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The success of a recommender system is generally evaluated with respect to the accuracy of recommen-

dations. However, recently diversity of recommendations has also become an important aspect in evaluating

recommender systems. One dimension of diversity is called aggregate diversity which refers to the diversity

of items in the recommendation lists of all users and can be defined with different metrics. The maximization

of both accuracy and the aggregate diversity simultaneously renders a multi-objective optimization problem

which can be handled by different approaches. In this paper, after providing a thorough analysis of the

multi-objective optimization approaches for this problem, we propose a new model which takes into account

both accuracy and aggregate diversity. Different from previous works our model is specifically designed

to incorporate distributional diversity metrics, which measure how evenly the items are distributed in the

recommendation lists of users. In order to solve the large-scale instances, we propose a column generation

algorithm and a Lagrangian relaxation approach based on the decomposition of the model. We present the

results of the mathematical models and the performance of the proposed methodology that are obtained by

computational experiments on real world data sets. These results reveal that our model successfully captures

the trade-off between the objectives and reaches very high levels of distributional diversity.

Key words : recommender systems; multi-objective optimization; integer programming; column generation.

History :

1. Introduction

Recommender systems help people to find items of interest in large product lists (Ricci et al. 2011,

Adomavicius and Tuzhilin 2005). They are currently utilized in most of the e-commerce sites. The

success of a recommender algorithm is generally evaluated with the accuracy of its recommendations,

that is, how well the algorithm predicts whether a user will like an item or not. The accuracy of

recommendations is no doubt an important aspect of a successful recommender system. However,

recently researchers working on recommender systems have recognized that there are other aspects of

recommender systems which are important for both user satisfaction and system performance. One

such important aspect is the diversity of recommendations.
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Diversity in recommender systems has two dimensions: individual and aggregate diversity. Indi-

vidual diversity refers to the diversity of items in a recommendation list of each individual user.

The aggregate diversity, on the other hand, refers to the diversity of items in the recommendation

lists of all users. While the individual diversity of recommendation lists is important with respect to

user satisfaction, the aggregate diversity is important from the business point of view. Being able to

recommend most (if not all) of the items in the inventory of an e-store will increase sales compared

to recommending only the popular items. Also in some domains, such as recommending movies, the

unpopular items (that is, items in the long tail) tend to have lower license fees compared to the

popular items (Goldstein and Goldstein 2006). Hence, being able to recommend the unpopular items

has the potential for reducing costs. In this paper, our focus will be on improving aggregate diversity.

Different metrics can be used to define various aspects of aggregate diversity. One such metric used

by Adomavicius and Kwon (2012) is as follows:

Diversity-in-top-N =
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where U is the set of all users in the system, L(u) is the recommendation list of size N of user

u ∈ U . According to this metric, the aggregate diversity is simply the total number of distinct items

in the recommendation lists of all users. Adomavicius and Kwon (2012, 2014) developed methods for

increasing the aggregate diversity based on this metric. However, this simple and easy-to-understand

metric has an important flaw: it is possible to increase diversity-in-top-N without having a balanced

distribution of items in the recommendation lists of the users. For example, in principle, it is possible

to recommend each item in the system to a distinct user and fill in the rest of the recommendation

lists of the users with the same set of items. In this case, diversity-in-top-N will have the maximum

possible value, however, the distribution of the items in the user lists will be very imbalanced. In order

to capture this aspect of aggregate diversity, Adomavicius and Kwon (2012) employed additional

measures referred to as distributional diversity metrics. Adomavicius and Kwon (2014) employed

one of these distributional diversity metrics, namely Gini-diversity, to evaluate the performance of

their approach. In this paper, in addition to this metric, we also employ an entropy-based metric to

measure the distributional diversity which is defined in Adomavicius and Kwon (2012). These metrics

are given below:

Entropy-diversity = −
n

∑
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)
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In both of the definitions, i refers to an item in the item set I, rec(i) is the number of users who has

been recommended item i ∈ I, n is the number of items which are available for recommendation, and

total is the total number of recommendations across all users. In the calculation of Gini-diversity,

the items are sorted in non-decreasing order of rec(i), and in Entropy-diversity, we take ln(0) = 0

when rec(i) = 0 for some i ∈ I. These metrics measure how evenly the items are recommended to the

users.

Adomavicius and Kwon (2012) experimentally show that distributional diversity metrics are cor-

related with diversity-in-top-N. However, as we show in Section 5, the capacity of the optimization

method designed by Adomavicius and Kwon (2014) for increasing diversity-in-top-N is very limited

in increasing distributional diversity metrics. Being able to increase distributional diversity (i.e., hav-

ing a balanced distribution of the recommended items) as much as possible is a desirable capability

in many situations. Take job recommendation as an example. Many e-recruitment platforms provide

job recommendations as a service to their users (Wu et al. 2014) and users rely on these recommen-

dations to find new jobs. Companies pay to these e-recruitment platforms for displaying their job

ads. Given that companies pay an equal amount of money for their job ads it is important for the

e-recruitment platform to give an equal share as much as possible to each ad in the recommendation

lists. It is really undesirable if a significant portion of the job ads never appear (or appear in very

small numbers) in the recommendation lists and a small portion of the job ads gets the lion’s share.

Hence, it is important to develop methods for increasing distributional diversity as much as possible

without reducing accuracy dramatically.

Let us also give a visual illustration of the effect of an increase in these distributional diversity

metrics. Figure 1 shows the distribution of rec(i) for each item i ∈ I. This figure is generated using a

standard recommender algorithm which considers only the accuracy of recommendations applied to

the Movielens1 1M data set. The items are sorted in non-increasing order of rec(i) in the horizontal

axis. As it can be seen from Figure 1, a small portion of the items are recommended to many

users while most of the items are either not recommended at all or recommended to only few users.

This is a known effect of recommender algorithms (Fleder and Hosanagar 2009). One explanation

of this is that unpopular products have limited ratings (or consumer interaction) and are difficult

to recommend. Thus, it is clear that new methods need to be developed to support recommender

systems in recommending unpopular items which can have positive effects on the system as explained

previously. Methods which can increase the distributional diversity metrics given in (2) and (3) are

useful in this regard. An increase in the distributional diversity metrics will correspond to an upward

shift in the tail of this distribution and a downward shift in the head of the distribution (i.e., a change

1 http://grouplens.org/datasets/movielens/
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towards a more even distribution). In this paper, we will develop methods specifically designed to

improve these distributional diversity metrics along with the accuracy of recommendations. Such

problems with more than one objective are called multi-objective optimization problems, which are

shortly reviewed in Section 3.
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Figure 1: Distribution of rec(i) in sorted order.

In this work, we first analyze two existing models in the literature proposed by Adomavicius

and Kwon (2014) which take into account the diversity-in-top-N metric along with accuracy and

discuss their properties from a multi-objective optimization point of view. Then, we propose an

integer programming formulation that considers both objectives by controlling their trade-off via

a penalty parameter. Hence, our first contribution is a thorough analysis that fills the gap in the

multi-objective optimization problems handling both accuracy and diversity-in-top-N. Our second

contribution is a novel model that incorporates the distributional diversity metrics, which is a slight

modification of our first proposed model. The special structure of the proposed formulation allows

it to be solved as a linear program. Keeping the optimization models within the confines of linear

programming is vital since the efficient solution algorithms for these problems make it possible to solve

large-scale instances. The last contribution of this paper is the examination of algorithms designed

for real-life instances, which are too large to be handled directly by mathematical programming

solvers. We propose a column generation algorithm to solve the original proposed model. Moreover,

Lagrangian relaxation is applied to this model, and the subgradient method that does not necessitate

a mathematical programming solver is explained. The computational experiments reveal that our

proposed model is flexible to capture the trade-off between the objectives and can attain very high
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levels of distributional diversity without compromising dramatically on the diversity-in-top-N metric

and the accuracy of recommendations.

2. Literature Review

Recommender systems can be grouped in two main categories: content-based recommendation (Lops

et al. 2011) and collaborative filtering (Desrosiers and Karypis 2011, Koren and Bell 2011). In content-

based approaches, the interests of the users are modeled based on the features of the items rated or

consumed by the users in the past. For example, in a book recommender system, the user interest

model might be built based on the analysis of the text of books a user liked and disliked in the past.

Users are recommended items which are similar in content to the items they preferred in the past.

One drawback of the content-based approaches is the difficulty of gathering the content information

of items. Collaborative filtering approaches are not based on the content of items. In collaborative

filtering, the users are recommended items based on like-minded users. There are two main approaches

to collaborative filtering: neighborhood-based (item-based or user-based) and model-based. In the

item-based approaches (Desrosiers and Karypis 2011), user u is recommended items similar to the

ones u liked in the past. On the other hand, in the user-based approaches (Desrosiers and Karypis

2011), user u is recommended items that are liked by similar users to u. Model-based approaches

build a model of each user based on her past behaviour. For example, the matrix factorization

models (Koren and Bell 2011, Hu et al. 2008) map each user and item to a latent factor space of

dimensionality f . The following is a simple matrix factorization model (dubbed as SVD in Koren

and Bell (2011)) for predicting the ratings of the users on individual items:

r̂ui = µ + bi + bu + qT
i pu (4)

where µ is the average rating over all items, bi represents the rating bias of item i, and bu represents

the rating bias of user u. In this model, each user u ∈ U is associated with a vector pu ∈ R
f , and

each item i ∈ I is associated with a vector qi ∈ R
f . The values of these vectors represent to what

extent the user/item possesses the corresponding factor. The predicted rating of user u on item i is

computed as described in (4). The model is typically learned by minimizing the regularized squared

error cost function described in (5).

min
q∗,p∗

∑

(u,i)∈K

(rui − µ − bi − bu − qT
i pu)2 + λ(b2

i + b2
u + ‖qi‖ + ‖pu‖) (5)

where K is the set of all known ratings and λ is the regularization factor.

In a typical recommender system, recommendations for user u are produced in two phases: in

Phase I the ratings of items which are not rated by u are predicted using a recommender algorithm
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and then, in Phase II the top-N items whose predicted ratings are the highest are recommended to

user u. Naturally, the success of a recommender system is thought to be determined by the accuracy

of the predictions. Hence, most of the work in recommender systems is devoted to develop algorithms

which make more accurate predictions.

However, now it has been recognized that accurate recommendations is not the only property a

successful recommender system should have (Herlocker et al. 2004, McNee et al. 2006). For example,

in the context of movie recommendation, a recommender system which makes recommendations to

a user all from the same genre (even if it is very accurate) will not satisfy the user. The recommen-

dations should be not only accurate but also novel and serendipitous. In this regard diversification

of recommendation lists is important. As we defined in Section 1 there are two dimensions of diver-

sity: individual and aggregate. Most of the works on diversity have focused on improving individual

diversity (Smyth and McClave 2001, Ziegler et al. 2005, Bradley and Smyth 2001, Hurley and Zhang

2011, Aytekin and Karakaya 2014). However, recently Adomavicius and Kwon (2012) and Adomavi-

cius and Kwon (2014) directly address the issue of aggregate diversity. In Adomavicius and Kwon

(2012), the authors developed a ranking-based heuristic algorithm to improve aggregate diversity.

In Adomavicius and Kwon (2014), the authors proposed three methods to improve aggregate diver-

sity: an iterative approach, a max-flow-based method, and an integer programming approach. The

experimental results reported in Adomavicius and Kwon (2014) show that as the methods get more

complex, their diversity-accuracy performance increases with a deterioration in the running time

performance.

One important point about the works described in Adomavicius and Kwon (2012, 2014) is that

all of the three methods are directed to improve the diversity-in-top-N metric as defined in (1).

However, as a side effect reported by the authors, these methods also have a positive impact on the

distributional diversity metrics. The model we propose in this work given in Section 3 incorporates

distributional diversity metrics given in (2) and (3) as an objective. We will show that the proposed

model can capture diversity-accuracy objectives and reaches distributional diversity levels much

higher than the best performing method (integer programming) described in Adomavicius and Kwon

(2014). Moreover, the column generation method explained in Section 4 has superior running time

performance which makes it highly scalable.

3. Mathematical Models

In this section, we consider the formulations of the recommendation problem that takes into account

both accuracy and the aggregate diversity. In the domain of recommender systems one of the most

commonly used measures for accuracy is precision which is defined as the ratio of the number of

recommended items which are relevant over all recommended items. Recall the two phase process
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of recommendation. In Phase I all unrated items of all users are predicted. In order to maximize

precision, in Phase II, users are recommended those items which have the highest predicted rating

values. Since our methods enter the scene in Phase II, similar to Adomavicius and Kwon (2014), we

will use the following metric as a proxy for precision:

Prediction-in-top-N =

∑

u∈U

∑

i∈L(u) R∗
ui

∑

u∈U |L(u)|
(6)

where R∗
ui is the predicted rating of user u for item i. This metric can easily be computed at the time

of recommendation and there is no need to run a cross-validation experiment which is needed for

computing precision. In the mathematical models given below, the maximization of accuracy only

contains the nominator of (6), which is the total rating, since the denominator is a constant.

Adomavicius and Kwon (2014) proposed mathematical models that take into account aggregate

diversity. In this section, we explain their proposed models in our own notation, discuss the charac-

teristics of these models from the multi-objective optimization point of view, and lastly propose our

models. Recall that U and I denote the set of users and items, respectively. Moreover, the estimated

rating of item i ∈ I for user u ∈ U is R∗
ui which is a positive real number within a given scale depend-

ing on the recommender system. In some cases, the recommender system rules out (u, i) pairs for

which R∗
ui < H where H is a user-defined threshold. This elimination both reduces the instance size

and prevents recommendation of irrelevant items. To that end, two sets are introduced; Iu ⊂ I is the

set of items that can be recommended to user u ∈ U and U i ⊂ U is the set of users to whom item i

can be recommended. xui is a binary variable that indicates whether user u ∈ U contains item i ∈ Iu

in its recommendation list.

3.1. Accuracy and Diversity-in-top-N

The recommendation problem that takes into account only the accuracy of the recommendations is

to determine the list of recommendations of size N for each user u ∈ U that maximizes the total

estimated ratings, which also maximizes accuracy. The solution of the mathematical model is trivial

since selecting top-N items with the largest R∗
ui for each user u ∈ U is sufficient. When the aggregate

diversity maximization is also desired, the resulting problem becomes a multi-objective optimization

problem, which can be described as follows:

maximize f1(x) =
∑

u∈U

∑

i∈Iu

R∗
uixui, (7)

maximize f2(x) =
∑

i∈I

zi, (8)

subject to
∑

i∈Iu

xui = min(|Iu|, N), u ∈ U, (9)
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∑

u∈Ui

xui ≥ zi, i ∈ I, (10)

xui ∈ {0, 1}, u ∈ U, i ∈ Iu. (11)

zi ∈ {0, 1}, i ∈ I, (12)

where binary variable zi for i ∈ I indicates whether an item is recommended to any user. Constraints

(9) impose that the number of items recommended to each user is minimum of N and the cardinality

of the item set viable for that user. The left-hand-side of (10) represents rec(i) for i ∈ I, and rec(i) ≥ 1

induces zi = 1 due to the positive coefficient of zi in objective function f2(x). The coefficient matrix

formed by (9)-(10) possesses the total unimodularity property since each column associated with a

variable has at most two ones each of which is in one of the constraint sets. Namely, xui has one (+1)

coefficient in each of (9) and (10) and the other entries are zero, and zi has only one (-1) coefficient

in (10). Given that the right-hand-sides of the constraint sets are integral, this property ensures that

the extreme points of the feasible region induced by these constraints are integral. Hence, solving

the linear programming relaxation of this model gives an integer solution. Despite of this property,

(7)-(12) is still a multi-objective integer programming problem, and the literature on these problems

mainly focuses on the generation of the nondominated points (Sylva and Crema (2004), Özlen and

Azizoğlu (2009), Lokman and Köksalan (2013)), which requires a considerable effort. In this paper,

we analyze and propose multi-objective optimization models arising in recommender systems, which

are generally very large-scale, and we do not aim to generate the complete set of nondominated points

though the ability of the proposed methods will still be scrutinized for such capability.

The scalar function f1(x) calculates the total rating, which corresponds to accuracy, and is max-

imized in (7). f2(x) maximized in (8) is the number of items that are recommended at least once,

which is equivalent to diversity-in-top-N, a metric focusing on the breadth of the recommendation of

the items. These objectives conflict with one another, i.e., increasing one objective deteriorates the

other. Hence, instead of the term optimality, the term Pareto optimality is employed in the multi-

objective optimization terminology. A feasible solution x̂ is said to be Pareto optimal if there does not

exist any other solution that has no smaller values in accuracy and the aggregate diversity metrics

with at least one of the objectives being strictly larger. Two variants of this term are

• A feasible solution x̂ is weakly Pareto optimal if there is no other feasible solution x 6= x̂ such

that f1(x) > f1(x̂) and f2(x) > f2(x̂).

• A feasible solution x̂ is strict Pareto optimal if there is no other feasible solution x 6= x̂ such that

f1(x) ≥ f1(x̂) and f2(x) ≥ f2(x̂).

If two feasible solutions x1 and x2 satisfy fi(x1) ≥ fi(x2) for i = 1, 2, then x1 dominates x2, and the

objective vector f(x1) = (f1(x1), f2(x1)) dominates f(x2) = (f1(x2), f2(x2)). If a feasible solution x is

Pareto optimal, f(x) is called a nondominated point.
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The most prevalent approaches for the multi-objective optimization are ǫ−constraint and weighted

sum methods both of which turn the original problem with multiple objectives into a single objec-

tive one through scalarization. The weighted sum method maximizes a single objective function

constructed by multiplying f1(x) and f2(x) with weights satisfying λ1, λ2 ≥ 0 and λ1 + λ2 = 1. If

λ1, λ2 > 0, the optimum solution of the single objective problem is Pareto optimal. On the other hand,

the ǫ−constraint method involves choosing one of the objectives to be maximized and restricting the

value of the other objective by a lower bound in a constraint. Given an ǫ value as a lower bound

on one of f1(x) or f2(x), the optimal solution obtained by this method is weakly Pareto optimal

unless it is the unique optimal solution for the selected objective, in which case the solution is Pareto

optimal. The interested reader is referred to Chankong and Haimes (1983) and Ehrgott (2005) for the

details of the multi-objective optimization and techniques to solve these problems. In Ehrgott (2006),

the authors evaluate the characteristics of the scalarization methods applied to the multi-objective

integer programming problems and the drawbacks of these methods, which are explained as follows:

The weighted sum method has the computational advantage of keeping the number of constraints

unchanged, unlike the ǫ−constraint method which adds a new constraint to put a lower bound on

the value of one of the objective functions. However, the ǫ−constraint method can find all Pareto

optimal solutions, which is not possible using the weighted sum method. The authors also proposed

a new scalarization referred to as the elastic constraint method –as given later in this section– that

alleviates these drawbacks, and in Ehrgott and Ryan (2002), this method is applied to the robust

crew scheduling problem. The approach that we employed in this paper is reminiscent of the elas-

tic constraint method. Therefore, the characteristics of the solutions of our models will be defined

according to the properties of this method as explained in Ehrgott (2006).

Adomavicius and Kwon (2014) proposed two integer programming models using the ǫ−constraint

method, each of which aims at maximizing one of the objectives while the level of the other is

bounded from below by a prespecified value in a constraint. The first model that maximizes the

diversity-in-top-N metric is as follows:

(M1) maximize
∑

i∈I

zi (13)

subject to
∑

i∈Iu

xui = min(|Iu|, N), u ∈ U, (14)

∑

u∈Ui

xui ≥ zi, i ∈ I, (15)

∑

u∈U

∑

i∈Iu

(R∗
ui − A)xui ≥ 0, (16)

xui ∈ {0, 1}, u ∈ U, i ∈ Iu. (17)
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zi ∈ {0, 1}, i ∈ I, (18)

where A is a positive scalar that represents the desired accuracy level. Summing (14) over all u ∈ U ,

we get
∑

u∈U

∑

i∈Iu

xui =
∑

u∈U

min(|Iu|, N), which is the total number of recommendations in the system

denoted by T . (16) imposes that the average rating of the selected items be larger than or equal to

A, since this constraint can be written as 1
T

∑

u∈U

∑

i∈Iu

R∗
uixui ≥ A. The objective (13) maximizes the

number of items that are recommended at least once, equivalently diversity-in-top-N. The maximum

possible objective value, also the maximum diversity-in-top-N level, is equal to the number of items,

|I|. For a given accuracy level A, there may be many alternative optimal solutions for the objective

(13) so that the one found by M1 is weakly Pareto optimal unless it is the unique optimal solution, as

mentioned previously. Moreover, as a consequence of applying the ǫ−constraint method which adds

constraint (16), the total unimodularity of the constraint matrix formed by (14)-(15) is lost, which

was also discussed previously as one of the drawbacks of this method. Being an integer programming

problem, M1 may induce long solution times and memory problems for large instances.

The second model presented in Adomavicius and Kwon (2014) is obtained by the application of

the ǫ−constraint method in which accuracy is maximized. This model is as follows:

(M2) maximize
∑

u∈U

∑

i∈Iu

R∗
uixui (19)

subject to
∑

i∈Iu

xui = min(|Iu|, N), u ∈ U, (20)

∑

u∈Ui

xui − zi ≥ 0, i ∈ I, (21)

∑

i∈I

zi ≥ D, (22)

xui ∈ {0, 1}, u ∈ U, i ∈ Iu. (23)

zi ∈ {0, 1}, i ∈ I. (24)

where 0 ≤ D ≤ |I| is a prespecified parameter that imposes a certain level of diversity-in-top-N. This

model aims at maximizing the accuracy level with a certain aggregate diversity level. The higher

the level of diversity-in-top-N metric prescribed by D is imposed, the smaller the total rating and

the accuracy level we get, if not stay the same. When D = |I|, M2 achieves the maximum possible

diversity-in-top-N level. However, if the maximum diversity-in-top-N level, denoted by D∗, is lower

than |I|, setting D > D∗ in (22) results in an infeasible solution. Although new constraint (22) is

added to constraints (9) and (10) whose coefficient matrix is totally unimodular, this property is

preserved since zi has now one (-1) coefficient in (21) and one (+1) coefficient in (22).
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We now employ a different approach to the above multi-objective optimization problem. Objective

function f2(x) corresponding to the diversity-in-top-N metric takes the maximum possible value,

|I|, when zi = 1 for all i ∈ I. Therefore, we can modify M2 by omitting constraint (22) and fixing

all zi to one. This approach is called the lexicographic optimization in which the optimal solution

is found for the primary objective, and its objective value is set as a lower bound in a constraint

for the optimization problem with the secondary objective. In other words, among the alternative

optimal solutions for the primary objective, the one that gives the best evaluation for the secondary

objective is selected. In our case, through the modifications explained above, we ensure that the

maximum level of the diversity-in-top-N metric is obtained without imposing (22). We note that the

resulting problem may not have a feasible solution after fixing all zi to one if the total number of

recommendations, T , is small. This issue can be circumvented by adding artificial variables to the

left-hand-sides of (21), which renders them soft (elastic) constraints. The resulting model becomes

(M3) maximize
∑

u∈U

∑

i∈Iu

R∗
uixui −

∑

i∈I

miri (25)

subject to
∑

i∈Iu

xui = min(|Iu|, N), u ∈ U, (26)

∑

u∈Ui

xui + ri ≥ 1, i ∈ I, (27)

0 ≤ xui ≤ 1, u ∈ U, i ∈ Iu, (28)

ri ≥ 0, i ∈ I, (29)

where ri, i ∈ I, is an artificial variable which gets value one if the corresponding constraint in (27) is

not satisfied, i.e., item i is not recommended to any user, and mi is the penalty parameter associated

with this variable. Observe that in the above model, f2(x) is defined in a different way as f2(x) =

−
∑

i∈I

ri and its level is not imposed through a constraint, unlike in M2 which uses ǫ−constraint

method with parameter D. The reason is that the maximum level of f2(x) is already imposed by

constraints (27) which are softened by adding artificial variables with a penalty parameter. This

method is similar to the elastic constraint method –as explained previously– that contains the upsides

of both weighted sum and ǫ−constraint methods. As shown in Ehrgott (2006), these methods are

the special cases of the elastic constraint method. (25) contains f1(x) with weight one and f2(x)

with weights mi, i ∈ I so that M3 is also a weighted sum problem. While large values of mi for all

i ∈ I cause small, if not zero, violations in (27) and large diversity-in-top-N, small values entail large

violations and small diversity-in-top-N. Moreover, when mi for all i ∈ I are set to large values in

the objective function, M3 becomes the ǫ−constraint problem given in M2 in which D = D∗. In this

case, M3 generates Pareto optimal solutions since it reaches the maximum possible total rating at
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the maximum diversity-in-top-N level. When mi is set to zero for all i ∈ I, accuracy is maximized as

the sole objective which can be achieved by selecting the top-N items. Applying the result that was

given in Ehrgott (2006), we state that a solution found by M3 is weakly Pareto optimal unless it is

unique or ri > 0 for some i ∈ I.

Solving M3 by varying the values of penalty parameter m generates a collection of (weakly) Pareto

optimal solutions. As will be shown in the results of the computational experiments, increasing the

values of mi, i ∈ I, has an adverse effect on the computational performance of the model since

constraints (27) then turn into hard constraints. To achieve a solution for a prespecified level D of

diversity-in-top-N which was imposed by (22) in M2, the value of penalty parameter m can be set to

a large value for D randomly selected r−variables and to a small value or zero for the rest of them.

Instead of random selection of items, it is possible to distinguish between the items, which enables

the recommender to incorporate preferences for items in the system by defining distinct m values for

them. Parameter mi for a given item i ∈ I is a penalty term deteriorating the objective function if

item i is not recommended at all. It controls the trade off between the objective functions and can

be interpreted as the largest allowable decrease in the total rating in order to recommend item i.

3.2. Maximization of Distributional Diversity

The above models are not designed to maximize the distributional diversity metrics which get large

values as the items are evenly recommended across all users. Although the distributional diversity

increases together with diversity-in-top-N, both of which are metrics used to measure the aggregate

diversity, it may be low even at the maximum level of diversity-in-top-N which will be shown in

Section 5. In the rest of the section, instead of handling distributional diversity indirectly through

diversity-in-top-N which has only a limited effect, we divert to maximizing the distributional diversity

directly by considering it as another objective in addition to the accuracy and diversity-in-top-N

maximization.

A new objective function that is designed for the maximization of the distributional diversity met-

rics given in (2) and (3) may be integrated in one of the multi-objective optimization methods to

generate Pareto optimal solutions for all three objectives. On the other hand, the efforts in incorporat-

ing a new objective to our multi-objective optimization problem should not render the mathematical

model more complex for the sake of the scalability. Therefore, we will strive to modify model M3 in

the minimal way so as to incorporate the new objective.

When the total estimated ratings is maximized in a single objective setting by selecting the top-N

items, a small percentage of the items classified as popular items accounts for almost all recom-

mendations which sum up to T , and a large bulk of the items classified as unpopular items are not

recommended at all, which was illustrated in Figure 1. We observed in the computational experi-

ments that model M3 that is solved with large values of m to maximize accuracy at the maximum
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diversity-in-top-N level produces solutions in which the unpopular items are recommended only once,

if not at all. Hence, the tail of the curve in Figure 1 is leveraged to one, and the peak for the popular

items smooths out slightly. As the right-hand-side of (27) is increased to a larger value, the following

pattern can be observed in the distribution of the recommendations: the tail of the distribution which

contains the unpopular items is leveraged to the right-hand-side value of (27) and the peak of the

popular items is trimmed. Hence, the larger the right-hand-side value of (27), the more even the

items are distributed in the recommendation lists of the users.

On the other hand, analyzing the formulation of the distributional diversity metrics given in (2)

and (3), we can infer that the maximum level of the distributional diversity can be achieved when

the distribution of the total recommendations T to items is uniform, i.e., rec(i) = T

|I|
for all i ∈ I.

Such a solution may not be possible since each item has only a subset of ratings available for each

user u ∈ U , defined in Iu, and for some of the items i ∈ I, rec(i) < T

|I|
. The solutions associated with

the two cases, one with the uniform distribution of recommendations and the other illustrated in

Figure 1, correspond to two extreme Pareto optimal solutions for the distributional diversity and

accuracy maximization objectives, respectively. Moreover, if the right-hand-side value of (27) is larger

than zero, the maximum diversity-in-top-N level is also achieved as long as T and |Iu|, u ∈ U , are

sufficiently large. To find the (weakly) Pareto optimal solutions so as to depict the trade-off between

accuracy and the aggregate diversity metrics, the right-hand-side of (27) is varied between 0 and
⌈

T

|I|

⌉

together with the values of m. However, as pointed out previously, the complete enumeration of the

nondominated points is not aimed for this multi-objective problem since modeling an optimization

problem that explicitly maximizes the distributional diversity eradicates the properties of the model

that allows the solution of the linear programming relaxation. Our proposed model that incorporates

the distributional diversity is

(M4) maximize
∑

u∈U

∑

i∈Iu

R∗
uixui −

∑

i∈I

miri (30)

subject to
∑

i∈Iu

xui = min(|Iu|, N), u ∈ U, (31)

∑

u∈Ui

xui + ri ≥ z̄, i ∈ I, (32)

0 ≤ xui ≤ 1, u ∈ U, i ∈ Iu, (33)

ri ≥ 0, i ∈ I, (34)

where z̄ is a parameter that will determine the level of the distributional diversity. M3 is a special

instance of M4 in which z̄ is set to one. The value of mi for a given item i ∈ I now represents the

penalty of falling short of the given level of recommendations z̄. For large values of penalty parameter
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m, (32) becomes a hard constraint set, and the solutions of M4 lean toward the distributional diversity

objective with a certain decrease in accuracy depending on the value of z̄. When z̄ > 1, it is possible

even for large values of m that the artificial variable ri, i ∈ I, can take values larger than one. This

occurs if T =
∑

u∈U max(|Iu|, N) < z̄|U |, where z̄|U | is the required number of recommendations, or

|Iu| < z̄ for some u ∈ U , i.e. user u does not have sufficient number of items to match the imposed level

of z̄. For smaller values of m comparable to the estimated ratings of the items, the value of ri larger

than one may inherently mean that the decrease in the total rating by imposing z̄ recommendations

for item i cannot be compensated by the penalty inflicted by mi. Since the constraint coefficient

matrix of M4 is totally unimodular, this model is written as a linear programming problem, and

experimenting over the various values of z̄ and m is not computationally intractable. As discussed

previously,
⌈

T

|I|

⌉

≥ z̄ ≥ 0. Varying the value of z̄ within this interval would give the recommender

the flexibility to observe the trade-off between the accuracy and diversity and to select the solution

that satisfies the needs of the system. When z̄ = 0, the objective function value will be equal to that

obtained by selecting the top-N items. We will show through computational experiments that for

a given value of m, increasing z̄ monotonously increases the distributional diversity, and vice versa.

For large values of both of the parameters, the distribution of the recommendations across the items

approaches uniform with a certain decrease in the total rating.

4. Solving the Proposed Model

M4 is a linear programming problem, and the large-scale instances of this problem can be solved

very efficiently by available solvers. The number of variables is
∑

u∈U

|Iu| + |I|, and the number of

constraints is |U | + |I|. On the other hand, the size of the instances may be so large that the

complete mathematical model may not be solved. For such large-scale instances of linear programming

problems, an important observation is that only a small proportion of the whole variable set takes

non-negative values at the optimal solution. This phenomenon led to column generation, a prominent

algorithm to solve large-scale linear programming problems, pioneered by Dantzig and Wolfe (1960)

and Gilmore and Gomory (1961). This algorithm keeps a small subset of variables and generates the

promising columns that potentially improve the solution on the fly. In this section, we first propose

a column generation algorithm to solve M4 to refrain from handling the large variable set of the

problem completely. Moreover, the structure of M4 makes it amenable to Lagrangian relaxation (See

Fisher (1981) for the details). In the second part of this section, we explain the steps of decomposition

applied to our proposed model M4, and propose a Lagrangian relaxation application to this problem

which results in a procedure that does not require a mathematical programming solver.
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4.1. Column Generation

Column generation involves forming a restricted master problem (RMP) by selecting a small subset

of columns, and then adding columns with positive reduced cost (for a maximization problem) by

solving a pricing subproblem. When the pricing subproblem can no longer generate a positive reduced

cost column, the solution of the RMP is also optimal for the original problem. In our application, we

select the top-N items with the highest ratings for each user to initialize the RMP, which also gives

the optimal solution of M4 for z̄ = 0. In order to construct the pricing subproblem, we first give the

dual constraint corresponding to x−variables:

αu + βi ≥ R∗
ui, u ∈ U, i ∈ Iu, (35)

where αu ∈ R, u ∈ U and βi ∈ R−, i ∈ I are the dual variables corresponding to (31) and (32),

respectively. After solving the RMP, the values of the dual variables are obtained, and the pricing

subproblem given below that finds the x−variable with the maximum reduced cost is solved to check

whether any dual constraint in (35) is violated:

τ = max
u∈U,i∈Iu

(R∗
ui − αu − βi) . (36)

If τ > 0, a new variable xui, u ∈ U and i ∈ I that has the maximum reduced cost is added to the RMP.

Otherwise, the solution of the RMP is also optimal for M4. Instead of adding variables one-by-one,

we solve (36) for each u ∈ U , and add the variable with the largest positive reduced cost to the RMP.

Adding a bulk of variables simultaneously to the RMP generally enhances the performance of the

column generation procedure by reducing the number of iterations. Moreover, when solving M4 for

z̄ > 0, we initialize the RMP with the set of columns existing in the RMP at the optimal solution

obtained for z̄ − 1, which provides a warm start and reduces the number of iterations. Although

this strategy may increase the number of variables for large values of z̄, we did not observe any

performance deterioration due to the relatively small size of the RMP.

4.2. Lagrangian Relaxation

Constraint set (31) has a block-diagonal structure that is separable for each u ∈ U . Any solution that

satisfies (31) for some u ∈ U corresponds to min(|Iu|, N) items from the set Iu. To exploit such a

structure, the constraint set (32), referred to as the set of complicating constraints, is dualized in the

objective function with a set of multipliers λ ∈ R
|I|
− , referred to as the Lagrangian multipliers. The

problem resulting from Lagrangian relaxation is

L(λ) = maximize
∑

u∈U

∑

i∈Iu

R∗
uixui +

∑

i∈I

λi(z̄ −
∑

u∈Ui

xui) (37)

subject to
∑

i∈Iu

xui = min(|Iu|, N), u ∈ U, (38)
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0 ≤ xui ≤ 1, u ∈ U, i ∈ Iu, (39)

which does not contain the artificial variable ri since the Lagrangian multipliers serve the same

purpose of the penalization of the constraint violations. The objective function of the model can be

rearranged as
∑

u∈U

∑

i∈Iu

(R∗
ui − λi)xui +

∑

i∈I

λiz̄, which involves updating the ratings of the items with

the given values of λ. For any given λ ∈ R
|I|
− , L(λ) gives an upper-bound to the optimal objective

function value of M4. In order to find the best upper-bound, the following problem is posed

LD = min
λ∈R

|I|
−

L(λ) (40)

which is called the Lagrangian dual problem. (40) is a minimization problem over the Lagrangian

multipliers, while (37)-(39) is a maximization problem over the original x−variables. x̄, which is

obtained by solving (37)-(39) for some λ ∈R
|I|
− , is the optimal solution of M4 if the following conditions

are satisfied

• the complementary slackness condition
∑

i∈I

λi(z̄ −
∑

u∈Ui

xui) = 0, i.e., λi = 0 for i ∈ I satisfying

(z̄ −
∑

u∈Ui

xui) > 0 and (z̄ −
∑

u∈Ui

xui) = 0 for i ∈ I satisfying λi < 0,

•
∑

u∈Ui

xui ≥ z̄ for each i ∈ I (possible only if ri = 0, i ∈ I in the optimal solution of M4).

The Lagrangian dual problem can be written as a linear programming problem by enumerating the

extreme point solutions, indexed by Q, of the polyhedron induced by (38). For each u ∈ U , extreme

point solution q ∈ Qu corresponds to a selection of min(|Iu|, N) items from the set Iu, and xu
q is the

corresponding solution vector consisting of xui
q for i ∈ I. Parameter xui

q = 1 if item i is recommended

to user u in solution q and 0, otherwise. We can write the Lagrangian dual problem as

LD = min
λ∈R

|I|
−

(
∑

i∈I

λiz̄ +
∑

u∈U

max
q∈Qu

(
∑

i∈Iu

R∗
uix

ui
q −

∑

i∈Iu

λix
ui
q )), (41)

and the linearization of this problem is

LD = minimize
∑

i∈I

z̄λi +
∑

u∈U

Zu (42)

subject to Zu +
∑

i∈Iu

xui
q λi ≥

∑

i∈Iu

R∗
uix

ui
q , u ∈ U, q ∈ Qu, (43)

λi ≤ 0, i ∈ I. (44)

This model has many constraints corresponding to the extreme points of the polyhedron induced by

(38), which necessitates constraint generation algorithm for its solution.

Letting pu
q be the dual variable associated with (43), the dual of (42)-(44) can be written as

maximize
∑

u∈U

∑

q∈Qu

(
∑

i∈Iu

R∗
uix

ui
q )pu

q (45)
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subject to
∑

u∈Ui

∑

q∈Qu

xui
q pu

q ≥ z̄, i ∈ I, (46)

∑

q∈Qu

pu
q = 1, u ∈ U, (47)

pu
q ≥ 0, u ∈ U, q ∈ Qu. (48)

The above model is defined over a set of variables pu
q , q ∈ Qu and can also be obtained by the

application of the Dantzig-Wolfe decomposition to M4 (Lübbecke and Desrosiers 2005). This problem

is referred to as the master problem, and (47) is the convexity constraint set. (45)-(48) aims to find the

convex combination of the extreme point solutions for each user such that each item is recommended

at least z̄ times and the total rating is maximized. The large column set of this model makes column

generation a viable method, which generates the variables in the extreme point set Qu by solving a

pricing subproblem for each u ∈ U which can be written as

maximize
∑

i∈Iu

(R∗
ui − βi)xui − γu (49)

subject to
∑

i∈Iu

xui = min(|Iu|, N), (50)

0 ≤ xui ≤ 1, i ∈ Iu, (51)

where βi ∈ R−, i ∈ I is the dual variable associated with (46), as defined earlier in the pricing

subproblem of M4, which coincide with λi at the optimal solution, and γu ∈ R, u ∈ U is the dual

variable associated with the convexity constraint set. The aggregation of (49)-(51) for u ∈ U is

equivalent to (37)-(39) except for the constant terms in the objective functions (37) and (49).

The Dantzig-Wolfe decomposition is generally utilized to obtain more compact models with smaller

number of constraints, and the extended column size is handled by column generation. In this case,

decomposition transformed the original model M4 into a formulation with equal number of constraints

and with a larger set of columns. Additionally, the column vectors in the decomposed model are denser

than those in M4, which renders the solution of the linear programs relatively harder in the column

generation iterations. Finally, in the master problem resulting from the decomposition, the coefficient

matrix formed by (46) and (47) is not totally unimodular so that the optimal solution reached by

column generation is fractional. Hence, column generation must be embedded in a branch-and-bound

procedure to reach the integer optimal solution. The resulting method is known as branch-and-price,

whose solution time can be prohibitive for large instances. Due to these issues, instead of solving the

dual of the Lagrangian dual given in (45)-(48), we handle the Lagrangian dual problem (40).
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4.3. The Subgradient Method

There are various methods to solve the Lagrangian dual problem, such as the bundle method

(Lemaréchal et al. (1981)), the analytic center cutting plane method (Goffin and Vial (2002)) and

the subgradient method (Held and Karp (1970), Held and Karp (1971), Held et al. (1974)). The

subgradient method is one of the most popular and practical one, and it provides an approximation

to the optimal Lagrangian multipliers in an efficient way by updating them at each iteration in the

subgradient direction. Even though the computational performance of this algorithm could not match

the efficiency of the method given in Section 4.1 in the computational experiments, as well as its

accuracy in reaching the primal optimal solution, we explain this methodology as a heuristic, which

does not require any usage of a solver, for the sake of completeness.

The subgradient method is the counterpart of the gradient method in nondifferentiable optimiza-

tion. Instead of the gradient, this method uses the subgradient vector at each point, which is the

difference between two sides of the relaxed constraints, as the direction and it moves in this direction

with a step size determined at each iteration. As defined in (40), the optimal value of λ is the one that

minimizes L(λ), and at the minimum point, it is equal to the optimal value of the original model, as

mentioned previously. The subgradient method starts with the initial values of the multiplier set λ0,

which is generally set to zero, and at each iteration, the values of the multipliers are updated as

λk+1 = λk + tk(z̄ − xk), (52)

where xk, which is the optimal solution of L(λk), and z̄ are vectors of length |I| consisting of
∑

u∈Ui

xui

and z̄, respectively, at each i ∈ I. tk > 0 is the step size at iteration k, which is generally calculated

as

tk =
θk(L(λk) − LB)

‖z̄ − xk‖
2 , (53)

where 2 ≥ θk > 0 is a coefficient that is initialized with value two, and is halved when L(λk) does

not decrease in a prespecified number of iterations. LB is a lower bound to the optimal objective

function value of M4 which can be obtained by a feasible solution to this problem. The step size gets

smaller as L(λk) converges to the optimal value in the later iterations in which θk also decreases. The

algorithm works as follows: Given the values of λk, (37)-(39) is solved by updating the rating of each

item i ∈ Iu for a user u ∈ U as (R∗
ui − λk

i ) and then selecting the top-N items. We update the best

upper bound and θk, if necessary, and then, with the new step size tk found in (53), the multipliers

are updated in (52). This method is generally terminated after a number of iterations or θk is smaller

than a prespecified value. Moreover, the best upper-bound obtained when the algorithm terminates

is not necessarily a feasible solution since it may violate the relaxed constraint set of M4, namely

(32). Therefore, further efforts are needed to obtain primal feasible solutions, which is outside the

scope of this work.
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5. Computational Results

In this section, we demonstrate and explain the results of the experiments conducted on the math-

ematical models given in Section 3 except M1 and M3 since the former is an integer programming

model, which is computationally expensive to solve and has no control on the aggregate diversity,

and the latter is a special instance of M4, as explained previously. First, we explain the data sets

that we use and our test environment. Then, for the objective pairs consisting of accuracy and each

aggregate diversity metric considered in this paper, the comparative results are given. The models

presented in this paper cannot be solved by the available solvers for large-scale instances so that the

column generation algorithm given in Section 4.1 is employed, and its results are reported.

We use three data sets for evaluation of the models: MovieLens, Amazon Movies2, and Amazon

Books3. MovieLens data set contains 6,040 users, 3,900 movies and 1,000,209 ratings. Amazon Movies

contains 16,315 users, 20,928 items and 1,926,354 ratings and Amazon Books contains 21,930 users,

14,906 items and 1,622,105 ratings. All three data sets contain integer ratings from 1 to 5. Original

Amazon data sets are very sparse. In order to reduce sparsity, for both data sets, we keep users which

rated more than 50 items and keep items which are rated by more than 100 users. In Phase I, we

employ the SVD method that was described in Section 2 to predict the unknown ratings, and we

keep only (u, i) pairs whose predicted rating R∗
ui is larger than H = 3.5. Consequently, the number

of predicted ratings, which is equal to the number of x−variables in the models, are 9,427,051 for

MovieLens, 265,994,132 for Amazon Movies and 274,720,816 for Amazon Books instances.

In each experiment, we choose three values for N , N = {1, 5, 10}. We run the experiments on a

computer with a 3.6 GHz Intel Xeon E5-1620 processor and 16 GB of RAM. For the solution of

the mathematical models, CPLEX 12.5 was used, and the column generation algorithm presented in

Section 4.1 was implemented in C++ using the same solver and Concert 2.5.

First, we give the results on the MovieLens data set. For M2, the application of the ǫ-constraint

method to solve the multi-objective optimization problem requires the determination of an interval

and increment for the level of diversity-in-top-N which is controlled by D. In our proposed model

M4, the vital parameters are z̄ and mi, i ∈ I. The values of these parameters are given in Table 1

except for m which is set to four values, m = {0.5, 1, 2, 5}. In each experiment, mi for all i ∈ I are

set to the same value although it is possible to assign distinct values according to the preferences

of the items. In the figures that follow, the optimal solutions of M4, and those of both M2 and M4

in the comparative figures, are depicted in a given parameter interval for various pairs of objectives.

The number of points for M2 differs in the respective figures since they may be infeasible for some

2 http://snap.stanford.edu/data/web-Movies.html

3 http://snap.stanford.edu/data/web-Amazon-links.html
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Table 1: Parameter values used for the MovieLens data set.

D z̄

Min 1,000 0

Max 3,750
⌈

T

|I|

⌉

Increment 250 1

values of D. Moreover, for M4, the maximum value of z̄ is determined by T

|I|
which depends on N so

that there are only few points for small values of N . The trade-off between accuracy and one of the

diversity metrics achieved by M4 and M2 can be observed. Since accuracy is inversely proportional

to the diversity objective, as the values of the parameters that control diversity, namely D and z̄,

increase, the curves descend. We point out that the uniform distribution of the recommendations to

items is achieved when z̄ = T

|I|
. However, if T

|I|
is fractional, imposing the largest value of z̄ yielded

by the ceiling operator may impair the balance in the distribution of recommendations, and may

result in a peculiar pattern in the curves depending on the data set. This can be observed at the

right tails of some of the upcoming figures, such as Figures 5, 6, 7 and 9. Moreover, the left-most

points in the figures correspond to the maximum possible accuracy values resulting from the solution

of M4 with z̄ = 0. Such solutions induce small values for the diversity metrics. Models M2 and M4

are equivalent when D = 0 and z̄ = 0, respectively, since without imposing any lower-bound on the

diversity-in-top-N level, the solution is equivalent to selecting the top-N items.

In the first experiments, we demonstrate the results of M4 with various values of z̄ and m in order

to analyze the effect of changing one of them when the other is fixed. In Figure 2, the solutions of M4

are depicted for the accuracy and diversity-in-top-N metrics for values of z̄ in the given interval with

each value of m = {0.5, 1, 2}. As m increases, the curves shift towards the larger values of diversity-

in-top-N and smaller values of accuracy. For large values of m and N , the diversity-in-top-N level

obtained by M4 is close to the maximum value D∗. On the other hand, for small values of m, M4

compromise on diversity-in-top-N for accuracy. The accuracy and the distributional diversity values

obtained by M4 are depicted in Figures 3 and 4. For a given value of m, the level of the distributional

diversity rises together with the value of z̄. However, this increase in the level of the distributional

diversity with z̄ is even more striking for larger values of m. Thus, the value of m sets a window in

which the trade-off between accuracy and diversity can be adjusted through z̄, and as m increases,

this window enlarges. In the subsequent experiments, m is set to five, which is a sufficiently large

value, to show the potential of M4 in increasing the distributional diversity in comparison with M2.

Therefore, the primary objective leans to aggregate diversity through satisfying the elastic constraint

in M4 as much as possible for the given value of z̄.
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Figure 2: Prediction-in-top-N vs. Diversity-in-top-N results of M4 on MovieLens data set for given

values of m and 0 ≤ z̄ ≤
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Figure 3: Prediction-in-top-N vs. entropy-diversity results of M4 on MovieLens data set for given

values of m and 0 ≤ z̄ ≤
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In Figure 5, the accuracy and diversity-in-top-N curves for M2 and M4 are given for N = {1, 5, 10}.

It can be seen that the point generated by M4 for z̄ = 1 corresponds to a Pareto optimal solution that

reaches the maximum possible diversity-in-top-N level while maximizing accuracy at this level. For

N = 5 and N = 10, the diversity-in-top-N level achieved by M4 deviates slightly from the maximum

possible value |I| as z̄ exceeds one. If the primary objective of the recommender system is to maximize

diversity-in-top-N, solving M4 for z̄ = 1 is sufficient. On the other hand, as we will show in Figures

6 and 7, larger values of z̄ are required to increase the distributional diversity metrics. For all three

values of N , the points obtained from M2 reside between those generated by M4 with z̄ = 0 and

z̄ = 1.

Figures 6 and 7 show the results of M2 and M4 for the accuracy and the distributional diversity

metrics. Both figures convey similar structures for each value of N . As D increases, M2 yields larger
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Figure 4: Prediction-in-top-N vs. Gini-diversity results of M4 on MovieLens data set for given values
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distributional diversity values, which indicates that the diversity-in-top-N and distributional diversity

metrics are correlated. On the other hand, as discussed earlier, the values of both Gini-diversity and

entropy-diversity reached by M2 are bounded from above by those achieved by M4 for z̄ = 1. For large

values of z̄, M4 reaches very high distributional diversity values with a certain compromise in accuracy.

Although there is a certain decrease in accuracy, prediction-in-top-N decreases down to at most

around 4.0 even at the highest distributional diversity levels. Given that items which get ratings above

3.5 are considered to be highly ranked (or relevant) (Adomavicius and Kwon 2012), the generated

accuracy vs. distributional diversity levels by our method can satisfy the needs of many real life

applications where distributional diversity is important. Returning back to our job recommendation

example, using the proposed method an e-recruitment company can give almost an equal share to the

job ads in the recommendation lists while still providing relevant job recommendations to the users.

Moreover, the trade-off between accuracy vs. distributional diversity can be adjusted according to

the needs of the company by selecting an appropriate value of z̄.

Overall, M2 generates Pareto optimal solutions (some of which can be weakly Pareto optimal)

between the solutions generated by M4 with z̄ = 0 and z̄ = 1 for each pair of objectives. We can

observe in the figures that for small D values, M2 yields points that are at the same level of the left-

most point which corresponds to z̄ = 0. Additionally, the points of M2 and M4 coincide when D = D∗

and z̄ = 1, respectively, since they both impose the maximum diversity-in-top-N while maximizing

accuracy. The level of distributional diversity M2 attains is very limited compared to M4 especially

when N is 5 and 10. At these values of N , M4 yields diversity-in-top-N levels close to its maximum

possible value for the nonzero values of z̄. In both Figure 6 and Figure 7, entropy-diversity and

Gini-diversity, respectively, increase monotonically with z̄. Therefore, we can state that z̄ controls the

distributional diversity as in the way D and A control diversity-in-top-N and accuracy, respectively.
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Although z̄ drives the levels of accuracy and the distributional diversity, the trade-off between these

objectives can be further controlled by m. For example, if accuracy has greater importance than

diversity in a recommender system, a small value of m ensures that the accuracy level is affected

minimally regardless of the value of z̄, as shown in Figures 2, 3 and 4. The value of mi can be further

scrutinized given its interpretation as the decrease in the total rating resulting from falling short of z̄

for any item i. Another way to control the decrease in accuracy is adding a bounding constraint which

enforces that the total rating maximized in M4 is no smaller than a prespecified percentage of the top-

N accuracy, which is obtained when z̄ = 0. Even though such an approach restrains solutions having

total rating smaller than a tolerance limit, the bounding constraint destroys the total unimodularity

of the constraint matrix and renders the solution of the model substantially harder than M4.
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Figure 5: Prediction-in-top-N vs. Diversity-in-top-N results of M2 and M4 on MovieLens data set

for 1, 000 ≤ D ≤ 3, 750 with increment of 250 and 0 ≤ z̄ ≤
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Figure 6: Prediction-in-top-N vs. entropy-diversity results of M2 and M4 on MovieLens data set for

1, 000 ≤ D ≤ 3, 750 with increment of 250 and 0 ≤ z̄ ≤
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, respectively.
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Figure 7: Prediction-in-top-N vs. Gini-diversity results of M2 and M4 on MovieLens data set for

1, 000 ≤ D ≤ 3, 750 with increment of 250 and 0 ≤ z̄ ≤
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Figure 8 illustrates the distribution of rec(i), i ∈ I when M4 is solved for a selection of z̄ values.

These results are obtained by solving M4 with the MovieLens data set for N = 10. This figure is

similar to Figure 1, which contains only the case z̄ = 0, except that in Figure 8, log transformation

of rec(i) is given in the vertical axis and the horizontal axis shows only a subset of the items for the

sake of compactness. As z̄ increases, we observe the following:

• the distribution of rec(i) smooths out,

• the peak of the distribution descends,

• the tail of the distribution rises,

• the number of items that falls in the tail of the distribution increases.

These results demonstrate the impact of changing z̄ on the graphical distribution of rec(i), i ∈ I. A

more even distribution is obtained with large values of z̄, which supports our claim on z̄ being the

control parameter of the distributional diversity.

In Table 2, the solution times of the models which are obtained by CPLEX 12.5 are reported in

seconds. These durations are averages over all values of D and z̄ for models M2 and M4, respectively.

The last line gives the overall averages, and the solution times of M2 which can be solved as a linear

programming problem appears to be comparable to those of M4 solved with m = 1. M4 is also a linear

programming problem and is solved very efficiently for small values of m. However, the solution time

of this model increases together with z̄ and especially with m as demonstrated in the table for its

values used in the experiments. On the average, M2 is more efficiently solved than M4, which is more

tightly constrained than the former for larger m values.

Finally, we explain our results on two larger data sets, Amazon Books and Amazon Movies. The

number of variables and constraints in M1, M2 and M4 for these data sets causes the solver to exceed

the memory limit of the configuration of our computer. Therefore, we could not solve these instances
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Figure 8: The effect of the parameter z̄ on the distribution of items.

Table 2: Average solution times of the models (MovieLens) in seconds

N M2 M4 (m=0.5) M4 (m=1) M4 (m=2) M4 (m=5)
1 51 13 41 105 110
5 55 16 58 134 143
10 54 16 61 119 114

Average 53 15 53 119 122

by handling the complete problem using a solver. Instead, the column generation method presented in

Section 4.1 is employed, and the results are given in Table 3. We have discovered in our experiments

presented above that the solutions generated by M2 lie between those generated by M4 with z̄ = 0

and z̄ = 1. Therefore, the column generation algorithm is applied only to our proposed model M4.

Since the number of variables is independent of the parameters, its value is given on the top of Table

3 as “Totvar”. The solution time in seconds and the number of variables existing in the RMP at

the optimal solution are reported under “time” and “col-var”, respectively. As discussed previously,

the RMP is initialized with the top-N items having the largest ratings for each user. Hence, the

optimal solution of M4 for z̄ = 0 is readily available, and its solution time is therefore omitted in

Table 3. Moreover, the set of columns in the RMP at the optimal solution obtained for z̄ − 1 is used

to warm-start the RMP of M4 for z̄. This is the reason that the number of columns is non-decreasing

in z̄ in Table 3. For each value of N , the solution time decreases until a threshold and then increases.

The decreasing pattern can be attributed to the warm-starting of the RMP for z̄ with the columns

in the RMP for z̄ − 1, while the increasing pattern after a threshold is due to the enlarged size of the

RMP, which inflicts longer solution times at the iterations of the column generation algorithm. It
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Table 3: Column generation results for the Amazon data sets

Amazon Books Amazon Movies
Totvar: 274,720,816 Totvar: 265,994,132

N z̄ col-var time col-var time

1
1 908,822 2,115 316,119 1,247
2 1,017,435 837 - -

5

1 795,100 1,225 594,351 924
2 1,081,978 558 989,583 815
3 1,320,125 545 1,229,254 688
4 1,497,748 512 1,326,516 1,300
5 1,658,687 589 - -
6 1,807,354 761 - -
7 1,927,457 1,307 - -
8 1,954,854 737 - -

10

1 832,693 1,177 595,999 791
2 1,117,200 596 909,657 711
3 1,303,604 465 1,146,208 642
4 1,471,047 465 1,374,863 592
5 1,617,521 451 1,537,083 560
6 1,777,617 467 1,662,868 563
7 1,900,910 443 1,769,766 809
8 2,037,086 508 1,829,162 996
9 2,148,821 531 - -
10 2,304,628 698 - -
11 2,412,238 620 - -
12 2,497,919 704 - -
13 2,613,401 883 - -
14 2,693,430 998 - -
15 2,735,027 860 - -

can be concluded that the warm-starting strategy together with adding multiple columns (a positive

reduced cost column for each user) at each iteration lead to a superior performance in the tests of the

method which generates only a fraction of all variables and terminates in a short time. When this

method is applied to solve M4 (m=5) with the MovieLens data set, the average solution times are

25, 27 and 25 for N = {1, 5, 10}, respectively, which improves the average times obtained by solving

M4 directly by solver.

In Figures 9 and 10, the accuracy and the aggregate diversity metrics obtained by solving M4 with

Amazon Books and Amazon Movies data sets, respectively, are illustrated. The results are in line

with those obtained from the MovieLens data set. For N = 5 and N = 10, the diversity-in-top-N levels

attained by M4 are equal to the maximum possible value |I| for almost all values of z̄ larger than

zero. While the distributional diversity metrics, namely Gini-diversity and entropy-diversity, increase

monotonously with z̄, the accuracy decreases. In contrast to Amazon Books data set, Amazon Movies

data set contains more items than users. Therefore, z̄ takes on smaller values in Amazon Movies than

it takes in Amazon Books. However, as can be seen in the figures, the distributional diversity values
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reached with Amazon Movies are no smaller than those reached with Amazon Books since rec(i) for

i ∈ I in both data sets approaches uniform distribution. Also note that for the Amazon data sets, the

decrease in accuracy, as diversity increases, is less than that for the Movielens data set. Moreover, if

we compare the Amazon data sets with each other, the decrease in accuracy in Amazon Books is less

than that in Amazon Movies. The explanation of these differences in the accuracy levels lies in the

number of users the data sets contain. Among these three data sets, as explained previously, Amazon

Books contains the largest number of users whereas Movielens contains the smallest number of users.

The larger the number of users is, the higher the likelihood that the model finds z̄ users who have

high predicted ratings for each item. In general, we can argue that for larger data sets, given that

the user / item ratios are similar, our proposed model tends to achieve higher diversity values with

smaller decrease in accuracy.
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Figure 9: Prediction-in-top-N vs. Diversity-in-top-N results of M2 and M4 on Amazon Books data

set for 0 ≤ z̄ ≤
⌈

T

|I|

⌉

.

6. Conclusions and Future Work

Accuracy of recommendations is generally considered the single most important aspect of a recom-

mender system. However, recently researchers have recognized the importance of other aspects of

recommender systems which are also important such as the diversity of recommendations. In this

paper, we have proposed a linear programming model which has been specifically designed for improv-

ing distributional diversity metrics. We have shown that the performance of our method in improving

distributional diversity metrics is excellent. Such an increase in distributional diversity comes at the

expense of decreased accuracy, which is controlled through model parameters. The multi-objective

nature of the problem mandates that the desired level of these parameters is determined by solving

the resulting model for various values of these parameters. We have provided guidelines on how to
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Figure 10: Prediction-in-top-N vs. Diversity-in-top-N results of M2 and M4 on Amazon Movies data

set for 0 ≤ z̄ ≤
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.

select the appropriate values for these parameters, which will be different depending on the needs

of the application and can be found with experimental methodologies such as A/B testing. We have

also devised a column generation algorithm for our proposed model, and have managed to solve

large-scale instances efficiently.

Although we apply our method for improving aggregate diversity in recommender systems, the

proposed method is not specific to recommender systems domain. Our method can be applied in

a multi-objective optimization framework where it is desired, as one of the objectives, that the

distribution of a set of entities is close to uniform as much as possible. As a future work we plan to

apply the proposed method in other problem domains.
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