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Abstract

The TTC 2018 Social Media Case required answering queries about
social networks, where people write posts, comment on them, and friend
or unfriend each other. NoSQL databases have been popular in the
analysis of large social networks, and the Hawk heterogeneous model
indexer can turn the models in the case to Neo4j NoSQL databases.
This paper presents three solutions that were developed on top of each
other, reducing on each step the amount of work required to update
the results of the query.

1 Introduction

The TTC 2018 Social Media Case focuses on the challenge of keeping query results up to date as the underlying
models change. The specific models are based on data from the 2016 DEBS Grand Challenge, adapted from
the LDBC Social Network Benchmark. The case required answering two model queries, finding the top 3
“controversial” posts in the first one and finding the top 3 “influential” comments in the second one.

The case provided a benchmarking framework, with models of various sizes in XMI format. For each model
size, there was an initial model instance file and a list of change sequence files. The benchmark required loading
the initial model instance, creating an initial result (“view”), and then for each change sequence file, applying its
changes to update the results. Solutions were evaluated based on correctness and speed.

This paper presents three solutions based on the Hawk heterogeneous model indexing framework, which is
designed to speed up queries on large repositories of interconnected file-based models. Hawk can monitor a set
of storage locations (e.g. local folders, SVN/Git repositories or web addresses) and mirror their models into a
single graph database, which can be queried more efficiently than simply loading the various fragments. More
details about Hawk have been discussed in our prior works [GDBK™17|: this paper will only focus on the key
details needed to understand the solution.

The initial solution is a straightforward use of the existing capabilities in Hawk for XMI-based models. The
second solution uses the explicit deltas between model versions to speed up the updating of the graph. The third
solution uses graph change listeners to speed up the recomputation of the results.

The rest of the paper is organized as follows. Section 2 presents the high-level architecture of Hawk, Section 3
describes the three implemented solutions, Section 4 provides metrics for the various results and Section 5 offers
some conclusions and lines of future work for Hawk that were highlighted by this case study.
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Figure 1: Hawk indexing workflow, by components
2 Hawk

Hawk implements a component-based workflow in order to support multiple modelling technologies, database
backends, and query languages. The architecture is shown on Figure 1:

1. A version control manager or “connector” component detects whether any files were changed in each location.
2. The model resource factory loads the changed files as Hawk model resources.

3. The model resources are given to the model updater, which manipulates the backend so it reflects the latest
state of the model resources. This is done incrementally, as discussed in prior work [BSK15].

4. The backend (Neo4j in our solutions) is manipulated through the Hawk graph database abstraction layer.

5. Users can ask questions through a query engine, by default a dialect of the Epsilon Object Language
(EOL) [KPPO06].

3 Implemented solutions

Three solutions were implemented in sequence, building off from each other: we will discuss their details.

3.1 Naive update and query (NU)

Listing 1: Full query for controversial posts (Q1)

var scored = Post.all. collect (p|Sequence {p.id, p.score (), p.timestamp}).asSequence;
Native(’java. util . Collections’ ). sort (scored, new Native(’org.hawk.ttc2018.queries.Result Comparator’));
return scored.subList(0, scored. size .min(3));

operation Submission score() : Integer {
return self.closure (p|p.comments).flatten. collect (p | 10 + p.likedBy.size ).sum();

}

The first solution was a relatively direct application of Hawk. Hawk was told about the social network and
change sequence metamodels, then told to watch the specific file with the initial model instance (which was reset
to its original contents between runs) and mirror the file into a Neo4j graph.

The queries for controversial posts and influential comments were first developed in their full form as in
Listings 1 and 2. A custom Java-based comparator had to be written (ResultComparator) so EOL would sort
the results as expected by the Social Media case expected (highest scores first, then most recent).

Each full query was then split into two parts: score computations would be registered as derived “score”
attributes of posts and comments (pre-computed and revised incrementally [BSK15|), and rankings would be
regular queries that took advantage of the pre-computed scores. Listing 3 defines the derived Post “score”
attribute, while Listing 4 uses the derived attribute to rank the posts. Influential posts were handled similarly.

Change sequences were interpreted by a separately implemented EOL script, which would update the initial
model instance file in place. Hawk was told to check the initial model instance file for changes and update the
graph database. After this, the query was run again, using the incrementally pre-computed scores.
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Listing 2: Excerpt of full query for influential comments (Q2)

var scored = Comment.all.collect(c | Sequence { c.id, c.score (), c.timestamp }).asSequence;
Native(’java. util . Collections’ ). sort (scored, new Native(’org.hawk.ttc2018.queries.ResultComparator’));
return scored.subList(0, scored. size .min(3));

operation Comment score(): Integer {
/* shared state wvariable declarations */
for (user in self.likedBy) {
if (not indexes.containsKey(user.id)) {
user.strongconnect(self, /x state variables */);

}
}

return components.collect(component | component.size * component.size).sum();

}

—— Tarjan’s strongly connected components algorithm
operation User strongconnect(comment: Comment, ...) {

}

Listing 3: Q1: derived attribute definition

return self.closure (p|p.comments).flatten. collect (p | 10 + p.likedBy.size ).sum();

Hawk needed some minor improvements to solve this problem. A new version control manager was imple-
mented so it could watch a single file instead of a folder, and date indexing was changed to a more machine-
parsable format (ISO 8601). There was an unexpected scalability issue in the default way that EMF loads XMI
files: ID-based intra-model references were heavily slowing down the process, as EMF was repeatedly navigating
the entire model to find a match for the target of each reference. This was solved with a custom EMF resource
factory that enabled intrinsic ID—+EObject maps and that deferred reference resolution until after loading.

3.2 Incremental update (IU)

For very large models, implementing the “update” phase as a reload and rewrite of the model instance file could
be very slow. To minimize disk I/O, a custom model updater component was created (267 lines of Java), which
would notice new change sequence files, load those change sequences, and update the backend directly without
touching the initial model instance file. Hawk was made (in around 130 more lines of Java) to watch the entire
folder with the instance file and the change sequence files, with a file filter that would only see the initial model
instance, and would later allow it to see the change sequence files in the expected order.

Other than that, the approach for querying was the same as in Section 3.1: using derived attributes to
pre-compute scores incrementally, then running the queries leveraging them after each update.

3.3 Incremental update and query (IUQ)

While pre-computing a derived attribute value, Hawk will track which graph nodes are visited, so it will know
which values need to be recomputed when the graph changes. This has some I/O overhead, as it implies creating
special edges and manipulating indexes.

Listing 4: Q1: derived attribute-based query

var scored = Post.all. collect (p | Sequence {p.id, p.score, p.timestamp}).asSequence;
Native(’java. util . Collections’ ). sort (scored, new Native(’org.hawk.ttc2018.queries.ResultComparator’));
return scored.subList(0, scored. size .min(3));
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Figure 2: Average total execution times by stage and model size for the Hawk solutions

As an experiment, it was decided to replace the use of derived attributes with a custom graph change listener
component that would be notified of any changes in the model and invoke the EOL score() operation on any
posts and comments it deemed necessary, revising the top 3 rankings as required. For instance, if a post had
a comment added, its score would need to be revised. People friending and unfriending each other would also
trigger the recomputation of the scores of their comments. This logic was manually designed after careful study
of Q1 and Q2. This approach took around 230 lines of Java.

Generally, updating the rankings would require keeping all the scores in memory and rearranging elements
as their scores went up and down. However, the change sequences included in the case never reduce scores:
comments are never deleted, and people do not unfriend each other. This simplified matters to keeping the top
3, checking if re-scored elements were already in the top 3, or if they should push a previous element out.

4 Results

During the contest, the benchmarking scripts included in the case were run, and some initial results were produced
and presented. However, since then, Hawk has been optimised and several bugs in our original solutions have
been fixed (e.g. Q2 had an incorrect algorithm for detecting strong components). This section presents our latest
results at the date of this writing.

The scripts have been run again with the 1.2.0.20180628 interim version of Hawk (commit with SHA1 799722
on its GitHub repository!), using Oracle Java 1.8.0 102 in an Ubuntu 18.04.1 LTS installation with the Linux
4.15.0-33-generic kernel. The machine is a Lenovo Thinkpad X1 Carbon laptop with an i7-6600U CPU and 16GiB

lhttps://github.com/mondo-project/mondo-hawk, pending move to Eclipse.org.



of RAM, using a solid-state disk. The scripts checked that all initial and updated results were the expected ones.
Figure 2 collects the various plots that were produced by the benchmarking scripts included in the case. These
show the average total times for the three key stages in the benchmark: loading the model, running the initial
query, and updating the results through 20 change sequences. 5 runs were used initially for NU/IU/IUQ, and
later 2 more runs of NU were executed to replace outliers produced by unexpected delays in some queries?.

The obtained results are in line with our expectations, given that Hawk uses disk-backed data structures for
its querying, unlike other solutions that are entirely in-memory. As for the various stages:

e Loading takes about the same time for NU and IU (31.8s/32.1s on average for size 64 and Q2, respectively):
they perform almost the same work. IU also indexes a few types by “id”, but this is not that significant.
IUQ does not use derived attributes, so it is faster here (11.65s on average for size 64 and Q2).

e While NU and IU run the same initial query, IU is slightly faster than NU (0.57s/0.38s on average for size
64 and Q2, respectively). Indexed attributes seem to have a side effect in Neo4j that speeds up the query.
In fact, we tried 5 runs of Q1 on size 1 while postponing indexed attribute registration to the first update,
and IU became as fast as NU in the Initial stage. Reverting the change made IU go faster again.

1UQ is the slowest for this first query, since it does not take advantage of any pre-computed scores. Still,
the performance hit (3.3s on average for size 64 and Q2) is less than the hit NU/IU take on the Loading
stage. It is a choice between speeding up later queries and being able to start querying as soon as possible.

e For the Updates stage, NU is slower than IU, which is slower than IUQ. For size 64 and Q2, NU spends
74.1s in total updating results over the 20 change sequences, while IU takes 26.6s and IUQ only takes 11.7s.

There is a spike in size 16 for Q2. This change sequence happens to trigger the recomputation of many
scores in our graph change listener. This is confirmed by a similar but smaller spike happening also in IUQ.

5 Conclusions

Three solutions were created using Hawk for the TTC 2018 Social Media case. The naive update (NU) solution
provides new results by applying the changes to the original file, updating the Hawk graph and the pre-computed
scores, and running the query again. The incremental update (IU) solution applies the changes to the graph
directly, without touching the original file, saving I/O, and its use of indexed attributes has beneficial side
effects. The incremental update and query (IUQ) solution does not use derived attributes, but instead takes
advantage of our manual impact analysis of Q1 and Q2 and listens to changes in the graph that should trigger
the recomputation of the score of a post or comment.

As we expected, ITUQ was faster than IU, which was faster than NU. However, it was interesting to see just
how much lighter could “incrementality-by-static-analysis” (IUQ graph change listeners) be over “incrementality-
by-tracking” (IU derived attributes). The difference in speed when updating the graph directly from deltas
was remarkable: it may be worth extending Hawk so it can understand EMF change notifications and react
accordingly. Finally, we are also considering the idea of simplifying the use of queries with derived attributes,
by packaging them together into “analysis bundles” of sorts. This could have been useful for NU and TUQ.
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