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2Universitat de València, Valencia, Spain

Correspondence should be addressed to Alicia Cordero; acordero@mat.upv.es

Received 18 July 2016; Accepted 19 December 2016; Published 22 January 2017

Academic Editor: Sergio Gómez
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For solving nonlinear systems of big size, such as those obtained by applying finite differences for approximating the solution of
diffusion problem and heat conduction equations, three-step iterative methods with eighth-order local convergence are presented.
The computational efficiency of the new methods is compared with those of some known ones, obtaining good conclusions, due
to the particular structure of the iterative expression of the proposed methods. Numerical comparisons are made with the same
existing methods, on standard nonlinear systems and a nonlinear one-dimensional heat conduction equation by transforming it
in a nonlinear system by using finite differences. From these numerical examples, we confirm the theoretical results and show the
performance of the presented schemes.

1. Introduction

The design of fixed point iterative methods for solving
equations and systems of nonlinear equations is an important
and challenging task in the field of numerical analysis.
Nonlinearity is ubiquitous in physical phenomena. Fluid
and plasma mechanics, gas dynamics, elasticity, relativity,
chemical reactions, combustion, ecology, biomechanics, eco-
nomics modeling problems, transport theory, and many
other phenomena are all governed inherently by nonlinear
equations. For this reason, an ever increasing proportion
of modern mathematical research is devoted to the analysis
of nonlinear systems and nonlinear phenomena. These and
other more examples allow us to affirm that finding the
solution 𝑥 of a nonlinear system 𝐹(𝑥) = 0 is a classical
and difficult problem with many applications in sciences and
engineering, wherein 𝐹 : 𝐷 ⊂ R𝑛 → R𝑛 is a sufficiently
Fréchet differentiable function in an open convex set 𝐷. In
the last years, many iterative methods have been constructed
for solving nonlinear systems; see, for example, [1–6] and
the references therein. The best known method for finding
a solution 𝑥 ∈ 𝐷 is Newton’s scheme:

𝑥(𝑘+1) = 𝑥(𝑘) − [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) , 𝑘 = 0, 1, 2, . . . , (1)

where 𝐹(𝑥(𝑘)) is the Jacobian matrix of function 𝐹 evaluated
in the 𝑘th iteration.

Based on Newton’s or Newton-like iterations, some high-
order methods for computing a solution of nonlinear system𝐹(𝑥) = 0 have been proposed in the literature. The aim
of these new schemes is to accelerate the convergence or to
improve the computational efficiency. For example, among
other authors, Soleymani et al. in [7] constructed a multistep
class of sixth-order iterative method for solving nonlinear
systems; Hueso et al. in [4] developed sixth-order iterative
methods requiring two evaluations of function 𝐹 and two of
Jacobian 𝐹 per iteration; Sharma and Arora in [6] designed
a sixth-order method which requires three functional and
two Jacobian evaluations per iteration, and Xiao and Yin [8]
developed a three-step iterative scheme of order five. On the
other hand, Wang et al. in [9] constructed a seventh-order
derivative free iterative method by evaluating the first order
divided difference operator [𝑥, 𝑦; 𝐹] three times per iteration.

Specifically, the sixth-order scheme designed by Soley-
mani et al. [7], that we denote by SLB, is a three-step Jarratt-
type method whose iterative expression is

𝑦(𝑘) = 𝑥(𝑘) − 23 [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
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𝑧(𝑘) = 𝑥(𝑘) − 12 [3𝐹 (𝑦(𝑘)) − 𝐹 (𝑥(𝑘))]−1 [3𝐹 (𝑦(𝑘))
+ 𝐹 (𝑥(𝑘))] [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,

𝑥(𝑘+1) = 𝑧(𝑘) − (12 [3𝐹 (𝑦(𝑘)) − 𝐹 (𝑥(𝑘))]−1
⋅ [3𝐹 (𝑦(𝑘)) + 𝐹 (𝑥(𝑘))])2 [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑧(𝑘)) .

(2)

Hueso et al. in [4] developed several iterative schemes
of order six; we use one of them in the numerical section
for comparing it with our proposed schemes on different
test problems. In particular, in [4] the authors present the
following method that we denote by HMT:

𝑦(𝑘) = 𝑥(𝑘) − 23 [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
𝑧(𝑘) = 𝑥(𝑘) − [58𝐼 + 38 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))

2]
⋅ [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,

𝑥(𝑘+1) = 𝑧(𝑘) − [−94𝐼 + 158 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))
+ 118 [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑦(𝑘))] [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑧(𝑘)) ,

(3)

where 𝐼 denotes the identity matrix of size 𝑛 × 𝑛.
On the other hand, Xiao and Yin in [8] described the

following three-step fifth-order scheme that we denote by XY:

𝑦(𝑘) = 𝑥(𝑘) + [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
𝑧(𝑘) = 𝑦(𝑘) − [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑦(𝑘)) ,

𝑥(𝑘+1) = 𝑧(𝑘)
+ ([𝐹 (𝑦(𝑘))]−1 − 2 [𝐹 (𝑥(𝑘))]−1) 𝐹 (𝑧(𝑘)) .

(4)

In order to compare the different methods under the
point of view of the computational cost, Ostrowski in [10]
defined the efficiency index as 𝐼 = 𝑝1/𝑑, where 𝑝 is the
order of convergence and 𝑑 is the number of functional
evaluations per iteration. Let us remark that for evaluating
function 𝐹 we need 𝑛 scalar functional evaluations (the
coordinate functions of 𝐹), whilst for evaluating Jacobian𝐹 it is necessary to evaluate 𝑛2 functions (all the entries
of matrix 𝐹). On the other hand, all the iterative methods
for solving nonlinear systems require one or more matrix
inversion; that is, one or more linear systems must be solved.
So, the number of operations needed for solving a linear
systemplays in this context an important role. For this reason,
the authors introduced in [2] the computational efficiency
index, CI, which combines the efficiency index defined by
Ostrowski and the number of products-quotients required

per iteration. We define this index as CI = 𝑝1/(𝑑+op), where
op is the number of products-quotients per iteration.

We recall that the number of products and quotients
required for solving a linear system by Gaussian elimination
is (1/3)𝑛3 + 𝑛2 − (1/3)𝑛, where 𝑛 is the size of the system. In
addition, for solving 𝑞 linear systems with the same matrix of
coefficients, by using LU decomposition, we need (1/3)𝑛3 +𝑞𝑛2 − (1/3)𝑛 products-quotients. By using this information,
in Section 3, we compare the computational efficiency indices
of the different methods used in this manuscript.

The main objective of this paper is to develop high-order
iterative methods in such a way that they involve as lower
computational cost as possible and they have good stability
properties on big-sized systems. From Newton’s method and
by using variation parameters procedure we present a two-
step iterativemethodof order five.This order can be increased
in three units by adding a new step with the same structure
as the second one. This idea is generalized for obtaining an
iterative method of arbitrary order increasing in three units
the order each time that we add a new step with the same
structure as the previous one. In each new step we only need
a new functional evaluation.

In order to analyze the convergence properties of the
different new schemes that will be introduced in this paper,
we need to recall several concepts and tools, some of them
introduced by the authors in [2].

1.1. Basic Definitions. Let {𝑥(𝑘)}𝑘≥0 be a sequence inR𝑛 which
converges to 𝑥. Then, convergence is called of order 𝑝, 𝑝 ≥ 1,
if there exists𝑀 > 0 (0 < 𝑀 < 1 if 𝑝 = 1) and 𝑘0 such that

𝑥(𝑘+1) − 𝑥 ≤ 𝑀𝑥(𝑘) − 𝑥𝑝 , ∀𝑘 ≥ 𝑘0, (5)

or
𝑒(𝑘+1) ≤ 𝑀𝑒(𝑘)𝑝 , ∀𝑘 ≥ 𝑘0, (6)

where 𝑒(𝑘) = 𝑥(𝑘) − 𝑥.
The following notation was introduced in [2], but we

present it for completeness. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be
sufficiently Fréchet differentiable in 𝐷. The 𝑞th derivative of𝐹 at 𝑢 ∈ R𝑛, 𝑞 ≥ 1, is the 𝑞-linear function 𝐹(𝑞)(𝑢) : R𝑛 ×⋅ ⋅ ⋅ ×R𝑛 → R𝑛 such that 𝐹(𝑞)(𝑢)(V1, . . . , V𝑞) ∈ R𝑛. It is easy to
observe the following:

(1) 𝐹(𝑞)(𝑢)(V1, . . . , V𝑞−1, ⋅) ∈ L(R𝑛).
(2) 𝐹(𝑞)(𝑢)(V𝜎(1), . . . , V𝜎(𝑞)) = 𝐹(𝑞)(𝑢)(V1, . . . , V𝑞), for all

permutation 𝜎 of {1, 2, . . . , 𝑞}.
From the above properties we can use the following

notation:

(a) 𝐹(𝑞)(𝑢)(V1, . . . , V𝑞) = 𝐹(𝑞)(𝑢)V1 . . . V𝑞.
(b) 𝐹(𝑞)(𝑢)V𝑞−1𝐹(𝑝)V𝑝 = 𝐹(𝑞)(𝑢)𝐹(𝑝)(𝑢)V𝑞+𝑝−1.
On the other hand, for 𝜉+ℎ ∈ R𝑛 lying in a neighborhood

of a solution 𝑥 of 𝐹(𝑥) = 0, we can apply Taylor’s expansion
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and, assuming that the Jacobian matrix 𝐹(𝑥) is nonsingular,
we have

𝐹 (𝑥 + ℎ) = 𝐹 (𝑥) [ℎ + 𝑝−1∑
𝑞=2

𝐶𝑞ℎ𝑞] + O (ℎ𝑝) , (7)

where 𝐶𝑞 = (1/𝑞!)[𝐹(𝑥)]−1𝐹(𝑞)(𝑥), 𝑞 ≥ 2. We observe that𝐶𝑞ℎ𝑞 ∈ R𝑛 since 𝐹(𝑞)(𝑥) ∈ L(R𝑛 × ⋅ ⋅ ⋅ × R𝑛,R𝑛) and[𝐹(𝑥)]−1 ∈ L(R𝑛).
In addition, we can express 𝐹 as
𝐹 (𝑥 + ℎ) = 𝐹 (𝑥) [𝐼 + 𝑝−1∑

𝑞=2

𝑞𝐶𝑞ℎ𝑞−1] + O (ℎ𝑝−1) , (8)

where 𝐼 is the identity matrix. Therefore, 𝑞𝐶𝑞ℎ𝑞−1 ∈ L(R𝑛).
From (8), we obtain

[𝐹 (𝑥 + ℎ)]−1
= [𝐼 + 𝑋2ℎ + 𝑋3ℎ2 + 𝑋4ℎ4 + ⋅ ⋅ ⋅] [𝐹 (𝑥)]−1
+ O (ℎ𝑝−1) ,

(9)

where

𝑋2 = −2𝐶2,
𝑋3 = 4𝐶22 − 3𝐶3,

𝑋4 = −8𝐶32 + 6𝐶2𝐶3 + 6𝐶3𝐶2 − 4𝐶4,
...

(10)

The equation

𝑒(𝑘+1) = 𝐿𝑒(𝑘)𝑝 + O (𝑒(𝑘)𝑝+1) , (11)

where 𝐿 is a 𝑝-linear function 𝐿 ∈ L(R𝑛 × ⋅ ⋅ ⋅ × R𝑛,R𝑛),
is called the error equation and 𝑝 is the order of convergence.
Observe that 𝑒(𝑘)𝑝 is (𝑒(𝑘), 𝑒(𝑘), . . . , 𝑒(𝑘)).

We summarize the contents of this paper. In Section 2
we describe new iterative methods for solving nonlinear
systems and show a procedure for constructing schemes with
arbitrary order of convergence. The efficiency index and the
computational efficiency index of our methods and of other
known ones are analyzed in Section 3. Section 4 is devoted to
numerical tests for confirming the theoretical results and to
show the performance of the presented schemes. The exam-
ples used are a nonlinear one-dimensional heat conduction
equation by transforming it in a big-sized nonlinear system
by using finite differences and standard nonlinear systems.
The paper finishes with some conclusions and the references
used.

2. Development and Convergence
of the Method

By adding a new step to Newton’s method, we construct the
following two-step scheme with fifth-order of convergence:

𝑦(𝑘) = 𝑥(𝑘) − [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
𝑥(𝑘+1) = 𝑦(𝑘) − [𝛼1𝐼 + 𝛼2 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))

+ 𝛼3 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))2] [𝐹 (𝑦(𝑘))]−1
⋅ 𝐹 (𝑦(𝑘)) ,

(12)

where 𝛼1, 𝛼2, and 𝛼3 are arbitrary parameters and 𝐼 is the
identity matrix of size 𝑛 × 𝑛.

The following result establishes the convergence of itera-
tive method (12).

Theorem 1. Let𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently differentiable
at each point of an open neighborhood 𝐷 of 𝑥 ∈ R𝑛, that is, a
solution of the system 𝐹(𝑥) = 0, and the initial estimation 𝑥(0)
is close enough to 𝑥. Let us suppose that 𝐹(𝑥) is continuous
and nonsingular in 𝑥. Then, sequence {𝑥(𝑘)}𝑘≥0 obtained from
expression (12) converges to 𝑥 with order 5 if the parameters
take values 𝛼1 = 5/4, 𝛼2 = −1/2, 𝛼3 = 1/4, with the error
equation in this case being

𝑒(𝑘+1) = [12𝐶2𝐶3𝐶2 − 32𝐶3𝐶22] 𝑒(𝑘)5 + O (𝑒(𝑘)6) , (13)

where 𝐶𝑗 = (1/𝑗!)[𝐹(𝑥)]−1𝐹(𝑗)(𝑥), 𝑗 = 2, 3, . . ..
Proof. By using Taylor expansion of 𝐹(𝑥(𝑘)) and 𝐹(𝑥(𝑘))
around 𝑥,

𝐹 (𝑥(𝑘)) = 𝐹 (𝑥)
⋅ [𝑒(𝑘) + 𝐶2𝑒(𝑘)2 + 𝐶3𝑒(𝑘)3 + 𝐶4𝑒(𝑘)4 + 𝐶5𝑒(𝑘)5]
+ O (𝑒(𝑘)6) ,

𝐹 (𝑥(𝑘)) = 𝐹 (𝑥)
⋅ [𝐼 + 2𝐶2𝑒(𝑘) + 3𝐶3𝑒(𝑘)2 + 4𝐶4𝑒(𝑘)3 + 5𝐶5𝑒(𝑘)4]
+ O (𝑒(𝑘)5) .

(14)

From the above expression, we have

[𝐹 (𝑥(𝑘))]−1
= [𝐼 + 𝑋2𝑒(𝑘) + 𝑋3𝑒(𝑘)2 + 𝑋4𝑒(𝑘)3 + 𝑋5𝑒(𝑘)4]
⋅ [𝐹 (𝑥)]−1 + O (𝑒(𝑘)5) ,

(15)



4 Complexity

where

𝑋2 = −2𝐶2,
𝑋3 = 4𝐶22 − 3𝐶3,
𝑋4 = −4𝐶4 + 6𝐶2𝐶3 + 6𝐶3𝐶2 − 8𝐶32,
𝑋5 = −5𝐶5 + 8𝐶2𝐶4 − 12𝐶22𝐶3 + 9𝐶23 + 8𝐶4𝐶2

− 12𝐶2𝐶3𝐶2 + 16𝐶42 − 12𝐶3𝐶22.

(16)

Then,

[𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) = 𝑒(𝑘) − 𝐶2𝑒(𝑘)2 + 2 (𝐶22 − 𝐶3)
⋅ 𝑒(𝑘)3 + (4𝐶2𝐶3 + 3𝐶3𝐶2 − 4𝐶32 − 3𝐶4) 𝑒(𝑘)4
+ (−4𝐶5 + 6𝐶2𝐶4 − 8𝐶22𝐶3 + 6𝐶23 + 4𝐶4𝐶2
− 6𝐶2𝐶3𝐶2 + 8𝐶42 − 6𝐶3𝐶22) 𝑒(𝑘)5 + O (𝑒(𝑘)6) .

(17)

So,

𝑦(𝑘) − 𝑥 = 𝐶2𝑒(𝑘)2 − 2 (𝐶22 − 𝐶3) 𝑒(𝑘)3 − (4𝐶2𝐶3
+ 3𝐶3𝐶2 − 4𝐶32 − 3𝐶4) 𝑒(𝑘)4 − (−4𝐶5 + 6𝐶2𝐶4
− 8𝐶22𝐶3 + 6𝐶23 + 4𝐶4𝐶2 − 6𝐶2𝐶3𝐶2 + 8𝐶42
− 6𝐶3𝐶22) 𝑒(𝑘)5 + O (𝑒(𝑘)6) ,

(𝑦(𝑘) − 𝑥)2 = 𝐶22𝑒(𝑘)4 + 2𝐶2 (𝐶3 − 𝐶22) 𝑒(𝑘)5 + 2 (𝐶3
− 2𝐶22) 𝐶2𝑒(𝑘)5 + O (𝑒(𝑘)6) ,

(𝑦(𝑘) − 𝑥)3 = O (𝑒(𝑘)6) .

(18)

On the other hand,

𝐹 (𝑦(𝑘)) = 𝐹 (𝑥) [(𝑦(𝑘) − 𝑥) + 𝐶2 (𝑦(𝑘) − 𝑥)2]
+ O ((𝑦(𝑘) − 𝑥)3) = 𝐹 (𝑥) [𝐶2𝑒(𝑘)2 + 2 (𝐶3 − 𝐶22)
⋅ 𝑒(𝑘)3 + (3𝐶4 + 5𝐶32 − 3𝐶3𝐶2 − 4𝐶2𝐶3) 𝑒(𝑘)4
+ (4𝐶5 − 6𝐶2𝐶4 + 10𝐶22𝐶3 − 6𝐶23 − 4𝐶4𝐶2
+ 8𝐶2𝐶3𝐶2 − 12𝐶42 + 6𝐶3𝐶22) 𝑒(𝑘)5] + O (𝑒(𝑘)6) ,

𝐹 (𝑦(𝑘)) = 𝐹 (𝑥) [𝐼 + 2𝐶22𝑒(𝑘)2 + 4 (𝐶2𝐶3 − 4𝐶32) 𝑒(𝑘)3
+ (6𝐶2𝐶4 + 8𝐶42 − 6𝐶2𝐶3𝐶2 − 8𝐶22𝐶3 + 3𝐶3𝐶22)
⋅ 𝑒(𝑘)4] + O (𝑒(𝑘)5) .

(19)

In a similar way as before, we obtain

[𝐹 (𝑦(𝑘))]−1
= [𝐼 + 𝑌2𝑒(𝑘) + 𝑌3𝑒(𝑘)2 + 𝑌4𝑒(𝑘)3 + 𝑌5𝑒(𝑘)4] 𝐹 (𝑥)−1
+ O (𝑒(𝑘)5) ,

(20)

where
𝑌2 = 0,
𝑌3 = −2𝐶22,
𝑌4 = 4𝐶32 − 4𝐶2𝐶3,
𝑌5 = −6𝐶2𝐶4 − 4𝐶42 + 6𝐶2𝐶3𝐶2 + 8𝐶22𝐶3 − 3𝐶3𝐶22,

(21)

so

[𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)) = 𝐼 + 2𝐶2𝑒(𝑘) + (3𝐶3 − 2𝐶22)
⋅ 𝑒(𝑘)2 + 4 (𝐶4 − 𝐶2𝐶3) 𝑒(𝑘)3 + (5𝐶5 + 2𝐶22𝐶3
− 2𝐶2𝐶3𝐶2 − 3𝐶3𝐶22 + 4𝐶42 − 6𝐶2𝐶4) 𝑒(𝑘)4
+ O (𝑒(𝑘)5) ,

[[𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))]2 = 𝐼 + 4𝐶2𝑒(𝑘) + 6𝐶3𝑒(𝑘)2
+ (8𝐶4 − 2𝐶2𝐶3 + 6𝐶3𝐶2 − 8𝐶32) 𝑒(𝑘)3 + (10𝐶5
− 10𝐶22𝐶3 − 12𝐶2𝐶3𝐶2 − 12𝐶3𝐶22 + 12𝐶42
− 4𝐶2𝐶4 + 9𝐶23 + 8𝐶4𝐶2) 𝑒(𝑘)4 + O (𝑒(𝑘)5) ,

[𝐹 (𝑦(𝑘))]−1 𝐹 (𝑦(𝑘)) = 𝐶2𝑒(𝑘)2 + 2 (𝐶3 − 𝐶22) 𝑒(𝑘)3
+ (3𝐶4 + 3𝐶32 − 3𝐶3𝐶2 − 4𝐶2𝐶3) 𝑒(𝑘)4 + (4𝐶5
− 6𝐶2𝐶4 − 4𝐶4𝐶2 + 6𝐶22𝐶3 + 4𝐶2𝐶3𝐶2 + 6𝐶3𝐶22
− 6𝐶23 − 4𝐶42) 𝑒(𝑘)5 + O (𝑒(𝑘)6) .

(22)

Therefore, we obtain

𝑥(𝑘+1) = 𝑦(𝑘) − [𝛼1𝐼 + 𝛼2 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))
+ 𝛼3 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))2] [𝐹 (𝑦(𝑘))]−1
⋅ 𝐹 (𝑦(𝑘)) = 𝑥 + (1 − 𝛼1 − 𝛼2 − 𝛼3) 𝐶2𝑒(𝑘)2
+ [2 (−1 + 𝛼1 − 𝛼3) 𝐶22 + 2 (1 − 𝛼1 − 𝛼2 − 𝛼3) 𝐶3]
⋅ 𝑒(𝑘)3 + [4 (−1 + 𝛼1 − 𝛼3) 𝐶2𝐶3
+ 3 (−1 + 𝛼1 − 𝛼3) 𝐶3𝐶2
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+ (4 − 3𝛼1 + 3𝛼2 + 5𝛼3) 𝐶32
+ 3 (1 − 𝛼1 − 𝛼2 − 𝛼3) 𝐶4] 𝑒(𝑘)4
+ [4 (1 − 𝛼1 − 𝛼2 − 𝛼3) 𝐶5
+ 6 (−1 + 𝛼1 − 𝛼3) 𝐶2𝐶4 + 4 (−1 + 𝛼1 − 𝛼3) 𝐶4C2
+ (8 − 6𝛼1 + 6𝛼2 + 10𝛼3) 𝐶22𝐶3
+ (6 − 4𝛼1 + 6𝛼2 + 10𝛼3) 𝐶2𝐶3𝐶2
+ 6 (1 − 𝛼1) 𝐶3𝐶22 + 6 (−1 + 𝛼1 − 𝛼3) 𝐶23
+ (−8 + 4𝛼1 − 6𝛼2) 𝐶42] 𝑒(𝑘)5 + O (𝑒(𝑘)6) .

(23)

If we replace, in the previous expression, the values of
parameters 𝛼1 = 5/4, 𝛼2 = −1/2, and 𝛼3 = 1/4, we obtain
the error equation:

𝑒(𝑘+1) = [12𝐶2𝐶3𝐶2 − 32𝐶3𝐶22] 𝑒(𝑘)5 + O (𝑒(𝑘)6) , (24)

and the proof is finished.

If we add in expression (12) a third step with the same
structure as the second one, we have

𝑦(𝑘) = 𝑥(𝑘) − [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
𝑧(𝑘) = 𝑦(𝑘) − [54𝐼 − 12 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))

+ 14 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))
2] [𝐹 (𝑦(𝑘))]−1

⋅ 𝐹 (𝑦(𝑘)) ,
𝑥(𝑘+1) = 𝑧(𝑘) − [𝛽1𝐼 + 𝛽2 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))

+ 𝛽3 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))2] [𝐹 (𝑦(𝑘))]−1
⋅ 𝐹 (𝑧(𝑘)) .

(25)

It can be proved that method (25) has eighth-order of
convergence if the parameters take the values 𝛽1 = 3/2, 𝛽2 =−1, and 𝛽3 = 1/2 and, for these values of parameters, the
method is denoted as CCGT1. This idea can be generalized
for obtaining an iterative method of arbitrary order of
convergence. With each new step the order of convergence
increases in three units, needing only one new functional
evaluation.

Theorem 2. Let 𝑡(𝑘) = 𝜙(𝑥(𝑘)) be the iterative expression of
a method of order 𝑝 ≥ 5, with asymptotic error constant 𝑀,

where the two first steps are those of (12). By adding a new step
in the form

𝑥(𝑘+1) = 𝑡(𝑘) − [𝛽1𝐼 + 𝛽2 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))
+ 𝛽3 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))2] [𝐹 (𝑦(𝑘))]−1
⋅ 𝐹 (𝑡(𝑘)) ,

(26)

then the order of the resultingmethod is𝑝+3, if𝛽1 = 3/2, 𝛽2 =−1, 𝛽3 = 1/2, with its error equation being

𝑒(𝑘+1) = (𝐶2𝐶3 − 3𝐶3𝐶2)𝑀𝑒(𝑘)𝑝+3 + O (𝑒(𝑘)𝑝+4) , (27)

where 𝐶𝑗 = (1/𝑗!)[𝐹(𝑥)]−1𝐹(𝑗)(𝑥), 𝑗 = 2, 3, . . ..
Proof. Let us suppose that

𝑡(𝑘) − 𝑥 = 𝑀𝑒(𝑘)𝑝 + O (𝑒(𝑘)𝑝+1) , (28)

where𝑀 ̸= 0, 𝑝 ≥ 5.
Then,

𝐹 (𝑡(𝑘))
= 𝐹 (𝑥) [𝑡(𝑘) − 𝑥 + 𝐶2 (𝑡(𝑘) − 𝑥)2]
+ O ((𝑡(𝑘) − 𝑥)3)

= 𝐹 (𝑥)𝑀𝑒(𝑘)𝑝 + O (𝑒(𝑘)𝑝+1) ,
[𝐹 (𝑦(𝑘))]−1 𝐹 (𝑡(𝑘))
= 𝑀𝑒(𝑘)𝑝 − 2𝐶22𝑀𝑒(𝑘)𝑝+2 + 4𝐶32𝑀𝑒(𝑘)𝑝+3
− 4𝐶2𝐶3𝑀𝑒(𝑘)𝑝+3 + O (𝑒(𝑘)𝑝+4) .

(29)

Therefore,

𝑥(𝑘+1) = 𝑥 + [(1 − 𝛽1 − 𝛽2 − 𝛽3)𝑀] 𝑒(𝑘)𝑝
+ [−2 (𝛽2 + 2𝛽3) 𝐶2𝑀] 𝑒(𝑘)𝑝+1
+ [2 (𝛽1 + 2𝛽2 + 𝛽3) 𝐶22𝑀− 3 (𝛽2 + 2𝛽3) 𝐶3𝑀]
⋅ 𝑒(𝑘)𝑝+2 + [−4 (𝛽1 − 3𝛽3) 𝐶32𝑀
+ 2 (2𝛽1 + 4𝛽2 + 3𝛽3) 𝐶2𝐶3𝑀
− 4 (𝛽2 + 2𝛽3) 𝐶4𝑀− 6𝛽3𝐶3𝐶2𝑀] 𝑒(𝑘)𝑝+3
+ O (𝑒(𝑘)𝑝+4)

(30)
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and, if we take 𝛽1 = 3/2, 𝛽2 = −1, 𝛽3 = 1/2, we have order𝑝 + 3. In that case, the error equation is

𝑒(𝑘+1) = (𝐶2𝐶3 − 3𝐶3𝐶2)𝑀𝑒(𝑘)𝑝+3 + O (𝑒(𝑘)𝑝+4) (31)

and the proof is finished.

A small variation in the iterative expression of (12) allows
us to construct another new scheme:

𝑦(𝑘) = 𝑥(𝑘) − [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
𝑥(𝑘+1) = 𝑦(𝑘) − [𝛼1𝐼 + 𝛼2 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))

+ 𝛼3 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))2] [𝐹 (𝑥(𝑘))]−1
⋅ 𝐹 (𝑦(𝑘)) ,

(32)

whose order of convergence is described in the following
result.

Theorem 3. Let 𝐹 : 𝐷 ⊆ R𝑛 → R𝑛 be sufficiently Fréchet
differentiable at each point of an open neighborhood 𝐷 of 𝑥 ∈
R𝑛, that is, a solution of the system 𝐹(𝑥) = 0, and the initial
estimation 𝑥(0) is close enough to 𝑥. Let us suppose that 𝐹(𝑥)
is continuous and nonsingular in 𝑥. Then, sequence {𝑥(𝑘)}𝑘≥0
obtained from expression (32) converges to 𝑥with order 5 if the
parameters take the values 𝛼1 = 1/4, 𝛼2 = 1/2, and 𝛼3 = 1/4.
In this case, the error equation is

𝑒(𝑘+1) = 12 (4𝐶42 − 3𝐶3𝐶22 + 𝐶2𝐶3𝐶2) 𝑒(𝑘)5
+ O (𝑒(𝑘)6) . (33)

In a similar way as before, this structure can be extended
in order to construct an iterative scheme of arbitrary order.

Theorem 4. Let 𝑡(𝑘) = 𝜙(𝑥(𝑘)) be the iterative expression of
a method of order 𝑝 ≥ 5, with asymptotic error constant 𝑀,
where the two first steps are those of (32). By adding a new step
in the form

𝑥(𝑘+1) = 𝑡(𝑘) − [𝛽1𝐼 + 𝛽2 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))
+ 𝛽3 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))2] [𝐹 (𝑥(𝑘))]−1
⋅ 𝐹 (𝑡(𝑘)) ,

(34)

then the order of the resultingmethod is𝑝+3, if𝛽1 = 1/2, 𝛽2 =0, 𝛽3 = 1/2, with the error equation being

𝑒(𝑘+1) = (4𝐶32 + 𝐶2𝐶3 − 3𝐶3𝐶2)𝑀𝑒(𝑘)𝑝+3
+ O (𝑒(𝑘)𝑝+4) . (35)

Table 1: Efficiency index for different schemes.

Method Order Functional evaluations 𝐼
CCGT1 8 2𝑛2 + 3𝑛 81/(2𝑛2+3𝑛)
CCGT2 8 2𝑛2 + 3𝑛 81/(2𝑛2+3𝑛)
SLB 6 2𝑛2 + 2𝑛 61/(2𝑛2+2𝑛)
XY 5 2𝑛2 + 3𝑛 51/(2𝑛2+3𝑛)
HMT 6 2𝑛2 + 2𝑛 61/(2𝑛2+2𝑛)

We will denote by CCGT2 the following three-step
eighth-order iterative method:

𝑦(𝑘) = 𝑥(𝑘) − [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑥(𝑘)) ,
𝑧(𝑘) = 𝑦(𝑘) − [14𝐼 + 12 [𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘))

+ 14 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))
2] [𝐹 (𝑥(𝑘))]−1

⋅ 𝐹 (𝑦(𝑘)) ,
𝑥(𝑘+1) = 𝑧(𝑘) − [12𝐼 + 12 ([𝐹 (𝑦(𝑘))]−1 𝐹 (𝑥(𝑘)))

2]
⋅ [𝐹 (𝑥(𝑘))]−1 𝐹 (𝑧(𝑘)) .

(36)

3. Computational Efficiency

We are going to use two indices for comparing the different
iterative schemes for solving nonlinear systems: the mul-
tidimensional extension of the efficiency index defined by
Ostrowski as 𝐼 = 𝑝1/𝑑 and the computational efficiency
index CI defined in the Introduction as CI = 𝑝1/(𝑑+op),
where 𝑝 is the order of convergence, 𝑑 is the number of
functional evaluations per iteration, and op is the number
of products-quotients per iteration. To compute 𝐹 in any
iterative method we need to calculate 𝑛 scalar functions. The
number of scalar functional evaluations is 𝑛2 for any new
evaluation of derivative 𝐹.

In Table 1, the efficiency indices 𝐼 of methods CCGT1,
CCGT2, SLB, XY, and HMT are presented. The number
of Jacobian evaluations is the same in all these schemes,
but the number of functional evaluations and the order of
convergence are different.

In Figure 1 we show the classical index defined by
Ostrowski for the mentioned methods and systems of sizes
from 2 to 50. We can observe that the index of CCGT1 and
CCGT2 is the same as well as the index of SLB and HMT. For
every size, except 2×2, the best index corresponds to method
CCGT1.

On the other hand, in order to compute an inverse
linear operator we solve a 𝑛 × 𝑛 linear system where we
have to do (1/3)𝑛3 + 𝑛2 − (1/3)𝑛 products-quotients for
obtaining LU decomposition and solving two triangular
linear systems. In addition, we need 𝑛2 products for matrix-
vector multiplication.
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Table 2: Functional evaluations and products-quotients of the methods.

Method Order NFE NLS1 NLS2 𝑀×𝑉 CI
CCGT1 8 2𝑛2 + 3𝑛 1 6 4 81/((2/3)𝑛3+13𝑛2+(7/3)𝑛)
CCGT2 8 2𝑛2 + 3𝑛 3 4 2 81/((2/3)𝑛3+11𝑛2+(7/3)𝑛)
SLB 6 2𝑛2 + 2𝑛 2 3 3 61/((2/3)𝑛3+10𝑛2+(4/3)𝑛)
XY 5 2𝑛2 + 3𝑛 3 1 0 51/((2/3)𝑛3+6𝑛2+(7/3)𝑛)
HMT 6 2𝑛2 + 2𝑛 3 3 4 61/((2/3)𝑛3+12𝑛2+(4/3)𝑛)
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Figure 1: Efficiency index 𝐼 for different sizes of the system.

Taking into account the previous considerations, we
calculate CI ofmethodCCGT1. For each iteration, we need to
evaluate function𝐹 three times and twice Jacobian𝐹, so 2𝑛2+3𝑛 functional evaluations are needed. In addition, we must
solve one linear system with 𝐹(𝑥(𝑘)) as coefficients matrix
(i.e., (1/3)𝑛3 + 𝑛2 − (1/3)𝑛 products-quotients), six linear
systems with 𝐹(𝑦(𝑘)) as coefficients matrix (i.e., (1/3)𝑛3 +6𝑛2 − (1/3)𝑛 products-quotients), and four matrix-vector
products (4𝑛2 products-quotients). Therefore, the value of
index CI for method CCGT1 on a nonlinear system of size𝑛 × 𝑛 is

CICCGT1 = 81/((2/3)𝑛3+13𝑛2+(7/3)𝑛). (37)

In Table 2, we show index CI of schemes CCGT1, CCGT2,
SLB, XY, and HMT. In it, NFE is the number of functional
evaluations, NLS1 denotes the number of linear systems with
the matrix of coefficients 𝐹(𝑥(𝑘)) to be solved, NLS2 is the
number of linear systems with another matrix of coefficients
that are solved, and𝑀 × 𝑉 denotes the number of products
matrix-vector.

Let us observe that, although the classical index is similar
in all these cases, it is not the case of the computational
efficiency index since the number of inverse linear operators
is different for each scheme. In Figure 2 the computational
efficiency index for severalmethods and systems of sizes from

2 to 50 is shown. We can observe that until 𝑛 = 16 the best
index corresponds to method XY; meanwhile, for 𝑛 ≥ 17 the
best index is the one corresponding to CCGT2.

4. Numerical Results

We check the numerical behavior of our method on a
nonlinear one-dimensional heat conduction equation. A
heat transfer problem is said to be one-dimensional if the
temperature in the medium varies in one direction only and
thus heat is transferred in one direction, and the variation
of temperature and thus heat transfer in other directions are
negligible or zero. For example, heat transfer through the
glass of a window can be considered to be one-dimensional
since heat transfer through the glass occurs predominantly in
one direction (the direction normal to the surface of the glass)
and heat transfer in other directions (from one side edge to
the other and from the top edge to the bottom) is negligible.

To describe a heat transfer problem completely, an initial
condition (𝑡 = 0) and two boundary conditions must be
given for each direction of the coordinate system along which
heat transfer is significant. Therefore, we need to specify two
boundary conditions for one-dimensional problems, four
boundary conditions for two-dimensional problems, and
six boundary conditions for three-dimensional problems.
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Different authors have approximated the solution of these
problems bymeans of numerical techniques; see, for example,
[11, 12] and the references therein.

In our study a particular case is used, corresponding to
the following heat conduction equation:

𝑢𝑥𝑥 = 𝑢𝑡 + 𝑢𝑥 − 𝑢2 + 𝑓 (𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 1, 𝑡 ≥ 0, (38)

where𝑓(𝑥, 𝑡) = 𝑒−𝑡(−𝜋 cos (𝜋𝑥)−(𝜋2−2) sin (𝜋𝑥)).The initial
condition is 𝑢(𝑥, 0) = sin (𝜋𝑥) and the boundary conditions
are

𝑢 (0, 𝑡) = 0,
𝑢 (1, 𝑡) = 0. (39)

By applying an implicit method of finite differences we can
transform problem (38) in a family of nonlinear systems,
which provides the approximated solution in a time 𝑡𝑘 from
the approximated solution in 𝑡𝑘−1. We choose the spacial stepℎ = 1/𝑛𝑥 and the temporal step 𝑘 = 𝑇max/𝑛𝑡, where 𝑛𝑥
and 𝑛𝑡 are the number of 𝑥-subintervals and 𝑡-subintervals,
respectively, and 𝑇max is the final instant of our study, so we
have selected a grid of domain [0, 1] × [0, 𝑇max] with points(𝑥𝑖, 𝑡𝑗),

𝑥𝑖 = 0 + 𝑖ℎ, 𝑖 = 0, 1, . . . , 𝑛𝑥,
𝑡𝑗 = 0 + 𝑗𝑘, 𝑗 = 0, 1, . . . , 𝑛𝑡. (40)

We want to estimate the solution of (38) at these point,
by transforming it in many nonlinear systems, as much
as the number of 𝑡𝑗. To do that, we use the following
approximations:

𝑢𝑥 (𝑥, 𝑡) ≈ 𝑢 (𝑥 + ℎ, 𝑡) − 𝑢 (𝑥 − ℎ, 𝑡)2ℎ ,
𝑢𝑡 (𝑥, 𝑡) ≈ 𝑢 (𝑥, 𝑡) − 𝑢 (𝑥, 𝑡 − 𝑘)𝑘 ,
𝑢𝑥𝑥 (𝑥, 𝑡) ≈ 𝑢 (𝑥 + ℎ, 𝑡) − 2𝑢 (𝑥, 𝑡) + 𝑢 (𝑥 − ℎ, 𝑡)ℎ2 .

(41)

Denoting by 𝑢𝑖,𝑗 the estimation of the solution at (𝑥𝑖, 𝑡𝑗)
and by replacing them in (38), we construct the following
nonlinear system:

𝑢𝑖+1,𝑗 − 2𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗ℎ2 = 𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1𝑘 + 𝑢𝑖+1,𝑗 − 𝑢𝑖−1,𝑗2ℎ
− 𝑢2𝑖,𝑗 + 𝑓 (𝑥𝑖, 𝑡𝑗) ,

(42)

for 𝑖 = 1, 2, . . . , 𝑛𝑥 − 1 and 𝑡 = 1, 2, . . . , 𝑛𝑡. Some algebraic
manipulations allow us to transform this system in

(2𝑘 − 𝑘ℎ) 𝑢𝑖+1,𝑗 + (−4𝑘 − 2ℎ2) 𝑢𝑖,𝑗 + (2𝑘 + 𝑘ℎ) 𝑢𝑖−1,𝑗
+ 2𝑘ℎ2𝑢2𝑖,𝑗 = 2𝑘ℎ2𝑓 (𝑥𝑖, 𝑡𝑗) − 2ℎ2𝑢𝑖,𝑗−1, (43)

Table 3: Numerical results for CCGT1 and different values of 𝑇max.

𝑇max 𝑛𝑡 iter Exact error CPU time0.1 10 2 0.0108 0.09210.1 100 1 0.0111 0.35760.3 10 3.6 0.0285 0.14110.3 100 1 0.0254 0.43890.5 10 4.4 0.0285 0.20420.5 100 1 0.0306 0.35330.7 10 4.7 0.0288 0.21030.7 100 1.29 0.0311 0.53651 10 5 0.0257 0.18301 500 1.58 0.0280 0.6246

for 𝑖 = 1, 2, . . . , 𝑛𝑥 − 1 and 𝑗 = 1, 2, . . . , 𝑛𝑡. For a fixed 𝑗, we
have the following nonlinear system of size (𝑛𝑥−1)×(𝑛𝑥−1):
(2𝑘 − 𝑘ℎ) 𝑢2,𝑗 − (4𝑘 + 2ℎ2) 𝑢1,𝑗
+ 2𝑘ℎ2𝑢21,𝑗 = 2𝑘ℎ2𝑓 (𝑥1, 𝑡𝑗) − 2ℎ2𝑢1,𝑗−1,

(2𝑘 − 𝑘ℎ) 𝑢𝑖+1,𝑗 − (4𝑘 + 2ℎ2) 𝑢𝑖,𝑗 + (2𝑘 + 𝑘ℎ) 𝑢𝑖−1,𝑗
+ 2𝑘ℎ2𝑢2𝑖,𝑗 = 2𝑘ℎ2𝑓 (𝑥𝑖, 𝑡𝑗) − 2ℎ2𝑢𝑖,𝑗−1,

𝑖 = 2, 3, . . . , 𝑛𝑥 − 2,
− (4𝑘 + 2ℎ2) 𝑢𝑛𝑥−1,𝑗 + (2𝑘 + 𝑘ℎ) 𝑢𝑛𝑥−2,𝑗
+ 2𝑘ℎ2𝑢2𝑛𝑥−1,𝑗 = 2𝑘ℎ2𝑓 (𝑥𝑛𝑥−1, 𝑡𝑗) − 2ℎ2𝑢𝑛𝑥−1,𝑗−1.

(44)

The unknowns of this system are 𝑢1,𝑗, 𝑢2,𝑗, . . . , 𝑢𝑛𝑥−1,𝑗, that is,
the approximations of the solution in 𝑡𝑗. We observe that for
solving this system we need the solution in 𝑡𝑗−1.

We are going to solve this system for different values of𝑇max, using in each case 𝑛𝑡 = 10 or higher, 𝑛𝑥 = 200, and
methods CCGT1 and CCGT2. As initial guess, we use the
solution at 𝑡𝑗−1. We compare the obtained values with the
exact solution 𝑢(𝑥, 𝑡) = 𝑒−𝑡 sin (𝜋𝑥), in order to analyze the
stability and consistence of the new method.

All computations are performed in the programming
package MATLAB 𝑅2014𝑏 using variable precision arith-
metic with 50 digits of mantissa. For every value of 𝑇max,
we analyze the mean number of iterations (iter) needed to
converge to the solution such that ‖𝐹(𝑥(𝑘+1))‖ < 10−14 is
satisfied, where ‖ ⋅ ‖ denotes the Euclidean norm. Let us
recall that the iterative methods are applied for solving the
nonlinear system that involves each column of the solution
matrix; the mean of the number of iterations needed when
all the columns have been calculated is shown in the tables.
The processor of the machine used is Intel(R) Xeon(R) CPU
E5-2420 v2 @ 2.20GHz, with 64GB of RAM. The results are
presented in Tables 3 and 4, where the good performance
of both methods in terms of exact error and CPU time (in
seconds) is observed, even for 𝑛𝑡 = 10.
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Figure 2: Index CI for different sizes of the system.
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Figure 3: Graphics of the approximated and exact solutions for 𝑡 ∈ [0, 0.1].

In Figure 3(a) we show the approximated solution of the
problem when 𝑇max = 0.1, by taking 𝑛𝑡 = 100 and 𝑛𝑥 = 200
and using method CCGT1. It is a good approximation if we
compare it with the exact solution (Figure 3(b)). In Figure 4
the absolute value of the exact error is presented.

In the rest of the section, the new method CCGT1 is
compared withmethods SLB, HMT, and XY for solving some
academical nonlinear systems. The numerical results are
shown in Tables 5, 6, and 7. All experiments have been carried
out on MATLAB 𝑅2014𝑏 using variable precision arithmetic
with 2000 digits of mantissa. To verify the theoretical order of
convergence 𝑝, we calculate the approximated computational
order of convergence (ACOC) introduced in [13] as

𝑝 ≈ ACOC = ln (𝑥(𝑘+1) − 𝑥(𝑘) / 𝑥(𝑘) − 𝑥(𝑘−1))
ln (𝑥(𝑘) − 𝑥(𝑘−1) / 𝑥(𝑘−1) − 𝑥(𝑘−2)) . (45)

Example 1. The first nonlinear system is defined by (see [9])

𝑥𝑖 − cos(2𝑥𝑖 − 𝑛∑
𝑗=1

𝑥𝑗) = 0, 𝑖 = 1, 2, . . . , 𝑛. (46)

In this test example we use 𝑛 = 4 and the initial esti-
mation𝑥(0) = (0.75, 0.75, 0.75, 0.75)𝑇, with the solution being𝑥 ≈ (0.5149, 0.5149, 0.5149, 0.5149)𝑇. In Table 5 we show the
values of ‖𝑥(𝑘) − 𝑥(𝑘−1)‖ and ‖𝐹(𝑥(𝑘))‖ for 𝑘 = 1, 2, 3 as well as
the value of ACOC.

Example 2. The second nonlinear system is also defined in
[9]:

𝑥2𝑖 𝑥𝑖+1 − 1 = 0, 1 ≥ 𝑖 ≥ 𝑛 − 1,
𝑥2𝑛𝑥1 − 1 = 0. (47)
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Figure 4: Graphic of the exact error for 𝑡 ∈ [0, 0.1].

Table 4: Numerical results for CCGT2 and different values of 𝑇max.

𝑇max 𝑛𝑡 iter Exact error CPU time0.1 10 2 0.0108 0.09550.1 100 1 0.0111 0.35780.3 10 3.6 0.0238 0.16750.3 100 1 0.0254 0.40750.5 10 4.3 0.0285 0.19510.5 100 1 0.0306 0.38080.7 10 4.7 0.0288 0.17900.7 100 1.29 0.0311 0.50921 10 5 0.0257 0.21981 100 1.58 0.0280 0.5280

The numerical results are displayed in Table 6. The initial
estimation is 𝑥(0) = (1.5, 1.5, . . . , 1.5)𝑇 and the size of the
system is 𝑛 = 199, with the solution being 𝑥 = (1, 1, . . . , 1)𝑇.
We show the same information as in the previous example.

Example 3. Finally, the third example is

𝑥2𝑥3 + 𝑥4 (𝑥2 + 𝑥3) = 0,
𝑥1𝑥3 + 𝑥4 (𝑥1 + 𝑥3) = 0,
𝑥1𝑥2 + 𝑥4 (𝑥1 + 𝑥2) = 0,

𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 − 1 = 0.
(48)

The solution of this system is 𝑥 ≈ (0.577350, 0.577350,0.577350, −0.284675)𝑇.The numerical results of this example
by using the initial estimation 𝑥(0) = (1, 1, 1, −1)𝑇 and 𝑥(0) =(1, 1, 1, 0)𝑇 are displayed in Tables 7 and 8, respectively.
For the first initial guess, the results are very bad, and
only method CCGT1 is convergent. For the second one, the
numerical solutions are standard and confirm the theoretical
results.

Table 5: Numerical results for Example 1.

CCGT1 SLB HMT XY‖𝑥(1) − 𝑥(0)‖ 0.4701 0.4701 0.4701 0.4672‖𝑥(2) − 𝑥(1)‖ 1.84𝑒 − 8 1.10𝑒 − 5 1.13𝑒 − 5 2.96𝑒 − 3‖𝑥(3) − 𝑥(2)‖ 1.99𝑒 − 66 6.24𝑒 − 33 7.34𝑒 − 33 6.31𝑒 − 14
ACOC 7.8255 5.8832 5.8837 4.8546‖𝐹(𝑥(1))‖ 5.00𝑒 − 8 2.98𝑒 − 5 3.06𝑒 − 5 8.04𝑒 − 3‖𝐹(𝑥(2))‖ 5.40𝑒 − 66 1.69𝑒 − 32 1.99𝑒 − 32 1.71𝑒 − 13‖𝐹(𝑥(3))‖ 1.01𝑒 − 529 5.67𝑒 − 196 1.52𝑒 − 195 7.61𝑒 − 67

Table 6: Numerical results for Example 2.

CCGT1 SLB HMT XY‖𝑥(1) − 𝑥(0)‖ 7.05 7.03 7.01 6.75‖𝑥(2) − 𝑥(1)‖ 1.46𝑒 − 3 2.79𝑒 − 2 4.61𝑒 − 2 3.06𝑒 − 1‖𝑥(3) − 𝑥(2)‖ 4.18𝑒 − 32 3.76𝑒 − 15 1.06𝑒 − 14 6.16𝑒 − 7
ACOC 7.7499 5.7777 5.7935 4.2401‖𝐹(𝑥(1))‖ 4.39𝑒 − 3 8.39𝑒 − 2 1.39𝑒 − 1 9.38𝑒 − 1‖𝐹(𝑥(2))‖ 1.25𝑒 − 31 1.13𝑒 − 15 3.18𝑒 − 14 1.85𝑒 − 6‖𝐹(𝑥(3))‖ 5.54𝑒 − 260 6.71𝑒 − 99 5.07𝑒 − 90 7.18𝑒 − 35
Table 7: Numerical results for Example 3 and initial guess 𝑥(0) =(1, 1, 1, −1)𝑇.

CCGT1 SLB HMT XY‖𝑥(1) − 𝑥(0)‖ 1.04 — — —‖𝑥(2) − 𝑥(1)‖ 5.12𝑒 − 2 — — —‖𝑥(3) − 𝑥(2)‖ 1.76𝑒 − 9 — — —
ACOC 5.7069 — — —‖𝐹(𝑥(1))‖ 7.59𝑒 − 2 — — —‖𝐹(𝑥(2))‖ 1.16𝑒 − 9 — — —‖𝐹(𝑥(3))‖ 2.03𝑒 − 55 — — —

Table 8: Numerical results for Example 3 and initial guess 𝑥(0) =(1, 1, 1, 0)𝑇.
CCGT1 SLB HMT XY‖𝑥(1) − 𝑥(0)‖ 7.87𝑒 − 1 7.85𝑒 − 1 7.84𝑒 − 1 7.64𝑒 − 1‖𝑥(2) − 𝑥(1)‖ 1.52𝑒 − 4 2.82𝑒 − 3 3.99𝑒 − 3 3.00𝑒 − 2‖𝑥(3) − 𝑥(2)‖ 2.03𝑒 − 45 4.54𝑒 − 19 4.98𝑒 − 20 8.55𝑒 − 9

ACOC 11.008 6.4608 7.3703 4.6578‖𝐹(𝑥(1))‖ 3.24𝑒 − 4 6.18𝑒 − 3 8.73𝑒 − 3 6.86𝑒 − 2‖𝐹(𝑥(2))‖ 4.09𝑒 − 45 9.23𝑒 − 19 1.01𝑒 − 19 1.76𝑒 − 8‖𝐹(𝑥(3))‖ 5.31𝑒 − 463 1.81𝑒 − 117 3.43𝑒 − 143 6.66𝑒 − 44
5. Conclusions

We have designed two three-step iterative methods of order
eight for solving nonlinear systems with a competitive
efficiency index. Moreover, higher order methods can be
constructed by adding new steps with the same structure
involving one new functional evaluation (per step) and
increasing the order of convergence in three units per step.
These methods are specially useful in nonlinear systems with
a big size. Their performance has been checked by means
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of a heat transfer problem showing excellent results and
also has been compared with recent high-order methods on
academical examples.
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