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Abstract

Linear mixed effects models are frequently used for estimating quantitative genetic parameters,

including the heritability, as well as the repeatability, of traits. Heritability acts as a filter that

determines how efficiently phenotypic selection translates into evolutionary change, while repeata-

bility informs us about the individual consistency of phenotypic traits. As quantities of biological

interest, it is important that the denominator, the phenotypic variance in both cases, reflects the

amount of phenotypic variance in the relevant ecological setting. The current practice of quantifying

heritabilities and repeatabilities from mixed effects models frequently deprives their denominator

of variance explained by fixed effects (often leading to upward-bias of heritabilities and repeatabil-

ities) and it has been suggested to omit fixed effects when estimating heritabilities in particular.

We advocate an alternative option of fitting models incorporating all relevant effects, while includ-

ing the variance explained by fixed effects into the estimation of the phenotypic variance. The

approach is easily implemented and allows optimising the estimation of phenotypic variance, for

example by the exclusion of variance arising from experimental design effects while still including

all biologically relevant sources of variation. We address the estimation and interpretation of heri-

tabilities in situations in which potential covariates are themselves heritable traits of the organism.

Furthermore, we discuss complications that arise in generalised and non-linear mixed models with

fixed effects. In these cases, the variance parameters on the data scale depend on the location of

the intercept and hence on the scaling of the fixed effects. Integration over the biologically relevant

range of fixed effects offers a preferred solution in those situations.

Keywords: heritability, linear mixed modelling, fixed effects, quantitative genetics

Introduction

Additive genetic variance, phenotypic variance, and their ratio, the heritability of a trait, are key

parameters in evolutionary quantitative genetics, because they allow the assessment of whether a phe-

notypic trait can evolve through natural and artificial selection (Falconer and Mackay, 1996; Lynch

and Walsh, 1998). The heritability, h2, of a trait corresponds to the fraction of the selection differ-

ential that can cause genetic change in the offspring generation. The heritability acts as a filter that

determines how efficiently a population can respond to phenotypic selection. Therefore, heritability is

relevant to assess the adaptive potential (e.g. in species threatened by global change (Hoffmann and

Sgrò, 2011; Alberto et al., 2013)), as well as to investigate fundamental issues in evolutionary biology

(Mousseau and Roff, 1987; Merilä and Sheldon, 2000; Kruuk et al., 2000; Hadfield et al., 2006). A

related metric that is relevant in many biological contexts is the repeatability, R, that can be used. for
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example, to describe the individual consistency in phenotypic traits such as behaviour. Repeatability

can be used in a variety of context, but for the purpose of simplicity we here focus on individual

consistency, which is arguably the most widespread application in evolutionary ecology.

Mathematically, the heritability (and repeatability) of a trait are defined as the ratio of its additive

genetic variance VA (between-individual variance VI) to its total phenotypic variance VP:

h2 =
VA
VP
, (1a)

R =
VI
VP
, (1b)

As a measure of biological interest, heritability and repeatability should be estimated with the eco-

logically relevant phenotypic variance in the denominator, just as VA and VI should be estimated

accounting for various confounding effects (Wilson et al., 2010) and in the relevant environment, since

genotype-by-environment (or individual-by-environment) interactions are common (Falconer, 1952;

Kawecki and Ebert, 2004; Stinchcombe, 2014). The phenotypic variance VP could ideally be quanti-

fied by random sampling from the base population in a biologically relevant setting. But studies are

often designed, for good reasons, primarily for estimating VA and/or VI without bias and with the

highest possible precision. Optimal sampling for the estimation of these variances can sometimes gen-

erate conflicts between the precise estimation of the numerators and the denominators of Eq. 1a. To

cope with these design choices, as well as to model experimentally and naturally arising confounding

effects, quantitative genetic models have to be as thorough as possible in terms of covariates accounted

for. This thoroughness inevitably leads to much complexity in the types and forms of effects included

in the model, which in turns might render the computation of some parameters, especially VP, more

difficult than usually appreciated. As the two cases of heritability and repeatability have common

issues regarding the correct estimation of VP and the models to estimate heritability are generally

slightly more complicated, we will focus on heritability throughout this article, but most arguments

apply to repeatability estimation as well.

The most popular methods for estimating quantitative genetic parameters make use of the linear

mixed models (LMM) framework (Kruuk, 2004; Wilson et al., 2010). In particular the so-called animal

model (Thompson, 1976), a special case of a mixed effects model, is widely used in plant and animal

breeding (Gianola and Rosa, 2015) and has been increasingly used in wild population studies over

the past decade (Postma, 2014). One of the greatest advantages of mixed models is that they allow
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accounting for various confounding effects (Kruuk, 2004; Wilson et al., 2010). A LMM fitted to explain

a phenotype y can contain both fixed and random effects and is conventionally written as:

y = µ+ Xb + Zaa + Zu + e, (2)

where y is the vector of phenotypes y, µ is the global intercept and e is a vector of residual errors.

The Xb part stands for fixed effects (although not the intercept in the notation that we use here and

in the following), whereas Zu refers to the random effects. Random effects, unlike fixed effects, are

modelled as stemming from a normal distribution with a mean of zero and a variance to be estimated

from the data. Because of the quantitative genetic context discussed here, we isolate the random

effect Zaa corresponding to the additive genetic value of the individuals from other random effect

components. The matrices X and Z are referred to as the design and incidence matrices for the

fixed and random effects, respectively. Especially, the X matrix contains the values of the co-factors

included in the analysis. The vectors b and u contain the fitted fixed and potential random effect

estimates, respectively.

When no fixed effects (apart from the intercept µ) are included in the analysis, the heritability is

simply calculated as:

h2 =
VA

VA + VRE + VR
, (3)

where VA stands for the variance in additive genetic values a, VRE for (the sum of) any relevant,

i.e. accounting for natural sources of variation, additional random effect variance(s) and VR for the

residual variance. Since variance decomposition using LMM separates the phenotypic variance into

additive components, Eq. 3 will generally give an unbiased estimate of Eq. 1a. Fixed effects, however,

can be problematic for multiple reasons.

Substantial progress has been made in highlighting issues pertaining to fixed effects in quantitative

genetic inferences (Wilson et al., 2010; Wolak et al., 2015), generating solutions for mixed model

analysis in general (Nakagawa and Schielzeth, 2013), and in data-scale quantitative genetic inference

using generalised mixed models (Nakagawa and Schielzeth, 2010; de Villemereuil et al., 2016). The

purpose of this paper is to synthesise the ideas in these previous works so as to provide an accessible

guidance to about what issues arise, and how to handle them, in a number of circumstances that are

likely to occur in empirical evolutionary quantitative genetic studies.

This article is protected by copyright. All rights reserved. 
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Figure 1: Schematic description of an analysis using a continuous fixed-effect predictor to model a
phenotypic trait, possibly with random effects. The graph shows the relationship between the fixed-
effect predictor and the phenotypic trait (individual data points in black circles, values predicted by
the model as black thick line). The total phenotypic variation (black double-arrow on the right) is
decomposed into the fraction explained by fixed-effect variation (i.e. the phenotypic variation “along”
the predicted model, in green) on one hand, and random variation (i.e. variation from random effects
and residual error arising “around” the predicted model, in red) on the other hand.

Phenotypic variance estimation in the presence of fixed effects

Fixed effects are often fitted with the intention to account for confounding effects and improve the

goodness-of-fit of the models by accounting for complex patterns in the data. As illustrated in Fig. 1,

the variance of the random effects, as well as the residual variance are estimated around the predicted

values. Because of this, the sum of random variances (including additive genetic, random effects and

residual variances) underestimates VP, as it does not reflect the total phenotypic variance of the trait,

but rather the variance after the fixed effects have been accounted for (i.e. related to the red part in

Fig. 1).

As a consequence, fixed effects change the size of the phenotypic pie that is decomposed in different

components, if the denominator is calculated as in Eq. 3. Wilson (2008) recommended particular care

when fitting fixed effects in animal models and argued for a supplementary analysis without fixed

effects. Note that the issues tackled here and by Wilson (2008) about reduction of the denominator

variance when accounting for fixed effects also apply to the practice of two-step analyses by first fitting

a linear model to account for confounding effects and then analysing the heritability of the residuals

(Garland, 1988). The argument also applies to the estimation of repeatability.

This article is protected by copyright. All rights reserved. 
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Since it will typically not be possible to get a benchmark for VP from an independent dataset, we

need solutions that allow a reconstruction of VP in the presence of fixed effects. A simple solution

would be to replace the denominator VA +VRE +VR by the phenotypic variance in the original dataset

VPo, such that:

h2 =
VA
VPo

. (4)

VPo will however be affected by various aspects of the experimental design and may not be represen-

tative of the phenotypic variance in the base population (even if biases may be small in some cases of

well-balanced experimental designs).

A more proper solution is to account for the amount of variance that has been transferred from the

random components to the fixed effects. The variance VF arising from the fixed effect covariates will

be the variance of the values predicted by the model (green part of Fig. 1) along all possible values for

the fixed-effect predictor (x-axis in Fig. 1). If we note ŷ the predicted value of the model according

to a some specific predictor(s) value(s) and fx the distribution of the fixed-effect predictor(s), the

variance of fixed effects is thus the variance of ŷ along the distribution fx:

VF =

∫
Vx(ŷ)dfx, (5)

where Vx is the squared deviation from the mean (along the distribution fx). In practice, however,

a distribution fx of the covariates will not be known, as such distributions are not part of the linear

modelling assumptions. In the context of computing the coefficient of determination, Nakagawa and

Schielzeth (2013) proposed constructing a fixed effect variance component as the variance of the linear

predictor of the model ŷ = Xb̂. In other words, ŷ are the data points projected on the black thick

line in Fig. 1 and their corresponding variance VF (i.e. related to the green part in the figure) can be

computed as:

VF = V (ŷ) = V (Xb̂), (6)

which is much simpler to compute than Eq. 5. When including this variance component in the

heritability calculation, the denominator is no longer sensitive to the presence and number of fixed

effects, because the variance transferred from random components to the fixed effects is now accounted

for in the new component VF (again, see Fig. 1 for a graphical illustration that VP includes VF):

h2 =
VA

VA + VF + VRE + VR
. (7)

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Table 1: Re-analysis of the unicorn dataset from Wilson (2008) in MCMCglmm (Hadfield, 2016),
using models 1a, 1b and 1c from this reference (posterior mean of the estimates and 95% credible
interval in bracket). We computed VF and provide VP and h2 with or without accounting for this
component. Discrepancies in values from h2 compared to Wilson (2008) are due a typological error in
this reference (A.J. Wilson, personal communication).

Fixed effect VF VA VR VP h2

No VF With VF No VF With VF

None
0.00

[0.00-0.00]
0.34

[0.08-0.60]
3.14

[2.85-3.44]
3.49

[3.24-3.71]
3.49

[3.24-3.71]
0.098

[0.025-0.17]
0.098

[0.025-0.17]

Age + Sex
2.49

[2.36-2.62]
0.36

[0.27-0.47]
0.65

[0.58-0.73]
1.02

[0.94-1.08]
3.51

[3.35-3.65]
0.36

[0.28-0.45]
0.10

[0.08-0.13]
Age + Sex
+ Age:Sex

2.56
[2.42-2.68]

0.35
[0.26-0.46]

0.60
[0.52-0.67]

0.95
[0.88-1.03]

3.51
[3.36-3.66]

0.37
[0.28-0.46]

0.10
[0.072-0.13]

This is a straightforward calculation that can be applied for any analysis, and using most software,

since it needs only the values of the co-factors (i.e. the design matrix X) and the parameter estimates.

The former is an aspect of the sampling and/or experimental design and the latter is part of the

output of any statistical software. The computation of repeatability using VF is straightforward by

replacing VA by VI in Eq. 7, as in Eq. 1b.

It will be useful to provide estimates of this component in publications, in order to reflect how

much variance was depleted because of the presence of fixed effects. The same kind of solution could

be applied if the heritability was measured on the residuals of a regression (sometimes referred to as

“corrected phenotypic values”): the variance of the regression model (VF, following the exact same

definition as in Eq. 6) could be computed and included in VP, though a better practice anyway would

be to run everything within a single LMM.

As an illustration, we re-analysed the unicorn example data from Wilson (2008) using the MCM-

Cglmm R package (Hadfield, 2016). This analysis of unicorn horn length (Table 1) shows that ac-

counting for the VF component allow to recover the correct value for VP and hence for h2, whichever

the structure of the fixed effect component. Hence, because this practice would answer the concerns

raised by Wilson (2008), we encourage researchers to include fixed effects in their analyses. A decision

not to fit influential fixed effects, despite their beneficial effect on the goodness-of-fit or for accounting

for confounding effects, would likely harm model fit, parameter estimation and possibly the behaviour

of the test statistics. Improving the fit of the model would most likely improve the precision of the

estimates, which, for any particular dataset, would improve the precision of the heritability estimate

(the point estimate would be more probably close to its true value and the confidence interval will be

smaller). Furthermore, the inclusion of co-factors that account for non-genetic effects that are partly
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confounded with the additive genetic component VA (e.g. common environment effects) are likely to

reduce upward bias in the heritability estimate and will tend to result in lower, but more accurate

point estimates of heritabilities.

Table 2: Fixed effects literature survey. This literature survey does not claim completeness, but should
be representative for heritability estimates in wild population using the animal model.

Référence Nb. effects Fixed effects
Natural variation Experimental variation

Réale et al. (1999) 2 Sex, Years —
Kruuk et al. (2000) 2 Age, Area —

Milner et al. (2000) 8

Age, Parasite burden, Birth
Year, Year of measurement,
Birth type, Coat color, Horn
type

Catch date

Kruuk et al. (2001) 1 — Brood size manipulation
Merilä et al. (2001) 1 — Brood size manipulation
Kruuk et al. (2002) 1 Age —

MacColl and Hatchwell (2003) 6
Year, Sex, Helper, Hatch date,
Area, Attempt

—

Sheldon et al. (2003) 1 Year —

Hadfield et al. (2006) 5 Sex, Year, Hatch date
Carotenoid treatment,
Immune treatment

Thériault et al. (2007) 4 Age, Year Day of capture
Nilsson et al. (2009) 3 Age, Dyad Brood size manipulation
Morales et al. (2010) 3 Eggmass, Age Treatment
Charmantier et al. (2011) 2 Sex, Natal colony —
Doligez et al. (2011) 2 Sex, Age —
Lane et al. (2011) 2 Age-class, Year —
Reid et al. (2011b) 1 Year —
Reid et al. (2011a) 2 Year, Age-class —
Evans and Sheldon (2012) 3 Sex, Age Measurement day
Bérénos et al. (2014) 3 Sex, Litter size Age at capture

Lane et al. (2015) 4
Age, Cone availability, Litter
size, Year

—

Removing the influence of experimental design on VP

In the context of estimating the phenotypic variance of a trait, fixed effects (as well as random effects)

may be of two kinds. They can either reflect natural sources of variation that we are interested

in, or variance arising from experimental and/or design effects. Since the latter category artificially

inflates the variance in the data, we might wish to exclude this source of variance from the heritability

calculation. For example, if we want to study the amplitude of insect songs in the field, we might

want to improve our model fit by including effects accounting for natural sources of variation, such

as the age of the individual (if the amplitude is age-dependent) and effects accounting for sampling

This article is protected by copyright. All rights reserved. 
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design, such as the distances between the animal and the microphone. Yet, in the computation of the

phenotypic variance VP, we might want to include the biological variance arising from age, but not

the experimental variance arising from the distance.

We have categorised fixed effects in a cursory literature survey (Table 2) into sources of natural or

experimental variation for illustration. Most of the fixed effects included in these analyses originate

from natural variation (e.g. sex, year, age, area, litter size) and most likely should be included in

VP. Others are of experimental origin either being an experimental treatment or of design origin

(e.g. due to variation in the time of measurement) and should probably be excluded from VP. Of

course, this separation between natural and experimental sources of variation can be quite difficult

(e.g. year of sampling may represent error measurement or relevant natural variation depending on

context). Furthermore, it can sometimes be interesting to also exclude natural sources of variation.

For example, “age” or “sex” could be excluded from the denominator to get heritabilities conditional

on those factors. This would allow performing evolutionary prediction for a particular age-class or

sex.

In essence, what is required is to compute the phenotypic variance including the “natural” factors

xnat conditional on the experimental factors xexp:

VF =

∫
Vx(ŷ|xexp)dfxnat|xexp

(xnat). (8)

To exclude the particular factor(s) in practice, the predictor(s) (i.e. the respective columns in the

design matrix) and the related inferred parameters can simply be left out of a new linear predictor ŷ?

in the calculation of VF such that:

VF = V (ŷ?). (9)

This is equivalent to Eq. 8, in the sense that it is accounting for the variance due to the factors included

in the computation of ŷ? conditional on the effect of other factors that have been excluded. Note,

however, that this computation is unfortunately not general and is based on the assumptions that the

measured variance of the natural predictors is not caused by any of the experimental predictors. A

more general solution relies on path analysis and the assumption of a causal pathway between variables

(see Box 1).

A strong assumption in the equations above is that the sampled design matrix X for the cofactors

is representative of their distribution fx in the natural population. This might not be always the

This article is protected by copyright. All rights reserved. 
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case. For example, the insects that we are studying with respect to song amplitude might occur in

distinct morphotypes (and these morphotypes differ in song amplitude) that are not equally common.

For statistical reasons it may be useful to oversample rare morphs if we want to estimate the effect

of morph on song amplitude. Such a sampling design will equalize morph frequencies in the sample

and will thus tend to inflate VF if calculated as Xb̂. Statistical requirements (balanced sampling) and

biological realism (natural morph ratios) differ in this case and the calculation should account for this

difference, especially we need to ensure the denominator actually reflect natural variation. A solution

is to use Eq. 5 directly by assuming a distribution fx for our morphotypes.

Although this might be feasible in this simple example, it will be more difficult as soon as many

covariates have to be included, for which a joint distribution must be assumed. Two other solutions are

possible. One possible solution would be to use Eq. 6, but replace the design matrix X by a modified

design matrix X′ that more closely matches the distribution of covariates to the natural population

variation (e.g. sampled observations from the field) to compute the predicted values (noted ŷ′).

Note that, when constructing X′, we should still take into account potential correlations between co-

factors. For example if the rare morph is preferentially present in warm environments and temperature

is included in the model, then X′ should reflect that correlation. Additionally, the computation of X′

will only represent a possible sampling of the true population, thus this solution will come with the

drawback of sampling noise arising form this.

Another possible solution would be to use a slightly different (but exactly equivalent) approach

compared to Eq. 6 and compute VF as the product between the variance of the covariate in the natural

population and their squared estimated effects. For a model with a simple continuous covariate x with

an associated slope b̂x, this will be:

VF = b̂2xV (x) (10)

For a multivariate model, the variance-covariance S′ of the covariates in the wild population is required

(and can be easily computed from raw data) and one can compute VF in the multivariate analogous

of Eq. 10:

VF = b̂ᵀS′b̂, (11)

where ᵀ is the symbol for the transpose operation. The main advantage of this solution (again, exactly

equivalent as the above approach) is that, compared to the resampling of a design matrix X′, it does

not introduce supplementary sampling noise (i.e. apart from the already existing sampling noise due to

This article is protected by copyright. All rights reserved. 
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data collection on the natural population and model estimates). All the issues and solutions discussed

here equally apply to the computation of repeatability.

Fitting of genetic covariates and implicit assumptions about genetic

covariances

A general consideration is whether fixed effects should cover only non-genetic sources of variation.

Morphs in our example might be environmentally or genetically determined and it is usually advisable

to model such discrete effects with potentially oligocausal control as fixed effects, no matter whether

they are ultimately genetic or environmental in origin. With purely monogenic inheritance of morphs,

morph phenotype is essentially a genetic marker for a (potential) quantitative trait locus (QTL) and

thus represents the local heritability in linkage with the morph-determining locus (see e.g. Payne,

1918; Sax, 1923, for early QTL studies using Mendelian phenotypes as markers), while the polygenic

contribution of the background is captured by VA. Whether or not covariates cover genetic or non-

genetic effects matters for the interpretation, since the estimate of VA (and consequently h2) might

represent the total VA or the background VA other than the local heritability at the QTL.

Some potential covariates might also be (heritable) polygenic traits themselves. In many cases,

relationships between a heritable focal trait and some other relevant heritable trait are best handled

with multi-response models (see Hadfield, 2010; Wolak et al., 2015), wherein the potential covariate

is treated as a response along with the focal trait. Such a model estimates the genetic (and non-

genetic) variances for both traits along with genetic (and non-genetic) covariances among the traits

treated as responses. This is not the case when the potential covariate is fitted as a fixed effect in

the model: the fixed effect will explain the total influence of the covariate on the focal trait but not

explicitly distinguish between (nor differentially estimate) different sources of covariances. There are

situations where it does make sense to include polygenic traits as fixed covariates, particularly when

studying questions where causal effects of traits on one another are relevant. Further discussions of

such scenarios are presented in Gianola and Sorensen (2004) and Morrissey (2014, 2015).

To illustrate this, let us go back to Wilson (2008)’s unicorn dataset. It is a known fact that

in unicorns, horn length varies according to the individual body mass (slope: β = 0.403 for a full

model including age, sex and their interaction). It would thus seem relevant to add body mass

as a covariate in our model of horn length. Doing so for our full model in Table 1 results in a

This article is protected by copyright. All rights reserved. 
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heritability (accounting for VF) of h2horn length|body mass = 0.066 (Table S1 in Appendix). This is slightly

lower than the estimate in Table 1, despite the fact that we accounted for the variance explained by

the fixed effects. Yet, the inferred phenotypic variance (VP,horn length|body mass = 3.47, Table S1) is

comparable to the estimate in Table 1, what is now different is the estimate of the additive genetic

variance (VA,horn length|body mass = 0.23, Table S1, lower than VA,horn length = 0.35 in Table 1). What is

causing this lower additive genetic variance? Incidentally, we also know that body mass is a heritable

trait (VA,body mass = 0.328 and h2body mass = 0.344, Table S2). Moreover, a bivariate model shows

that it is genetically correlated with horn length (rG = 0.63, Table S3). Hence, by including body

mass as a fixed effect, we have been “explaining away” some of the additive genetic variance of

horn length, precisely because of this genetic correlation. A naive way to obtain a correct estimate

of the additive genetic variance of horn length, without resorting to a bivariate model, would be

to use the slope of the regression of horn length on body mass and compute the additive genetic

variance as VA,horn length|body mass + β2VA,body mass = 0.23 + 0.162× 0.328 = 0.283, which doesn’t quite

restore VA,horn length to its original value. This is because this computation use the total slope of the

relationship between horn length and body mass, hence assuming an effect of the phenotypic value of

body mass on the genetic value of horn length, which is apparently not a good assumption here. Any

more accurate recovery of VA will almost always require to fit a bivariate model. Because of the issues

highlighted here, we believe it is advisable, whenever possible, to fit multivariate models between

heritable and putatively genetically correlated traits instead of using other traits as covariates.

More generally, whether the covariate variability is of genetic or environmental origin, we still

make an implicit strong assumption about the structure of genetic variation of the response trait(s).

In particular, we assume that the additive genetic effects (and especially their variance) are constant

across the range of the covariate or categorical factor. In doing so, we assume that genotype-by-

covariate interactions are negligible, or put differently, that there is a perfect genetic correlation e.g.

between categories of the categorical covariate. This assumption is frequently violated. In the special

case of sex, for example, it has been shown that fitting sex as a fixed effect in a LMM leads to

(downward) biased estimates unless the cross-sex genetic correlation is perfect (Wolak et al., 2015).

Note that repeatability might also be impacted by the inclusion of biological covariates that are

themselves repeatable and share some of the underlying mechanisms of this repeatability (e.g. genetics

or environmental) with the response variable.
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Non-linear models and non-Gaussian traits

The influence of fixed effects becomes more complex, and thus even more important to consider

carefully, when the data are non-linear in the parameters of a model. Such non-linearity arises in

non-linear mixed models (NLMMs), in generalised linear mixed models (GLMMs), through the non-

linearity of their link functions, and when data are non-linearly transformed prior to analysis. In

GLMMs, a distinction is critical between the latent scale and the data scale (Morrissey et al., 2014):

on the former, we assume linearity, normality and perform most of the inferences, whereas the latter

is a non-linear transformation from the latent scale (e.g. through the link function). Hence, the

above framework could be used to compute heritabilities and repeatabilities on the linear, normally

distributed, latent scale, but creates difficulties with methods transforming estimates from the latent

scale to the data scale (see e.g. Table 1 and 2 in Nakagawa and Schielzeth, 2010).

Non-linearity causes dependence between fixed and random effects, with the direct consequences

that quantitative genetic parameters can no longer be computed without accounting for the whole

distribution of fixed effects. In other words, in a GLMM, variation associated with fixed effects does

not only potentially contribute to the phenotypic variance, but the contribution to the phenotypic

variance is not constant across the distribution of fixed effects (de Villemereuil et al., 2016). Hence VA

and VP on the data scale become complex functions of all the parameters. This means that adding a

VF component to the computation of VP will not work any longer, because the additivity of the fixed

effects and random effects variance components is not valid in these models. De Villemereuil et al.

(2016) showed that we need to integrate over the predicted values based on fixed effects to compute

quantitative genetic parameters using a GLMM. The same logic applies when working with non-linear

models or with data that was non-linearly transformed, unless we are specifically interested in the

heritability of the transformed data.

Alastair Wilson collected data on the number of aggressive behaviours performed in a single day

on all unicorn individuals for which he analysed the genetics of horn length in his 2008 paper. Here,

we conduct analyses of these data to illustrate how, in addition to h2, variance components such as

VA and VP depend on the full distribution of fixed effects. Fig 2 show how, according to our Poisson

GLMM model, the effect of the sex covariate impacts the observed number of aggressive behaviours:

despite the two sexes having the same variance in their latent values and differing only in mean latent

value (males having larger values, with little overlap), the counts of aggressive behaviours do not

follow this patterns as clearly (variance in male values is larger with strong overlap of the distribution
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Figure 2: Illustration of the non-linearity of GLMMs using the unicorn aggressive behaviour trait.
Plain arrows illustrate deterministic relationships and dotted arrows stochastic relationships. On
the latent scale, males and females have the same variance in latent values, the males only differing
from the female by a larger mean latent value. Because the inverse of the link function (here the
exponential) is not linear, initially equally apart values for each sexes are more spread for males than
for females (solid arrows). Because the variance depends on the mean for Poisson distributions, this
effect is amplified for larger values, creating even more variances for males. The end result is that
on the data scale, the two sexes no longer satisfy the assumptions on the latent scale: their variance
are different (bigger for males), the shapes of their distributions now differ (females are more skewed
toward). On the data scale, it is not possible to compute the variance arising from the fixed effect as
simply the variance arising from differences in mean between the two sexes.
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Latent scale Intercept VF VR VA

Variances
0.0871

(-0.0533 - 0.254)
0.307

[0.273 - 0.342]
0.0973

[0.0686 - 0.13]
0.0317

[0.00766 - 0.056]

Observed scale Mean VA,obs VP,obs h2obs
(i) Using the
intercept

1.17
(0.984 - 1.35)

0.0434
(0.0114 - 0.0813)

1.36
(1.14 - 1.61)

0.0318
(0.00825 - 0.0564)

(ii) Adding VF
1.36

(1.16 - 1.55)
0.0589

(0.0154 - 0.11)
2.37

(1.95 - 2.79)
0.0247

(0.00722 - 0.0447)

(iii) Integrating
over predictions

3.49
(3.37 - 3.62)

0.386
(0.113 - 0.709)

10.3
(9.3 - 11.4)

0.0377
(0.0119 - 0.0695)

Table 3: Results of fitting a model for number of observed aggressive behaviours using a Poisson
distribution in MCMCglmm. First row: estimate of the intercept of the model and variance decom-
position on the latent scale. Three last rows: estimates of population mean, additive genetic variance,
phenotypic variance and heritability computed on the observed data scale using QGglmm (i) ignoring
fixed effect and only providing the intercept; (ii) providing the intercept but including VF in the latent
total variance or (iii) using the whole latent predicted values distribution.

with females). This non-linearity of the effects can be linked to two subsequent phenomenons. To

begin with, the exponential inverse link function assumed in the Poisson GLMMs is strongly non-

linear: this results in the fact that two pairs (one for female, one for male, see red and blue arrows)

of evenly spaced values on the latent scales are not evenly spaced after transformation through the

inverse link-function. On top of this, the variance of a Poisson distribution is equal to the mean:

this creates even more variance for large values (see dotted arrows and corresponding distributions of

aggressive behaviours for males and females). The strong effect of this non-linearity on the variances

of the phenotypic trait raises the question of how to best account for the variance “explained” by fixed

effects.

We analysed the number of aggressive behaviours using the R package MCMCglmm and a Poisson

family including sex, age and their interaction as fixed effects. The results of the analysis on the

latent scale (direct output from MCMCglmm) are available in the first row of Table 3. We can see

that the fixed effects account for a large part of the phenotypic variance (VF is larger than VA and

VR). Using the framework from de Villemereuil et al. (2016) implemented in the QGglmm R package,

we then computed the quantitative genetic parameters on the observed data scale using three different

approaches: (i) not accounting for fixed effects at all, (ii) accounting the variance of fixed effects

in the total variance of the latent scale and (iii) using the whole distribution of predicted values to

be integrated over rather a VF component. As shown in the last three rows of Table 3, the three

strategies drastically differ not only in the value for VP, but also for all the other values, namely the

population mean, the additive genetic variance and to a lesser extent, the heritability. Note that
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accounting for the whole distribution of predicted values (last row) is the only approach that yields a

population mean and phenotypic variance compatible with the sample estimates (number of aggressive

behaviours, mean = 3.41 and variance = 9.77).

The analysis of unicorn aggression data illustrates that the approach of using a VF component

suggested here can only be applied directly to phenotypic traits with a normal error distribution

and analysed using linear mixed models (or if the analysis is based on the latent scale of a GLMM).

However, solutions to integrate over the distribution of predicted values do exist, such as assuming a

distribution of the fixed-effect covariates (see Eq. 19 in de Villemereuil et al., 2016) or averaging over the

predicted values according the fixed effects (i.e. averaging over ŷ) within the integral computation (see

Eq. 18 in de Villemereuil et al., 2016). This latter approach has been implemented in the QGglmm

R package. This approach of course assumes that the distribution of fixed effects in the sample is

representative for the base population of interest. Otherwise, the design matrices might need to be

adjusted accordingly (e.g. by providing a construct such as ŷ? or ŷ′ introduced above, or a mix of

these constructs, as the predicted values to QGglmm).

On this subject, it must be noted that repeatability and heritability are computed differently for

GLMMs as the narrow-sense heritability on the observed data scale of GLMMs is not an intra-class

correlation coefficient any more (see the difference between Eqs. 9 and 16 in de Villemereuil et al.,

2016).

Conclusion & Perspectives

Wilson (2008) identified an issue when fixed effects are included a quantitative genetic model: the

inclusion of fixed effects in the model has an influence on the computation of the phenotypic variance.

Based on recent work from several sources, we provide guidelines to overcome this and other related

issues, in the hope this will facilitate the use and interpretation of quantitative genetic mixed models

with fixed effects. We also discussed the complications arising from the diverse and complicated

nature of covariates that can be fitted as fixed effects. We think that fixed effects are an opportunity

to finely control confounding effects. Yet, when belonging to the phenotypic variance, they need to be

included in the denominator of the heritability and repeatability. In order to do so, we here promote

the practice of accounting for the “fixed-effect” variance component VF (see Nakagawa and Schielzeth,

2013), which includes the variance of all or selected fixed effects to be added in the denominator

of the heritability and repeatability calculation. We include an example of analysis using simulated
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data (including how to implement Eqs. 9 and 11, see Supplementary Information) and the R package

MCMCglmm (Hadfield, 2016) to show how these calculations can be implemented and how they can

affect the output (h2 estimates changing from 0.66 when not including VF in the denominator to 0.15

when including it in our example). The code for the analysis of the unicorn examples is also provided.

This approach has several advantages. First, it overcomes Wilson (2008)’s legitimate reluctance of

including fixed effects in the model. When including VF in the denominator, there is no issue of “lost

variance”. Second, since we are now able to include fixed effects, we have gained a finer control on

confounding effects on the additive variance. It also requires some careful consideration of which fixed

effects represent experimental design effects and which are biologically relevant. Third, it provides us

with the choice of whether or not to include effects in VF, depending on whether or not we deem them

part of the natural phenotypic variance of the studied population. Fourth, as argued above for the

case of morphotypes in the context of song amplitude, the calculation of VF can accommodate some

discrepancies between the analysed data and the actual population in the distribution of covariates.

Overall we advocate for the inclusion of fixed effects in linear mixed models to estimate heritabilities

and repeatabilities when (i) this improves the goodness-of-fit of the model and/or helps to account

for confounding effects and (ii) a carefully computed VF component is included in the calculation of

the denominator. While this is generally also true for non-linear models and GLMMs, any model

that involves non-linearity in the response to fixed effects will require particular attention and likely

integration over their biologically relevant range in order to marginalize the influence of fixed effects.

Box 1: Using path analysis to obtain a partial VF

Path analysis Path analysis is a statistical analysis aiming at evaluating the directed influence of

variables onto others. This directed relationship is referred to as causality (Wright, 1921). The direction

of the relationship has a strong influence in our case, because it allows us to predict if the presence of

one variable would inflate the variance of another.

Three examples In the figure below are three different examples using a phenotypic variable of

interest P influenced by a biological variable B and an experimental variable E. The parameters bXY

stand for the coefficient of a model of the effect of X on Y (e.g. a slope). The parameters σX is the

exogenous standard-deviation of the variable X, i.e. its standard-deviation due to influences outside of

the causal pathway (e.g. stochasticity, unmeasured variables and measurement error). The parameters

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
σXY is the exogenous covariance between X and Y , i.e. a undirected covariance arising from common

influences outside of the causal pathway or due to physical/logical constraints (e.g. size and volume are

physically covarying).

B
σB

σBE E
σE

P
σP

bBP bEP

1

B
σB

bBE E
σE

P
σP

bBP bEP

2

B
σB

bEB E
σE

P
σP

bBP bEP

3

General principle In all cases, we are only interested in computing the variance arising from the

grey area of the pathway (B and P ), while excluding variance arising from E. Excluding E from the

graph means that we set its exogenous standard-deviation (σE) and possible covariances (e.g. σBE), as

well as all the coefficients of its effect on any variable (e.g. bEP ), to zero. Given that, the “fixed-effect

variance” of P in this graph excluding E is simply the variance arising from the effect of B:

VF = b2BP σ
2
B

We will see that the difference between the three examples lies in the computation of σB.

Example 1 In this example, the variables B and E share an undirected covariance σXY . In other

words, we assume that a set of unmeasured variables have an effect on both B and E, but not that

a change in E will affect B. In that case, the exogenous variance of B is merely its actual variance:

σ2
B = V (B).

Example 2 In this example, the variable B has a direct effect on E (e.g. because an aspect of the

species biology modulate the effect of the experimental treatment). In that case, changes of variance in

B will affect the variance of E, but this is not a problem for us since we want to exclude E. Once again,

the exogenous variance of B is merely its actual variance: σ2
B = V (B).

Example 3 In this example however, the variable E has a direct effect on the variable B (e.g. because

the experimental treatment has an effect over different parts of the biological system). This means that,

by experimentally introducing E into the biological system, we also experimentally increased the actual

variance of B. To compute the exogenous variance of B, we need to remove this additional variance:

σ2
B = V (B|E). In other words, σ2

B is here the residual variance of a model of the effect of E on B

(e.g. the residual variance of the regression of E on B).
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Réale, D., Festa-Bianchet, M., and Jorgenson, J. T. (1999). Heritability of body mass varies with age

and season in wild bighorn sheep. Heredity, 83(5):526–532.

Sax, K. (1923). The association of size differences with seed-coat pattern and pigmentation in Phase-

olus vulgaris. Genetics, 8(6):552.

Sheldon, B. C., Kruuk, L. E. B., and Merila, J. (2003). Natural selection and inheritance of breeding

time and clutch size in the collared flycatcher. Evolution, 57(2):406–420.

Stinchcombe, J. R. (2014). Cross-pollination of plants and animals: wild quantitative genetics and

plant evolutionary genetics. In Charmantier, A., Garant, D., and Kruuk, L. E., editors, Quantitative

Genetics in the Wild, pages 128–146. Oxford University Press, Oxford (UK).

This article is protected by copyright. All rights reserved. 



A
cc

ep
te

d
 A

rt
ic

le
Thompson, R. (1976). The estimation of maternal genetic variances. Biometrics, 32(4):903–917.

Thériault, V., Garant, D., Bernatchez, L., and Dodson, J. J. (2007). Heritability of life-history tactics

and genetic correlation with body size in a natural population of brook charr (Salvelinus fontinalis).

Journal of Evolutionary Biology, 20(6):2266–2277.

Wilson, A. J. (2008). Why h2 does not always equal VA/VP? Journal of Evolutionary Biology,

21(3):647–650.
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