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Abstract 

Microscale Full In-plane Strain Tensor (FIST) analysis is crucial for improving understanding 

of residual stress and mechanical failure in many applications. This study outlines the first Focused 

Ion Beam (FIB) milling and Digital Image Correlation (DIC) based technique capable of 

performing precise, reliable and rapid quantification of this behaviour. The nature of semi-

destructive FIB milling overcomes the main limitations of X-Ray Diffraction (XRD) strain tensor 

quantification: unstrained lattice parameter estimates are not required, analysis is performed in 

within a precisely defined 3D microscale volume, both amorphous and crystalline materials can be 

studied and access to X-ray/neutron facilities is not required. 

The FIST FIB milling and DIC experimental technique is based on extending the ring-core 

milling geometry to quantify the strain variation with angle and therefore benefits from the 

excellent precision and simple analytical approach associated with this method.  In this study in-

plane strain analysis was performed on sample of commercial interest: a porcelain veneered Yttria 

Partially Stabilised Zirconia (YPSZ) dental prosthesis, and was compared with the results of XRD. 

The two methods sample different gauge volumes and mechanical states: approximately plane 

stress for ring-core milling, and a through-thickness average for XRD. We demonstrate using 

complex analytisis methods and Finite Element (FE) modelling that valid comparisons can be 

drawn between these two stress states. Excellent agreement was obtained between principal stress 

orientation and magnitudes, leading to realistic residual stress estimates that agree well with the 

literature (𝜎𝐴𝑣 ≈ 460 MPa). As a measure of validity of the matching approach we report the upper 

and lower bounds on the (101) interplanar spacing of YPSZ that are found to correspond to the 

range 2.9586 − 2.9596 Å, closely matching published values. 

  



 

 

Highlights 

 Full in-plane strain tensor measured by ring-core Focused Ion Beam (FIB) milling 

 Absolute strain measurement at the μm-scale for amorphous & crystalline materials 

 Comparative X-ray diffraction study validates experimental FIB results 

 Lattice parameter and stress state in Zr prosthesis sample match literature values 

 Surface vs bulk residual stress state relationships was identified and validated 
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1 FIST – Full In-plane Strain Tensor 

FIB – Focused Ion Beam 

DIC – Digital Image Correlation 

XRD – X-Ray Diffraction 

YPSZ – Yttria Partially Stabilised Zirconia 

FE – Finite Element 

SEM – Scanning Electron Microscopy 

MBLEM – Multi-Beam Laboratory for Engineering Microscopy 

ROI – Region Of Interest 



 

 

1. Introduction 

The term residual stress refers to the presence of internal forces within an object in the absence 

of external load. The interaction between these forces and applied loading is responsible for the 

mechanical failure of a broad range of engineering components and systems [1]. Stresses of this 

type can be induced by a range of different mechanical phenomena, from inhomogeneous 

deformation in polycrystalline aggregates [2, 3], plastic zones induced at crack tips [4, 5] to thermal 

expansion mismatch [6] and solid state phase transformations [7, 8]. Alternatively, residual stresses 

can be intentionally introduced into a component in order overcome the influence of external 

loading, typically through the addition of compressive stress using techniques such as peening [9, 

10] or rolling [11]. Precise, reliable and quantitative measurement of residual stresses is therefore 

necessary in order to improve understanding of failure and facilitate improved component designs. 

Stress is defined by the average force acting across a particular cross section within any given 

body, and therefore this mechanical parameter is intrinsically linked to the length scale over which 

it is defined. In the case of macroscopic stress measures, short-range fluctuations in force are 

averaged out over large areas, which severely limits the insight available into the local stress 

magnitudes. For this reason the recent developments in residual stress analysis have focused on 

attaining higher spatial resolution to quantify stress at precise locations where failure is most likely 

to occur [12, 13]. These advances have been used to develop improved designs and to understand 

failure in a wide range of components from carbon fibre composite systems [14], to silicon 

nanowires for microelectronic devices [15] and thin film solar cell applications [16].  

In some studies, the determination of an average stress component is sufficient to provide the 

answers required. However, the improved insight offered by the full quantification of residual stress 

variation with orientation is often necessary [17, 18]. In recent years, strain tensor determination 

and stress calculation based on neutron [19] and X-Ray Diffraction (XRD) [20-23] measurements 

has become a well-established technique. Despite the many benefits of these approaches, there are a 

number of well-known limitations associated with these methods. Firstly, precise estimates of 



 

 

unstrained lattice parameters are required; this is particularly difficult in the case of high resolution 

studies where local variations in elemental composition may also induce ‘chemical’ changes of this 

parameter over similar length scales. Secondly, these high precision techniques can only be applied 

to crystalline materials and therefore equivalent analysis cannot be performed in amorphous 

materials. Another difficulty is associated with the limited 3D resolution that can be obtained. This 

is due to the large penetration depths of neutron and high energy X-ray beams typically required in 

these studies. Approaches involving tomographic [24] and grazing angle [25] methods have been 

developed to overcome this limitation at the expense of increased processing complexity, time and 

reduced precision. Finally, these methods typically require access to large scientific facilities which 

severely restricts the number of potential applications that can be studied. 

In recent years, new techniques based on Focused Ion Beam (FIB) milling of a surface of 

interest and Digital Image Correlation (DIC) of the resulting Scanning Electron Microscopy (SEM) 

images have been developed to overcome the limitations associated with diffraction based methods 

[12, 26]. These approaches are capable of determining residual stress within precisely defined 

microscale gauge volumes and provide absolute estimates of stress in both crystalline and 

amorphous samples without the need for unstrained lattice parameter values. The increasing 

availability of FIB-SEM systems also ensures that these approaches can be readily implemented at 

thousands of laboratories across the world.   

Different FIB milling and DIC geometries have been proposed typically based on microscale 

versions of well-established macroscopic semi-destructive residual stress evaluation techniques. 

These include surface slotting [27], dual slotting (also known as H-bar milling) [28], blind hole [29] 

and ring-core milling [30]. These different geometries were developed to meet the needs of a 

particular application. However, only the blind hole and ring-core drilling techniques have the 

isotropic geometry required to provide insight into the angular variation of in-plane stress at a single 

measurement location. 



 

 

A critical comparison between the hole drilling and ring-core methodologies reveals that 

although the geometry of the ring-core approach makes the analysis marginally more 

computationally difficult, the residual stress estimate obtained using this technique is more precise, 

more sensitive to low magnitude residual stresses and has a more precisely defined gauge volume 

[26, 31-33]. The ring-core geometry has also recently been extended to quantify Poisson’s ratio at 

micrometre resolution [34] as well as the lateral [12] and depth [35] variation of residual stresses. 

Estimates of the in-plane stress tensor have previously been performed using the ring-core 

approach by quantifying the strain relief in three orientations (typically denoted as 0°, 45° and 90° 

with respect to a chosen direction) and fitting these results to Mohr’s circle formulation [12]. The 

main limitation preventing the calculation of other orientations to improve the precision of the strain 

tensor estimate has been the lack of automation in the DIC methods required to quantify strain in a 

given direction. However, recent advances in error evaluation and propagation, outlier removal and 

correlation analysis have for the first time enabled strain quantification to become a rapid, precise 

and fully automated process [26]. Using this automated approach, this study demonstrates the 

experimental and analytical steps necessary to evaluate the strain relief variation as a function of 

orientation angle, thereby enabling Full In-plane Strain Tensor (FIST) analysis. Provided that the 

elastic constants of the system under consideration are known fully, the corresponding residual 

stress variation can then be determined from this in-plane strain tensor. 

XRD has previously been successfully used to validate the results of residual stress estimates 

produced by ring-core milling both in terms of the average and stress components in two orthogonal 

directions [36]. One of the main limitations of micro-focus XRD analysis is associated with 

determining precise and reliable estimates of the unstrained lattice parameter, in that variations in 

composition and crystalline structure can be observed over comparable micrometre length scales 

[37, 38]. The conventional powder analysis approaches suitable for bulk analysis can no longer be 

used to determine representative estimates in these situations and a recent overview of potential 

techniques for overcoming these limitations has been published [39]. Indeed, the microscale 



 

 

absolute residual strain estimates provided by semi-destructive FIB milling and DIC techniques 

such as the ring-core approach offer a new promising approach for unstrained lattice parameter 

quantification in these high resolution analysis, by direct comparison between the strain estimates 

obtained using the two techniques. This has recently been successfully performed to determine the 

unstrained lattice parameters in graphene and SiC inside a carbon core silicon carbide fibre, where 

powder analysis was not possible due to the limited material present [14]. This approach has also 

been used to determine the residual strain variation in an additive manufactured nickel alloy turbine 

blade, where local variations in lattice parameter are expected due to thermal segregation [12].  

In this study the results of FIST ring-core analysis a single location will be compared with 

those obtained using high energy transmission XRD of a dental prosthesis sample. The stress states 

associated with these two experimental approaches are known to be different: in the case of surface 

ring-core milling the stress condition is close to plane stress, while XRD analysis provides an 

average of both the near surface (plane stress) and bulk (which is closer to conditions of plane 

strain). Therefore in order to provide comparisons between these two techniques the analytical 

relationships between the two states determined using two different analytical methods and Finite 

Element (FE) simulations have been used to validate these relationships. This comparative approach 

also provides the upper and lower bounding limits of the lattice spacing of the underlying substrate 

material. 

2. Material and methods 

2.1. Sample selection and preparation 

The sample selected for this experimental study was a Yttria Partially Stabilised Zirconia 

(YPSZ) dental prosthesis manufactured from Wieland Dental Zenotech® Zr Bridge [40] by dental 

technicians at the Specialist Dental Group, Singapore. In order to reduce the hardness of the outer 

surface of the prosthesis, and thereby match the properties of natural teeth, the YPSZ copings were 

veneered with Ivoclar Vivadent IPS e.max® Ceram [41]. Multiple layers of this aqueous porcelain 



 

 

slurry are applied and fired into a veneer in order to tailor the appearance of the prosthesis and 

produce an aesthetically pleasing finish.  

Despite its advantages, this manufacturing process has recently been shown to induce residual 

stresses in the near-interface regions of both YPSZ and porcelain [42-45], leading to the primary 

failure mode of these prosthesis: near interface chipping of the porcelain veneer [46, 47]. The 

origins of this residual stress state are associated with the YPSZ tetragonal to monoclinic phase 

transformation [48-50], elemental diffusion across the interface [51] as well the impact of high 

temperature creep in the near-interface porcelain [52, 53]. 

This system was selected for the comparative XRD and FIB milling strain tensor quantification 

study as it embodies the key requirements to enable effective comparisons to be drawn: 

1. A well characterised high magnitude tensile residual stress state (in the range of 𝟑𝟎𝟎 −

𝟔𝟎𝟎 𝐌𝐏𝐚) which is contained within a known microscale (≈ 𝟏𝟓𝟎 𝛍𝐦) region [44, 54]. 

This ensures that the length-scale variation of residual stress is comparable to the gauge 

volumes of the two experimental techniques and is of sufficient magnitude that it can be 

reliably detected by both XRD and FIB milling methods. Further, the proximity of this stress 

measurement location to the YPSZ-porcelain interface ensures that marker placement and X-

ray beam alignment can be conducted precisely. 

2. A nominally biaxial uniform residual stress distribution. The presence of the YPSZ-

porcelain interface dominates the mechanical state of this region and ensures that variations in 

residual stress are primarily dependent on the distance from this boundary. This means that the 

different gauge volume sizes and averaging associated with the two experimental techniques 

can be performed in directions corresponding to appreciably uniform stress states. This ensures 

that the comparison between the two stress states is valid, as discussed in detail in Section 3.2. 

3. A nanocrystalline substrate which diffracts effectively under X-ray illumination. In 

order to perform strain tensor quantification using X-ray powder diffraction, smooth low noise 

diffraction peaks (or Debye-Scherrer rings on an area detector, in other words) are required. 



 

 

The nano-crystalline nature of YPSZ (with typical grain sizes in the range ≈ 5 − 20 nm) and 

its strong X-ray scattering ensures that high quality diffraction patterns are collected. Further, 

the random orientation (confirmed by XRD) and large number of grains contained within the 

ring-core geometry (> 5 × 106) ensure that despite the relatively high elastic anisotropy of 

YPSZ (with a stiffness variation greater than 2 [49]), the isotropic relaxation assumption used 

in the ring-core analysis was justified. 

The location selected for strain tensor analysis was a distance of 50 𝜇𝑚 from the porcelain 

interface within the YPSZ. This position is known to have moderate levels of residual stress but is 

sufficiently far from the interface that the YPSZ phase transformation and elemental diffusion 

effects are not present at this location [50, 51]. This ensures that lattice spacing variation (𝑑ℎ𝑘𝑙) is 

not influenced by these two factors and is therefore representative of the bulk YPSZ. 

The other benefit of choosing a position at 50 𝜇𝑚 from the interface is that the magnitude of 

the eigenstrain source of residual stress at this location can be approximated as zero. The near-

interface response of this system to heat treatment and stressing induces eigenstrain (permanent 

inelastic strain) through transformation, elemental diffusion and creep. However, this behaviour is 

confined to a very narrow boundary layer with a width in the order of < 10 𝜇𝑚 from the interface 

[48, 50]. This means that at 50 𝜇𝑚 from the interface only residual elastic strain is present. The 

validity of this approximation is important in the conversion between plane stress and plane strain 

behaviour as outlined in Appendix A. 

In order to facilitate access to the near-interface region, a cross section of the YPSZ prosthesis 

was obtained using a Buehler Isomet Diamond Saw (Figure 1). A slow rotational cutting speed of 

25 rpm (on a 127 mm diameter blade) was selected to minimise the residual stresses induced during 

sample preparation. A metallurgical incremental grinding and polishing process concluded with 

colloidal silica finishing was then used to minimise the influence of sample preparation on the 

residual stress state. The final sample thickness was selected to be 115 𝜇𝑚 in order to maximise the 

intensity of the diffraction patterns collected during the synchrotron XRD experiment. This process 



 

 

will relieve the out-of-plane stresses in the sample cross-section and also affects the in-plane 

mechanical state. The extent of this modification can be estimated, as outlined in Appendix A. 

 

Figure 1. Schematic of synchrotron XRD experiment showing beam defining and focusing setup, 

sample oriented in a transmission geometry and a typical diffraction pattern. 

2.2. Micro Focus XRD 

Transmission powder XRD was performed at Beamline B16 (Diamond Light Source, UK) 

using the set up shown in the schematic in Figure 1. A 17.98 𝑘𝑒𝑉 monochromatic incident beam 

(just below the K-edge of zirconium) was selected in order to minimise absorption by the sample 

and a micro-focusing Kirkpatrick-Baez mirror pair arrangement was used to reduce the beam spot 

on the sample to 2.4 × 3 𝜇𝑚2. A Photonic Science X-ray Image Star 9000 detector placed in the 

transmitted beam was used to collect complete 360° Debye-Scherrer diffraction patterns at a 

position 170 𝑚𝑚 downstream from the sample. 

A combination of optical alignment, X-ray imaging and identification of the interface through 

the differences in the scattering patterns of YPSZ and porcelain were used to determine the incident 

location of the beam on the sample to nanoscale precision.  Diffraction patterns were then collected 

at a position 50 𝜇𝑚 from the interface in the form of a 3 × 3 array covering an area of 7.2 × 9 𝜇𝑚2 

as shown in Figure 2. At each position a five minute exposure time was used to capture a high 

quality diffraction pattern. 



 

 

 

Figure 2. Schematic of residual stress analysis locations. The 3 × 3 array of XRD mapping points 

is shown superimposed over the 5 𝜇𝑚 diameter ring-core milling geometry (with a 1 𝜇𝑚 trench 

width). Both the XRD array and the ring-core geometry were centrally aligned at a distance of 

50 𝜇𝑚 from the YPSZ-porcelain interface. 

 Each diffraction pattern was then radially binned as a function of the azimuthal angle 𝜑 (as 

illustrated in Figure 3) to give line plots of scattered beam intensity against 𝑄 position averaged 

over 10° regions between 0° and 360°. For example, the 0° distribution was obtained from 

integrating between -5° and 5°. Beamstop shadowing was found to influence the profile obtained at 

the 𝜑 = 270° and therefore the line profile obtained at 90° was used for this orientation. 

 

Figure 3. Radial integration of 2D diffraction pattern performed around azimuthal angle 𝜑 in 10° 

increments to produce 1D intensity distributions (insert). Gaussian peak fitting was performed on 

the tetragonal 101 diffraction peak in order to determine the peak centre position (indicated by 

markers) as a function of 𝜑. 



 

 

Gaussian peak fitting was then performed on the (101) peak of tetragonal zirconia. The high 

intensity of this peak ensured that the peak centres could be determined at the precision necessary to 

perform reliable strain tensor quantification. For example, the peak centres for the 0°, 10° and 20° 

positions have been highlighted by markers in Figure 3. Bragg’s law was then used to convert the 

peak centre estimates to the lattice spacing in the (101) direction (𝑑101). This analysis was 

performed on all 9 diffraction patterns and the fitting confidence of each peak was used to 

determine a weighted average and the associated confidence interval for 𝑑101 at each angle 𝜑. 

X-ray diffraction was also used to determine independent measurements of the unstrained 

101 lattice parameter of the YPSZ (𝑑0
101 ) using the Bruker D8 laboratory diffractometer at the 

High Energy X-ray (HEX) laboratory, University of Oxford UK. In the first sample, representative 

nanocrystalline powder was obtained from the same batch of Zenotec Zr bridge been used in the 

manufacture of the YPSZ coping. The second sample was obtained by grinding the parts of the 

YPSZ coping remaining after sectioning to obtain a micro crystalline powder using a diamond 

tipped burr cone. Both powders were loaded into 1 mm diameter quartz capillaries and Cu K-alpha 

emission (with a spot size ≈ 0.3 mm) was directed towards the samples. The 2D diffraction 

patterns of the samples were collected and radially integrated to give 1D profiles of intensity against 

scattering angle. Gaussian peak fitting was performed on the tetragonal 101 diffraction peak and 

Bragg’s law was used to provide an estimate of the unstrained lattice parameter for both powders. 

In the case of the ground YPSZ coping, large amounts of monoclinic YPSZ were found in the 

YPSZ caused by the grinding. This is a consequence of the stress-induced transformation and is 

associated martensitic shear and twinning as the mechanism of phase change [55]. As previously 

discussed elsewhere, crystallographic phase changes can induce large errors in the estimation of 

unstrained lattice parameters [39] providing an explanation for the inconsistency between the 𝑑0
101 

estimate of 2.9674 ± 0.0012 obtained from this analysis and the values determined in Section 3.2. 

The results from the Zenotec Zr powder sample provided an unstrained lattice parameter 

estimate of 2.9567 ± 0.0006. This result also indicated distinct differences with the analysis 



 

 

performed in Section 3.2. This is most likely the consequence of minor differences in composition, 

combined with the certain extent of grain growth induced in YPSZ during sintering [56]. Both of 

these effects are known to induce notable changes in the unstrained lattice parameter estimates in 

nanocrystalline materials [38, 39]. We conclude that matching XRD and FIB-DIC ring-core 

analysis provides the most reliable, internally consistent means of estimating the residual stress state 

within the sample, as evidenced by the excellent agreement between the unstrained lattice parameter 

for this system, and literature values [12, 14].  

2.3. FIB Milling and DIC 

Ring-core FIB milling was performed on the sample using the Tescan Lyra 3 FIB-SEM at the 

Multi-Beam Laboratory for Engineering Microscopy (MBLEM, Oxford, UK) [57]. The prosthesis 

cross section was mounted on an SEM stub using silver paint and was sputter coated with 5 𝑛𝑚 of 

gold-palladium in order to reduce sample charging. Applying a single fast pass of the focused ion 

beam across the surface of the sample causes the formation of a surface pattern that generates high 

imaging contrast, as shown in Figure 4a. These patterns have previously been shown to facilitate 

effective DIC marker tracking during ring-core milling, without inducing stress state modification 

in the sample [26].  

 

Figure 4. a) Secondary electron SEM image of the ring-core milling showing original (𝑥, 𝑦) and 

rotated (𝑥′, 𝑦′) coordinate systems for a given angle 𝜑. b) Schematic showing a DIC marker shift of 

(∆𝑢, ∆𝑣) from starting position (𝑢, 𝑣) and the corresponding position (𝑢′) and shift (∆𝑢′) in the 

(𝑥′, 𝑦′) coordinate frame. c) Schematic ellipse of DIC shift uncertainty showing the relationship 

between the standard deviations in the original (𝜎𝑢, 𝜎𝑣) and the rotated coordinate system (𝜎𝑢
′ ). 



 

 

A single 5 𝜇𝑚 diameter core was fabricated in the YPSZ by milling a 1 𝜇𝑚 wide circular 

trench at a distance of 50 𝜇𝑚 from the YPSZ-porcelain interface as shown in Figure 4a. This 

milling location was aligned with the location of XRD analysis to a microscale precision using 

multiple characteristic features of the prosthesis cross section. This level of alignment was 

necessary to ensure that the same location (and residual stress state) was examined by both 

experimental techniques. 

A nominal milling depth of 125 𝑛𝑚 was selected for each increment of the FIB milling 

process, and a 2048 × 2048 pixel secondary electron SEM image of the surface was captured at 

each step. In total 48 images were captured as a record of the core relaxation during FIB milling to a 

nominal depth of 6 𝜇𝑚 in a time of ~30 minutes.  

A modified version of the DIC code produced by Eberl et al. [58] was used to determine the 

strain relief at the surface of the core (micro-pillar) as a function of milling depth. Small amounts of 

drift were observed between each of the recorded images (with a maximum of ~30 𝑛𝑚 between 

subsequent images) and low resolution DIC (drift correction) was performed on the exterior surface 

regions to correct for this effect. Subset DIC was performed on the island by placing several 

hundred markers over the core centre where uniform strain relief is expected [59, 60]. Marker 

tracking was then performed using the approach outlined by Lunt et al. [26] in order to obtain the 

marker shift (∆𝑢, ∆𝑣) relative to the start positions (𝑢, 𝑣) in the (𝑥, 𝑦) coordinate frame, along with 

the standard deviations of these shifts (𝜎𝑢 and 𝜎𝑣). 

In-plane strain tensor quantification relies upon the precise determination of the strain 

magnitude variation as a function of angle 𝜑. In the case of the ring-core milling approach this 

requires the determination of the core strain relief as a function of 𝜑, and therefore the 

quantification of the DIC marker shift along an axis 𝑥′ as shown in Figures 4a and 4b. For a given 

angle 𝜑 and marker starting position (𝑢, 𝑣) the expression for the starting position along the 𝑥′ 

direction is given as: 

 𝑢′ = 𝑢 cos𝜑 + 𝑣 sin𝜑. Eq. 1  



 

 

 

Following automated marker tracking in the (𝑥, 𝑦) coordinate frame, the shifts along the 𝑥′ direction 

can be determined as: 

 

 

∆𝑢′ = ∆𝑢 cos𝜑 + ∆𝑣 sin𝜑. 

 

Eq. 2  

Quantification of the peak shift standard deviation in the direction parallel to the 𝑥′ axis (𝜎𝑢
′ ) is 

also necessary in order to determine strain uncertainty in a given direction. The elliptical 

representation of the uncertainty field proposed by Lunt et al. [26] in which the principal axes are 

aligned with the 𝑥 and 𝑦 directions (Figure 4c) can be used to estimate this value as: 

 

 

𝜎𝑢
′ = √

𝜎𝑢2𝜎𝑣2

𝜎𝑣 2𝑐𝑜𝑠2𝜑 + 𝜎𝑢 2 𝑠𝑖𝑛2𝜑
. 

 

Eq. 3 

The rotated standard deviation estimates and marker shifts were then used as inputs into the 

strain relief quantification routine outlined by Lunt et al. [26]. In this approach, linear fitting of the 

relationship between 𝑢′ and ∆𝑢′ is used to obtain the strain relief estimates associated with each 

milling depth (∆𝜀), as well as the corresponding standard deviations (𝜎∆𝜀). Outlier removal is 

necessary at this stage in order to remove poorly tracked markers and an automated multi-stage 

marker filtering routine was implemented: 

1. The correlation coefficient was used to ensure that marker shift determination was only 

permitted in cases of high levels of similarity (correlation coefficients greater than 0.5) 

were observed between the DIC subset and the underlying image. 

2. Thresholding based on the standard deviation of each marker position (𝜎𝑢
′ ) was then 

performed to remove markers with low levels of confidence. It was found that removing 

markers with a standard deviation greater than 1.5 times the average value was effective. 

3. Finally, the removal of markers moving relative to the expected displacement field was 

performed. This involved least squares fitting of the linear strain distribution expected 



 

 

across the island core and the calculation of the relative offset of all markers. Thresholding 

based on 1.5 times the average value of this relative offset was also found to be effective. 

Visualisation of the impact of identical outlier removal parameters on the displacement against 

position plots has been provided in Figure 8 in the recent ring-core error analysis paper by Lunt et 

al. [26]. 

 

Figure 5. Strain relief against image number for data oriented at differing angles of 𝜑. The original 

data and the 95% confidence error bars have been plotted along with the ‘master curve’ fitting 

given in Equation 4. 

The relationship for the strain relief (∆𝜀) against milling depth was then fitted using the ring-

core strain relief ‘master function’ originally published by Korsunsky et al. [30] (Figure 5): 

 

 

𝑓(∆𝜀∞, 𝑧) = 1.12∆𝜀∞ ×
𝑧

1 + 𝑧
[1 +

2

(1 + 𝑧2)
],  

 

Eq. 4 

where 𝑧 = ℎ/0.42𝑑, ℎ is the milled depth, 𝑑 is the core diameter and ∆𝜀∞ is the full strain relief at 

an infinite milling depth.  This representation of the relief was determined using FE simulations of 

the milling process in isotropic, homogenous materials and provides a quantitative estimate of 

magnitude and standard deviation (𝜎 ∆𝜀∞) of the plateau observed in the strain relief curves ∆𝜀∞ 

(Figure 5). This is the ultimate strain relief value for the material within the core once lateral 

constraint has been removed, and the material has returned to unstrained state. Its negative provides 



 

 

the estimate of the gauge-volume average residual strain in a given direction. For example, a 

positive core relief strain indicates that the original residual strain in the core was compressive. 

The above analysis was implemented for 𝜑 values ranging from 0° to 360° in 10° steps in order 

to determine ∆𝜀∞ and 𝜎 ∆𝜀∞ as a function of angle. As expected, it was found that the strain relief 

values and standard deviations obtained in opposite directions were equal, i.e. ∆𝜀∞
0°=∆𝜀∞

180° and 

𝜎∆𝜀∞0° = 𝜎∆𝜀∞180° . This distribution of absolute strain was next used to determine estimates for the 

residual strain principal orientations and principal values as outlined in Section 3.2. 

3. Theory/calculation 

3.1. XRD strain determination  

The tetragonal (101) lattice spacing estimates (𝑑101) obtained through XRD were used to 

quantify the lattice strain variation (𝜀101) as a function of 𝜑 using the expression: 

 

 

𝜀101(𝜑) =
𝑑101(𝜑) − 𝑑0

101

𝑑0
101 ,  

 

Eq. 5 

where 𝑑0
101 is the unstrained lattice spacing for the 101 plane. Initially an estimate for this value 

(𝑑0
101 = 2.9582 Å) was obtained from the short (𝑎 = 3.605 Å) and long (𝑐 = 5.177 Å) lattice 

constants of YPSZ provided in the literature [61], using the expression: 

 

 

(
1

𝑑0
ℎ𝑘𝑙)

2

=
ℎ2 + 𝑘2

𝑎2
+
𝑙2

𝑐2
, 

 

Eq. 6 

where ℎ𝑘𝑙 = 101.  

A value for the standard deviation of the (101) unstrained lattice spacing (𝜎𝑑0101 = 0.0015 Å) 

was also calculated based on the standard deviations of the short (𝜎𝑎 = 0.0010 Å) and long (𝜎𝑐 =

0.0020 Å) lattice constants provided in the literature: 

 

 

𝜎𝑑0101 =
𝑑0
101

2(𝑐 + 𝑎)
√𝑎2𝜎𝑐2 + 𝑐2𝜎𝑎2. 

 

Eq. 7 



 

 

The standard deviation of the peak centre values (𝜎𝑑101(𝜑)) were then used in combination with 

the standard deviation of the unstrained lattice spacing in order to obtain estimates of the standard 

deviation of the lattice strain (𝜎𝜀101(𝜑)): 

 

 

𝜎𝜀101(𝜑) = (
1

𝑑0
101)

2

√(𝜎𝑑101(𝜑) 𝑑0
101)2 + (𝜎𝑑0101  𝑑

101(𝜑))
2

. 

 

Eq. 8 

 

3.2. Full in-plane strain tensor quantification 

The next stage of analysis required quantification of the strain tensors obtained through ring-

core FIB milling and DIC (−∆𝜀∞(𝜑)) and the preliminary distributions of the (101) interplanar 

lattice strain (𝜀101(𝜑)) obtained using literature values of 𝑑0
101. The generic expression for in-plane 

residual strain variation (𝜀(𝜑)),  can be identified from Mohr’s circle strain construction as: 

 

 

𝜀(𝜑) =
𝜀1 + 𝜀2
2

+
𝜀1 − 𝜀2
2

cos 2(𝜑 + 𝛼), 

 

Eq. 9 

where 𝜀1 and 𝜀2 are the principal strains and 𝛼 is the angular offset between the original and 

principal coordinate systems. 

Least squares fitting of Equation 9 was performed on the strain distributions obtained through 

XRD and ring core milling using the inverse square of the standard deviation of each term as a 

weighting factor (Table 1). It is important to note that the use of the literature value of 𝑑0
101 has 

little or no effect on the magnitude of principal axis orientation angle 𝛼 obtained from this fitting 

procedure (as demonstrated in Table 1), although it does affect the magnitude of the principal 

strains. It was found that the values obtained for the angular offset were 52.1° and 53.4° using the 

ring-core and literature value of 𝑑0
101 XRD techniques respectively. This 1.2° difference is likely to 

have arisen from small misalignment during sample positioning in the two experiments. Therefore 

the approximation that the ring-core and XRD principal orientations were aligned was used for the 

rest of the analysis. 

 



 

 

Table 1. Table showing fitted estimates and standard deviations of the principal strains, 

stresses and orientations for the ring-core and XRD stress/strain tensor analysis. The lattice 

parameters obtained from the literature and through least squares fitting (in both plane stress 

and plane strain) have been included for the XRD analysis. 

Technique 
𝑑0
101 (Å) 

𝜀1 a 

(millistrain)  

𝜀2 a 

(millistrain)  
𝜎1 a (MPa) 𝜎2 a (MPa)  𝛼 (degrees) 

Ring-core - 
1.73
± 0.007 

1.26
± 0.007 

499 ± 1.81 424 ± 1.81 52.1 ± 1.26 

XRD Lit 𝑑0
101 b 

2.9582
± 0.0015 

1.80
± 0.007 

1.44
± 0.007 

- - 53.3 ± 0.99 

XRD Fitted 𝑑0
101 

(Plane stress) 

2.9586
± 0.0004 

1.67
± 0.006 

1.31
± 0.007 

489 ± 1.72 432 ± 1.65 53.2 ± 0.97 

XRD Fitted 𝑑0
101 

(Plane strain) 

2.9596
± 0.0003 

1.36
± 0.006 

0.96
± 0.007 

546 ± 2.50 482 ± 2.38 53.4 ± 0.96 

a Compressive stress and strain values are positive. 
b Calculated using lattice parameters published by Shah et al. [61]. 

 

Careful consideration of the gauge volumes associated with the two techniques reveals that 

ring-core technique provides an estimate of the average strain in a 5 𝜇𝑚 tall, 5 𝜇𝑚 diameter near-

interface cylinder, whereas the through sample penetration of the incident X-ray beam probes a 

7.2 × 9 × 115 𝜇𝑚3 volume. Although these gauge volumes are both centred at the same location in 

the plane of the sample, the average out of plane conditions are different. In the case of the near-

surface ring-core technique, the mechanical state can best be described as a state of plane stress. 

Therefore the principal stresses (𝜎1̂, 𝜎2̂) and the associated standard deviations (𝜎𝜎1̂ , 𝜎𝜎2̂) can be 

determined using: 

 

 

𝜎1̂ =
𝐸

1 − 𝜈2
(𝜀1 + 𝜈𝜀2), 

 

Eq. 10 

 

 

𝜎2̂ =
𝐸

1 − 𝜈2
(𝜀2 + 𝜈𝜀1), 

 

Eq. 11 

 

 

𝜎𝜎1̂ =
𝐸

1 − 𝜈2
√(𝜎𝜀1

2 + 𝜈2𝜎𝜀2
2 ), 

 

Eq. 12 

 

 

𝜎𝜎2̂ =
𝐸

1 − 𝜈2
√(𝜎𝜀2

2 + 𝜈2𝜎𝜀1
2 ), 

 

Eq. 13 



 

 

in which 𝜎𝜀1 and 𝜎𝜀2 are the standard deviations of the principal strains, 𝐸 is Young’s modulus of 

YPSZ and 𝜈 is Poisson’s ratio of YPSZ. Estimates of 𝐸 and 𝜈 were obtained from the literature and 

were given as 210 GPa [40] and 0.32 [62], respectively. No information was available on the likely 

distributions of these values and therefore they were treated as error-free measures. This 

approximation will artificially increase the precision of principal stress value determination (Table 

1), but experimental errors are likely to dominate.  

In the case of the XRD analysis the gauge volume can no longer be simply described as a 

simple planar mechanical state. In reality the XRD beam samples both the near surface regions 

(under near plane stress conditions) as well as bulk material (under generalised plane strain 

conditions). A review of the literature reveals that no agreement has yet been reached on the most 

representative plane state approximation in the case of transmission X-ray analysis [63, 64], 

although a the solutions of a few generalised cases have been published [65, 66]. The most suitable 

approximation is dependent upon the particular sample geometry (i.e. if the aspect ratio of the 

sample is large in the through beam direction then plain strain conditions are typically more 

suitable) and the average length scale of any structural/microstructural phenomena (i.e. in the case 

of a fibre composite system, the ratio between sample thickness and fibre diameter will dictate the 

most suitable approximation). For all practical purposes it can be noted however that the plane 

strain and plain stress assumptions can be considered as the upper and lower bound for the stress 

state within the region sampled by transmission XRD.  

The YPSZ-porcelain prosthesis slice has a cross sectional area of approximately 10 × 10 mm2 

and a thickness of 115 𝜇𝑚. The aspect ratio of the sample is therefore sufficiently large to 

approximate the system as a thin plate in a state of plane stress. On the other hand, in terms of 

structural/microstructural features the only representative length scale is the nano-scale average 

grain size present in YPSZ. In this respect the sample thickness is far greater than the local feature 

length scales and the system may be better represented as a state of plane strain. In reality the XRD 



 

 

state sampled will be a weighted average of these two mechanical states and analysis was 

performed to determine the stress and strain response for both conditions. 

3.3. The relationship between plane strain and plane stress 

To compare the estimates of the residual stress state from XRD and FIB milling, the 

relationship between plane strain and plane stress conditions for the same sample needs to be 

determined.  Derivation of the relationships between these conditions is provided directly is 

provided in Appendix A using stress state decomposition and Kolosov-Mukhelishvili plane 

eigenstrain potentials. The results of this analysis are provided by expressions for the plane stress 

tensor in terms of the in-plane plain strain stresses (𝜎̃𝑥 and 𝜎̃𝑦): 

 

𝜎𝑥̂ = (1 − 𝜈2)𝜎̃𝑥, 
 

 

Eq. 14 

 

 

𝜎𝑦̂ = (1 − 𝜈2)𝜎̃𝑦, 

 

 

Eq. 15 

 

 

𝜀𝑥̂ =
1 − 𝜈2

𝐸
[𝜎̃𝑥 − 𝜈𝜎̃𝑦], 

 

 

Eq. 16 

 

 

𝜀𝑦̂ =
1 − 𝜈2

𝐸
[𝜎̃𝑦 − 𝜈𝜎̃𝑥], 

 

 

Eq. 17 

 

 

𝜀𝑧̂ = −
(1 − 𝜈2)𝜈

𝐸
[𝜎̃𝑥 + 𝜎̃𝑦]. 

 

 

Eq. 18 

 

These expressions demonstrate the (1 − 𝜈2) factor which relates the existing in-plane plane strain 

stresses to those modified by the introduction of the free surface (plane stress). Finite elemental 

analysis was used to numerically validate these relationships as shown in Appendix A. 

4. Results 

Following the establishment of the relationship between the residual stress state according to 

plane stress or plane strain approximations (Equations 14 and 15), these expressions were used to 

estimate 𝑑0
101for the plane strain approximation. Beginning with the plane stress elastic field 

solution, the in-plane residual stress determined by ring-core FIB milling were transformed into the 



 

 

corresponding estimates of plane strain. The interpretation of XRD strain measurements was then 

adjusted by varying the unstrained lattice parameter, and estimates of the corresponding stress 

components were calculated using plane strain relationships between strains and stresses: 

 

 

𝜎̃1 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
((1 − 𝜈)𝜀1 + 𝜈𝜀2), 

 

Eq. 19 

 

 

𝜎̃2 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
 ((1 − 𝜈)𝜀2 + 𝜈𝜀1), 

 

Eq. 20 

 

 

𝜎𝜎̃1 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
√((1 − 𝜈)2𝜎𝜀1

2 + 𝜈2𝜎𝜀2
2 ), 

 

Eq. 21 

 

 

𝜎𝜎̃2 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
√((1 − 𝜈)2𝜎𝜀2

2 + 𝜈2𝜎𝜀1
2 ), 

 

Eq. 22 

where (𝜎𝜎̃1 , 𝜎𝜎̃2) are the standard deviations of the principal strains. The optimum value of the (101) 

lattice parameter was found to be 2.9596 Å, which corresponded to the principal stresses of 

546 𝑀𝑃𝑎 and 482 𝑀𝑃𝑎. 

For the plane stress approximation, the refinement of 𝑑0
101 was performed by comparing the 

XRD principal strain values with the absolute values obtained through ring-core FIB milling 

(1.73 × 10−3 and 1.26 × 10−3). The optimised magnitude of 𝑑0
101 was found to be 2.9586 Å, 

which corresponded to the principal strains of 1.67 × 10−3 and 1.31 × 10−3. Equations 10-13 

were then used to obtain the estimates of principal stresses and associated standard deviations 

included in Table 1. 

A polar plot of strain variation with angle 𝜑 is provided in Figure 6 showing the results 

obtained from the ring-core FIB milling and DIC approach along with the XRD results. The strain 

distributions obtained with the literature, plane strain and plane stress values of 𝑑0
101 have been 

included, along with the results of least squares fitting of Equation 9. The variation of residual stress 

with angle 𝜑 for the ring-core FIB milling and XRD approaches are is shown in Figure 7. 

 



 

 

 

Figure 6. Polar plot of millistrain against angle 𝜑 showing strains obtained using the ring-core 

FIB-DIC technique and XRD using the literature, plane stress and plane strain refined values 

of 𝑑0
101. The profiles obtained by least squares fitting of Equation 9 have been included for 

comparison. The error bars correspond to the 95% confidence intervals of each data point. 

 

Figure 7. Polar plot of stress against angle 𝜑 showing the variations obtained using the ring-core 

FIB-DIC technique and XRD assuming plane stress and plane strain conditions. 



 

 

5. Discussion 

5.1. XRD analysis 

A critical examination of the angular variation of strain obtained from XRD shown in Figure 6 

reveals that it follows the required cos(2𝜑) functional form. This suggests that the lattice spacing 

captured during this analysis is representative of the full in-plane strain state present within the 

sample. 

The sensitivity of strain calculation to the precise quantification of lattice spacing is also 

demonstrated in Figure 7. The use of the literature value of 𝑑0
101 = 2.9582 Å produces a strain state 

which does not agree with the observations of the ring-core FIB milling and DIC approach. The 

refinement of this parameter assuming conditions of plane strain provides an upper bound value of 

𝑑0
101 = 2.9596 Å, a change of 0.0014 Å which is sufficient to decrease the principal strains by 

0.45 millistrain on average. A lower bound for 𝑑0
101 can also be obtained by considering the 

situation where the XRD gauge volume is assumed to conform to plane stress conditions, leading to 

𝑑0
101 = 2.9586 Å. 

 

Figure 8. Plot of 𝑑0
101 against wt. % Yttria for the tabulated results in Table 2. The Region of 

Interest (ROI) associated with study has been bounded by the values of 𝑑0
101 calculated for the 

plane stress and plane strain conditions and the manufacturer’s tolerances of the Yttria wt. % in 

Zenotec Zr Bridge [40]. A linear fit to the data has been included and the error bars indicate the 

95% confidence intervals of the 𝑑0
101 values. 



 

 

As previously discussed, the through thickness XRD gauge volume spans regions under the 

conditions of plane stress and plane strain. Therefore, the strain distribution determined through 

XRD interpretation corresponds to some sort of convolution between the two states, and plane 

strain and plane stress conditions serve as the upper and lower bounds respectively for the 

deformation state within the system.  

Table 2. Table of YPSZ lattice parameters and the associated 𝐝𝟎
𝟏𝟎𝟏 lattice parameters for 

different wt. % of yttria (along with the associated standard deviations of each value). The 

reference, manufacturer and product name for each material has been included as well as the 

estimates obtained during this study. 

Ref. Manufacturer / Product Name wt. % Yttria 𝑎 (Å) 𝑐 (Å) 𝑑0
101 (Å) 

[61] Tosoh / TZ-3YE 3.0 
3.605 
± 0.001 

5.177 
± 0.002 

2.9582 
± 0.0015 

[67] Z-Tech LLC / EF-Premium 5.3 
3.6055
± 0.0004 

5.1797
± 0.0002 

2.9592
± 0.0002 

[40] a 

Wieland Dental / Zenotec Zr Bridge 4.5 − 6.0 

- - 
2.9586
± 0.0004 

[40] b - - 
2.9599
± 0.0003 

[68] 

Synthesised in house using: 

 Merck / zirconium oxychloride 

Riedel-de Haën / yttrium oxide 

6.8 
3.6162
± 0.0004 

5.1576
± 0.0006 

2.6909
± 0.0005 

9.3 
3.6251 
± 0.0005 

5.1401 
± 0.0008 

2.9625 
± 0.0007 

14.1 
3.6297
± 0.0007 

5.1394
± 0.0010 

2.9648 
± 0.0009 

15.4 
3.6325 
± 0.0009 

5.1426
± 0.002 

2.9670
± 0.0015 

a This work – XRD plane stress approximation. 
b This work – XRD plane strain approximation. 

 

A review of the literature was performed to assess the  𝑑0
101 estimates obtained. No quantitative 

information on the expected lattice parameters of Zenotech Zr Bridge [40] were identified however 

a range of YPSZ compositions were obtained and the results of the comparison are given in Table 2. 

Figure 8 provides a pictorial representation of the lattice spacing variation with wt. % of Yttria and 

reveals that this variation appears to correspond to the linear relationship. The Region Of Interest 

(ROI) associated with this study has also been included in this Figure 8. It is bounded by the plane 

strain and plane stress estimates of 𝑑0
101 and the manufacturer’s tolerances for Yttria wt. % [40]. It 

can be seen that the lattice parameters published by Howard et al. [67] and the linear relationship 



 

 

predicted by the literature values fall within this ROI. This suggests that the bounding values of 

𝑑0
101 calculated using the plane stress and plane strain approximations in this study are likely to be 

reliable. 

5.2. FIST ring-core FIB milling and DIC 

Stress and strain tensor quantification using XRD is a well-established technique [21, 23] 

which can be used as a reference to assess and validate the quality of stress and strain evaluation 

using ring-core FIB milling and DIC. Comparisons of the angular strain variation shown in Figure 6 

(and Table 1) reveal that the required cos 2𝜑 relationship is also observed in the data sets obtained 

using ring-core FIB milling and DIC. The angular offset between the XRD and ring-core profiles is 

on average is a small value of 1.2° comparable to the sample mounting orientation error. This 

demonstrates that the two techniques are aligned with each other to a level of precision that is better 

that the scatter and experimental error that arises due to external factors.  

The least squares fitting that has been performed between the plane stress XRD and ring-core 

analyses ensures that care must be taken when comparing the magnitudes of the principal strain 

values obtained. For example, if only one of the principal values were taken into consideration, 

optimisation of the interplanar spacing (𝑑0
101) could be used to exactly match the XRD and ring-

core strain estimates in that direction. In contrast to this approach, optimisation of the interplanar 

spacing was instead performed simultaneously on both strain component values (𝑥 and 𝑦) using a 

single parameter (𝑑0
101). In this situation, the underlying lattice parameter variation is critical to the 

quality of fit observed.  The optimised error between the two values was found to be ±0.06 

millistrain or approximately 4% of the strain value. This level of precision demonstrates that the 

principal strain relationships for the XRD and ring-core FIB milling techniques are very similar. 

The excellent matching observed between the principal strain values also translates to the stress 

estimates determined in each case. In the case of plane stress the difference between the XRD and 

ring-core principal stress estimates were 10 MPa (2%) and −8 MPa (1.9%) for the 1 and 2 values 

respectively. Similar comparisons can be drawn with the plane strain results by dividing the stress 



 

 

estimates by (1 − 𝜈2). In this case the offsets were 9 𝑀𝑃𝑎 (1.8%) and −9 𝑀𝑃𝑎 (2.1%) for the 1 

and 2 values respectively. 

A critical examination of the final stress state reveals that at 50 𝜇𝑚 from the YPSZ-porcelain 

interface the YPSZ is in a highly compressed state (average plane stress value = 461 𝑀𝑃𝑎, average 

plane strain value = 514 𝑀𝑃𝑎) with a relatively small shear component (plane stress value 𝜏𝑚𝑎𝑥 =

37.5 𝑀𝑃𝑎, plane strain value 𝜏𝑚𝑎𝑥 = 31 𝑀𝑃𝑎). Although a number of mechanisms have been 

proposed to understand the generation of residual stress and the principal stress orientations at this 

near-interface location [42, 69], only one nanoindentation study by Zhang et al. [44]  has quantified 

the stress magnitude at a resolution comparable to this study. This analysis revealed that at 50 𝜇𝑚 

from the interface the average plane stress residual stress value in the YPSZ was between 475 and 

511 𝑀𝑃𝑎 for porcelain coatings of comparable thickness to that applied in this study. The intrinsic 

variation between samples, and differing experimental techniques used to quantify the residual 

stress states in each case mean that some discrepancy is expected between these two sets of results. 

However, it can and should be noted that in general the plane stress ring-core FIB milling and DIC 

approach shows good agreement with XRD measurements and other results. 

6. Conclusions 

The strain and stress tensors obtained using the FIST ring-core FIB milling and DIC method, 

and XRD show excellent agreement both in terms of angular orientation and principal strain and 

stress values. Realistic lattice spacing estimates obtained in this study and the agreement with 

residual stress values previously published in the literature demonstrates that the results obtained 

using the two techniques are highly consistent with each other and with current knowledge of the 

YPSZ-porcelain system. 

This study has demonstrated the FIST FIB milling and DIC technique which is the first 

experimentally validated FIB based technique capable of quantifying the full in-plane tensor in a 

microscale gauge volume.  The short experimental durations (~30 minutes), automated processing 

routines and well-defined confidence intervals associated with this technique ensure that this 



 

 

approach offers a rapid, reliable and precise solution for experimental stress analysis at the micro-

scale. This method overcomes the primary limitations of XRD strain tensor analysis: it provides an 

absolute measure of residual strain without the need for unstrained lattice parameter estimates, 

interrogates a well-defined 3D gauge volume, is suitable for use on amorphous materials, and can 

be readily implemented at a broad range of laboratory facilities.  

This experimental technique has the potential to improve current understanding in the wide 

range of applications for which knowledge of the strain tensor is required within a microscale gauge 

volume. Although this method is a semi-destructive near-surface based technique, the approach can 

be extended to sub-surface measurements through appropriate sample sectioning. Although 

sectioning is known to modify the near-interface strain state, the analytical results presented here 

establish a link between the plane stress approximation of the near-surface residual stress state, and 

the plane strain approximation appropriate for material bulk. This result enables the evaluation of 

the original strain state present in the sample prior to sectioning or other material removal 

operations.  

Alongside the validation of the FIST ring-core FIB milling and DIC technique that was the 

main focus of this experimental study, a simple technique has been presented that is capable of 

producing bounding estimates for the unstrained lattice spacing. This methodology is particularly 

well suited for the case where other lattice parameter determination methods have proved 

unsuccessful, for example due to limited quality diffraction patterns, or the impossibility of 

achieving the required spatial resolution in regions of high chemical gradients. 

The derivation and numerical validation of the relationship between plane strain and plane 

stress conditions will also be useful in a broad range of mechanical studies, e.g. for continuously 

processed samples that contain sources of residual stress (eigenstrains) that are uniform along the 

axis of extrusion, and which are examined at their cross-sections.  
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8. Appendices 

A. Derivation of the relationship between plane stress and plane strain conditions 

In the analysis that follows, the connection between the plane strain state originally present in 

the YPSZ-porcelain system (which can be approximated as an infinite body) and the modified plane 

stress state induced during sample sectioning will be derived. 

 

Figure A1. Schematic showing plane strain state present in YPSZ prosthesis prior to sectioning 

(𝜎̃𝑥, 𝜎̃𝑦, 𝜎̃𝑧 , 𝜀𝑥̃, 𝜀𝑦̃, 𝜀𝑧̃ = 0) and the plane stress conditions induced during sample 

sectioning (𝜎𝑥̂, 𝜎𝑦̂, 𝜀𝑥̂, 𝜀𝑦̂ , 𝜀𝑧̂ , 𝜎𝑧̂ = 0). The relationship between these two conditions can be 

determined by considering the influence of applying a uniform stress of magnitude 𝜎̃𝑧 in a direction 

opposing the stress originally present. 

A schematic of the plane strain and plane stress conditions is shown in Figure A1 in which the 

out of plane direction is parallel to the 𝑧 axis and the principal stress orientations are aligned to the 

𝑥, 𝑦 coordinate system axes. In the unsectioned YPSZ body conditions of plane strain are present, 

the stresses in this system are given by 𝜎̃𝑥, 𝜎̃𝑦 and 𝜎̃𝑧 and the in-plane strains by 𝜀𝑥̃ and 𝜀𝑦̃. Under 



 

 

the conditions of plane strain the out-of-plane strain component (𝜀𝑧̃) must vanish at locations where 

the corresponding eigenstrain component is zero, i.e. must be set 𝜀𝑧̃ = 0. If the out-of-plane 

eigenstrain component is present at the corresponding location, for example due to volumetric phase 

transformation, then it is necessary to set 𝜀𝑧̃ = −𝜀𝑧
∗, where 𝜀𝑧

∗ is the 𝑧 direction eigenstrain 

component [70]. 

 

Figure A2. Schematic showing the relationship between original plane strain conditions and the 

plane stress state induced by sample sectioning. All relationships are written in terms of the in-

plane stresses originally present (𝜎̃𝑥 and 𝜎̃𝑦). The systematic decoupling of the 𝑥 and 𝑦 in plane 

strains, and the associated stress changes are shown in 𝑎 and 𝑏. 

Hooke’s law can then be used to define the plane strain relationship between 𝜎̃𝑥, 𝜎̃𝑦 and 𝜎̃𝑧: 

 

 

𝜀𝑧̃ = 0 =
1

𝐸
[𝜎̃𝑧 − 𝜈(𝜎̃𝑥 + 𝜎̃𝑦)], 

 

 

Eq. A1 

 

 

𝜎̃𝑧 = 𝜈(𝜎̃𝑥 + 𝜎̃𝑦). 

 

Eq. A2 

The full stress and strain state of the plane strain state can then be written solely in terms of 𝜎̃𝑥 and 

𝜎̃𝑦 as shown in Figure A2, stress state 1. 

In order to establish a relationship between the plane stress and plane strain states, the 

influence of the two in-plane residual stresses need to be uncoupled. By considering the two cases 



 

 

where 𝜎̃𝑦 = 0 and 𝜎̃𝑥 = 0 these two states can be determined as shown in Figure A2 (states 1𝑎 and 

1𝑏). 

The application of stress equal and opposite to 𝜎̃𝑧 can be used to simulate the introduction of a 

traction-free surface as shown in Figure A2. This will result in a surface stress value equal to zero in 

the 𝑧 direction (𝜎𝑧
′ = 0), but will also modify the other stress and strain values. In the uncoupled 

stress states this is equivalent of applying stresses of 𝜎𝑧 = −𝜈𝜎̃𝑥 and 𝜎𝑧 = −𝜈𝜎̃𝑦 to the 1𝑎 and 1𝑏 

states respectively.  

Examination of stress state 𝑎 reveals that the stress in the 𝑦 direction is equal to zero and 

therefore that this orientation can be considered as having no displacement constraints. Equivalently 

stress state 𝑏 can be considered as having no constraints in the 𝑥 direction. These two conditions 

can be used to decompose the stress change induced by the application of  −𝜎̃𝑧 into two compatible 

tensor fields. In the case of state 2𝑎 the stress change in the 𝑦 direction is zero and the strain change 

in the 𝑥 direction is zero. Conversely, for state 2𝑏 the stress change in the 𝑥 direction is zero and the 

strain change in the 𝑦 direction is zero. The addition of stress states of these two types can be used 

to generate any arbitrary stress distribution. 

In case 2𝑎 the stress state in the 𝑦 and 𝑧 directions are known. Using these values, the plane 

strain conditions in the 𝑥 direction and Hooke’s law, the stress in the 𝑥 direction can be determined: 

 

 

𝜀𝑥 = 0 =
1

𝐸
(𝜎𝑥 − 𝜈𝜎𝑦 − 𝜈𝜎𝑧) =

1

𝐸
(𝜎𝑥 − 0 + 𝜈

2𝜎̃𝑥), 

 

 

Eq. A3 

 

 

 

𝜎𝑥 = −𝜈2𝜎̃𝑥. 
 

 

Eq. A4 

 

Equivalent analysis can be performed for 2𝑏 to determine that 𝜎𝑦 = −𝜈
2𝜎̃𝑦 for this case. Hooke’s 

law can then be used to determine the strains in the other two principal directions ( Figure A2). 

To determine the impact of introducing the traction-free surface on the resultant stress and 

strain tensors, the decoupled intermediate states are added to give the plane stress states: 1𝑎 + 2𝑎 =

3𝑎 and 1𝑏 + 2𝑏 = 3𝑏. These two stress states are in conditions of plane stress in 𝑧 direction but 



 

 

also in one of the other principal directions (the 𝑦 direction for case 𝑎 and the 𝑥 direction for case 

𝑏). Summation of states 3𝑎 and 3𝑏 provides expressions for the plane stress tensors in terms of the 

in-plane plain strain stresses (𝜎̃𝑥 and 𝜎̃𝑦) which are given in Equations 14-18.These expressions 

demonstrate the (1 − 𝜈2) factor which relates the existing in-plane plane strain stresses to those 

modified by the introduction of the free surface (plane stress).  

A.1 Kolosov-Mukhelishvili plane eigenstrain potentials 

In order to provide comparison with the analysis outlined above, the same plane eigenstrain 

problem of elasticity can be assessed using Kolosov-Muskhelishvili complex potentials; a well-

established methodology which has previously been used to validate a wide range of mechanical 

interactions [71, 72]. The analysis starts with the fundamental solution for a point eigenstrain within 

an infinite plane solid, and goes onto exploit the integral expression for residual stress state that 

arises due to an arbitrary distribution of eigenstrain within a bounded domain [73]. Comparisons 

between the plane strain and plane stress cases of the plane eigenstrain problem can then be drawn 

in order to determine the relationship between these two states.  

In the Kolosov-Muskhelishvili complex potential formulation, all components of stress, 

displacement and strain are expressed in terms of two complex potential functions Φ(𝑧), Ω(𝑧) [74]: 

 

𝜎11 + 𝜎22 = 2[Φ(𝑧) + Φ(𝑧)̅̅ ̅̅ ̅̅ ̅], 
 

 

Eq. A5 

 

 

𝜎22 − 𝑖𝜎12 = [Φ(𝑧) + Ω(𝑧)̅̅ ̅̅ ̅̅ + (𝑧 − 𝑧̅)Φ′(𝑧)̅̅ ̅̅ ̅̅ ̅], 
 

 

Eq. A6 

 

 

2𝜇(𝑢1,1 + 𝑖𝑢2,1) = [κΦ(𝑧) − Ω(𝑧)̅̅ ̅̅ ̅̅ − (𝑧 − 𝑧̅)Φ′(𝑧)̅̅ ̅̅ ̅̅ ̅], 
 

 

Eq. A7 

 

 

where 𝑖 = √−1, 𝑧 = 𝑥1 + 𝑖𝑥2 = 𝑥 + 𝑖𝑦 as shown in Figure A3, Φ′(z) = 𝑑Φ(z)/𝑑z, 𝜇 is the shear 

modulus and 𝜅 is the Kolosov constant which is equal to 3 − 4𝜈 for plane strain and (3 − 𝜈)/(1 +

𝜈)for plane stress. The use of a comma followed by a subscript 𝑖 indicates differentiation with 

respect to 𝑥𝑖, while a bar over a function denotes its complex conjugate.  



 

 

 

Figure A3. Schematic of eigenstrain domain 𝐴 showing eigenstrain source point vector 𝑠. 

The Kolosov-Muskhelishvili complex potentials for a point eigenstrain located at a source 

point 𝑠 = 𝜉 + 𝑖𝜂 within an infinite plane solid (in which the position vector is given by 𝑧 = 𝑥 + 𝑖𝑦) 

can be expressed in terms of two principal eigenstrain values and the principal direction 

(𝜀𝑥0, 𝜀𝑦0, 𝜓) as [75]:  

{
 
 

 
 Φ0(𝑧) =

𝜇(𝜀𝑦0 − 𝜀𝑥0)𝑒
2𝑖𝜓

𝜋(1 + 𝜅)(𝑧 − 𝑠)2
,

 

Ω0(𝑧) =
𝜇[2(𝜀𝑦0 + 𝜀𝑥0) − 𝑒

2𝑖𝜓(𝜀𝑦0 − 𝜀𝑥0)]

𝜋(1 + 𝜅)(𝑧 − 𝑠)2
+
2𝜇(𝜀𝑦0 − 𝜀𝑥0)𝑒

2𝑖𝜓

𝜋(1 + 𝜅)

(𝑠̅ − 𝑠)

(𝑧 − 𝑠)3
.

 

 

 

Eq. A8 

 

 

Eq. A9 

 

 

The expression in terms of principal eigenstrains and principal angle (𝜀𝑥0, 𝜀𝑦0, 𝜓) can be 

transformed to the form of expression in terms of eigenstrain components (𝜀11
∗ , 𝜀22

∗ , 𝜀12
∗ )

 
referring to 

the global x-y coordinate system, leading to the alternative expressions: 

{
  
 

  
 Φ0(𝑧) =

𝜇[(𝜀22
∗ − 𝜀11

∗ ) − 2𝑖𝜀12
∗ ]

𝜋(1 + 𝜅)(𝑧 − 𝑠)2
=

𝜇

𝜋(1 + 𝜅)
𝜙(𝑧, 𝑠),

 

Ω0(𝑧) =
𝜇{2(𝜀11

∗ + 𝜀22
∗ ) − [(𝜀22

∗ − 𝜀11
∗ ) − 2𝑖𝜀12

∗ ]}

𝜋(1 + 𝜅)(𝑧 − 𝑠)2
+
2𝜇[(𝜀22

∗ − 𝜀11
∗ ) − 2𝑖𝜀12

∗ ]

𝜋(1 + 𝜅)

(𝑠̅ − 𝑠)

(𝑧 − 𝑠)3

=
𝜇

𝜋(1 + 𝜅)
𝜔(𝑧, 𝑠)

 

 

 

Eq. A10 

 

 

Eq. A11 

 

 

 

The Kolosov-Muskhelishvili complex potential due to the distribution of eigenstrain in the arbitrary 

domain 𝐴 shown in Figure A3 can then be written as:  



 

 

 

{
 
 

 
 Φ(𝑧) =

𝜇

𝜋(1 + 𝜅)
∫𝜙(𝑧, 𝑠)𝑑𝐴
 

𝐴

=
𝜇

𝜋(1 + 𝜅)
∫ ∫𝜙(𝑧, 𝜉 + 𝑖𝜂)𝑑𝜉𝑑𝜂

 

𝜂

 

𝜉

,

 

Ω(𝑧) =
𝜇

𝜋(1 + 𝜅)
∫𝜔(𝑧, 𝑠)𝑑𝐴
 

𝐴

=
𝜇

𝜋(1 + 𝜅)
∫ ∫𝜔(𝑧, 𝜉 + 𝑖𝜂)𝑑𝜉𝑑𝜂

 

𝜂

 

𝜉

,

 

 

 

Eq. A12 

 

 

Eq. A13 

 

where Equations A10 and A11 now imply that 𝜀𝑖𝑗
∗ = 𝜀𝑖𝑗

∗ (𝑠) for 𝑠 ∈ 𝐴. 

The stress field outside the eigenstrain domain, 𝑧 ∉ 𝐴 is obtained by substituting Equations 

A12 and A13 into Equations A5-A7 and can be written in a compact form as:  

 

𝜎𝑖𝑗 =
𝜇

𝜋(1 + 𝜅)
𝑓𝑖𝑗(𝑧). 

 

 

Eq. A14 

 

Here 𝑓𝑖𝑗(𝑧) denotes the appropriate combination of functions Φ(𝑧) and Ω(𝑧). The common 

dimensional multiplier of these functions is given as 𝜇 𝜋(1 + 𝜅)⁄ . 

The above expression needs to be modified for 𝑧 ∈ 𝐴. The stress-strain relation in this case 

must be written to take into account strain additivity, i.e. the fact that total strain is written as the 

sum of elastic strain 𝜀𝑚𝑙 and inelastic strain (eigenstrain) 𝜀𝑚𝑙
∗  as: 

 

𝜀𝑚𝑙
total = 𝜀𝑚𝑙 + 𝜀𝑚𝑙

∗ . 

 

 

Eq. A15 

 

 

The stress-strain relationship is then written as: 

 

𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑚𝑙(𝜀𝑚𝑙
total − 𝜀𝑚𝑙

∗ ), 

 

 

Eq. A16 

 

leading to:  

 

𝜎𝑖𝑗 =
𝜇

𝜋(1 + 𝜅)
𝑓𝑖𝑗(𝑧) −

𝜇

𝜋(1 + 𝜅)
𝑔𝑖𝑗(𝑧), 

 

 

Eq. A17 

 

where 𝑔𝑖𝑗(𝑧) has the functional form of 𝑓𝑖𝑗(𝑧), but with eigenstrain 𝜀𝑚𝑙
∗  playing the role of 

argument instead of the elastic strain 𝜀𝑚𝑙. Function 𝑔𝑖𝑗(𝑧) assumes the value of zero outside the 

eigenstrain domain. Substituting the values of the Kolosov constant 𝜅 = 3 − 4𝜈 for plane strain 

(𝜎𝑖𝑗̃) and 𝜅 = (3 − 𝜈) (1 + 𝜈)⁄  for plane stress (𝜎𝑖𝑗̂), the result obtained has the form: 



 

 

 

𝜎𝑖𝑗̃ =
𝜇

𝜋(1 + 3 − 4𝜈)
(𝑓𝑖𝑗(𝑧) − 𝑔𝑖𝑗(𝑧)) =

𝜇

4𝜋(1 − 𝜈)
(𝑓𝑖𝑗(𝑧) − 𝑔𝑖𝑗(𝑧)), 

 

Eq. A18 

 

 

𝜎𝑖𝑗̂ =
𝜇

𝜋[1 + (3 − 𝜈) (1 + 𝜈)⁄ ]
(𝑓𝑖𝑗(𝑧) − 𝑔𝑖𝑗(𝑧)) =

𝜇(1 + 𝜈)

4𝜋
(𝑓𝑖𝑗(𝑧) − 𝑔𝑖𝑗(𝑧)). 

 

 

Eq. A19 

 

Therefore, everywhere within a plane solid, both inside and outside the eigenstrain domain A, 

the relationship between plane stress and plane strain residual stress states is given by: 

 

𝜎𝑖𝑗̂(𝑥, 𝑦) = (1 − 𝜈2)𝜎𝑖𝑗̃(𝑥, 𝑦). 

 

 

Eq. A20 

 

This expression has the same form as those developed in Equations 14 and 15. 

A.2 Finite Element Analysis 

FE simulation can be used as a fast and reliable tool for numerical validation of the analytical 

relationships between two stress states (for example, plane strain and plane stress) that arise in the 

body due to the presence of plane eigenstrain. Unconstrained 2D simulations of a rectangular region 

of YPSZ under plane stress and plane strain conditions were carried out for the case of a plane 

eigenstrain problem (𝜀𝑧
∗ = 0). The in-plane eigenstrains were given by an identical anisotropic 2D 

Gaussian distribution: 

 

𝜀𝑥
∗(𝑥, 𝑦) = 𝜀𝑦

∗(𝑥, 𝑦) = 1.25 × 10−3𝑒−(
𝑥
2
)
2

𝑒−(
𝑦
8
)
2

, 

 

 

Eq. A21 

 

where 𝑥 and 𝑦 are the coordinate positions. This localised peak of eigenstrain can be thought of as a 

basic constituent term in a wavelet transform or similar decomposition of an arbitrary eigenstrain 

field. In other words, if the transformation between plane strain and plane stress solutions is shown 

to be correct for this case, it is possible to assert with some justification that the result will also hold 

in the most generic cases that can be decomposed into superposition of such basic terms.  

Following the eigenstrain modelling, the consequence of post-processing (transformation) of 

the plane strain solution was then compared with the full plane stress FE results (Figure A4). The 

numerical discrepancy between the two approaches was found to be less than 0.5%, i.e. within the 

simulation error bounds. This provides numerical validation of the relations in Equations 14-18. 



 

 

 

Figure A4. Result of 2D YPSZ FE simulations of residual stresses and strains induced by the 

application of 2D Gaussian eigenstrain distributions (𝜀𝑥
∗(𝑥, 𝑦) and 𝜀𝑦

∗(𝑥, 𝑦)). The results of the FE 

plane stress analysis are shown on the left of the figure and the comparable ‘predicted’ plane stress 

results obtained from the plane strain simulations are shown on the right. The expressions used to 

calculate these distributions are given next to each plot and are equal to the elastic responses given 

in equations 14-18 plus the eigenstrain contribution. The average difference between profiles is 

0.5% which is associated with numerical errors in the simulation. 
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