Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2014, Article ID 980623, 11 pages
http://dx.doi.org/10.1155/2014/980623

Research Article

Hindawi

An Initial Implementation of Multiagent Simulation of
Travel Behavior for a Medium-Sized City in China

Chengxiang Zhuge,' Chunfu Shao," Jian Gao,> Meng Meng,' and Weiyang Xu’

! MOE Key Laboratory for Urban Transportation Complex Systems Theory and Technology, Beijing Jiaotong University,

Beijing 100044, China

2 School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
? School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China

Correspondence should be addressed to Chunfu Shao; cfshao@bjtu.edu.cn

Received 7 November 2013; Revised 12 December 2013; Accepted 14 December 2013; Published 13 March 2014

Academic Editor: Baozhen Yao

Copyright © 2014 Chengxiang Zhuge et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Since the traditional four-step model is so simple that it cannot solve complex modern transportation problems, microsimulation
is gradually applied for transportation planning and some researches indicate that it is more compatible and realistic. In this paper,
a framework of agent-based simulation of travel behavior is proposed, which is realized by MATSim, a simulation tool developed
for large-scale agent-based simulation. MATSim is currently developed and some of its models are under training, so a detailed
introduction of simulation structure and preparation of input data will be presented. In practice, the preparation process differs
from one to another in different simulation projects because the available data for simulation is various. Thus, a simulation of travel
behavior under a condition of limited available survey data will be studied based on MATSim; furthermore, a medium-sized city in
China will be taken as an example to check whether agent-based simulation of travel behavior can be successfully applied in China.

1. Introduction

Traffic forecasting, no matter if short-term or long-term,
macroscopic or microscopic, static or dynamic, is an attrac-
tive issue in transportation planning. Four-step process,
which is a famous traditional forecasting method, cannot be
realistic and complex enough to solve modern transportation
planning problems emerging in recent years with rapid urban
development. Its shortcoming is especially expressed in two
aspects [1].

(i) Static Traffic Assignment. The four-step process regards
the steam flows as static (time independent), which makes it
difficult or impossible to model any kind of time-dependent
effects and like peak traffic spreading; congestion spillback.

(ii) Aggregate Individuals’ Behavior. Transportation demand
is naturally derived from performing activities at different
locations which is the result of a series of decisions made

by individuals. The four-step process’s aggregation feature
cannot solve transportation problems from the root.

In order to overcome the shortcoming above, combining
the Dynamic Traffic Assignment (DTA) and Activity-Based
Model (ABM) is an efficient solution. In the past decades,
with the survey data for transport planning getting more
detailed and complex, as well as the fact that the performance
of computer hardware has been rapidly growing, a multiagent
simulation, which integers the features of DTA’s dynamic and
ABM’s individual, comes into being. By using multiagent sim-
ulation technology, each traveler is regarded as an individual
agent who can make decisions according to his/her own goals,
attributes, preference, resources, and so forth. Thus, different
agents will make different decisions even though they stay in
the same environment.

In addition, the features of the dynamic of DTA and the
individual of ABM are as follows.



(i) ABM’s Individual. Each agent will make independent
decisions and store its decisions in a “plan” which mainly
includes its activity time and location.

(ii) DTAs Dynamic. After creating agents initial plan, a
dynamic iteration of agents’ route choice and time distri-
bution will be carried out, which allows tracking persons
dynamically in time; the goal of iteration is to find a dynamic
balance, which is similar to Nash Equilibrium.

The agent-based microsimulation modeling technique
for transportation planning is rapidly developed and is
frequently applied to practice in recent years. This paper will
use the MATSim as the multiagent simulation tool to simulate
the travellers’ behavior. MATSim which was developed by TU
Berlin, ETH Ziirich, and CNRS Lyon, provides a toolbox to
implement large-scale agent-based transport simulations [2].
A more detailed introduction can be found in Section 3.

This paper will start with the literature review concerning
the latest advancement of traffic assignment, such as DTA,
ABM, and MATSim (Section 2). Then it will present the
outline of the general simulation structure (Section 3) and
a detailed description of the modules in MATSim. Next, we
will take Baoding, one of the medium-sized cities in China,
as an example, and the way to prepare the input data and to
establish the scenarios is introduced (Section 4). Then the
simulated results are compared with count data to validate
the proposed simulation method (Section 5). Finally, it ends
up with a conclusion (Section 6).

2. Literature Review

Traffic assignment plays an important role in the study of
transportation problems [3-6]. The literature review below
will focus on the latest advancement of traffic assignment,
which will include DTA, ABM, and MATSim.

DTA is commonly used to search the best route for
users in a scenario where no users can get better off by
selecting another route, and the scenario is called Nash
Equilibrium statement. A host of research regarding DTA has
been conducted. Florian et al. described a simulation-based,
iterative dynamic equilibrium traffic assignment model [7].
Bellei et al. presented a new formulation of within-day DTA,
where dynamic user equilibrium is expressed as a fixed-
point problem in terms of arc flow temporal profiles [8].
Muiioz and Laval studied the system optimum DTA in a
network consisting of a hypothetical surface street grid and
a congested freeway section [9]. Szeto et al. proposed a cell-
based multiclass DTA problem that considers the random
evolution of traffic states [10]. Juran et al. developed a DTA
model that can evaluate the effects of moving bottlenecks
on network performance in terms of both travel times and
traveling paths [11]. Antoniou et al. presented an online
calibration approach that jointly estimates demand and
supply parameters of DTA systems and it was empirically
validated through an extensive application [12]. Gentile
et al. proposed a new model for the within-day DTA on
road networks where the simulation of queue spillovers is
explicitly addressed, and a user equilibrium is expressed as
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a fixed-point problem in terms of arc flow temporal profiles
[13].

ABM is modeled on an individual level and successfully
implemented by many models and it was employed to
address variety of transportation problems [14, 15]. Davidson
et al. summarized the recent successful experience in the
development and application of ABM for metropolitan plan-
ning organizations in the US [16]. Hatzopoulou and Miller
extended the capability of an ABM for the Greater Toronto
Area to model and map traffic emissions and atmospheric
dispersion [17]. Dong et al. employed the activity-based
theory to model a new measure of accessibility called activity-
based accessibility [18]. Recker et al. presented an estimation
procedure for an ABM to estimate the relative importance
of factors related to spatial and temporal interrelationships
among the out-of-home activities that motivate a household’s
need or desire to travel [19]. Kang and Recker applied an
ABM to evaluate the potential impacts of plug-in hybrid
electric vehicles on energy and emissions [20]. Pendyala et
al. developed a comprehensive multimodal activity-based
system to predict the travel demand in Florida and the
outcome of research was Florida Activity Mobility Simulator
(FAMOS) [21]. Yagi and Mohammadian developed a com-
prehensive activity-based modeling system in the context of
developing countries, providing accurate estimates which are
expected to serve as better inputs for evaluation of different
transportation policy scenarios [22].

There is a wide application of DTA and ABM which can
be proved by the review above, but combining both theories is
seldom implemented [23, 24]. MATSim, which incorporates
both DTA and ABM, is an efficient tool to implement a large-
scale agent-based simulation for travel behavior and traffic
flow and their interactions. So far, research on MATSim has
been conducted widely by many scholars, and the scope of
the research mainly focuses on three aspects. (1) Basic theory
for designing and implementing MATSim. At the begin-
ning, the emphasis was placed on establishing framework
of MATSim and incorporating basic models to make it run
[25-27]. (2) Optimization of MATSim. At the second stage,
the modes of MATSim, such as location choice [28] and
mode choice [29], were enhanced and some of them were
replaced with advanced ones. (3) Application of MATSim.
MATSim is applied into varieties of aspects, like travel
behavior [30, 31], parking behavior [32], and freight transport
[33].

In conclusion, MATSim has been developed for many
years and attracted a variety of researchers to apply it or
optimize it, but there is still some reaming interesting work.
In this paper, an external work to enrich the MATSim
application will be carried out and it differs from other studies
in the following aspects.

(i) MATSim will be used to simulate one of the medium-
sized cities in China. A Chinese medium-sized city will
be quite different from cities in foreign counties in urban
development, activity type, travel behavior, and so on. In
addition, a large-scale simulation of travel behavior was
seldom implemented in a real city; many of the studies used
numerical examples to validate simulation models of travel
behavior.
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FIGURE 1: Schematic overview of MATSim’s simulation structure.

(ii) Since different cities have different available traffic
survey data, they differ in quality, spatial resolution, purpose,
and so forth. An approach of how to prepare the input data
with limited available information and low spatial resolution
is studied in this paper.

3. Simulation Structure

3.1. A Brief Introduction of the Simulation Structure. Based
on MATSim, the simulation structure of travel behavior
is designed and shown in Figure 1. It mainly includes
three parts: input, evolutionary algorithm (EA), and Output.
Firstly, the input data (including initial demand and network)
will be fed into the mobility simulation (see Section 3.2)
and all agents’ plans will be executed simultaneously, and
then the execution results (simulated data) will tell the other
modules what happened during the simulated day; secondly,
every executed plan will be scored based on the simulated
data on the basis of the scoring function (see Section 3.3);
thirdly, according to the scoring, the replanning (including
Reroute and Time Allocation Mutator, see Section 3.4) is
carried out to provide the feedback which allows for the
evolution of plans. Finally, after reaching the customized
times of iteration, the simulation results, such as optimization
statistics and analysis, intermediate plan, and relaxed plan,
will be put out.

For EA is the core part of the simulation, it will be first
discussed in detail in the following sections.

3.2. Execution (Mobsim). The mobility simulation (Mobsim)
refers to the simulation of the physical transportation system.
It creates events for every agent’s action in the simulation,
like entering/leaving road and departing/arriving at activity
places. Then the events will be used for the scoring module. In
the history of MATSim, several MobSims such as QueueSim-
ulation, QSim, DEQSim, and JDEQSim have been developed.
Some of them are still in use; others are obsolete and no longer
supported today. This paper will choose Qsim which is the
most commonly used Mobsim. Qsim is an external queue
simulation, in which every link is regarded as a first-in first-
out (FIFO) queue with three restrictions [1].

(i) Every agent has to stay on the simulated link for a
certain time.

(ii) Link storage capacity is imported to limit the number
of agents on the simulated link.

(iii) Flow capacity is imported to limit the number of
agents that can leave the simulated link in a given
period of time.

Even though the queue simulation is indeed simple, the
simulated output data is enough for transportation planning.

3.3. Scoring. In order to compare different plans, a scoring
function is proposed to evaluate each plan’s performance. In
MATSim, the utility-based approach is used. The detailed
function is as follows [1].

(i) The Total Score of a Plan. It is calculated based on the
following equation:

n n n
Utotal = ZUperf,i + ZUlate,i + ZUtravel,i’ (1)
i=1 i=1

i=1

where U, is a total score of a given plan;  is the number of
activities; U, is the utility for performing activity i; U, is
the utility for arriving late to activity i; and U, is the utility

for travelling to activity i.

ravel,i

(ii) The Utility for Performing Activity. A logarithmic form is
used for the utility, as follows:

% ﬁ erf G
Uperf,i (tperf,i) = max [0, ﬂperf . ti (ln (:_* + e 5

i Pt
(2)

where f,,.¢; is the actual performed duration of the activity i;
Bpert is the marginal utility of an activity at its typical duration;
" is the “typical” duration of an activity #; ¢ is a scaling

t;
constant, and p is a priority indicator.



(iii) The Utility for Arriving Late to Activity. Consider

Ulate,i = ﬁlate ’ tlate,i’ 3)

where B, < 0 is the marginal utility for being late; t,, ; is
the number of hours being late to activity i.

(iv) The Utility for Travelling to Activity. Consider

Utravel,i = ﬁtravel : ttaverl,i > (4)
where f3,, < 0 is the marginal utility for travelling; ¢ is
the number of hours for travelling to activity i.

More detailed information about the scoring function can
be found in the references of Balmer, 2007 [1], and Charypar
and Nagel, 2005 [34].

travel,i

3.4. Replanning. The replanning module is established to
search for a solution space for every agent and it mainly
includes two submodules: Reroute module and Time Allo-
cation Mutator module. Reroute module allows agents adjust
their route from origin to destination; Time Allocation Muta-
tor module enables agents to modify their own departure
times and activity durations or change activity locations and
activity sequence. More details about the modules above are
as follows [1].

3.4.1. Reroute Module. The goal of the Reroute module is
to help agents find their shortest path in the network. The
“shortness” is measured by travel time rather than travel
distance. The most famous and most frequently used routing
algorithm is Dijkstra. In MATSim, a time-dependent Dijkstra
is applied. This algorithm can make the link travel time
dependent by aggregating it into 15min time bins. Link
travel time is calculated based on the previous traffic flow
simulation and used as the weight of the links in the network
graph. With the weights plus the origin and destination of
the activities, the fastest path can be calculated, which will
be executed in the next mobility simulation.

3.4.2. Time Allocation Mutator. Time Allocation Mutator is a
very simple random mutation module but it is very useful for
agents’ replanning. Being similar to Reroute module, simple
modules together with a large number of iterations will obtain
useful results for simulation of travel behavior.

Time Allocation Mutator mainly modifies the activities’
duration time and end time (but for the first and last activity,
end time is the only attribute modified). The detailed mod-
ification process is as follows: firstly, read every agent’s plan;
secondly, pick a random time from the uniform distribution
[-30 min, +30 min]; thirdly, add the random time to the
activities’ duration time and end time; finally, write back the
plan with time attribute modified. But pay attention to the
random time as (1) any negative duration will be reset to
zero; (2) any first activity end time before 00:00 AM and last
activity end time after 24:00 PM will be reset to 00:00 AM and
24:00 PM, respectively.
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3.5. Controller (Agent Database). Controller makes the mod-
ule of execution, scoring, and replanning run successively,
and the controlled content is as follows [1].

(i) Number of Plans. The number of the plans per agent will
be limited to N (N > 2; usually N is 3-6). If an agent has
N +1 plan (the additional plan is generated in the replanning
process) the N + 1 Plan will be stored in the agent’s memory
until the new plan scores. After scoring, the controller will
delete the lowest-score plan.

(ii) Select Agents Performing Reroute (r%). The controller
selects 7% of agents to carry out the module of Reroute (see
Section 3.4.1). The plans in the memory will be selected with
equal probability.

(iii) Select Agents Performing Time Allocation Mutator (s%).
The controller selects s% of agents to carry out the module
of Time Allocation Mutator (see Section 3.4.1), however,
after that, those agents will also carry out the module of
Reroute. The plans in the memory will be selected with equal
probability. Thus, s% of agents will carry out Time Allocation
Mutator and (s% + r%) of agents will carry out Reroute.

(iv) Select Random Plan (m%). In order to re-evaluate the
existing plans from time to time, the controller selects 1% of
agents and those agents will randomly choose a plan among
all plans in their memory.

(v) Select Plans Based on the Scores (p% = 1 — 1% — s% —
m%). The controller finally selects the remained plans with
the following probability:

pocels, (5)
where §; is the score of the plan j; 8 is an empirical constant.

Note. If the controller selects an existing plan, its new score
can be calculated with

S= (1 —(X)‘Sold +06-Snew, (6)

where « is the blending factor, this will avoid agent selecting
plans based on not only last iteration, but also the history
scores.

The controller will make the loop run until the simulation
system reach a relaxed state.

4. Input Data and Scenario

The structure of MATSim may not be complex, but preparing
the input data and constructing a simulation scenario are
much more sophisticated. In practice, there is a large variety
of input data which can differ in quality, spatial resolution,
purpose, and so forth. So it will generally take months, even
years, to prepare the correct data for simulation. In order to
run a simulation, the lowest requirement includes an initial
plan, a road network, and a simulation configuration. The
detailed process of preparing the above data will be presented
as follows.



Mathematical Problems in Engineering

<person id=“682" age=“30" employed="yes”>
<plan selected="yes”>

<leg mode="car” dep_time=“09:39:27">
</leg>

<leg mode="car” dep_time="13:52:24">
</leg>

<leg mode="car” dep_time="15:21:30">
</leg>

<leg mode="car” dep_time="17:41:27">
</leg>

</plan>
</person>

<act type=“h9” facility="1593" x="365401.69341762” y="4300664.48060939” end_time="09:39:27" />

<act type=“w3” facility="313" x="365843.21376734” y=“4306032.0981801” end_time="13:52:24" />

<act type="“h1” facility="1593" x="365401.69341762” y=“4300664.48060939” end_time="15:21:30" />

<act type=“w3” facility="313" x="365843.21376734” y="4306032.0981801” end_time="17:41:27" />

<act type=“h9” facility="1593" x="365401.69341762” y="4300664.48060939” />

ALGORITHM L: An example of a typical initial plan.

4.1. Scenario Description

4.1.1. A Brief Introduction of Baoding. This paper will take
Baoding as an example to simulate a medium-sized city
in China. Baoding, which is located in Hebei Province,
is made up of one main urban area and four counties
(Mancheng County, Xushi County, Anxin County, and
Qingyuan County). This paper will only simulate the travel
behavior of inhabitants in the main urban area. The main
urban area of Baoding has a population of 1.06 million.

4.1.2. Activity Chains and Their Distribution. In this paper,
only the resident driving private car is simulated. Based on
the census 2007 of Baoding, the activity is classified into five
types: home, work, shop, education, and leisure. The analysis
results show that home-work-home and home-work-home-
work-home are the most common patterns, and the average
length of the activity chains is close to 3.

4.1.3. Network Preparation. 'The simulation network of Baod-
ing is prepared through OpenMapStreet and it includes 502
nodes and 1474 links. The link attributes contain length,
capacity, free speed, lanes, modes, and so forth. The road
network is showed by Figure 2.

4.2. Initial Demand Preparation. The modeling of the initial
demand can be split up into several steps depending on the
available raw data and the planner’s needs. But an initial plan
should at least include the following information.

(i) Activity location which is given as a set of coordinates.
(ii) Assigned departure times and arrival times for every
activity.
(iii) A travel leg among two activities; in this paper, the
mode is set as car.

Algorithm 1 shows a typical initial plan. It includes
attributes of the person and his initial plan. The attributes

‘“u.“

e ; VoY iz |
4 oo

—— Mraomi

G

FIGURE 2: Road network of Baoding.

are made up of ID, age, and employment statues. The initial
plan is made up of 5 activities, and they are home, work,
home, work, and home in sequence, which are set as variable
of act type. Take the first activity, for example; the activity
location is in the facility with ID of 1593 and its coordinate is
represented by variables of x and y, and, besides, the end time
of the activity is represented by variable of end_time. The leg
mode and dep_time are used to describe the mode the person
chooses and time the people leaving the facility.

Different available data need different processes to pre-
pare an initial data. Figure 3 shows a detailed preparing
process based on the available data of Baoding. The process is
mainly made up of three parts.

Part I: List All the Available Data for Simulation. Part 1 only
contains one step, namely step 1. To check all the available
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FIGURE 3: The process of preparing the initial data.

data and make better use of them is a vital step in the
simulation. Take Baoding, for example; the available data
are the census 2007 of Baoding and the map of Baoding in
2007. The census sample includes 2267 persons’ daily plan,
but the number of persons whose travel mode is car is 93,
which is extremely small. Each daily plan includes trip origin,
trip destination, starting time, ending time, activity type, and
travelling leg. But unfortunately, the data of trip origin and
destination are in traffic zone level, which cannot be directly
applied to agent-based simulation and should be adjusted.
The map of Baoding in 2007 comprises the available facilities
for performing activities, such as shopping, leisure, and work.

Part 2: Prepare Data for Generating Initial Plan. Part 2 is made
up of step 2, step 3, and step 4.

In step 2, since the survey sample is really small, the
MATSim population is synthesized on the basis of census.
MTSim population includes a few persons (agents) whose
information only includes age, home location, and work
location and all the above information is stored in MATSim-
Pop.txt, which will be used for generating initial plan.

In step 3, generate a true plan file (TPlan.xml) which
contains a handful of plans whose travel mode was car based
on the census 2007 of Baoding. The following information is
included: person ID, trip ID, origin coordinates, destination
coordinates, activity duration, and activity type. Note that
the trip origin and destination are in traffic zone level, so a
random assigning method was used for selecting a location
for performing activities.

In step 4, prepare the available facilities for perform-
ing activities, that is, getting the exact location, type, and

attributes of facilities. All the information was saved in
Factilities.xml. There were five facility types corresponding
to five activity types. The numbers of facilities for shop-
ping, education, leisure, work, and home are 256, 51, 478,
912, and 1321, respectively. In addition, before the facilities
location is determined, the coordination transform should
be discussed. WGS84-coordinates are widely used, like GPS
data, OpenStreetMap data, and Google earth data. For the
distance calculation in WGS84-coordinates (or any spherical
coordinates) is rather complex, in MATSim, the coordinates
should be converted into another coordinate reference system
(CRS). This paper chooses the UTM (Universal Transverse
Mercartor Grid System) as the coordinate used in MATSim.
According to the UTM global zoning, Baoding is located in
the zone 50N and its EPSG code is 32650.

Part 3: Generating Initial Plan. After preparing the required
data (MATSimPop.txt, TPlan.xml, and Factilities.xml) in Part
2, generating initial plan would be conducted.

Step 5-1, copy all the information from a true plan, which
is stored in TPlan.xml, to the plan of each agent who made
up the MATSim population, except for the location of each
activity.

Step 5-2, randomly assign each activity to a facility based
on nearby searching method; thus the location of each activity
can be generated. The detailed searching method is described
with an example as follows. Assume that an agent ends its
previous activity and goes shopping next, the controller of
the MATSim will define a circle around the previous activity
location with a certain radius (the radius is represented as R),
and the agent will randomly choose a facility for shopping. In
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A Previous activity location
[J Nearby facilities for shopping

FIGURE 4: Schematic diagram of randomly assigning each activity to
a facility.

real life, inhabitants will tend to choose a nearer school for
education, choose a nearer shop/market for shopping, and
so on. So the concept of the searching method seems to be
realistic. The R was set to 3 km, according to Baodings size,
population and so on. The schematic diagram is showed in
Figure 4.

Step 5-3, generate the start and end time of each activity
on the basis of activity duration. For example, the end time of
the previous activity is P, 4ime> and the duration of the next
performed activity is Ty, aion; then the Gaussian function is
used to generate the next activity’s end time, and the equation
is as follows:

Tendtime = Fendtime Tduration + Gaussian - 3600, (7)
where T, 4ime is the end time of the next activity. Gaussian

represents the rand number generated based on Gaussian
distribution whose mean is 0 and the standard deviation is
1.

When all the above steps are completed, the initial plan is
finally created.

4.3. Count Data. Inputting count data to MATSim is a typical
way to check whether the simulation of travel behavior is
realistic. In this paper, six count stations” data will be used.
The count data is obtained by an artificial method. The survey
time is at May 10, 2007, from 7:00 AM to 9:00 AM.

4.4. Simulation Configuration. In this paper, two different
simulation scenarios will be built up.

(i) Scenario 1: 10% of all agents carry out Reroute.

(ii) Scenario 2: 10% of all agents will carry out Time
Allocation Mutator, but these agents will also carry
out Reroute after time changes.

100
90
80
70
60
50
40
30
20
10

The number of cars

0
0:00:00

5:00:00

10:00:00 15:00:00
Time of day

20:00:00

—— Reroute
—=— Time Allocation Mutator

FIGURE 5: Comparison of the number of departures of cars between
two scenarios.

Other simulation configurations of the above three sce-
narios are the same.

(i) The number of the plans stored in each agents
memory is limited to 5.

(ii) 10% of all agents will randomly select an existing plan.

(iii) The remaining 70% of all agents will select an existing
plan based on the plan scores.

(iv) The number of iterations will be set to 50.

(v) The “QSim” module will be used for mobility simula-
tion.

5. Results and Discussion

Simulation results of the two different scenarios will be
discussed in the following aspects.

(i) Comparison of the Number of Departures and Arrivals of
Cars between Two Scenarios. Figures 5 and 6 show the number
of departures and arrivals of cars between the two scenarios,
respectively. Both figures have the same trend which has
two peaks. The two peaks occur around 8:00 and 18:00,
respectively. In addition, in terms of Figure 4, the first peak of
Scenario 2 (Time Allocation Mutator) is lower than Scenario
1 (Reroute) and the number of cars of Scenario 2 is higher
than Scenario 1 from 5:00 AM to 8:00 AM, which indicates
that some agents advance their departure time to avoid high
traffic volume during the peak time. Figure 5 has the same
trend as Figure 4 due to the same reason.

(ii) Comparison of the Evolution of the Average Best Score and
Average Executed Score for the Two Scenarios. Figures 7 and
8 demonstrate the average executed score and average best
score of two scenarios, respectively, and they also have the
same trend. The score of Scenario 1, which only carries out
Reroute, keeps invariant from iteration 0 and iteration 50 in
both figures, while the score of Scenario 2, which carries out
Time Allocation Mutator, has an increasing trend in both
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TABLE 1: Bias and error of two scenarios.

Time period Bias/error Scenario 1 (Reroute) Scenario 2 (Time Allocation Mutator)
Mean absolute bias -24 -147
7:00-8:00 AM Mean absolute error 158 204
Mean relative bias -0.75% -24.04%
Mean relative error 32.09% 37.91%
Mean absolute bias —45 -222
8:00-9:00 AM Mean absoll‘lte 61:1‘01‘ 252 281
Mean relative bias 6.41% -25.57%
Mean relative error 44.00% 41.29%
Mean absolute bias -35 -185
7:00-9:00 AM Mean absolute error 205 243
Mean relative bias 2.83% —24.80%
Mean relative error 38.05% 39.60%
120 165
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FIGURE 6: Comparison of the number of arrivals of cars between two
scenarios.
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FIGURE 7: Comparison of the evolution of the average executed score
for the two scenarios.

figures. According to the trend mentioned above, we can con-
clude that Reroute does not improve the agents’ performance,
while Time Allocation Mutator has a significantly beneficial
influence on the performance of agents. The reason why score

—— Reroute
—=— Time Allocation Mutator

FIGURE 8: Comparison of the evolution of the average best score for
the two scenarios.

of Scenario 1 remains the same is that agents cannot improve
their performance through changing their routes.

(iii) Comparison of the Simulated Data and the Count Data
of the Two Scenarios. The comparison between the simulated
data and count data of the two scenarios is presented in
Figure 9. Figures 9(a), 9(b), 9(c), and 9(d) demonstrate the
comparison in Scenario 1 at 7-8 AM, in Scenario 2 at 7:00-
8:00 AM, in Scenario 1 at 8:00-9:00 AM, and in Scenario
2 at 8:00-9:00 AM, respectively. The bias and error of the
simulation results are summarized in Table 1. The mean
absolute bias, mean absolute error, mean relative bias, and
mean relative error are jointly used to check the simulation
results. The equations to calculate the above indicators are as
follows:

(i) mean absolute bias:

1
E= ; Z (qsimulated - qcounted) > (8)
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(a) Simulated data versus count data at 7:00-8:00 AM (Simulation with
Reroute only)
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(c) Simulated data versus count data at 8:00-9:00 AM (Simulation with
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(b) Simulated data versus count data at 7:00-8:00 AM (Simulation with Time
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FIGURE 9: Comparison between simulated data and count data.

(ii) mean absolute error:

1
|E| = ; Z (Iqsimulated - qcounted') ’ ©)
(iii) mean relative bias
e = l Z <qsimulated ~ Yeounted > , (10)
n 9counted

(iv) mean relative error

=23 ). ()

In terms of mean relative error, which is commonly used
for validating the accuracy of simulation, the accuracy of
Scenario 1 (38.05%) is close to Scenario 2 (39.60%) at 7:00-
9:00 AM. In addition, from 7:00 AM to 8:00 AM, the mean

simulated ~ counted

9counted
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relative error of Scenario 1 (32.09%) is lower than Scenario 2
(37.91%), while the mean relative error of Scenario 1 (44%) is
higher than Scenario 2 (41.29%) from 8:00 AM to 9:00 AM;
thus Time Allocation Mutator does not perform better than
Reroute in terms of simulation accuracy.

6. Conclusions

This paper implements the agent-based simulation of travel
behavior in a medium-sized city in China, and the main
achievements of this paper are as follows:

(i) A detailed simulation structure, which includes a
variety of modules, is introduced.

(ii) Successfully realizing the simulation of travel behav-
ior under a condition of limited survey data, besides,
a framework of preparing the input data, is presented.

(iii) Simulating the travel behavior of residents in a
medium-sized city in China by MATSim was seldom
done in previous studies.

However, the above achievement is only a basic simula-
tion work. In the near future, the related work below will be
carried out.

(i) This paper only simulates the travel behavior of
resident whose travel mode is car, so other modes will
be added to the simulation scenario to check whether
agent-based simulation results are still realistic.

(ii) A large-scale agent-based simulation will be carried
out in a Chinese metropolis, such as Beijing, Shang-
hai, on Guangzhou.

(iii) Optimize the modules in MATSim to improve its
simulation precision and computing time.
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