 

This work addressed the multi-objective optimisation of down- 

stream processing of mAb products, to find the optimal chromatog- 

raphy sequencing and column sizing strategies. Both cost and im- 

purity removal capability of the purification process are considered 

as objectives. Considering uncertainties in bioreactor titre, chro- 

matography yield and LRV of HCPs, a stochastic CCP-based multi- 

objective optimisation model has been developed by extending 

previous work ( Liu et al., 2014 ). To solve the proposed model, ε- 

constraint method and Dinkelbach’s algorithm have been adapted 

to develop an iterative solution approach to generate a set of 

Pareto-optimal solutions with different minimum required total 

LRVs of the whole process. An industrially-relevant example has 

been investigated. The computational results of 9 Pareto-optimal 

solutions have shown that the CCP-based model deals with the 

variability of uncertain parameters in a better manner than the 

deterministic model, through the valuation of MC simulation, ob- 

taining much less mean COG/g. Also, a sensitivity analysis on the 

confidence level shows the effects on the selected resin LRVs and 

COG/g in the MC simulation. 
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