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Next-generation sequencing methylation
profiling of subjects with obesity identifies
novel gene changes
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Abstract

Background: Obesity is a metabolic disease caused by environmental and genetic factors. However, the epigenetic
mechanisms of obesity are incompletely understood. The aim of our study was to investigate the role of skeletal
muscle DNA methylation in combination with transcriptomic changes in obesity.

Results: Muscle biopsies were obtained basally from lean (n = 12; BMI = 23.4 ± 0.7 kg/m2) and obese (n = 10;
BMI = 32.9 ± 0.7 kg/m2) participants in combination with euglycemic-hyperinsulinemic clamps to assess insulin
sensitivity. We performed reduced representation bisulfite sequencing (RRBS) next-generation methylation and
microarray analyses on DNA and RNA isolated from vastus lateralis muscle biopsies. There were 13,130
differentially methylated cytosines (DMC; uncorrected P < 0.05) that were altered in the promoter and
untranslated (5' and 3'UTR) regions in the obese versus lean analysis. Microarray analysis revealed 99 probes
that were significantly (corrected P < 0.05) altered. Of these, 12 genes (encompassing 22 methylation sites)
demonstrated a negative relationship between gene expression and DNA methylation. Specifically, sorbin and
SH3 domain containing 3 (SORBS3) which codes for the adapter protein vinexin was significantly decreased in
gene expression (fold change −1.9) and had nine DMCs that were significantly increased in methylation in
obesity (methylation differences ranged from 5.0 to 24.4 %). Moreover, differentially methylated region (DMR)
analysis identified a region in the 5'UTR (Chr.8:22,423,530–22,423,569) of SORBS3 that was increased in
methylation by 11.2 % in the obese group. The negative relationship observed between DNA methylation
and gene expression for SORBS3 was validated by a site-specific sequencing approach, pyrosequencing, and
qRT-PCR. Additionally, we performed transcription factor binding analysis and identified a number of
transcription factors whose binding to the differentially methylated sites or region may contribute to obesity.

Conclusions: These results demonstrate that obesity alters the epigenome through DNA methylation and
highlights novel transcriptomic changes in SORBS3 in skeletal muscle.
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Background
Obesity is a condition that affects about one third of the
US adult population [1]. It is a major disease associated
with other co-morbidities, including type 2 diabetes,
metabolic syndrome, and cardiovascular disease [2]. An
underlying feature of obesity is insulin resistance. Insulin
resistance is a reduced biological response of insulin on
peripheral tissues including skeletal muscle, liver, and fat
[3]. Under normal physiological conditions, skeletal
muscle accounts for approximately 80 % of insulin-
stimulated total body glucose uptake [4]. Previous stud-
ies from our laboratory have investigated the molecular
mechanisms of insulin resistance in skeletal muscle. We
have previously shown that insulin resistance in skeletal
muscle is in part due to mitochondrial dysfunction [5].
In experimentally induced insulin resistance, we have
shown a low grade inflammatory response, with increases
in extracellular matrix (ECM) turnover [6]. Furthermore,
by using a proteomic approach on insulin resistant muscle,
we identified alterations in the abundance of protein
involved in cytoskeletal structure and assembly [7]. Our
findings, to date, demonstrate a cross talk relationship
between inflammation, extracellular remodeling, cytoskel-
etal interactions, mitochondrial function, and insulin
resistance in human skeletal muscle [8].
The pathogenesis of obesity-associated insulin resist-

ance is due to environmental and genetic factors [9, 10].
However, the role of epigenetic factors, which may pro-
vide a potential link between the genetic and environ-
mental factors observed in obesity, is poorly understood.
Epigenetics can be described as heritable changes in
gene function that occur without a change in nucleotide
sequence [11]. DNA methylation is an epigenetic modifi-
cation and is generally observed as a methyl addition to
the carbon 5 position of cytosines and more commonly
on cytosines preceding guanines, called CpG dinucleo-
tides [12]. DNA methylation patterns are established
during early development and are maintained in differ-
entiated tissue by DNA methyltransferases [13]. Changes
in DNA methylation are a potential mechanism by
which the expression of a gene may be regulated [12].
For example, it is generally accepted that gene expres-
sion is often reduced when DNA methylation is present
at a promoter or untranslated region of a gene [14–16].
There have been a number of studies that have fo-

cused on the epigenetic basis of obesity [17, 18]. How-
ever, the majority of the DNA methylation studies
performed to date have either used a candidate gene ap-
proach or the array based technology that probes 450K
methylation sites simultaneously. Therefore, our study is
unique in that we performed reduced representation
bisulfite sequencing (RBBS), which has the ability to cap-
ture millions of methylation sites in the human genome.
Moreover, we performed transcriptomic analyses, which

allowed us to measure global messenger RNA (mRNA)
expression levels in genes altered in people with obesity.
Furthermore, we combined epigenetic and transcrip-
tomic analyses to identify associations between the data-
sets. Based on our previous findings in skeletal muscle,
we hypothesize that there will be alterations in the
methylation of genes involved in mitochondrial function,
inflammation, and extracellular matrix remodeling.

Methods
Participants
Ten insulin resistant participants with obesity and 12
insulin sensitive participants without obesity were re-
cruited. Insulin sensitivity was assessed by the euglycemic-
hyperinsulinemic clamp [19]. Demographic, medical his-
tory, anthropometric, metabolic, and screening blood tests
were obtained on all participants. Percent body fat was
assessed by body impedance analysis. Normal glucose
tolerance was assessed by a 75-g oral glucose tolerance
test following a 10–12 h overnight fast. No subject was
taking any medication known to affect glucose metabolism.
All subjects gave informed written consent to participate in
the study, which was approved by the Institutional Review
Boards of the Mayo Clinic in Arizona and Arizona State
University.

Study design
Following an overnight fast, participants reported to
the Clinical Studies Infusion Unit at the Mayo Clinic in
Arizona. A 2 h euglycemic-hyperinsulinemic clamp
(80 mU m−2 min−1) was performed [19]. A primed infusion
of 6,6 di-deuterated glucose was begun at −120 min to
determine the basal rate of glucose metabolism. Sixty mi-
nutes after the start of deuterated glucose infusion, a rest-
ing, basal vastus lateralis muscle biopsy was performed
percutaneously, under local anesthesia, as previously de-
scribed [19, 20]. After resting for 1 h, a primed continuous
infusion of insulin was started. The constant infusion of
deuterated glucose was discontinued at time 15 min after
the start of the insulin infusion, and a variable infusion of
20 % dextrose that was enriched with 6,6 di-deuterated
glucose was used to maintain euglycemia and a constant
enrichment of the tracer. Enrichment of plasma glucose
with 6,6 di-deuterated glucose was assayed using GC/MS
in the Center for Clinical and Translational Science
(CCaTS) Metabolomics Core at the Mayo Clinic in Roch-
ester. The rates of glucose appearance and disappearance
were calculated using steady state equations to derive in-
sulin sensitivity levels, termed the M value [21].

Substrate and hormone determinations
Plasma glucose concentration was determined by the
glucose oxidase method on an YSI 2300 STAT plus (YSI
INC., Yellow Springs, OH, USA). Plasma insulin was
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measured by a two-site immunoenzymatic assay per-
formed on the DxI 800 automated immunoassay system
(Beckman Instruments, Chaska, MN, USA). Inter-assay
C.V.s were 6.2 % at 5.3 uU/mL, 6.5 % at 46.1 uU/mL,
and 7.7 % at120.4 uU/mL. A comprehensive metabolic
panel, lipid panel, and hemogram panel were performed
by the Biospecimens Accessioning and Processing (BAP)
Core at the Mayo Clinic in Scottsdale.

Muscle biopsy processing
For genomic DNA analyses, homogenization of the muscle
biopsy (25 mg) was performed in 1× PBS with the Bullet
Blender (Integrated Scientific Solutions, San Diego, CA).
DNA was isolated using QIAamp DNA mini kit, as per
the manufacturer’s instructions (Qiagen, Valencia, CA).
For mRNA analyses, muscle biopsy specimens (50 mg)
were homogenized in TRIzol solution (Invitrogen,
Carlsbad, CA) using a Polytron (Brinkmann Instruments
Westbury, NY). Total RNA was purified with RNeasy
MinElute Cleanup Kit (Qiagen, Chatsworth, CA). DNA
and RNA quality and quantity were determined using gel
electrophoresis and A260/A280 values.

Reduced representation bisulfite sequencing (RRBS)
RRBS was performed at the Mayo Clinic Genotyping
Shared Resource facility as previously described [22].
DNA (250 ng) was digested with Msp1 (New England
Biolabs, Ipswich, MA) and purified using QIAquick
Nucleotide Removal Kit (Qiagen, Valencia, CA). End-
repair A tailing was performed (New England Biolabs,
Ipswich, MA) and TruSeq methylated indexed adaptors
(Illumina, San Diego, CA) were ligated with T4 DNA lig-
ase (New England Biolabs, Ipswich, MA). Size selection
was performed with Agencourt AMPure XP beads
(Beckman Coulter, Indianapolis, IN). Bisulfite conversion
was performed using EZ DNA Methylation Kit (Zymo Re-
search, Irvine, CA) as recommended by the manufacturer
with the exception that an incubation was performed using
55 cycles of 95 °C for 30 s and 50 °C for 15 min. Following
bisulfite treatment, the DNA was purified as directed and
amplified using Pfu Turbo C Hotstart DNA Polymerase
(Agilent Technologies, Santa Clara, CA). Library quantifi-
cation was performed using Qubits dsDNA HS Assay Kit
(Life Technologies, Grand Island, NY) and the Bioanalyzer
DNA 1000 Kit (Agilent Technologies Santa Clara, CA).
The final libraries from RRBS were placed onto seven lanes
of a paired-end flow cell at concentrations of 7–8 pM, and
the control sample, PhiX, was placed in the eighth lane to
allow the sequencer to account for the unbalanced repre-
sentation of cytosine bases. The flow cell was then loaded
into the Illumina cBot for generation of cluster densities.
After cluster generation, the flow cells were sequenced as
51 × 2 paired end reads using Illumina HiSeq 2000 with
TruSeq SBS sequencing kit version 3. Data was collected

using HiSeq data collection version 1.5.15.1 software, and
the bases were called using Illumina’s RTA version 1.13.48.

RRBS data analysis
RRBS data was analyzed using a streamlined analysis and
annotation pipeline for reduced representation bisulfite se-
quencing, SAAP-RRBS [23]. FASTQ were trimmed to re-
move adaptor sequences, and any reads with less than 15
base pair (bp) were discarded. Trimmed Fastqs were then
aligned against the reference genome Hg19 using BSMAP
[24], which converts the reference genome to align the
bisulfite-treated reads. Samtools was used to get mpileup,
and PERL scripts as described elsewhere [23] were used to
determine CpG methylation and non-CpG methylation to
estimate the bisulfite conversion efficiency [25]. Methyla-
tion ratios were reported along with custom CpG annota-
tion. The methylation dataset supporting the conclusions
of this article are available in the Gene Expression Omni
bus repository, GSE73304 (http://www.ncbi.nlm.nih.gov/
geo/). Additionally, bigwig files were used to create a
custom track on the UCSC genome browser (https://geno
e.ucsc.edu/cgi-bin/hgTracks?hgS_doOtherUser=submit&h
gS_otherUserName=rlcolett&hgS_otherUserSessionName
=testnoinitial).

Differentially methylated cytosines (DMC) analysis
To determine differences in methylation between groups,
the aligned data was imported into the free open source R
package, methylSig. A minimum of five reads and the re-
covery of the site in at least eight participants from each
group were required for the inclusion of a cytosine in
downstream analyses. The mean methylation differences
(%) between the groups with and without obesity were
adjusted by a beta binomial approach to account for bio-
logical variation among the groups being compared [26].
A comparison of the DNA methylation between groupings
at each site was based on a likelihood ratio test (nom-
inal Pvalue), and a Benjamini-Hochberg multiple testing
correction was applied. Benjamini-Hochberg correction
yielded no significant sites; therefore, for subsequent ana-
lyses, an uncorrected P < 0.05 was used. The RefSeq Genes
and CpG Island tracks from the University of California,
Santa Cruz (UCSC) Genome Browser were imported for
additional region annotations. When applying regional
annotation to each DMC, priority was given to annotating
the site as a promoter or untranslated region if that site
was in another transcript of the gene or in a different gene.

Differentially methylated region (DMR) analysis
DMRs were identified using the open source R package
dispersion shrinkage for sequencing data (DSS) [27].
The BSmooth algorithm was applied to the entire data
set to determine the level of methylation in a region for
each sample and to account for biological variation. The
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following criteria were used for the analysis: each region
contained two CpGs supported with a read coverage of
5×, the recovery of the site in at least eight participants
from each group, and significance of P < 0.05 from the
DMC analysis. DMRs were created based on a t-statistic
cutoff of 2.5 and a sliding-window of 500 bp. The signifi-
cance of a DMR was weighted by the Area Stat, which is
the sum of t-statistic values in each DMR. Additional
region annotations were included by importing RefSeq
Genes and CpG Island tracks from the UCSC Genome
Browser into the R package, Genomic Ranges. When
applying regional annotation to each region, priority was
given to annotating the region as a promoter or untrans-
lated region if the sites were in another transcript of the
gene or in a different gene.

Microarray processing
Total RNA (100 ng) was amplified and labeled using
the Low Input Quick Amp Labeling Kit, One-Color, as
per manufacturer’s instructions (Agilent Technologies,
Santa Clara, CA). After labeling, complimentary RNA
(cRNA) was fragmented using Agilent Gene Expression
Hybridization Kit (Agilent Technologies, Santa Clara,
CA), as per instructions. The fragmented cRNA was hy-
bridized to the SurePrint G3 Human Gene Expression
8x60K v2 Microarray (Agilent Technologies, Santa Clara,
CA) using a SureHyb DNA Microarray Hybridization
Chamber at 65 °C, for 17 h in a rotating incubator. After

hybridization, slides were washed in Gene Expression
wash buffers 1, 2, and acetonitrile as per instructions, and
then scanned with an Agilent DNA microarray scanner
(Agilent Technologies, Santa Clara, CA).

Microarray analysis
Feature Extraction Software version 12.0.1.1 (Agilent
Technologies, Santa Clara, CA) was used for the array
image analysis. The microarray dataset supporting the con-
clusions of this article are available in the Gene Expression
Omnibus repository, GSE73078 (http://www.ncbi.nlm.nih.
gov/geo/). The data files were imported into the free open
source R package, Linear Models for Microarray Data
(Limma) version 3.22.0 (http://www.bioconductor.org/
packages/release/bioc/html/limma.html). Data were
background corrected using normal exponent, quan-
tile normalized, and an unweighted linear model was
performed to generate fold changes between groups.
The fold changes were log transformed. Expression values
obtained were evaluated by a moderated t-statistic (nom-
inal P value) and adjusted using the Benjamini-Hochberg
multiple testing correction.

SORBS3 DMC site specific validation
DNA methylation was assessed using a site specific
sodium bisulfite sequencing method. DNA (500 ng) was
treated with sodium bisulfite using the EZ DNA
Methylation-Lightening kit (Zymo Research, Irvine, CA).

Table 1 Characteristics of study participants (n = 22) classified by body mass index

Characteristics Lean Obese P value P value (age, sex, age × sex)

Sex 7F/5M 4F/6M NSa –

Age (years) 28.8 ± 2.0 40.3 ± 2.5 <0.01 –

Body mass index (kg/m2) 23.4 ± 0.7 32.9 ± 0.7 <0.001 <0.001

Body fat (%)b 25.2 ± 1.4 35.2 ± 2.2 <0.001 <0.001

Waist circumference (cm) 82.0 ± 3.0 104.4 ± 2.5 <0.001 <0.01

Systolic blood pressure (mmHg) 119.8 ± 2.4 123.9 ± 3.1 NS NS

Diastolic blood pressure (mmHg) 72.6 ± 1.5 78.2 ± 1.3 <0.05 NS

Triglycerides (mg/dL) 96.5 ± 13.3 114.7 ± 15.2 NS NS

Cholesterol (mg/dL) 176.2 ± 9.2 186.1 ± 11.4 NS NS

High-density lipoproteins (mg/dL) 57.1 ± 5.2 50.2 ± 3.4 NS NS

Low-density lipoproteins (mg/dL) 99.9 ± 7.3 113.0 ± 10.3 NS NS

Hemoglobin A1c (%) 5.2 ± 0.04 5.4 ± 0.1 NS NS

Fasting plasma glucose (mg/dL) 86.7 ± 1.8 89.5 ± 1.7 NS NS

2 h plasma glucose (mg/dL) 101.9 ± 5.2 111.2 ± 7.0 NS NS

Fasting plasma insulin (μU/mL) 6.3 ± 1.1 11.1 ± 0.9 <0.01 NS

2 h plasma insulin (μU/mL) 43.2 ± 5.3 93.3 ± 16.4 <0.01 ≤0.05

M value (mg/kg• min) 7.3 ± 0.6 4.5 ± 0.7 <0.01 <0.01

Data presented as mean ± SEM, based on independent sample t tests and two-tailed P values. Adjustment for age, sex, and the interaction of age × sex
using ANCOVA
aCalculated by chi-square test
bBody fat determined by biometric impedance analysis (BIA)
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Chromosome 8 (Chr.8) positions 22,422,428–22,422,868
proximal to the transcription start site for SORBS3 was
amplified by PCR using the following primers: forward
5′-AGAGATATAATTTGGTAG AAATTGGTAGGATT
G-3′, reverse 5′AATTACCCGCAAATCCTTATCCAA
C-3′ (342 bp). The cycling conditions were 95 °C for
10 min followed by 40 cycles of 95 °C for 30 s, 56 °C for
40 s, and 72 °C for 1 min with touchdown annealing
temperatures for the first 10 cycles, and a final extension
at 72 °C for 7 min. The products were run on a 1 %
agarose gel with ethidium bromide and ultraviolet detec-
tion. The 342 bp product bands were purified using
Zymoclean Gel DNA Recovery Kit, per the manufac-
turer’s instructions (Zymo Research, Irvine, CA). Sanger
Sequencing was performed on the bisulfite-converted
forward DNA strands at Arizona State University’s Se-
quencing Core. The proportion of methylation on each
CpG site was detected using the Epigenetic Sequencing
Methylation analysis software (ESME).

SORBS3 DMR pyrosequencing validation
To confirm DNA methylation of the chromosome 8
region 22,423,530–22,423,569, pyrosequencing PCR and
sequencing primers were designed using the PyroMark
Assay design Software 2.0 (Qiagen, Valencia, CA). The
forward and reverse primers were biotinylated at the 5′

end. Bisulfite conversion of 500-ng genomic DNA was
performed using the EZ DNA Methylation-Lightening
kit according to the manufacturer’s instructions (Zymo
Research, Irvine, CA). To assess the forward strand,
bisulfite-converted DNA was amplified by PCR using the
following primers: forward 5′-AGTAGGGGGAGGAAGG
AA-3′ and biotinylated reverse 5′- ACTCTCCACAAAAT
ATCCTACTTC-3′. To assess the reverse strand, bisulfite-
converted DNA was amplified by PCR using the following
primers: biotinylated forward 5′-AGTAGGGGGAG-
GAAGGAA-3 and reverse 5′-ACCCCCATCCTCTACT
AAAAATTAACTACC-3′. Pyrosequencing was performed
using the PyroMark Q96 MD system and the Gold Q96 kit
with sequencing primers: 5′-GTGTTAGGGAGGGAT-3′
(forward strand assessment) and 5′-CTACTAAAAAT-
TAACTACCCTC-3′ (reverse strand assessment) according
to the manufacturer’s instructions (Qiagen, Valencia, CA).
Data analysis was performed using the PyroMark CpG SW
1.0 software (Qiagen, Valencia, CA).

SORBS3 qRT-PCR validation
Skeletal muscle gene expression for SORBS3 was
detected using quantitative real-time PCR on the ABI
PRISM 7900HT sequence detection system (Life Tech-
nologies, Carlsbad, CA). TaqMan Universal Fast PCR
master mix reagents and the Assay-On-Demand gene
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expression primer pair and probes (Life Technologies,
Carlsbad, CA) were added to 20 ng cDNA, which was
synthesized using the ABI High Capacity cDNA Reverse
Transcription Kit, as per manufacturer’s instructions.
The quantity of SORBS3 (Hs00195059_m1) in each sam-
ple was normalized to 18S (Hs99999901_s1) using the
comparative (2-ΔΔCT) method [28].

SORBS3 predicted transcription factor binding analysis
Transcription factor binding sites analysis was per-
formed using PROMO version 3.0.2 [29]. The sequences
were analyzed with a 5 % maximum matrix dissimilarity
rate using TRANSFAC version 8.3 database. Analysis of
the nine SORBS3 DMCs was assessed as three separate
sequences: Chr.8: 22,409,277–22,409,317; Chr.8: 22,422,
628–22,423,112; and Chr.8: 22,423,280–22,423,363. Fur-
thermore, the SORBS3 DMR sequence Chr.8:22,423
,530–22,423,569 was assessed for transcription factor
binding sites.

Statistical analysis
Participant characteristic data was presented as a mean
± SEM, and comparisons between the groups with and
without obesity were based on an independent sample t
test. Non-normally distributed data for the 2 h insulin
were log10 transformed; however, untransformed data
are presented for ease of interpretation. Analysis of co-
variance (ANCOVA) was used to adjust for the effects of
age, sex, and the interaction between age and sex. PASW
version 22.0 was used for the characteristic data analyses
with the significance set at P ≤ 0.05. Pearson correlation

was used for all correlations presented. See above for
the statistical analysis of the methylation and micro-
array data.

Results
Participants
Table 1 shows the phenotypic characteristics for partici-
pants with and without obesity. There was a significant
age difference between groups whereby, individuals with
obesity were older. By design, the lean participants had
significantly lower body mass index (BMI), body fat, and
waist circumference. The participants with obesity were
significantly more insulin resistant compared to the
lean group, determined by the M value. These differ-
ences remained significant after adjusting for potential
covariates including age, sex, and the interaction be-
tween age and sex.

Global methylation analysis in human skeletal muscle
Prior to the quality control of the sequence data,
5,421,504 sites were captured using the RRBS technol-
ogy. For our RRBS analysis, we set a threshold of greater
than 80 % call rate and a minimum of 5× coverage for
the sequencing data. Of the 22 participants sequencing
data, 20 (11 lean and 9 obese) met this threshold criteria
and were used for subsequent downstream analyses. For
the sequencing data, we only included methylation sites
that were captured in at least eight participants in each
group. In total, we captured 2,586,085 methylation sites
using these criteria. The distribution of the methylation
sites was defined by genic regions (Fig. 1a) and CpG

2,586,085 sites captured 
using RRBS

710,981 sites in promoter, 
5’UTR, 3’UTR regions

13,130 DMCs (P<0.05) 
in promoter, 5’UTR, 

3’UTR regions

99 gene expression 
probes (false discovery 

rate P<0.05)

12 gene expression 
probes with negative 

relationship to 22 DMCs

Fig. 2 Diagram of the analysis for differentially methylated cytosines (DMCs) localized in a promoter, 5' UTR, or 3'UTR region overlapping with
transcriptomic changes
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island features (Fig. 1b). We demonstrated that the ma-
jority of the methylation sites were in intronic regions
(Fig. 1a). However, the sites in the promoter and 5′ un-
translated regions (UTR) dominantly overlapped with
CpG islands (Fig. 1b).

Differentially methylated cytosine (DMC) analysis in
promoter, 5′UTR, and 3′UTR regions
To investigate the sites that may generate the greatest
changes in mRNA expression based on proximity, we
sought sites in untranslated regions (5′ and 3′UTR) and
assigned our promoter region as 1000 base pairs from
the transcription start site region (0 to −1000 base pairs).
Of the 2,586,085 methylation sites captured, 710,981
sites were located in our defined proximal regions and
13,130 of those sites were significantly altered (nominal
P < 0.05; Additional file 1: Table S1) between our group-
ings. Differentially methylated cytosines (DMCs) between
the groupings were assessed for false discoveries. There
were no sites that met the criteria of a false discovery rate
P < 0.05. As such, we used nominal P value cutoffs, which
have been accepted in other studies [14, 30].

Overlying changes between DNA methylation and gene
expression
Transcriptomic analysis identified 99 probes that were
significantly (false discovery rate P < 0.05) altered in the
group with obesity (Additional file 2: Table S2). We
compared the significant genes identified from our
microarray analysis with the significant DMCs that were
found in the promoter, 5′UTR, and 3′UTR (n = 13,130;
P < 0.05; Fig. 2). We identified 12 genes (encompassing
22 methylation sites) that demonstrated a negative rela-
tionship between gene expression and DNA methylation.
Of these, sorbin and SH3 domain containing 3
(SORBS3) had increased methylation (9 DMCs) and was
associated with a decrease in gene expression. The 11
remaining genes had an increase in gene expression that
correlated with a decrease in methylation (Table 2).

Differentially methylated region (DMR) analysis in the
promoter, 5′UTR, and 3′UTR regions
To further interrogate changes in methylation, a
regional analysis was performed and identified 700
DMRs. Of these, 170 were located in our defined prox-
imal regions (Additional file 3: Table S3). The 170

Table 2 Differentially methylated cytosines (DMCs; P < 0.05) that had a negative relationship with gene expression (FDR P < 0.05)

DMC Gene expression

Chr. position Gene Methyl difference (%) Log fold change Fold change Gene region CpG island region

chr11.64670967 ATG2A −6.8 0.62 1.5 Promoter InterCpG

chrX.107334934 ATG4A −11.1 0.59 1.5 Promoter Cpg island

chrX.107334999 ATG4A −5.3 0.59 1.5 Promoter Cpg island

chr21.45749947 C21orf2 −6.3 0.43 1.3 3'UTR North shelf

chrX.30671522 GK −31.4 0.42 1.3 5'UTR Cpg island

chrX.30671506 GK −14.1 0.42 1.3 5'UTR Cpg island

chr19.5153271 KDM4B −20.7 0.39 1.3 3'UTR South shore

chr9.34381797 KIAA1161 −13.1 0.60 1.5 Promoter South shore

chr4.6641531 MRFAP1 −11.2 0.70 1.6 Promoter North shore

chr1.145609911 POLR3C −19.7 0.47 1.4 Promoter North shore

chrX.20286470 RPS6KA3 −15.3 0.46 1.4 Promoter Cpg island

chr9.135231749 SETX −16.2 0.55 1.5 Promoter South shore

chr8.22409297 SORBS3 3.9 −0.91 −1.9 5'UTR Cpg island

chr8.22422648a SORBS3 5.0 −0.91 −1.9 Promoter Cpg island

chr8.22423300 SORBS3 10.6 −0.91 −1.9 5'UTR Cpg island

chr8.22423343 SORBS3 16.4 −0.91 −1.9 5'UTR Cpg island

chr8.22422936 SORBS3 16.6 −0.91 −1.9 Promoter Cpg island

chr8.22422959 SORBS3 17.1 −0.91 −1.9 Promoter Cpg island

chr8.22422927 SORBS3 17.7 −0.91 −1.9 Promoter Cpg island

chr8.22423332 SORBS3 20.3 −0.91 −1.9 5'UTR Cpg island

chr8.22423092 SORBS3 24.4 −0.91 −1.9 Promoter Cpg island

chr6.56972737 ZNF451 −4.7 0.55 1.5 3'UTR InterCpG
aThis position indicates the site validated by site specific methylation sequencing
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DMRs were compared with the 99 probes identified
from the microarray analysis. We identified one DMR
(Chr.8:22,423,530–22,423,569) in the 5′UTR of SORBS3
that demonstrated a negative relationship with gene
expression. The DMR was increased by 11.2 % in the
obese group.

SORBS3 validation
SORBS3 has two transcript variants (variant 1: NM_005775
and variant 2: NM_001018003) as shown in Fig. 3. We used
a site-specific sequencing approach to validate a promoter
site of variant 2 (Chr.8:22,422,648). The RRBS data had
shown a 5 % increase in methylation in the obese compared
to the lean participants (Additional file 1: Table S1). Valid-
ation using site specific sequencing demonstrated an
increase in methylation in the participants with obesity
(lean 0.078 ± 0.01 versus obese 0.14 ± 0.03 methylation

ratio; P = 0.03; Fig. 4). Pyrosequencing of the SORBS3
DMR (Chr.8:22,423,530–22,423,569) in the 5′UTR of vari-
ant 2 resulted in an overall increase in methylation, as
shown in Fig. 5. Three sites on the forward strand and three
on the reverse strand were significantly different (P < 0.05)
with obesity using the pyrosequencing analysis, which fur-
ther validated the RRBS findings (Fig. 5). The qRT-PCR
confirmed the microarray results (Table 2) demonstrating a
decrease in gene expression of SORBS3 in the participants
with obesity (fold change −1.4; P = 0.01).

Predicted transcription factor binding analysis
To further understand the regulatory role of SORBS3 methy-
lation on transcription, we analyzed the sequences contain-
ing DMCs and the DMR using the program PROMO [29].
Transcription factor binding motifs were identified for the
following DMC positions: Chr.8:22,409,297- Sp1 (Fig. 6a);
Chr.8:22,422,648-p53, Chr.8:22,422,648-PAX5, and Chr.8:22,

Exon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Exon 1 2 3 4 5 6 7 8 9 10

Variant 1

Variant 2
Start codon

Start codon

SoHo SH3 1 SH3 2 SH3 3

Binds to vinculin Binds to SOS

Fig. 3 Sorbin and SH3 domain containing 3 (SORBS3) consists of two transcript variants that code for two protein isoforms, vinexin alpha and
beta, respectively. Variant 2 (vinexin beta) exons 3–10 are consistent with variant 1 exons 14–21, containing all three SH3 domains. Variant 2
differs by lacking the coding regions for the N-terminal end SoHo domain
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Fig. 4 DNA methylation in the promoter of SORBS3 was validated with the site specific sequencing approach
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422,936-AP-2alpha (Fig. 6b); Chr.8:22,423,300-RXR-alpha,
Chr.8:22,423,332-GCF, and 22423343-GCF (Fig. 6c). The
transcription factor binding motifs identified within the
DMR for SORBS3 on Chr.8:22,423,530–22,423,569 were
ENKTF-1, STAT4, E2F-1, and GCF (Fig. 6d).

Correlation analysis
To identify whether the methylation and transcriptomic
findings for SORBS3 were driven by body mass index
(BMI) or age, Pearson correlation analysis was per-
formed. Of the nine DMCs, five were significantly corre-
lated with BMI and one was significantly correlated with
age (Table 3). When comparing the normalized gene ex-
pression data with BMI there was a significant correl-
ation (R2 = 0.288; P = 0.022), whereas with age, there was
no correlation (R2 = 0.034; P = 0.464).

Discussion
The present study was undertaken to decipher the
epigenetic basis of obesity and its associated insulin re-
sistance. DNA methylation in the promoter and untrans-
lated regions (5′ and 3′UTR) have been noted to have
regulatory effects on transcription [14–16]. This regula-
tion can be mediated by a single CpG or by a group of
CpGs in close proximity to each other [31]. Therefore,
in our study, we performed a comprehensive analysis of
the sequencing data using both a DMC and DMR
approach. To identify obesity-related alterations in gene
expression that may be associated with DNA methyla-
tion, our study also utilized a transcriptomic approach.
Merging across our omic datasets identified sorbin and
SH3 domain containing 3 (SORBS3) as a novel obesity
gene. SORBS3 is decreased in expression in obesity, and
this in part may be due to increased methylation. More-
over, we detected a number of transcription factors

whose binding to the differentially methylated sites or
regions may contribute to these findings [32].
SORBS3 has two transcript variants that code for the

adapter protein vinexin α and β, respectively. Both
isoforms have a common C-terminal sequence containing
three SRC homology 3 (SH3) domains but differ at the N-
terminal where vinexin α contains a sorbin homology
(SoHo) domain. Vinexin α and β play roles in cell signaling
and the cytoskeletal structure [33]. The first two SH3 do-
mains (SH3 1 and SH3 2) are important binding partners
for vinculin, which is an actin-binding cytoskeletal protein
localized at cell-extracellular matrix (ECM) and cell-cell
adhesion sites [34]. It has been shown elsewhere that the
upregulation of vinexin α promotes actin stress fiber for-
mation and vinexin β enhanced cell spreading [34]. Our
obesity associated decrease in gene expression may suggest
a reduced plasticity of cytoskeleton organization. The third
SH3 domain (SH3 3) is an important binding partner for
the son of sevenless (SOS), a guanine nucleotide exchange
factor for Ras and Rac [33]. Vinexin’s interaction with SOS
has been implicated to regulate growth-factor-induced
signal transduction [33]. For example, a knockdown model
of vinexin has been shown to play a key role in the cell’s
migratory response during wound healing [35]. The reduc-
tion in SORBS3 gene expression seen in our group with
obesity may lead to a delayed response in growth-factor
signaling.
Additional studies have evaluated vinexin under dis-

eased states. A study using immunohistochemical ana-
lyses of vinexin in Otsuka Long Evans Tokushima Fatty
(OLETF) rats with hyperinsulinemia and hyperglycemia
demonstrated a disorganized pancreatic islet structure
[36]. Although abundance of vinexin was not discussed
in that study, these findings infer that an obese envir-
onment can disrupt typical localization of vinexin
within a cell. We have previously shown alterations in
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Fig. 5 DNA methylation detected using pyrosequencing in the differentially methylated region (DMR) of sorbin and SH3 domain containing 3
(SORBS3) on both the forward and reverse (−) strands
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cytoskeletal proteins in insulin resistant states [7].
Therefore, we hypothesize that a change in expression
of SORBS3 in obesity could be contributing to altered
skeletal muscle structure. However, further investiga-
tion would be required. Chen et al. found that left
ventricles of failing human hearts had a decrease in
mRNA for vinexin β, and the disruption of vinexin
expression in C57BL/6 mice exaggerated pathological
cardiac remodeling and fibrosis [37]. Obesity can lead
to cardiovascular changes such as left-ventricular
hypertrophy [38, 39]. Although our study found re-
duced expression of SORBS3 in the vastus lateralis of
individuals with obesity, it is tempting to speculate
that there may be a similar remodeling and fibrotic
affect due to vinexin β.

The findings from our previous studies had led to a pro-
posed model of a relationship between inflammation and
insulin resistance in skeletal muscle [8]. In this model,
chronic inflammation from obesity may induce changes to
the extracellular matrix that are reminiscent of fibrosis and
alter mechanosignal transduction mediated by cytoskeletal
elements [8]. The changes in obesity with SORBS3 expres-
sion coding for vinexin may be connected to our proposed
model by regulating the plasticity of cytoskeletal elements.
Interestingly, if vinexin is a key component to this model,
we have identified possible regulation at the level of
DNA by differentially methylated sites and regions.
Moreover, the mechanism for this regulation could be
due to the interaction of these methylation sites with
the transcription factors identified in our analyses.

Exon 1

Transcript 1

Exon 2

Start codon

AGACCCAAACTCCGCCCGCCCCGCC

Chr.8

Sp1

Sp1

22,409,285 22,409,309

A

Transcript 1

Transcript 2

Exon 10 Exon 11

Exon 1

AGCCCGGCCCGTG

GGAGCCTCGGCG

PAX5
p53

AP-2 Alpha

22,422,644 22,422,656

22,422,929 22,422,940

Chr.8

B

Transcript 1

Transcript 2

Exon 1

Exon 12

Exon 2

Start codon

GTTTCCCCGCGCAGAGCTCGCCGGCGCCCC

GCTGGGTCCCGGGG
RXR-alpha

GCF GCF

Chr.8
22,423,291 22,423,304

22,423,325 22,423,354

C

D

F5’-CGCAGCGCCACTCTCTGCGGGGCGCCGTTCCCGCGCCACCG-3’

R5’-CGGTGGCGCGGGAACGGCGCCCCGCAGAGAGTGGCGCTGCG-3’

ENKTF-1

STAT4

E2F-1

GCF

E2F-1

Transcript 2

Exon 1 Exon 2

Start codon

Chr.8:22,423,529 22,423,569

Chr.8:22,423,569 22,423,529

STAT4

Fig. 6 Transcription factor binding analysis. a Differentially methylated cytosine (DMC) at chromosome 8 position 22,409,297 is in the 5'
untranslated region of sorbin and SH3 domain containing 3 (SORBS3) variant 1. This DMC is within two binding motifs for the transcription factor
specificity protein 1 (Sp1). b DMCs at chromosome 8 positions 22,422,648 and 22,422,936 are in the promoter region of SORBS3 variant 2. The
DMC position 22,422,648 is within a two binding motifs for the transcription factors paired box 5 (PAX5) and tumor protein p53 (p53). The DMC
position 22,422,936 is within a binding motif for the transcription factor activating enhancer-binding protein 2-alpha (AP-2 Alpha). c DMCs at
chromosome 8 positions 22,423,300, 22,423,332, and 22,423,343 are in the 5' untranslated region of SORBS3 variant 2. The DMC position
22,423,300 is within the binding motif for the transcription factor retinoid X receptor, alpha (RXR-alpha). The DMC positions 22,423,332 and
22,423,343 are both within binding motifs for the transcription factor GC binding factor (GCF). d The SORBS3 differentially methylated region
(DMR) is located at chromosome 8 position 22,423,529–22,423,569 is in the 5' untranslated region of variant 2. On the forward strand, position
22,423,554 is within a binding motif for signal transducer and activator of transcription 4 (STAT4) and positon 22,423,560 is within the binding
motif of enkephalin transcription factor 1 (ENKTF-1), E2F transcription factor 1 (E2F-1), and GC binding factor (GCF). On the reverse strand, position
22,423,555 is within the binding motif of E2F-1 and STAT4
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Conclusions
To our knowledge, this was the first study to examine
obesity-related differential DNA methylation in skeletal
muscle using RRBS. The design of our epigenomic study
not only allowed us to test our specific hypotheses but
also generated a novel methylation and transcriptional
finding for further investigation. Furthermore our RRBS
data can serve as a reference methylome for human skel-
etal muscle tissue. Despite these strengths, we acknowl-
edged potential limitations that should be considered.
There is a difference in age between our groupings that
could be a confounding factor in the results presented.
We did attempt to reduce this concern by running cor-
relation analysis of age with SORBS3 gene expression
and each associated methylation site. Future age-
matched studies could elucidate any findings that may
have been influenced by this variable. In addition, the
potential for false discoveries may be at higher risk since
our methylation data remained uncorrected. However,
our chances of detecting true biological effects may be
increased by the use both DMC and DMR analyses.
Overall, our study identified possible epigenetic influ-

ence on differential gene expression in SORBS3 under
obese conditions. We identified potential transcriptional
regulators; however, follow-up studies of their protein
interactions with DNA methylation are necessary to re-
fine the mechanism. Furthermore, the previously men-
tioned functional studies of vinexin under diseased
states have been conducted in rodent models and should
be further assessed in humans.

Additional files

Additional file 1: Table S1. The 13,130 differentially methylated
cytosines (DMCs; P < 0.05) that were located within a promoter or
untranslated regions (3' and 5'). (XLSX 2880 kb)

Additional file 2: Table S2. The probes (n = 99) remaining from the
microarray data that met the false discovery rate (FDR) correction criteria
of P < 0.05. (XLSX 68 kb)

Additional file 3: Table S3. The 170 differentially methylated regions
(DMRs; P < 0.05) that were located within a promoter or untranslated
regions (3' and 5'). (XLSX 35580 kb)
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