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This is a theoretical investigation of the exchange bias phenomenon, and the properties of a thin

magnetic film’s magnetization hysteresis loop, on the rough surface of a hard-magnetic antiferro-

magnet. An interface model with a periodic structure of atomic steps is presented. These atomic

steps are associated with a spatially inhomogeneous distribution of the ferromagnetic film magnet-

ization, akin to a system of domain walls. This structure leads to a complicated external field de-

pendence of magnetization: the hysteresis curve can assume an asymmetrical shape and “fall apart”

into two hysteresis loops, divided by a “horizontal plateau,” or an area with constant field-

independent magnetization. Such field dependence behavior has been recently observed experimen-

tally in different ferro/antiferromagnet systems. The field dependence of magnetization has been

obtained analytically using the long-wave approximation for various characteristics of ferromag-

netic film (its thickness, values of exchange interaction, and magnetic anisotropy), and the interface

(the period of the inhomogeneous structure, and exchange interaction through the interface). The

analytical results are confirmed by numerical calculations for the corresponding discrete model

with a more complex interface structure. VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4901921]

1. Introduction

Recently, due to the technological applications of multi-

layer magnetic systems,1,2 there have been intense experi-

mental and theoretical investigations of the magnetic

properties of contacting ferro- (FM) and antiferromagnetic

(AFM) thin film. A long time ago,3 it was discovered that

during such contact, there is a shift in the field dependence

of magnetization, M¼M(H) from the symmetrical position,

relative to the field magnitude (exchange bias, (EB)). The

simplest explanation for this effect is as follows: a hard-

magnetic AFM (or FM) with a fixed direction of magnetic

moments and an “uncompensated” surface (nonzero average

magnetization of the surface atomic layer) creates a local

field that is independent of the external field, at the interface

of the thin FM film, with which it has contact. This model

provides a quality description of a shift in the field depend-

ence hysteresis loop, in the case of an ideal interface

between the FM/ layered AFM, with the layers parallel to

the interface itself.2,4–8 However, the EB is observed even in

the case of a compensated boundary, and can be explained

by non-ideality (roughness) of the interface. The latest

experiments have shown9–11 that aside from EB, the field de-

pendence of magnetization can have additional, and fairly

complex properties: the appearance of a “horizontal plateau”

with constant magnetization in a range of fields, the differing

of the slope of the M¼M(H) dependence, in accordance to

different field values, and the hysteresis loop itself

“splitting” into two symmetrical or asymmetrical loops.

With an ideal interface, this behavior can be explained by in-

homogeneous FM film magnetization, similar to domain

walls (DW), parallel to the interface. Another possibility is

related to the interface roughness, resulting in the spatial

inhomogeneity of the magnetization in the contact plane,

resembling DW, but with a perpendicular orientation to the

interface.12–14 In this case, the EB phenomenon and nonstan-

dard M¼M(H) dependence, can be examined independently

(even though their origins are the same, i.e., AFM influence

on the FM film). If the average magnetization of the surface

AFM layer is hMsi¼ 0, then EB is absent, but the sloped por-

tions of the field dependence, horizontal plateau, and the

split hysteresis loops, could remain.15,16 All indicated phe-

nomena essentially depend on the nature of the interface

roughness. In some cases magnetic contact through the inter-

face exists only for a small number of surface FM and AFM

atoms (magnetic point contacts).17 In other cases, lines of

atomic steps (AS) can form at the AFM surface, dividing the

AFM surface regions with oppositely directed magnetic

moments.13,14 If the surface is, on average, homogeneous,

then the interface has alternating steps with opposite signs.

A one-dimensional model of such a system was presented by

us in Ref. 14, where we demonstrated that DW are connected

to the presence of such steps at the interface, which divide

the FM film into domains with different magnetization orien-

tation. In this case the film was considered to be sufficiently

thick to cause DW bending within the film.

This study examines a one-dimensional model of FM/

AFM contact with periodically distributed atomic steps at
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the interface, in the case of a thin FM film, for which

changes in the FM magnetization volume can be neglected.

If surface regions with opposite magnetization direction at

the subsurface AFM layer have identical values, then in this

model there is no EB, but other characteristic properties of

the M¼M(H) dependence observed in experiments, can

remain. When widths are alternated for different interface

sections, there is a manifestation of EB, and field depend-

ence becomes asymmetrical. An extreme case of a big differ-

ence in the size of the regions with opposing magnetization,

corresponds to the model examined earlier in Ref. 17.

2. Model formulation

A diagram of the examined model is presented in Fig. 1.

Plane-parallel monoatomic step defects with alternating signs

are located at the interface. The period of the L structure is

assumed to be much longer than then interatomic distance a,

which allows us to consider the problem using the long-wave

approximation. In the simplest case b¼ L/2, the average mag-

netization of the subsurface AFM layer is equal to zero, and

EB is absent. If b 6¼ L/2, the interface structure is doubly peri-

odic, the average magnetization at the AFM surface is other

than zero, and there is EB. The AFM magnetic moments are

fixed (hard-magnetic AFM), whereas FM moments change

their orientation in the external magnetic field. The step defects

form bands, in which magnetization of the subsurface AFM

layer runs in an anti-parallel direction. In addition, this model

can describe systems with an ideal interface, in which bands of

domains formed in the AFM part of the subsystem, after

demagnetization by an alternating field with a decreasing am-

plitude at a temperature below the Curie point, but above the

blocking point.15,16 The FM film contains a small number of n
layers, and the change in the magnetization across its thickness

is neglected. For the purpose of simplification, we assume that

the ferromagnet has a strong magnetic anisotropy akin to an

“easy plane” (caused, for example, by the magnetic dipole

interaction) and that the magnetic moments are located, and

can rotate, within this plane. In addition, there is the possibility

of the existence of an additional weak magnetic anisotropy in

the easy plane, the axis of which (easy axis) corresponds to the

orientation of the AFM magnetic moments. The direction of

the external magnetic field is also expected to coincide with it.

The proposed simple model is described by the scalar

equation for the angles of magnetization rotation in the easy

plane u(x), calculated from this derived direction. The X
axis is chosen in the interface plane as the direction of the

periodic structure of the atomic steps.

The energy of the FM system can be written as

E¼M2
0

a

ð
dx

Jn

2
a2 u0ð Þ2� ~J0f xð Þcosu–

bn

2
cos2u�Hncosu

� �
;

(1)

where J is the FM exchange interaction constant, b is the

magnetic anisotropy constant in the easy plane, ~J0 is the FM

and AFM exchange interaction through the interface, M0 is

the nominal magnetization, and a prime stands for the deriv-

ative with respect to X. Assuming the interface to be even,

we model its stepped features in the special case of b¼L/2,

introducing the function

f ¼ 2
X1

s¼�1
h x� 4s� 1

2
L

� �
� h x� 4sþ 1

2
L

� �� �
� 1;

(2)

provided in Fig. 2, where h(x) is the Heaviside function, and

s stands for the natural numbers.

It is convenient to renormalize the total energy using the

effective exchange interaction through the interface J0

¼ ~J0/n, taking into account further on, that at a low FM film

thickness, this interaction is several times smaller than the

real exchange through the interface.

Equations describing the distribution of FM magnetiza-

tion, have the following form:

�Ja2u00AþðHþ J0ÞsinuAþbsinuA cosuA ¼ 0 in regions A;

(3)

�Ja2u00AþðH� J0ÞsinuBþbsinuB cosuB¼ 0 in regions B;

(4)

where the regions A and B are marked in Fig. 2. Formally,

they coincide with equations that describe the non-linear

parametric resonance in mechanics. Equations (3) and (4)

must be supplemented by boundary conditions, which take

into consideration the lattice discreteness along the X axis, at

the locations of the atomic steps on the surface. In large

external fields, the magnetization is directed along the field

in these major states u¼ 0 (Hjjnx) or u¼p (Hjj�nx). At

critical fields H¼6H0 the FM film transitions to a spatially

inhomogeneous state with u¼u(x). In the proximity of the

critical fields, the turn of the u(x) angle is smooth, and the

long-wave approximation boundary conditions for (3) and

(4) at the interface steps (at the points where x¼ xs¼ (1 þ
2s)b, b¼ L/2) look like

uAjs ¼ uBjs; u0Ajs ¼ u0Bjs: (5)

Aside from the indicated homogeneous conditions, the

examined system allows for inhomogeneous anti-collinear

FIG. 1. A model of the rough stepped AFM/FM film border.

FIG. 2. Profile of the exchange interaction through the FM/AFM border, for

a compensated interface (b ¼ L/2).
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states, in which, for domains A and B, the magnetization is ori-

ented strictly with and against the field: for example, for one

field orientation uA¼ 0 and uB¼p. In this state, the total mag-

netization is equal to zero for a certain interval of the field, sym-

metric with respect to its sign. Here, at the interface steps, the u
angle changes by a jump. At these points, the long-wave approx-

imation cannot be justified, and it is necessary to consider the

discreteness of the system. If within the A and B domains them-

selves, it is possible to stay within the framework of the long-

wave Eqs. (3) and (4), which is justified by a large magnetic

length l0 ¼
ffiffiffiffiffiffiffiffi
J=b

p
a� a, then the boundary conditions must be

upgraded. When taking into consideration the discreteness of the

system, the first term in (1) is substituted by the expression

–Jncos(ui � ui�1), where the index i numbers atoms in the

direction of the X axis. In Eqs. (3) and (4) the first terms are

rewritten in the form Jsin (ui� ui�1)� Jsin(ui� uiþ1). These

circumstances result in the following boundary conditions:

au0Ajs ¼ sin ðuB � uAÞjs; au0Bjs ¼ sin ðuB � uAÞjs; (6)

from which we can derive that u0Ajs¼u0Bjs. In the long-

wave approximation a(d/dx) � 1, and from (6) we get the

condition (5) uAjs¼uBjs. However, for states close to anti-

collinear, it is necessary to use expression (6). Using simpler

boundary conditions from (5) makes strictly anti-collinear

states disappear, and regions of field dependence with

M¼ const turn into regions with a weak dependence of mag-

netization on the field. Since the main objective is to calcu-

late the experimentally observed dependence of the

magnetization on the external field M¼M(H), we present an

expression for the magnitude of FM film magnetization

along the length of the structure period Dx¼ 2L:

M ¼ M0n

a

ðb
�b

dx cos uA þ
ð3b

b

dx cos uB

0
B@

1
CA: (7)

We will start our investigation of possible magnetic

structures from a simple FM isotropic limit.

3. Inhomogeneous states of isotropic ferromagnetic film,
with a compensated interface (b 5 L/2)

Usually, in the case of an isotropic FM, there is no hys-

teresis for the magnetization curve, but it can exist in the

composite FM/AFM system, and the M¼M(H) dependence

itself can have a complex character.

First of all, we will find the critical values of the external

field H¼6H0, at which the homogeneous states lose stabil-

ity, and H¼6H*, at which the anti-collinear state loses sta-

bility with uA¼ 0, and uB¼ p.

Near the field value H¼H0, the linearized Eqs. (3) and (4)

Ja2u00A � ðJ0 þ HÞuA ¼ 0; Ja2u00B � ðJ0 þ HÞuB ¼ 0;

(8)

are solved as

uA ¼ Ach

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 þ H

J

r
x

a

 !
; uB ¼ B cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 þ H

J

r
x� L

a

 !
;

(9)

which, when substituted into the boundary conditions (5),

give the equation for finding the critical field H0:

P0tgðP0Þ ¼ R0thðR0Þ; (10)

where R0¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0

p
, P0¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h0

p
, S¼

ffiffiffiffiffiffiffiffiffi
J0=J

p
ðL=2aÞ

and h0¼H0/J0.

The critical value of the field depends on the parameters

of the FM (J), and the interface (J0 and L). The FM exchange

interaction can be considered a given, and the dependence on

the parameters of the interface can be conveniently character-

ized using the values of J0 and S. (We will note that in the

given case of a compensated interface, all system parameters

(J,J0, n,L) are in the form of one combination S). A solution

for Eq. (10) in the form of the function h¼ h(S) is depicted in

Fig. 3 by curve H0. The asymptotes for large and small values

of S look like: h0 � 1 � (p/2S)2 at S � 1 and h0 � S2/3 at

S� 1. A significant change in dependence happens at S � 1.

Fig. 3, the H0 curve corresponds to a canted field occur-

rence, Curves H* are related fields that limit the “horizontal

plateau” of the anti-collinear phase for big and small distan-

ces between atomic steps. Values for L/2a are indicated in

brackets. The diagram shows that at large values for parame-

ters of S, i.e., at a strong interaction through the interface, or

a long period for the dependence structure, H0(S) and H*(S)

will intersect, such that the hysteresis of the field dependence

of magnetization occurs even in the absence of FM magnetic

anisotropy. The dependence of H0¼H0(J0) at fixed values of

the FM exchange interaction, and the period of the surface

structure, is shown in H0 curves in Fig. 4.

The anti-collinear state exists only when the discreteness

of the system is taken into account. Without this, the

M¼M(H) dependence is unremarkable, and the magnetiza-

tion decreases monotonically from value Mm¼M02Ln/a to

M¼�Mm¼�M02Ln/a when the field changes from H0 to

�H0. The discreteness of the magnet is expressed near the

atomic steps at the interface. In the anti-collinear state uA¼ 0,

uB¼ p, total magnetization is absent: M¼ 0. Taking into con-

sideration small deviations of magnetization from this state

uA � 1, uB¼p � wB, wB � 1 and linearizing Eqs. (3) and

(4) using these small corrections, we derive the system

Ja2u00A � ðJ0 þ HÞuA ¼ 0; Ja2w00B � ðJ0 � HÞwB ¼ 0:

(11)

Solutions for these equations look like

FIG. 3. The dependence of the critical fields on the system parameters L, J,
J0 ðS ¼

ffiffiffiffiffiffiffiffiffi
J0=J

p
ðL=2aÞÞ.
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uA ¼ A ch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 þ H

J

r
x

a

 !
; wB ¼ B ch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 � H

J

r
x� L

a

 !
:

(12)

The system in (11) is formally identical to the equations

that describe linear parametric resonance in oscillation theory,

whereas (12) corresponds to a symmetric single-frequency so-

lution at the boundary of the stability region. In addition to

the solution for (12), there exists an antisymmetric single-

frequency solution, in which uA¼A shð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0 þ HÞ=J

p
x=aÞ,

however, when it takes nonlinearity into account, it becomes

unstable, and will not be used by us. Equation (11) are supple-

mented by boundary conditions (6), which are also linearized.

As is with the previous case, the spatial derivatives are contin-

uous: u0Ajs¼u0Bjs, but the angle of magnetization rotation

experiences a jump: au0Ajs¼ (uA þ wB)js. These relations

imply the dependence of the critical field H* on the FM and

interface parameters.

R� th R�ð ÞP� th P�ð Þ ¼
L

2a
R� th R�ð Þ þ P� th P�ð Þ½ �; (13)

where R*¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h�
p

and P* ¼ S
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h�
p

. This is shown in

Fig. 4 in the form of H* curves. The asymptote of the H*(J,
J0, L) function with the limit H* ! J0 looks like H* � J0 �
J(2a/L), and the minimum value of the exchange interaction

J�0 through the interface, at which the anti-collinear configu-

ration and the “horizontal plateau” occur, in the field de-

pendence of magnetization, is determined by equationffiffiffiffiffiffiffiffiffiffi
J�0=J

p
th½ðL=2aÞ

ffiffiffiffiffiffiffiffiffiffi
J�0=J

p
� ¼ 2. For the limit L� a, this value

is equal to J�0/J � 4 þ 16 exp (�2L/a) and is close to 4, even

at a high step density at the interface (J�0/J � 4.005 at

L¼ 4a).

A comparison of the asymptotes at critical values H*(J! 0)

and H0(J! 0), points to a different behavior of the magnetiza-

tion curves given different values for the period of the interface

structure. The typical value of this period is equal to 2L0¼p2a.

At L> L0, given changes in the external field, the magnetization

changes monotonically in the�H0< H< H0 interval at J0< J�0
(line a in Figs. 4(a) and 5(a)), or the “horizontal plateau” appears

with M¼ 0 at �H* < H < H*, separated by sloped magnetiza-

tion regions at H* < jHj < H0 intervals (line b in Figs. 4(a) and

5(b)). At a high density of atomic steps at the interface L < L0

magnetization changes monotonically with the field at the �H0

< H < H0 interval at J0 < J�0 (line a in Figs. 4(b) and 5(a)). In

the J�0 < J0 region, there is a “horizontal plateau” separated by

sloped regions with fields H* < jHj < H0 (line b in Figs. 4(b)

and 5(b)). And given a large exchange interaction through the

surface, the sloped regions of the field dependence of magnetiza-

tion turn into hysteresis loops (line c Figs. 4(b) and 5(c)).

Therefore, in the proposed models, the hysteresis curves

can exist even in the absence of single-ion anisotropy. This

is related to the fact that there exists a symmetry of magnetic

properties relative to the direction along the X axis, and the

impact of the AFM subsystem acts as an effective magnetic

anisotropy. However, while the width of the hysteresis loops

FIG. 4. Regions of collinear ("" and ##), anti-collinear ("#), and canted

(shaded in cross sections a and b), structures and hystereses (shaded in cross

section c) at L < L0. The insets show the dependence J ¼ J(H) for bounda-

ries of different structures at a fixed value of the exchange interaction

through the interface.

FIG. 5. Dependence of magnetization of the FM on the field at different values of the parameter for the exchange interaction through the interface, correspond-

ing to lines a, b, and c, in Fig. 4.
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is usually determined by the value of the magnetic anisot-

ropy, in the given case at L < L0 and J0� J, the width of the

hysteresis loops is equal to DHh¼ J(2a/L)(L0/L � 1), and the

hysteresis loops have a strictly rectangular shape and do not

contain any sloped regions. The insets in Fig. 4 show the de-

pendence of the J/J0 values on the external field H/J0, for the

critical values of the field, at which the configuration of the

distribution of FM magnetization changes. This is presented

for the sake of comparison against research results involving

the field dependence in the case of an ideal interface with

a dual-layer FM. This question has been examined by us

earlier in Ref. 8, where it was demonstrated that the

indicated dependences in a simple dual-layer model have

properties that match the results obtained in this study

(Fig. 4 in Ref. 8).

In order to find the canted magnetic structures in the

isotropic FM, it is necessary to solve the nonlinear equa-

tions (3), (4) with b¼ 0. These solutions are well-known:

uA ¼ 2 arcsin k0A=dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 þ H

J

r
x

a
; kA

 !" #
; (14)

uB ¼ 2arcsin kB cn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 � H

J

r
x� L

a
; kB

 !"

dn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 � H

J

r
x� L

a
; kB

 !, #
; (15)

where cn(r,k) and dn (r,k) are the Jacobi elliptic functions, k
is the elliptic modulus, and the additional modulus

k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2
p

. Solutions (14) and (15) turn into (12) at kA !
1 and kB! 0.

Substituting solutions (14) and (15) into formula (7) for

the total FM magnetization, we get

M ¼ Mm
k2

A

R

cn R; kAð Þsn R; kAð Þ
dn R; kAð Þ � k2

B

P

cn P; kBð Þsn P; kBð Þ
dn P; kBð Þ

"

�E am R; kAð Þð Þ
R

þ E am P; kBð Þð Þ
P

�
; (16)

where sn(r,k) is the Jacobi elliptic sine, E(r,k) is an incom-

plete elliptical integral of the second kind, defined as

E(u,q)¼
Ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� q2 sin2u
p

du, R¼ S
ffiffiffiffiffiffiffiffiffiffiffi
1þ h
p

, P¼ S
ffiffiffiffiffiffiffiffiffiffiffi
1� h
p

,

and am(r,k) is the elliptic amplitude. In this expression, the

magnetic field is included in the parameters R and P, and in

the elliptic moduli, kA and kB. The latter are determined by

the boundary conditions (6):

kAk0AR sn R; kAð Þ
dn R; kAð Þ ¼ kBk0BP sn P; kBð Þ

dn P; kBð Þ ; (17)

kAk0A
R dn R; kAð Þ þ cn R; kAð Þ

dn2 R; kAð Þ

þ kBk0B
P dn P; kBð Þ � cn P; kBð Þ

dn2 P; kBð Þ

¼ 2kAk0Ak02B cn R; kAð Þ � 2kBk0Bk02A cn P; kBð Þ
dn2 R; kAð Þdn2 P; kBð Þ

:

(18)

Equation (18) is simplified in the long-wave limit, when

conditions (5) are met

k0A
dn R; kAð Þ ¼

kB cn P; kBð Þ
dn P; kBð Þ ; (19)

and it’s easy to find the elliptic moduli connection

k2
B ¼ k0

2
A

2S2 � R2dn2 R; kAð Þ
2S2 � R2ð Þdn2 R; kAð Þ

: (20)

The “horizontal plateau” at M¼ 0 on the M¼M(H)
curve is absent, but for certain parameter expressions,

regions with a very small slope angle for this function, are

possible (i.e., regions observed in the experiment).

Equations (19) and (20) define the elliptic moduli kA(H),

kB(H) as functions of the magnetic field, and after substitut-

ing them into expression (16) the field dependence of mag-

netization is found. In Fig. 6 this dependence is given for the

parameters of the system: J0/J¼ 0.5, and L¼ 10a.

The field dependence of magnetization at low values of

the latter is easy to find using Eqs. (17) and (19). In the ab-

sence of a field, the values of the elliptic moduli kA¼ kB¼ k0

are determined by the equationffiffiffi
2
p

k00 ¼ dnðS; k0Þ; (21)

and change in the k0¼ 1/�2 � 1 interval as parameter S
grows from zero to infinity. The additional modulus k00
becomes anomalously small at values of S � 2. In small

fields, the moduli kA and kB differ only slightly from k0, to

the extent of the smallness of h. It is easy to show that these

differences are determined by expression

kA;B � k06h

	 2k0 Sþ sn S; k0ð Þdn S;k0ð Þ½ �
2E am S;k0ð Þ; k0½ � � S dn2 S;k0ð Þ � sn S;k0ð Þdn S; k0ð Þ

;

(22)

the substitution of which into formula (16) gives the slope of

the magnetization curve in small fields, and describes the

horizontal plateau on this dependence.

FIG. 6. Dependence of FM film magnetization on the external field, given

J0/J ¼ 0.5 and L ¼ 10a.
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Formulas (21) and (22) define the relationships k0(S),

kA(S) and kB(S), and consequently the dependence of magnet-

ization on the field, and the parameters of the system. At small

values of the parameter S, expression (22) is simplified to

k0¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2� S2
p

and kA,B¼ k0(S) 6 h3�2/S2. The correspond-

ing dependence of magnetization looks like this:

M � 12h=S2; S� 1: (23)

In the opposite limit S� 1 (actually, at S > 2)

M ¼ Mm
k2

A

R

cn R; kAð Þsn R; kAð Þ
dn R; kAð Þ � k2

B

P

cn P; kBð Þsn P; kBð Þ
dn P; kBð Þ

 

�E am R; kAð Þ½ �
R

þ E am P; kBð Þ½ �
P

�
; (24)

and after a numerical solution of Eqs. (21) and (22), and sub-

stituting k0,A,B(h, S) into (24), we derive the dependence

M(H) shown in Fig. 6.

4. Inhomogeneous states of isotropic ferromagnetic film
given an uncompensated interface (b 6¼ L/2)

We will examine the influence of an uncompensated

interface, at which the areas with different directions of mag-

netization at the AFM boundary layer, are different sizes,

i.e., (b 6¼ L/2), and the average magnetization of the subsur-

face AFM layer is other than zero (see Fig. 7).

In this case, the solutions for the distribution of magnet-

ization in regions A and B still look like (9), (12), (14), and

(15), but the boundary conditions (5) and (6) are formulated

for x¼ b 6¼ L/2. (The average magnetization of the surface

layer is equal to M0(2b � L)/L, and the effective exchange

constant through the interface is equal to J0/(2b � L).) In

this case, for a positive direction of the external magnetic

field (H > 0) Eq. (8) and solutions (9) are preserved, and the

formula (10) that determines the critical fields, at which the

non-collinear structures occur, is upgraded as follows:

Pþ0 tg Pþ0
2 L� bð Þ

L

� �
¼ Rþ0 th Rþ0

2b

L

� �
; (25)

where Rþ0 ¼ ðL=2aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0 þ jHþ0 jÞ=J

p
and Pþ0 ¼ ðL=2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ0 � jHþ0 jÞ=J
p

.

With an opposite direction of the field (H < 0), formulas

(8) for small deviations wA,B¼ p � uA,B from the state with

uA,B¼p, are transformed as follows:

Ja2w00A þ ðJ0 � jHjÞwA ¼ 0; Ja2w00B þ ðJ0 � jHjÞwB ¼ 0;

(26)

the solutions for which, replacing (9), look like

wA ¼ A cos

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 � jHj

J

r
x

a

 !
; wB ¼ B ch

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J0 þ jHj

J

r
x� L

a

 !
:

(27)

In this case, formula (25) also changes:

P�0 tg P�0
2b

L

� �
¼ R�0 th R�0

2 L� bð Þ
L

� �
; (28)

where R�0 ¼ ðL=2aÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJ0 þ jH�0 jÞ=J

p
and P�0 ¼ ðL=2aÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðJ0 � jH�0 jÞ=J
p

. The dependences H6
0 ¼H6

0 (J0) at fixed pa-

rameters J, L, and b, are shown in Fig. 9 in the form of H6
0

curves. Their asymptotes for large values of exchange inter-

action through the interface look like: Hþ0 � J0 � J[pa/2(L
� b)]2 at (J0/J)[(L � b)/a]2 � 1 and H�0 ��J0 þ J(pa/2b)2

at (J0/J)(b/a)2 � 1. The asymptotes at small values of the

exchange looks like: H6
0 � J0(1 � 2b/L). The derived

dependences are shown in Fig. 9 as the H6
0 (J0) line.

As is the case with b¼L/2, when the discreetness of the

FM layer in the system is taken into account, a collinear struc-

ture can occur, manifesting in the form of a “horizontal

plateau” on the M(H) curve. In this phase, within the A region,

the angle of magnetization rotation is equal to u¼ 0, and in B
regions it is u¼p. However, for b 6¼ L/2, the total FM mag-

netization in the horizontal plateau region is nonzero: the den-

sity of the magnetic moment is equal to M¼M0(2b � L)/L.
For small deviations from this state, the solutions still look

like (12), with boundary conditions at point x¼ b 6¼ L/2. In

this case, formula (13) for the dependences of the critical

fields on the J0 parameter is upgraded, and looks like

R6
� th R6

�
2b

L

� �
P6
� th P6

�
2 L� bð Þ

L

� �

¼ L

2a
R6
� th R6

�
2b

L

� �
þ P6

� th P6
�

2 L� bð Þ
L

� � !
; (29)

and the corresponding graphs are showing in Fig. 9 as the

H6
� (J0) line. The shape of the magnetization curves is essen-

tially determined by the expressions for the parameters of

the interface: L, b, and J0. The restructuring of field depend-

ences can be assessed using the asymptotes of the critical

fields at large values of exchange interaction through the

interface (J0 � J). These asymptotes look like: Hþ0 � J0 �
J[pa/2(L � b)]2, Hþ* � J0–Ja/(L � b), H�* � �J0 þ Ja/b,
H�0 � �J0 þ J(pa/2b)2. These expressions imply the exis-

tence of three different types of critical field relationships.

They are shown in Figs. 9(a)–9(c), and they correspond to

fields a, b, and c in Fig. 8.

In Fig. 9, lines a, b, c, d, and, e stand for values of the J0

parameter, at which the field dependences of FM magnetization

are markedly different in character. They are shown in Fig. 10.

5. Inhomogeneous states of anisotropic ferromagnetic film

Above, we have neglected the influence of the weak ani-

sotropy in the easy plane, on the field dependence of the FM
FIG. 7. Profile of the exchange interaction through the FM/AFM border, in

the case of an uncompensated interface.
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film. However, taking it into account is essential, since it

determines the hysteresis dependences of magnetization. In

the case of an ideal interface, this influence was examined

by is in Refs. 7 and 8. The magnetic anisotropy is not

included in boundary conditions (5) and (6), but only in Eqs.

(3) and (4).

We will return to the initial Eqs. (3) and (4), taking into

account the last terms thereof, and we will find the critical

values of the magnetic field, at which the bifurcation of the

solutions into collinear and anti-collinear homogeneous

states occurs. The knowledge of these critical fields provides

for the possibility of giving a quality description of how the

field dependences are transformed with the inclusion of ani-

sotropy. The boundary of the collinear state stability H¼Hþ0
with u1¼u2¼ 0 is determined by the linearized Eqs. (3)

and (4) in close proximity to this state, and leads to Eq. (8),

in which the magnetic field varies by the value b: H! H þ
b. In this case, solutions (9) for uA and uB, expressions (10)

(for the compensated interface), and (25) (for the uncompen-

sated interface), all retain their form with the substitution of

H! H þ b. Consequently, there occurs a shift in the critical

field Hþ0 ! Hþ0 � b. The boundary of the collinear state sta-

bility H¼H�0 with u1¼u2¼ p, is determined by Eq. (31),

in which jHj ! jHj þ b, solutions (27), and expression (28),

all retain their form after this substitution. Thus, the critical

field changes as follows: H�0 ! H�0 þ b.

For the anti-collinear structure with u1¼ 0, u2¼ p, the

existence boundaries are determined by Eq. (11), in which

the parameter J0 is substituted by the value J0 þ b.

Respectively, such a substitution must be done in solution

(12) and expressions (13), for the compensated interface,

and (29) for the uncompensated interface. Therefore, for a

fixed value of the field H*, the corresponding critical value

of the exchange through the interface is J0 ! J0 � b.

Consequently, in Figs. 4 and 9, the dependences Hþ0 (J0) and

H�0 (J0) shift to lower fields, by b, and dependences Hþ� (J0)

and H�� (J0) to lower values of J0 by the same amount, b.

We will first examine the instance of the compensated

interface with b¼ L/2. We will limit ourselves to the long-

wave approximation with boundary conditions (5), which

give the expressions (10) with the indicated substitution of the

field value. At such boundary conditions, the anti-collinear

structure is absent, and regions of collinear distribution of

magnetization ("" and ##) in the parameter plane are divided

by a canted phase region. In this case, the graph in Fig. 4(a) is

updated by using the following method (see Fig. 11).

In Fig. 11, the thick lines H�0 indicate the boundaries of

the region in which collinear phases H0 � b and �H0 þ b
exist. Thin boundary lines of the shaded hysteresis regions

6 ~H correspond to states in which dM/dH¼ 0. These bounda-

ries cannot be found from the solutions of the linearized solu-

tion, and it is necessary to examine the initial nonlinear

FIG. 8. Regions of existence for the solutions of different types of depend-

ences, on the degree of interface roughness (expressions for parameters L
and b).

FIG. 9. Regions of collinear ("" and ##), anti-collinear ("#), and canted

(shaded) structures and hystereses (shaded) at L/2 < b < L � p2a/4 (a), p2a/

4, L � p2a/4 < b < L (b), L/2 < b < L, p2a/4 (c). The insets show the de-

pendence J ¼ J(H) for boundaries of different structures at a fixed value of

the exchange interaction through the interface.
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equations, which is fairly difficult. Therefore below, this prob-

lem is examined numerically within the framework of a dis-

crete approach. However, it can be said that the width of the

hysteresis regions has the order of magnitude of the magnetic

anisotropy, b. In Fig. 11 lines a, b,c,d, and e, denote the values

of the parameter J0, at which the field dependences of FM

magnetization are different. They are shown in Fig. 12.

The critical value of the exchange interaction through the

interface J�0 , at which the “split” of the hysteresis loops into

two separate loops occurs, corresponding to line b in Fig. 11,

is determined by the condition H0(J�0) � b¼�H0(J�0) þ b.

In this case, the expression (10) reduces to the following

equation for J�0:

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J�0 � b

p
tg

L

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J�0 � b

J

r !
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J�0 þ b

p
tg

L

2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
J�0 þ b

J

r !
:

(30)

Its solution is easy to find within the limits of the weak

and strong roughness of the interface. At fixed parameters J
and b of the FM film, within the limit of weak roughness L/a
�

ffiffiffiffiffiffiffiffi
J=b

p
, we have J�0 � b, and at a strong roughness of the

boundary L/a �
ffiffiffiffiffiffiffiffi
J=b

p
, the critical value of the exchange

through the interface is equal to J�0 � (a/L)
ffiffiffiffiffiffiffiffiffiffi
12Jb
p

.

The case of the uncompensated boundary of the FM/

AFM partition is more difficult to examine. Therefore, we

will limit ourselves to a qualitative assessment of this sys-

tem, and will use more accurate discrete boundary conditions

(6) at points x¼ b 6¼ L/2. In this case, the linearized Eqs. (3)

and (4), and linearized boundary conditions (6) give, in addi-

tion to the boundary field values Hþ0 and H�0, additional

“fiducial” points Hþ* and H�*, allowing us to restore the

qualitative form of the dependences of magnetization on the

external field at different values of parameters J0, L, and b.

At large values for the parameter J0,the asymptotes of the

critical field values look like

Hþ0 ¼ J0� J½pa=2ðL�bÞ�2�b; H�0 ¼�J0þJðpa=2bÞ2þb;

Hþ� ¼ J0� J½a=ðL�bÞ��b; H�� ¼�J0þ J½a=b�þb:

We can see from these formulas, that at different degrees

of roughness, the interface boundary regions

L=2 < b < L� p2a=4; p2a=4; L� p2a=4 < b < L;
L=2 < b < L; p2a=4

FIG. 10. Dependences of FM magnetization on the field, at different values of the parameter of the exchange interaction through the interface, corresponding

to lines a,b,c,d, and e in Fig. 9.

FIG. 11. Regions of collinear ("" and ##), and canted structures, and also

regions of hysteresis (shaded).

Low Temp. Phys. 40 (11), November 2014 A. S. Kovalev and M. L. Pankratova 997



with different M(H) dependences, remain the same in the ab-

sence of anisotropy. Since in the absence of anisotropy for

field values H ¼ H6
0 , the derivative dH/dM¼1,whereas for

H ¼ H6
� the derivative is zero, then when magnetic anisot-

ropy is taken into account, the hysteresis loops occur only in

proximity to the critical values H ¼ H6
0 . Taking into account

the above-mentioned shifts in the dependence lines of the

critical fields due to the J0 parameter, we get the graphs pic-

tured in Fig. 12. In these diagrams, dark shaded areas are the

hysteresis regions, and the light shading represents regions

of anti-collinear FM structure.

Field hysteresis dependences of magnetization, having a

sufficiently different character and corresponding to the val-

ues of exchange interaction through the interface, are

marked in Fig. 13 by lines a,b,c,d, and f, shown in Fig. 14.

Therefore, the field dependences of magnetization

obtained within the framework of the simple proposed mod-

els, are shown in Figs. 5, 10, 12, and 14, and describe the di-

versity of experimentally-observed field dependences of

layered ferro/antiferromagnetic systems.

6. The effect of discreetness of the stepped FM/AFM border,
on the field dependence of the system

The above-examined ferro/antiferromagnet system, with

periodically arranged atomic steps along the interface, can

also be examined within the framework of a discrete

model.5,7,8 In our previous studies, it is demonstrated that

the hysteresis loops occurring in such systems, may take a

form that is qualitatively similar to the results of a contin-

uum model,7,12 in addition, magnetization curves may have

properties that are absent in the continuum model.7

Equations for the arrangement of magnetization in regions A
and B, corresponding to Eqs. (3) and (4), will look like

ðH þ J0Þ sin un þ J sin ðun � unþ1Þ
þJ sin ðun � un�1Þ þ b sin un cos un ¼ 0 ðAÞ

; (31)

ðH � J0Þ sin un þ J sin ðun � unþ1Þ
þJ sin ðun � un�1Þ þ b sin un cos un ¼ 0 ðBÞ

: (32)

The structure of the interface, as before, is assumed to

be periodic, and the atomic cell of the period with N nodes

can contain one region A and B each, as well as several such

regions of different sizes. This system, in addition to canted

solutions, allows for the existence of collinear uA
n ¼uB

n ¼ 0

and uA
n ¼uB

n ¼p, and anti-collinear uA
n ¼ 0, uB

n ¼p
configurations.

As is the case with the continuum model, first we will

find the critical values of the field, at which the collinear and

anti-collinear structures lose stability, in the case of an iso-

tropic ferromagnetic film with b¼ 0, coming into contact

with an AFM, with atomic step defects along the interface.

Thus

Hþ0 ¼ �2J þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ J0

2
p

; H�0 ¼ 2J �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4J2 þ J0

2
p

:

Exact analytical expressions for the dependence of mag-

netization on the external magnetic field, in a discrete model,

are easy to find in the absence of magnetic anisotropy in the

easy plane, for system size N¼ 2, when regions A and B con-

tain only one atom each, and the structure of the boundary

AFM layer looks like … "#"#"#. This simplest model of the

period structure, corresponds to the ideal compensated

FIG. 12. Dependences of FM magnetization on the field, at different values of the parameter of the exchange interaction through the interface, corresponding

to lines a,b,c,d, and e in Fig. 11.

FIG. 13. Regions of collinear ("" and ##), anti-collinear ("#) (light shading), canted structures and hystereses (dark shading), at L/2 < b < L � p2a/4 (a),

p2a/4, L � p2a/4 < b < L (b), L/2 < b < L, p2a/4 (c).
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boundary between the FM and AFM, with checkerboard

ordering of the magnetic moments. In this case, the magnet-

ization curves M(H) were derived numerically, using a relax-

ation algorithm, and the energy minimum was found from

the numerical solution of the system of differential equations

@ui/@t¼ @E/@ui.
8 In addition, the dependences H6

0 (J0) and

H6
� (J0) shown in Fig. 15, bear a qualitative resemblance as

the dependences derived earlier within the framework of the

continuum model (see Fig. 4(a)).

The dependences of the magnetization on the external

magnetic field in this case, are shown in Fig. 16(a). Here, the

FIG. 14. Dependences of FM magnetization on the field, at different values of the parameter of the exchange interaction through the interface, corresponding

to lines a,b,c,d, e, and f in Fig. 13.

FIG. 15. Regions of collinear ("" and ##), and canted structures.

FIG. 16. Dependence of the magnetization, M/M0 on the external magnetic

field H/J for a system of periodic steps (a) and steps with double periodicity

(b) at the FM/AFM border. The values of the system parameters are shown

in the figure.
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shift of the magnetization curve is absent, and the curve is

symmetrical relative to H¼ 0, but two hysteresis loops are

observed, divided by a horizontal plateau with M¼ 0. These

magnetization dependences were experimentally observed,

for example, in Refs. 15 and 16. The shifted hysteresis loops,

accompanied by a shift in the horizontal plateau with M 6¼ 0,

occur in systems with atomic steps of double periodicity at

the FM/AFM border, when the size of domains A and B is

different (see Figs. 7 and 11 for continuum consideration).

The numerical calculation of the corresponding simple dis-

crete system with N¼ 3 similar to …""#""#""#… gives the

dependence M(H), shown in Fig. 16(b), and one that qualita-

tively agrees with the result of the calculation of the contin-

uum model (see Fig. 11).

Above, we examined interfaces with periodic surface

structures, in which the period contained only one A and B
domain. Real atomic step alternating-sign defects occur at

random along the interface. In the first approximation, this

randomness can be modeled by a periodic system of defects

with a more complex period structure. We numerically

examined a system with N¼ 7, with identical magnetic pa-

rameters J,J0, and b, but a different arrangement of defects

(steps) within the cell: …j"""#"##"""#"##j… (a) where the

domains A3B1A1B2 alternate and …j"""#""#"""#""#j… (b)

with domains A3B1A2B1. In cases (a) and (b) the average

value of the exchange interaction through the interface is

identical and equal to hJ0i¼ 1/7. However the different

arrangement of the atomic steps within the period, leads to

changes in the magnetization curves, even though the gen-

eral structure of the field dependence stays the same (see

Figs. 17(a) and 17(b)). Fig. 17(c) shows the field dependence

of magnetization for a system with the same period N¼ 7,

but another value of the average exchange interaction

through the interface: hJ0i¼ 3/7. We see a large exchange

bias and an increase in magnetization, corresponding to the

ledge along the dependence M(H). The figures show that the

curves of magnetization can differ sufficiently, however

there is a general structure to these dependences: the exis-

tence of two (or sometimes three) hysteresis loops, divided

by a canted phase region with a unique dependence M(H).

With a stochastic distribution of surface defects, there must

be an averaging of the obtained dependences, with the pres-

ervation of the main motive, that given certain values of the

system parameters, there is a split of the hysteresis loop, and

the occurrence of sloped regions of magnetization in-

between the division.

7. Conclusion

In this paper, a simple model of a rough interface between

the AFM and FM film, describing the periodic and doubly

periodic stepwise structure of the interface with a long-wave

limit, and a more complex periodic sequence of steps on the

surface, via a discrete approach, the FM film magnetization

field dependences are obtained for different parameters of the

film (exchange interaction and magnetic anisotropy) and the

interface (exchange interaction through the interface and the

period of its step structure). It is demonstrated, that the

obtained analytical and numerical results qualitatively

describe the variety of known experimental data.
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