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Abstract 

Numerical modelling of the residual stresses and strains within mechanical components is of great 

importance for improving the quality and reliability of design for structural integrity. A particularly 

versatile and powerful approach is offered by direct and inverse eigenstrain modelling. The nature of 

the eigenstrain modelling approach is it not only generates an efficient parametric representation of 

the residual stress field, but also ensures consistency by enforcing stress equilibrium and strain 

compatibility. In the present study we propose a particular way of prescribing the eigenstrain field due 

to surface treatment such as shot peening. Eigenstrain variation is described by a continuous function 

of the distance from the boundary of the object in a two-dimensional model of its cross-section. The 

procedure is compatible with the use of commercial numerical simulation software, and allows correct 

assignment of all eigenstrain components. We apply the technique to the evaluation of residual strain 

within an additively manufactured nickel superalloy compressor blade that was subsequently 

subjected to shot peening treatment. Two experimental techniques are used to validate the model, 
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namely, Focused Ion Beam ring core milling (FIB-DIC) and synchrotron X-ray Powder Diffraction 

(SXRD). Consistency between model prediction and experimental measurements provides verification 

of the suitability of eigenstrain modelling as consistent basis for the incorporation of residual stress 

effects on the deformation behaviour of manufactured components.  

1. Introduction 

The knowledge of residual stresses plays a significant role in the correct assessment of structural 

integrity and performance reliability [1, 2]. The simplest approach involves considering residual stress 

as a source of uncertainty that must be accounted for by the introduction of a safety factor to ensure 

the integrity of mechanical components and assemblies in service. A more refined methodology takes 

into account the specific spatially varying nature of the residual stress within components and 

assemblies, by incorporating residual stress effects in the structural integrity predictions. 

Implementing this approach requires sufficiently detailed knowledge of the spatially resolved residual 

stress state based on the combination of modelling and experimental evaluation.  

Residual stresses arise as a consequence of nearly all manufacturing and thermo-mechanical 

treatment processes. Depending on the length scale at which residual stresses are present, they give 

rise to vastly different effects (e.g. shape distortion, increase in the dislocation density, change in 

hardness, ductility, the resistance to fatigue and/or fretting, etc.) [3-5]. Residual stress may have either 

beneficial or detrimental effect on the performance depending on their nature and sign. Near surface 

compressive residual stress may enhance component life by reducing the propensity of cracks to 

nucleate and propagate. Since it is not always possible to control fully the nature and magnitude of 

residual stresses that arise due to the primary manufacturing process, additional secondary processing 

steps can be employed to achieve the reduction of tensile residual stress and/or the introduction of 

compressive residual stress [6]. Shot peening (SP) is one of the most popular and widespread among 

these techniques [7, 8]. Localised plastic deformation is induced by the impact of small rounded shot 

on the surface of a part made from a ductile metal , leading to the formation of a shallow near-surface 
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layer of compressive residual stress within the component. Shot peening is often used for the 

reduction or sign reversal of tensile residual stresses, such as e.g. in the case of weldments [9].  

To enable component design, the simulation of the stress state that arises within it under simple 

or complex loading conditions is carried out using numerical methods such as Finite Element Analysis 

(FEA). At this stage the residual stress state is often ignored, introducing a considerable amount of 

uncertainty. To take into account the residual stress, it must be prescribed within the model in a way 

that satisfies the requirement of strain compatibility, together with stress equilibrium and traction 

boundary conditions. This can be achieved particularly well using the concept of permanent inelastic 

strain, also known as eigenstrain [10], that was originally introduced to enable analytical formulation 

and solution of residual stress problems [11]. The premise of this technique is to consider the 

consequences of the introduction of eigenstrain in terms of elastic strains and the associated stresses 

(residual stresses) that must simultaneously ensure continuity and stress balance, respectively. Thus, 

the residual stress field arises as a one-step (non-iterative) solution of the linear elasticity problem 

perturbed by eigenstrain. This formulation lends itself to the solution of both direct and inverse 

problems, be it analytically or numerically (e.g. by least squares) [12]. The inverse eigenstrain 

approach allows finding the most likely residual stress state that is  consistent with both the 

experimental data and the laws of continuum mechanics.  

In the past, eigenstrain modelling has been successfully used for the reconstruction of arbitrary 

residual stress fields in both two- or three-dimensional numerical models [13, 14]. The eigenstrain 

distribution that induces a typical residual stress profile found after shot peening can be described by 

a continuous function that depends on the argument given by the distance from component surface 

that has been subjected to the treatment [15]. This assumption is based on the view that shot peening 

under given treatment conditions leads to the introduction of a well -defined eigenstrain distribution 

that, in the absence of particularly sharp tips, corners or notches, does not depend on the sample 

geometry [16]. When complex component geometries need to be analysed, the boundary shape 

description may not be possible by global analytical function(s). In such cases, the introduction of 
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eigenstrain into the numerical model must be accomplished by combining the local functional 

description with the global numerical assignment of values to elements. The present study is devoted 

to the implementation of this approach for a particular case of aerofoil cross-sectional shape of 

compressor blade. The required prescription of in-plane eigenstrain tensor as a function of distance 

from the free surface was performed using a pre-processing routine written in Matlab for the 

evaluation of distances from boundary outline contour (shortest radius) at each Integration Point (IP) 

of the FE model. In addition, the angles formed by the shortest radius with global Cartesian axes are 

used to ensure the correct prescription of the local eigenstrain components, namely, compressive 

inelastic strain in the direction of surface normal, and expansion eigenstrains of opposite sign and 50% 

magnitude in the perpendicular plane. 

In the present paper we report the evaluation of residual strains within the cross-section of an 

additively manufactured compressor blade that was subsequently treated by shot peening (SP). 

Residual strain measurement was conducted by means of two experimental techniques, namely, FIB-

DIC micro- ring-core [17-19] and synchrotron X-ray powder diffraction (SXRPD) [20-23] in transmission 

mode. These techniques perform residual strain evaluation based on two different principles and in 

different gauge volumes. As well as other variants of the FIB-based milling technique [24-29], the FIB-

DIC micro-ring-core technique relies on the principle of the strain relief after the introduction of a cut 

that creates new traction-free surfaces, whereas as far as SXRPD is concerned, strain is evaluated by 

monitoring the lattice parameter change for crystalline material. FIB-DIC micro-ring-core method is 

able to measure local residual strain at or near free surface of material regardless of whether it has 

crystalline or amorphous structure. In contrast, SXRPD technique is applicable to polycrystalline 

materials and, due to high penetrating ability of hard X-rays, produces a gauge volume that spans the 

entire sample depth, while micron scale lateral resolution can be readily achieved. These distinctions 

between the two techniques are carefully traced through the discussion, and are used in combination 

for the purpose of cross-validation. 
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For the purposes of analysis, the Leading Edge (LE), Trailing Edge (TE) and Middle position (M) on 

the blade were analysed using the techniques described above along several lines. Once the 

reconstruction of eigenstrain distribution was achieved, it was employed to visualise residual stress 

and strain fields everywhere within the blade and in specific regions of interest. 

 

2. Eigenstrain residual stress description 

2.1. Eigenstrain theory 

 

Eigenstrain theory is based on the description of the inelastic strain distribution that gives rise to 

residual stress. Permanent (‘frozen-in’) strain that is termed eigenstrain describes shear, shrinkage or 

dilatation induced by an arbitrary inelastic process that may be associated with phase transformation, 

temperature change, plastic deformation, etc.  

The total strain within a solid can always be decomposed additively into the irreversible and 

reversible parts. The former part is the permanent inelastic strain (eigenstrain 𝜀∗), whilst the latter 

part corresponds to the elastic strain, 𝜀𝑒𝑙: 

𝜀𝑡𝑜𝑡̿̿ ̿̿ ̿ =  𝜀 ∗̿ + 𝜀𝑒𝑙̿̿̿̿ . (1) 

In most cases, the presence of an eigenstrain distribution within a body means that an elastic 

strain field is required to maintain strain compatibility. It is important to note that this elastic strain 

field is subject to further mathematical requirements: the generalised Hooke’s law that imposes the 

linear relationship between the elastic strain and stress within the body means that the elastic strain 

must be statically admissible, i.e. correspond to an equilibrated stress field. If no external tractions 

are applied to the body, then the aforementioned tensor fields are referred to as residual elastic strain 

(r.e.s.) and residual stress, respectively. 

 The eigenstrain method has already been adopted widely for modelling residual stress at various 

scales and fields of application. An important field of eigenstrain analysis concerns inclusions in elastic 

solids for which a whole range of fundamental solutions are available [30-32], notably for Eshelby 
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ellipsoidal inclusions, cuboidal inclusions, etc. Eigenstrain-based analytical solutions have also been 

presented for residual stress distributions within a plate subjected to shot peening [11, 33-37] and a 

hollow tube subjected to autofrettage [38]. 

In cases where the geometry of the problem cannot be described using an analytical formulation, 

numerical methods can be utilised. Since real mechanical components are usually geometrically 

complex, the Finite Element Method (FEM) is widely employed. Within the framework of FEM it is 

convenient to introduce arbitrary eigenstrain fields into the model using pseudo-thermal strain 

expressed in terms of a temperature change ∆𝑇 and a tensor of thermal expansion coefficients 𝛼. 

Then: 

𝜀 ∗̿ = 𝛼 ∆𝑇 (2) 

The thermal expansion coefficient tensor 𝛼 contains six independent components and allows the 

description of all possible eigenstrain states. The prescription of the thermal expansion coefficient 

tensor at the totality of the Integration Points (IP) of the FEM model, in combination with the 

application of a uniform temperature change, furnishes an entirely flexible description of the 

eigenstrain field with the help of a user subroutine to define 𝛼. Once the known eigenstrain 

distribution is prescribed, the one step solution of the thermo-elastic problem follows which returns 

the residual elastic strain distribution, and with it the associated residual stress distribution that is 

self-equilibrated by construction. 

The evaluation of the elastic strain field when the imposed eigenstrain is known is called the direct 

problem. An example of a direct problem is the Eshelby treatment of an ellipsoidal inclusion [39], 

whereby uniform eigenstrain distribution is imposed within an ellipsoidal domain (inclusion), and the 

inner and outer elastic strain and stress fields are determined.  

It is worth mentioning that the inelastic deformation (eigenstrain), produced by a mechanical 

treatment, if known because evaluated through a simple case, this can be transferred to more 

complex geometries. This was firstly introduced by Korsunsky [11] and named Principle of 

Transferability of Eigenstrain.  
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On the other hand, if the elastic strain is known and the eigenstrain the generated it is sought, 

this is called inverse problem. This is the case where experimental evidence provides information 

regarding the elastic strain field and thus the reconstruction of the eigenstrain that induced that elastic 

strain change is evaluated. In the past years, this procedure has been widely performed to several 

relevant engineering case such as:  shot peening [40], including in the context of Crystal Plasticity [34], 

friction stir welding [41, 42], phase transformation [43], etc. 

 

2.2. An approach to eigenstrain analysis for arbitrary 2D geometry 

The distribution of residual stress/strain generated by a surface treatment process can be 

reproduced by the eigenstrain approach. The introduction of an eigenstrain distribution within the 

model by means of a continuous function can capture the intrinsic strain distribution generated by 

the underlying process operation by applying eigenstrain to simulate the inelastic deformation arising 

as a consequence of a treatment such as surface processing. 

Generally, a two-dimensional (2D) solid mechanics problem can be considered in the plane-stress 

or plane-strain approximation. The choice of the most appropriate approximation is determined by 

the constraint experienced by the material in the out-of-plane direction. Depending on the nature of 

the problem, the eigenstrain distribution in a 2D domain can be specified. In particular it is interesting 

to consider a situation when eigenstrain components are also confined to the plane of consideration, 

so that the problem arising can be referred to as the plane eigenstrain problem. 

Schematic diagram in the Fig.1 shows how at each arbitrary point P lying within the model, the x- 

axis orientation of a Local Cartesian coordinate System (LCS) can be identified as the direction of vector 

that connects to the nearest contour point C, 𝑃𝐶̅̅ ̅̅ . Consequently, the angle 𝛼 denotes the rotation 

angle of the LCS with respect to the Global Cartesian coordinate System (GCS). According to this 

schematisation, the components of eigenstrain in the LCS (𝜀
𝑥𝐼
∗  and 𝜀

𝑦𝐼
∗ ) can be prescribed by using 𝜀

𝑥
∗  

and 𝜀
𝑦
∗  in the GCS upon the knowledge of the rotation angle 𝛼. 
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<< FIGURE 1 HERE >> 

Prescribing eigenstrain distribution using a continuous function requires the computation of 

the minimum distance for arbitrary point P from the nearest point on the sample contour, C. In order 

to impose correct eigenstrain components along the directions normal and parallel to the boundary 

contour, the angle 𝛼  must be found that is formed by the surface normal at point C and the abscissa 

axis of the GCS.  

The practical implementation of such algorithm within the Abaqus environment represents a 

challenge, given the difficulty of defining the boundary contour from element node data. An 

alternative approach is to evaluate the required value of distance and angle prior to the FE 

computation using a Matlab-based routine. The procedure involves the use of a binary mask 

representing the sample geometry, with the values set to 1 within the sample, and 0 outside . For each 

pixel within the mask that has the value of unity, the distance to the nearest null value pixel can be 

evaluated readily. The output from this pre-processing step is incorporated into the Abaqus model by 

extracting integration point (IP) coordinates and computing the distances and angles by interpolation 

of the values from Matlab image analysis. Abaqus subroutines are then used to set the distance and 

angle data for each IP as internal variables, and to compute the correct eigenstrain components 

accordingly.  

The detailed list of the steps needed for the implementation of the above procedure, along 

with comprehensive description, is reported in the Appendix. With the aim of checking the correctness 

of the imposed eigenstrain, in particular the right component discrimination, the principal directions 

can be visualised during the post-processing. Figure 2(b) below illustrates a quiver plot of principal 

directions. In this specific case, two principal components of eigenstrain imposed were perpendicular 

and parallel to the model edges (blue line). The vectors indicate the principal directions are seen to be 

consistent with the contour orientation, particularly as the boundary is approached. It is possible to 

observe in Figure 2(b) that the red arrows (directions of maximum principal stress/strain) are actually 
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locally perpendicular to the contour, whilst the other direction (indicated by the black arrows) is locally 

tangent to the contour.  

<< FIGURE 2 HERE >> 

3. Residual stress reconstruction in ALM shot peened blade 

3.1. Additive Layer Manufacturing 

Additive Layer Manufacturing (ALM) is an emerging technique for the production of complex three-

dimensional mechanical components. If the material involved is metal or alloy, the fundamental idea 

of this technique is the melting of a stationary bed or a jet of compound powder, usually by means of 

rastering a high energy focused laser beam or, in some cases, using conventional weld arc. Therefore, 

the final product is built up by adding one cross-sectional layer of material at a time [44]. This process 

is usually interfaced with 3D CAD models, so that near-net-shaped components can be formed by 

reproducing the sequence of cross section contours that compose the model. The introduction of this 

technique has allowed the designers to optimise their objects, particularly to improve the 

performance and reduce weight. The application of ALM is not limited only to the macroscopic scale, 

but also applied to micro-scale and nano-structures [45]. The technique delivers outstanding 

performance in the welding of dissimilar materials, reducing various unwanted side effects that arise 

with the use of other methods [46]. 

In recent years ALM has begun to be increasingly utilised in aerospace applications, particularly 

when high temperature performance is sought [47]. Compressor blades are a prominent example of 

a mechanically loaded component that is simultaneously subjected to high temperature. Gas turbine 

engines contain numerous blades that are exposed to cyclic loading and whose failure leads to the 

loss of efficiency or even destruction of the entire system. Thus, periodic monitoring and replacement 

of turbine blades is necessary. In some cases the repair of damaged parts using ALM (instead of 

replacement) is a feasible solution that is also significantly less costly [48, 49].  
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Despite its supreme versatility, ALM may give rise to some undesired effects in the component 

manufacturing. The most obvious is porosity: since the technique does not involve the application 

confining pressure during solidification from melt, gradients in material density may arise. The 

combination of this effect with the high gradients in temperature may lead to the generation of 

defects [50]. Furthermore, the rapid changes in the local temperature and thus steep temperature 

gradients within the component may give rise to thermal stresses. If this stresses exceed the material 

strength, voiding or cracking may appear [51]. Finally, during cooling from the processing 

temperature, uneven material shrinkage may give rise to residual stress and distortion [52]. 

 

3.2. Methods for experimental residual strain measurement 

Residual stress measurement can be accomplished using several techniques, but only a few of 

them are able to provide resolution down to the finest scale of e.g. microns. In the present study two 

experimental techniques were employed for residual stress evaluation, FIB-DIC micro-ring-core milling 

[18, 19, 53] and synchrotron XRD [54]. FIB-DIC methodology is based on the strain relief phenomena 

occurring within the surface layer of the when the constraint is modified by making a cut. The flexible 

control of Focused Ion Beam (FIB) scanning means that the cut can be performed in any shape, e.g. 

that of a circular trench. The isotropy of this arrangement allows obtaining information about the 

strain relief in all in-plane directions. The central core of material remaining after the trench milling 

procedure is similar to micro-pillars used for micro-scale mechanical testing. The monitoring of the 

displacement and therefore of the apparent strain evolution at the top surface of the pillar using 

Digital Image Correlation (DIC) provides information regarding the residual stress that was locked in 

the material prior to milling. The fitting of the apparent strain evolution along a certain direction with 

a master curve allows quantifying the average residual stress within the gauge volume [15]. The fitting 

function is derived from numerical simulations that assume uniform residual strain within the host 

material along the depth [17]. Of the other candidates for residual stress measurement at the micron 

scale the one suitable for crystalline materials is the X-ray diffraction-based technique. Particularly, if 
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bulk stresses need to be studied and high spatial resolution is sought, the required high flux and 

accurate beam collimation can be achieved using Synchrotron X-Ray Powder Diffraction (SXRPD) [20-

23].  

 

3.3. Compressor blade description and sample preparation 

Additive manufacturing techniques were used to create an IN718 compressor aerofoil as shown 

in Fig 2(a). Particularly, the technique adopted was the Laser Metal Deposition (LMD) using a laser and 

blown powder. Shot peening was applied along the entire contour of the component in order to 

induce compressive stresses close to the surface regions. Based on the results of prior vibrational 

testing, a cross section of the aerofoil was selected as the region of interest for this study. This fatigue 

test enabled to pinpoint the critical region of this component (i.e. crack nucleation location).This was 

at 17mm from the blade root, as indicated in Fig.2(a).  

In order to implement the semi-destructive FIB-DIC micro ring-core and SXRPD analysis techniques 

for the residual strain measurement, free surfaces at the region of interest and a near-constant stress 

distribution along the blade extension were sought. For this reason, sectioning of the aerofoil was 

performed in the circumferential direction parallel to the outer edge of the aerofoil using a diamond 

cutting wheel. As result, a 2mm thick cross-section across the entire blade was extracted. 

Surface material removal of the layers of material affected by cutting was performed using 

Grade 320 grinding paper. Following this, increasingly fine grit sizes (up to Grade 4000) were used to 

improve the surface finish. Polishing of the surfaces was then performed using 0.1 µm diamond 

suspension. In order to minimise induced surface stress and increase the surface contrast of the 

sample, etching was then performed on the surface using a weak acetic acid solution. In fact, 

controlled chemical etching enabled the removal of the shallowest layer impaired by sample 

preparation. 
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Three milling regions on the cross section were selected for FIB-DIC and SXRPD residual strain 

analysis. A montage cross section showing regions of stress analysis and approximate mapping 

positions is reported in Fig.3. 

<< FIGURE 3 HERE >> 

 

3.4. FIB-DIC measurement 

Residual stress distributions were obtained by repeatedly performing the strain analysis 

procedure with spacing ranging from 100 to 50 microns between each FIB-DIC measurement. 

Following this testing procedure, the final FIB milling parameters were chosen to be 30keV and 0.17nA.  

The optimal SEM parameters were found to be 5keV and 260nA. The incremental FIB milling of the 

surface was performed in synergy with the SEM image acquisition. A SEM image was collected, at the 

resolution of 2001x2001 pixels, after each milling process and 50 images were recorded for each 

measurement. Fig.4 shows an example of images taken at different stages as the ring core milling 

advanced. 

<< FIGURE 4 HERE >> 

The introduction of DIC [55] at this stage allowed the reconstruction of the strain relief at the stub 

top surface. For the sake of convenience the average strains were measured in the two perpendicular 

directions (x and y in Fig.4). These directions were accurately chosen to match the sample contour 

directions that were thought to be coincident with the principal strain/stress direction. At each milling 

point therefore, a pair of relief curves were obtained. The interpretation process of the relief curves 

leading to the abstraction of residual strains present within the material prior to milling was conducted 

by master curve fitting [15]. The uncertainties arising from this process were assessed and reported 

with the final residual strain values as error bars, as will be shown in the subsequent sections of the 

paper. 



14 
 

 

3.5. SXRPD measurements  

SXRPD analysis was performed at beamline I15 at Diamond Light Source, Harwell. A 

monochromatic beam with the photon energy of 76 keV was focused down to less than 70 × 70 µm2 

in size by two 1.2m long Kirkpatrick-Baez mirrors, and then cleaned up by a collimator of 70 µm 

diameter positioned close to the sample. The sample was placed into a specially manufactured mount 

and an optical system was used to align the beam with the FIB-DIC marker locations at micron-scale 

precision. A raster scan was then used to collect diffraction patterns in steps of 50 µm from the edge 

of the sample. A PerkinElmer flat panel 1621-EN detector (2048x2048 pixels, pixel size 0.2x0.2mm2) 

was used to record the resulting diffraction patterns. 

A general observation can be made regarding the diffraction patterns collected. As seen from 

Fig.5, the relatively large grain size present within the sample induced pattern “graininess”. In 

particular, the larger grain sizes at the two extremes of the blade (TE and LE) produced poor powder 

diffraction pattern quality compared to the pattern obtained at the middle position (M). Due to these 

limitations it was only possible to obtain SXRPD patterns that lend themselves to reliable 

interpretation only from the middle position of the blade, and also for the yy component of strain at 

the blade Trailing Edge (TE). 

<< FIGURE 5 HERE >> 

For the reasons given above, 60° azimuthal integration was used to improve the grain 

sampling statistics of the resulting 1D spectra. A critical examination of the Debye –Scherrer rings 

revealed that sample graininess had least impact on the ϒ phase <200> peak. Lattice parameter 

quantification was performed using this peak for the scattering vectors parallel and perpendicular to 

the sample contour. Furthermore, in order to improve the sampling statistics, integration of the 

patterns for the relevant strain direction was performed for both diametrically opposing segments 
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spanning 60° angular range. Final interpretation was performed using least squares minimisation to 

reduce noise further and minimise the error due to small error in the ring centre determination. 

For a given Miller index hkl, the conversion between the XRPD lattice parameter variation 

(𝑑ℎ𝑘𝑙) and the estimate of lattice strain (𝜀ℎ𝑘𝑙) is given by: 

𝜀ℎ𝑘𝑙 =
𝑑ℎ𝑘𝑙 − 𝑑ℎ𝑘𝑙

0

𝑑ℎ𝑘𝑙
0  

(1) 

where 𝑑ℎ𝑘𝑙
0  is the unstrained lattice parameter. In order to provide reliable measure of the absolute 

residual strain variation, accurate quantification of 𝑑ℎ𝑘𝑙
0  is essential. In this study, the direct 

comparison between the absolute residual strain values obtained by FIB-DIC, at the middle position 

of the blade (MP), and relative values obtained by XRPD was used. Small changes in 𝑑ℎ𝑘𝑙
0  correspond 

to the change in the vertical offset in the stress profiles. This simple relationship allows us to use FIB-

DIC data to support the refinement of the unstrained lattice parameter of face-centred cubic 𝛾 phase 

of IN718, which was determined to be 𝑎𝛾
0=3.59756 Å.  

3.6. Residual strain reconstruction and comparison with experiments 

Due to the nature of the studied sample, the residual stress problem can be treated in the 

plane stress approximation, with the out-of-plane components (longitudinal direction of the blade 

indicated by the z axis in Fig.2(b)) of stress being assumed null. This is also true for the case of FIB-DIC 

measurements. Preliminary numerical simulations showed that the imposition of non-null eigenstrain 

distribution of any shape along the direction perpendicular to the local contour line did not give rise 

to noticeable residual elastic strain and residual stress. This can be understood by considering the fact 

that material expansion along these directions is not constrained, so that the material deforms freely 

and no permanent misfit arises due to the eigenstrain introduction.  

Consequently, the present problem was reduced to the sole analysis of the eigenstrain 

component in the tangent direction to the model contour.  
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Eigenstrain distribution was imposed in a point-wise fashion at each IP of the FE mesh. For the 

purposes of algorithmic implementation, eigenstrain was defined by means of a continuous function 

of the shortest distance of each IP from the component contour.  

 Additive Layer Manufacturing process intrinsically introduces a residual stress field within the 

mechanical part, on which the additional eigenstrain generated by Shot Peening (SP) is superimposed. 

The outcome of SP can be described by a tensile tangential eigenstrain profile which has non-zero 

value at the surface, increases in magnitude with depth, and vanishes at the depth up to a few hundred 

microns [9]. The residual stress profiles generated by SP can be described using a shifted cosine 

function superimposed on a linear background, as introduced in the paper by Watanabe et al. [56]. A 

further extended analysis of the residual state in a shot-peened plate was presented in the paper by 

Korsunsky [11], which demonstrates that the residual stress profile arises from the superposition of 

linear bending on the inverted eigenstrain profile. In other words, in the Watanabe et al. formulation 

the shifted cosine term (truncated at the depth where it reaches zero value) corresponds to the 

eigenstrain introduced by shot peening.  

 It is clear that this choice of eigenstrain representation is made on the basis of matching 

experimental observation, and is not unique. As an alternative, in the present study we consider the 

eigenstrain profile to be represented by a shifted Gaussian function. In practice, the difference in the 

profile representation between shifted Gaussian and shifted cosine is minimal, as illustrated in Fig.6a. 

However, the choice of Gaussian function obviates the need for truncation, and also paves the way 

for the representation of more complex distributions by linear combination of multiple Gaussian 

peaks, as illustrated below. 

 The effect of severe plastic deformation that occurs in the region affected by SP tends to 

dominate over any pre-existing residual stress state inherited from prior processing. In fact, the SP 

effect overcomes and removes the residual elastic strain caused by the ALM process [57-60]. 

Therefore, in the vicinity of the component contour it is correct to impose solely the SP residual elastic 

strain (eigenstrain) profile. On the other hand, within the bulk of the component away from the 
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contour the consequences of the ALM process are expected to be present, and needs to be captured 

by the introduction of an appropriate eigenstrain profile.  Generally, residual stresses in AM-built 

components are thought to be highly dependent on the manufacturing path and therefore on the 

specific geometry of the mechanical component, as well as other parameters (beam spot size, power 

density, scan speed, etc.) This is a topic of strong interest in the scientific community since no 

fundamental understanding in this mechanism is yet available. 

  In our experiments the residual elastic strain was evaluated with greatest accuracy at the 

Middle position of the blade, compared to the other positions. Therefore, this region was chosen for 

calibrating the eigenstrain distribution. Given the predominance of SP eigenstrain in the near contour 

region, we first use error minimisation to calibrate the parameters of the Gaussian profile that 

describes the eigenstrain in the form:  

𝜀𝑆𝑃
∗ = 𝐴𝑆𝑃 𝑒

−
(𝑑−𝑏𝑆𝑃)2

2𝑐𝑆𝑃
2

 
(2) 

In the expression in Eq.2, 𝐴𝑆𝑃 is the Gaussian amplitude, 𝑏𝑆𝑃 is the coordinate shift, and 𝑐𝑆𝑃 is the 

Gaussian width. Argument 𝑑 is the distance of the IP from the model contour. FEM calibration were 

performed by varying the three parameters and minimising the deviation from the experimental data. 

Once satisfactory agreement was found, the background eigenstrain that represents the ALM process 

in the inner region of the blade was sought in the same way. Again, a Gaussian function was adopted 

(3) for the FEM optimisation process. Subscript BG indicates the reference to the background profile:  

𝜀𝐵𝐺
∗ = 𝐴𝐵𝐺 𝑒

−
(𝑑−𝑏𝐵𝐺)2

2𝑐𝐵𝐺
2

 

 

(3) 

Table 1 summarises the coefficients found by performing FEM calibration that were adopted 

for residual elastic strain prediction. 

 

<< TABLE 1 HERE>> 
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The complete eigenstrain profile was constructed by summing the two contributions: 

𝜀∗ = 𝜀𝑆𝑃
∗ + 𝜀𝐵𝐺

∗  (4) 

 The plot in Fig.6b illustrates the two contributions (SP and background), shown in solid and 

dashed lines. In addition, the total eigenstrain imposed to the model is shown by the thick black line. 

<< FIGURE 6 HERE >> 

The blade geometry was modelled by contouring the SEM blade image acquired within a 2D 

modelling software. Following the steps described in the Appendix, the eigenstrain distribution was 

implemented in the FEM model, and the solution obtained for the three regions analysed. Consistent 

eigenstrain profile of Fig.6b was imposed in the subsequent analysis of other regions of the blade, in 

order to obtain validation of the correctness of the calibration approach adopted in the present study. 

The results provided by FEM post-processing can be visualised using coloured contour maps 

and by plotting 2D strain profiles of each component along selected paths. The residual elastic strain 

variation was compared with experimental measurement lines. 

The experimental results at middle position of the blade (MP) were collected across the entire 

blade thickness using SXRPD and across a reduced length close to one edge using FIB-DIC. Fig.7 shows 

experimentally measured residual strain components along with the residual elastic strain 

reconstructed by eigenstrain. Contour maps in the following Figures show the maximum principal 

residual elastic strain. 

<< FIGURE 7 HERE >> 

<< FIGURE 8 HERE >> 

<< FIGURE 9 HERE >> 

<< FIGURE 10 HERE >> 

At the blade Leading Edge (LE), the residual strain was measured along two perpendicular 

lines. The first line originated at the tip of the blade in the LE position and ran along the bisector of 
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the LE tip contour line. The results are shown in Fig.8. For this location no reliable SXRPD 

measurements can be reported due to the excessive graininess of diffraction patterns.  

The second measurement line at the blade Leading Edge (LE) ran across the blade thickness 

at the location where it equals 1mm. The results are shown in Fig.9. Once again, no SXRPD 

measurements are reported for the same reason stated above. 

The final set of measurements was collected at the blade Trailing Edge (TE). At this location 

the residual strain distribution was spatially resolved along a line perpendicular to the blade tip as 

shown in Fig.10(a). The same figure also shows the residual strain plots. Here the SXRPD are reported 

solely for yy strain component, for which the values could be seen as useful even in the presence of 

large errors indicated by the error bars.  

However, in order to quantitatively describe the dispersion of experimental data about the 

FEM strain field, the root-mean-square deviation was evaluated for each set of measurements. The 

calculated values are reported in Table 2. 

<<TABLE 2 HERE>> 

 

4. Discussion 

A procedure for efficient description of eigenstrain distribution due to surface treatment in two-

dimensional models has been successfully developed and presented. The correctness of the 

implementation was verified by visualising principal strain directions over the model geometry.  

The problem being studied concerned shot peening (SP) process applied to compressor blade. 

Residual stresses arising in this situation represent the superposition and perhaps interaction between 

the two manufacturing processes (ALM and SP). The assessment of the residual strain profile was 

conducted experimentally by means of FIB-DIC and SXRPD. The eigenstrain profile induced by SP over 

the pre-existing ALM background was assessed, and the predicted residual elastic strain distribution 

compared to experimental measurements. Acceptable overall agreement was found, particularly in 
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view of the large uncertainty associated with the ALM outcomes. Specifically, at the blade Middle 

position the xx component of strain (𝜀𝑥𝑥) showed good agreement between experimental and 

numerical solutions (Fig.7b). Less accurate agreement between reconstruction and measurements 

was found for the perpendicular component of strain, 𝜀𝑦𝑦. In fact, this reconstructed quantity failed 

to match the magnitude in the central part of blade thickness, although the overall trend match is 

satisfactory (Fig.7c). It is worth noting that the mismatch was primarily observed at the central region 

of the profile, where the background residual stress was imposed. This disagreement may be imputed 

to the complex residual stress distribution produced by the manufacturing process that evidently may 

slightly diverge from the nominal eigenstrain distribution imposed as background.  

Regarding the other two regions of the blade, it is worth reminding that the FEM simulation are 

the outcome of the calibration against experiments conducted at the MP. Therefore, a limited 

discrepancy from the experimental outcomes was expected. At the blade Leading Edge, the 

measurements were affected by large errors, as is evident in Fig.8b-c. Nevertheless, the majority of 

experimental points are seen to lie close to the predicted eigenstrain curve. Nevertheless, the trend 

highlighted by the measurements was not captured satisfactorily. This divergence is thought to be due 

changes in the operation of both ALM and SP processes at blade tips. It is reasonable to anticipate 

that at the tip the effectiveness of SP may deviate significantly from parallel surface regions. Similarly, 

the conditions of material deposition by ALM are likely to be modified by the proximity of the sample 

boundary. Furthermore, local deviation between FEM prediction and FIB-DIC measurements can be 

caused by the presence of very small and localised pockets of porosity in the form of micron -scale 

clusters of solidification nano-pores. In fact, it is well known that one of the most prominent 

disadvantages of this manufacturing technique is the generation of undesired porosity [61].On the 

other hand, good agreement was found along the line across the blade thickness at this location 

(Fig.9b-c).  
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Finally, the analysis at the blade Trailing Edge (TE) did not reveal high magnitudes of residual strain 

(Fig.10). This was confirmed by the eigenstrain reconstruction that predicted this residual elastic strain 

state. Low residual strain magnitudes are the results of large plastic deformation occurring almost 

throughout the entire blade thickness. Therefore, only a very limited amount of residual elastic strain 

may arise to restore the equilibrium disturbed by eigenstrain introduction. 

One remark needs to be made regarding the effectiveness of SP process. It has been revealed 

in the present work that in the presence of tight contour radii, the effectiveness of SP process may be 

reduced. This implies that the induced residual strain may diverge from the expectation based on the 

ideal case where the local curvature radius is thought to be large. Same findings were earlier 

experienced by DeWald and Hill [14]. 

Further efforts can be addressed at implementing the presented method for the simulation 

of three-dimensional geometries. Full reconstruction of the residual stress contained in a three-

dimensional object requires further measurements in order to capture evolution of the out-of-plane 

component of residual stress arising as background (arising from AL manufacturing). However, it is 

worth noting that shot peening is thought to introduce isotropic deformations along all the directions 

perpendicular to the local shot trajectory. Therefore, in principle the 3D residual stress field given by 

the sole shot peening could be simulated by imposing the same eigenstrain distributi on along this 

third direction. 

 

5. Conclusion 

The proposed eigenstrain method for the in-plane strain reconstruction was successfully 

applied to a real case study of ALM and SP compressor blade section. The computed strain maps 

showed good agreement with the experimental outcomes. The application of the eigenstrain 

distribution to the entire geometry allowed the prediction of the strain field not only at positions 
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where experimental evidence was available, but everywhere within the cross section. Furthermore, 

numerical simulation confirmed the consistency of the experiments in terms of stress equilibrium, 

strengthening the confidence in their validity. For these reasons, the proposed method can be 

considered as complementary to the experimental evaluation of residual elastic strains. Once the 

intrinsic inelastic deformation (i.e. eigenstrain) of a specific process is known (e.g., SP), the great 

advantage of the approach lies in the applicability of this description to 2D geometries of arbitrary 

shape. Therefore, the simulation of residual elastic strain arising from SP can be performed for any 2D 

model.  

Appendix 

The relevant steps involved in the model building process are listed below in a sequential order, 

that is also schematically represented in Fig.11 below. 

i. 2D modelling 

 The geometry shape is obtained by pre-existing model, e.g. CAD,  or by contouring a 

real mechanical component shape (e.g. importing SEM image) 

 A model containing the geometric contour is exported for Abaqus meshing, and a 

second model is exported as a binary mask by filling the solid part of the model with 

value 1, and outside with 0. 

ii. Abaqus mesh generation 

 The geometry is imported and meshed by refining the elements where high strain 

gradient is expected. 

iii. Abaqus IPs extraction 

 A dummy solution is run with the purpose of extracting the IPs coordinates of the 

meshed model. 

iv. Matlab distances and angles computation 
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 An image format version of the model (e.g. TIFF, JPEG) is imported into Matlab and 

treated as matrix. 

 At each position of the matrix (equivalent pixel), two new matrices are generated 

where the distances from all the surrounding pixels are computed in terms of the x 

and y differences. 

 The element-wise multiplication by the binary mask representing the model geometry 

allows the values at positions outside the sample to be set to 0.  

 A new matrix containing the distances is populated by seeking the minimum value of 

distance (both x and y components), and calculating the resulting vector distance.  

 A matrix containing the angles is populated by calculating the angles made by the 

distance vector with the x axis at each pixel position.  

v. Interpolation  

 Matrices containing IPs coordinates are imported in Matlab 

 The interpolation between the grid generated by the imported mesh (IPs) and the 

image pixels positions is performed. As outcome, at each IP, the distances and angles 

are evaluated.  

 The arrays containing IPs number, distances and angles are exported 

vi. Eigenstrain implementation 

 The UEXTERNALDB subroutine is used for the importation of the computed values in 

an Abaqus script. 

 The UEXPAN subroutine is then used for the assignment of the thermal expansion 

coefficient at each IP. This subroutine at each loop computes the eigenstrain 

assignment by recalling the value of the distance and angle assigned to the datum IP. 

vii. Solution 

 The Finite Element computation is run and the solution can be visualised in the post-

processing environment of Abaqus. 
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<< FIGURE 11 HERE >> 
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