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Static as well as dynamic analyses have been performed on clamped-clamped carbon nanotube (CNT) resonator. The nonlinear
CNT model is investigated with a novel discretization technique: a differential quadrature method (DQM) to discretize the spatial
variables and a finite difference method (FDM) for limit-cycle solutions. Parametric study is performed by varying the electric
load, as well as the initial curvature (due to fabrication). It is found that the pull-in voltage decreases nonlinearly with initial
curvature and linearly with residual stresses. The eigenvalue problem is also solved to obtain the bending natural frequencies of
the system as function of the DC voltage as well as the initial curvature of the CNT. Frequency-response curves near some selected
resonant frequencies are plotted to better understand the nanotubes’ dynamic behavior. Different linear and nonlinear phenomena
are depicted such as dynamic pull-in, hardening, and softening behavior and veering of the odd modes. We have found that even
when exciting the CNT near its first natural frequency, the vibration mode located at the veering process significantly alters the

CNT’s motion and hence may decrease its overall quality factor.

1. Introduction

Since their discovery [1], carbon nanotubes (CNTs) are in
the center of interest of researchers thanks to their revo-
lutionary characteristics such as high Young’s modulus and
low density leading to light structures with high mechanical
performance. In addition to that, promising applications in
several fields like optics, electronics, and resonant sensors are
investigated. Their natural frequencies are found to be very
high compared to other structures, which permit to design
high frequency resonators [2].

Static and dynamic analyses of CNTs rise difficult issues
in solving the highly nonlinear governing equation. In this
case the nonlinearity is both of the geometric type (mid-
plane stretching) and of the loading type (electric load) [3].
Several methods were attempted to solve the problem using
the Galerkin procedure along with shooting techniques [4] or
molecular dynamics simulations [5, 6].

Previous studies have focused on mechanical as well as
electric response of CNTs exploring their interesting char-
acteristics such as Young’s modulus and pull-in properties.
Experimental investigations of the vibration of electrostat-
ically actuated CNTs have been conducted to characterize
their effective Young modulus (Poncharal et al. [7]). On the
other hand, others have found that Van der Waals effect on
static response of CNTs is negligible for gap widths greater
than 3nm [5, 6]. Using the reduced order model (ROM)
with the Galerkin method, Ouakad and Younis [4] have
investigated the effect of geometric parameters and initial
curvature on pull-in and the dynamic response of CNTs.
They are found to hold a hardening behavior in almost all
of the cases until applied voltage is high enough (near pull-
in) to change the dynamic response into softening type.
On the other hand, cantilever beams are found to hold
softening behavior [4]. Natural frequencies variation with
initial curvature has revealed the existence of phenomenon



called modes veering. Ouakad and Younis [4] investigated
the effect of van der Waals forces on the fundamental natural
frequency of CNTs as well and found them significant for
CNTs of very small gap widths.

Using the nonlocal Timoshenko model, the effect of tem-
perature change on mode shapes is investigated [8]. Studying
the dynamic response of an array of nanotubes has revealed
that interaction between tubes effects considerably the mode
shapes and their stability [9]. Nonlinear bifurcations have
been shown to result in a transition from quasi-periodic to
chaotic behavior in dynamic response [10]. Double-walled
carbon nanotubes (DWCNTs) have been analyzed by Fang
et al. [11] determining the effect of different nonlinearities on
their dynamic response and by Hajnayeb and Khaddem [12]
who found that both layers vibrate with the same frequency.
Huang [13] has investigated the effects of adhesion tem-
perature, tube length, and peeling velocity on the dynamic
behavior of a DWCNT on an Au substrate.

Many researchers have fabricated and tested systems
based on CNTs such as torsional electromechanical systems
[14], strain sensors [15], biosensors [16, 17], and pH sensing
system [18]. For example, Cho et al. [19] have designed
a cantilever nanotube which has been tested successfully
using multiscale analysis with comparison to experimental
results. The cantilever nanotube is found to be sensitive to
geometric parameters changes altering the dynamic response
from hardening behavior to softening behavior. Graham et
al. [20] have applied the 2D Fourier transform spectroscopy
to semiconducting SWCNTs determining spectral and time-
domain map of exciton-phonon assisted excitations. Several
studies have focused on the energetic behavior of CNTs.
As examples, Peng et al. [21] have studied experimentally
using TEM the dissipation of energy due to air damping and
contact loss. Greaney and Grossman [22] have used molec-
ular dynamics to simulate energy transfer between nanotubes
and have found that efficient energy transfer is allowed by
sharp resonance effects.

The objective of the paper is to solve both static and
dynamic nonlinear problems using novel discretization tech-
nique: differential quadrature method and finite difference
method. These methods have been applied successfully to
MEMS electrostatic actuators in order to investigate their
nonlinear dynamics [23-25]. The considered model accounts
for geometrical through the midplane stretching and also
takes into account the fully nonlinear form of the electrostatic
force. In this paper, we present the proposed ROM by
applying the DQM. Then, free-vibration problem under the
actuation of DC load is solved in order to predict natural
frequencies and mode shapes of the system. Finally, we
attempt to give a response to dynamic transformations occur-
ring during veering phenomenon by plotting the frequency-
response curves under AC and DC loading around different
excitation frequencies.

2. Problem Formulation and
Reduced-Order Model

2.1. Problem Formulation. A hollow cylindrical Euler-
Bernoulli beam of length I = 3000nm, shell thickness
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h = 0.34nm, radius R = 1nm, d = 500 nm is considered in
this paper to model an electrostatic CNT resonator initially
curved in the direction of the lower electrode [26] (Figure 1).
It is assumed to have Young’s modulus E = 1.2TPa [7]
and a mass density p = 1.3g/cm’ [27]. The mathematical
formulation of the static and dynamic behaviors of the
clamped-clamped CNT in its nondimensional form is given
by [4]
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where the longitudinal coordinates x and time t are nor-
malized with respect to the length I and the time constant
T, respectively. w(x,t) is the nondimensional transverse
deflection toward the substrate, the initial shape function is
wy(x) = (by/d) sin(rx) [28, 29] and
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where A = (R + (h/2))* - (R = (h/2))? is the cross-section
area, I = (m/4)((R + (h/2))* = (R = (h/2))*) is the moment
of inertia, w is the natural frequency, N is the axial force
modeling the residual stress, and Q is the quality factor.

2.2. Reduced-Order Model Using the Differential Quadrature
Method. The differential quadrature method (DQM) is used
to solve the space dependent partial differential equation by
transforming it into ordinary differential equations describ-
ing the motion of the CNT with respect to time at n
preselected grid points x; = (1/2)[1—cos(((i —1)/(n—1))m)].
The derivatives of the deflection with respect to space variable
are expressed as a weighted linear sum of the deflection at all
grid points. Following [23], we discretize the integral terms
using the Newton-Cotes formula at the same grid points.
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FIGURE 1: Schematic of the CNT resonator.

Using the boundary conditions given in (2), we end up with
the following (n — 4) ODEs,

n
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w; = w(x;, t) and the coeflicients C; and A(i;) are given in [23].

3. Static Analysis

3.1. Convergence and Validation. In this section, we solve the
algebraic system obtained by dropping the time dependent
terms in (4). First, we perform a convergence study in which
the static response of the CNT is calculated by varying the
number of grid points n varied from 5 to 15. The results are
compared to those obtained by Ouakad and Younis [29] and
calculated using the Galerkin method. In Figure 2, we show
that the number of grid points required to have converged
results is 11. Hence, in all of the following results, we will be
using at least 11 points in the DQM to assure convergence.

3.2. Effect of Residual Stress. Residual stresses have thermal
origins due to fabrication techniques of the CNT [30]. We
model this effect here by adding an axial force constant along
the length of the CNT. We study here the influence of these
residual stresses on the static response of the CNT for both
compression (N < 0) and tension (N > 0) cases. It is
always assumed to be lower than the first buckling load N, =
(4’ED /2.

In Figure 3 we show that residual stresses have a relatively
small effect on the static response of the CNT. Indeed an
increase of the residual stress induces an increase of the pull-
in voltage for different values of the initial curvature.
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FIGURE 2: Variation of the normalized static deflection with DC
voltage for different numbers of grid points.
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FIGURE 3: Variation of the pull-in voltage with the residual stresses
at different initial curvatures.

3.3. Effect of Initial Curvature. We investigate next the effect
of the initial curvature into the static response of the CNT.
The initial curvature b, is supposed to vary from 100 nm to
200 nm.

The results in Figure 4 are in a good agreement with
results reported in [29]. In Figure 5, we show that pull-in
voltage is lowered when initial curvature is higher. This is due
to the fact that in the initially curved configuration, the beam
is closer to the electrode which means that, at the same level of
voltage, electrostatic force is higher compared to elastic force.
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4. Natural Frequencies and Mode Shapes of
the Curved CNT under DC Voltage

Assuming that superposition principle applies to the CNT
deflection, we split it into static part due to DC voltage and
dynamic part due to AC voltage assumed to be harmonic, that
is, w(x, 1) = w'(x) + u(x, t) = w(x) + p(x)e'"". For the DQM
form, we replace the latter expression by its value at node i;
that is, w;(t) = W} + u(t) = w + ¢;"". Then we use (4)
and drop the damping and forcing AC terms. The electrostatic
force is linearized using the Taylor series to the first order
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around its static solution [25]. Finally, we obtain the following
eigenvalue problem of order (n — 4):
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which can be reduced to the following matrix form:
AD = 0’ O, (6)

where ©@ = (¢p;--- ¢n,2)T. The natural frequencies are the
square roots of the eigenvalues of the matrix A, and the mode
shapes are the corresponding eigenvectors.

4.1. Effect of Initial Curvature on the Natural Frequencies. Ata
given applied DC voltage, we investigate the effect of variation
of initial curvature on natural frequencies described by the
parameter b,. The results are summarized in Figure 6.

We can see clearly that even frequencies are insensitive
to the variation of curvature, whereas the odd frequencies
vary with slack. One can see that odd frequencies do not
intersect, but they diverge in a manner called frequency or
mode veering [29]. A frequency veering occurs when the loci
of two frequencies approach each other when a parameter is
varied and then veer away when being too close (similar to
the repulsive charges process). Adding to that, we can also
clearly see that the odd frequencies intersect the even ones for
certain levels of slack offering many possibilities of internal
resonances and exchange of energy among higher- and lower-
order modes [31].

The same phenomenon of mode veering is observed in
Figure 7. This behavior will be further investigated in the next
section by exploring the dynamic behavior of the CNT before
and after veering.

4.2. Effect of DC Voltage on the Natural Frequencies. For
initial curvature b, = 100nm, we vary the applied DC
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FIGURE 7: Variation of the 9 first natural frequencies with DC voltage
at b, = 100 nm.

voltage and investigate its effect on the natural frequencies.
The results are summarized in Figure 7. It shows that nat-
ural frequencies of the CNT increase as function of DC
voltage exhibiting a hardening-type behavior. This behavior
perseveres until pull-in where the natural frequencies drop
down. Also from the same figure, two consecutive odd natural
frequencies approach each other as the DC voltage is varied
and then diverge; this is known as mode veering.

4.3. CNT Mode Shapes Interchangeability. To further clarify
the veering process with the DC voltage depicted in Figure 7,
we plot the eigenfunctions (mode shapes) of the CNT natural
frequencies for Vi, = 5V, Figure 8. In a frequency veering
process, the eigenfunctions associated with the eigenvalues
on each locus before veering are interchanged during the
veering. For example, in Figure 8, we can clearly see that
mode number 5 is the one that has the shape of the fundamen-
tal clamped-clamped beam mode along with its fifth mode.

Now, and as seen before in Figure 6, the shape of the first
mode is transferred into the different odd modes, from the
higher to the lower modes as the DC voltage is increased till
it is transmitted to the lowest fundamental frequency, which
eventually drops to zero at pull-in, a thing very similar to what
was reported in [29] when varying the CNT slack level.

5. Dynamic Response and Limit-Cycle Solution
of the CNT

In this section, we present the dynamic behavior of the
CNT by generating their frequency-response curves for
different sets of parameters. For this, we have to solve
the dynamic equation (4) obtained by the DQM. For
n grid points and using the boundary conditions and
the symmetry of the problem, we end up with (n —
3)/2 ODEs describing the motion of the system. To seek
limit-cycle solutions, we assume that the periodic orbits
have the same period than the excitation (Q2). The time
is discretized along the assumed period, and the ODEs
obtained by the DQM are discretized in time using the
FDM. In addition, we enforce the condition that the first
and last solutions along the orbit are equal; this will
satisfy the periodicity condition of the limit-cycle solu-
tion.

To construct the limit-cycle solutions and the frequency-
response curves of the CNT, we seek periodic orbits of
the system with period T = 27/Q. In implementing the
FDM, we rescale the time so that the period is unity and
discretize the orbit by (m + 1) points; thus, At = 1/m. To
guarantee periodicity of the orbit, we impose the condition
that the first and last points of the orbit (points 1 and m)
are identical. We end up with the following system of (N —
1)(n — 3) nonlinear algebraic equation, which is solved using
the Newton-Raphson method [25]:
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(8)
where t, = pAt, w;, = w(x;,t,), and wiv’p = wv(x,-,tp) =

u')(x,-,tp).

5.1. Frequency-Response Curves of the CNT. The frequency-
response curves are obtained by plotting the variation of the
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maximum deflection of the CNT at its midpoint as function
of the excitation frequency. This excitation is obtained by a
DC load superimposed to an AC harmonic load around one
of the natural frequencies of the CNT.

In Figures 9 and 10, we plot the frequency responses
of CNT near the 1st and 9th natural frequencies for initial
curvature b, = 100nm and frequency responses of CNT
near st and 11th natural frequencies for initial curvature b, =

200nm. We observe linear-like shape frequency-response
curves in all cases due to low applied voltages (Ve = 0.01V,
Vic = 0.01 V). The results are in agreement with the Galerkin
method results reported in [29].

5.2. Modes’ Veering. We study modes veering phenomenon
by investigating the dynamic behavior of the CNT before and
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after veering. According to Figure 6, the first veering between
the first and third modes occurs at approximately b, = 12 nm,
and the second veering occurs between the third and fifth
modes at approximately b, = 30 nm.

Concerning the first veering between 1st and 3 rd modes,
we excite the CNT near its fundamental frequency and look
at the response simultaneously around the first and third
modes. Two peaks in the Frequency-response curve are
obtained and showed in Figures 9 and 10. What we wanted to
show in Figures 9 and 11is that the linear dynamic response is
significant in the neighborhood of the first natural frequency
(w;) and the frequencies that are located on the veering
straight line, as predicted from Figure 6. Those frequencies
are wy in the case of 100 nm curvature and w;; in the case
of 200 nm curvature. This is actually one consequence of the
mode veering where the system energy is transferred from
one mode to another through the veering process. To further
clarify this point, we will adopt the same previous procedure
for the second veering point (between the third and the
fifth natural frequencies in Figures 11 and 12) while exciting
near the third natural frequency and getting the dynamic
responses around the third and fifth vibration modes. In both
cases after veering, the amplitude peak at the higher mode is
increased compared to that before veering. The results prove
that the dynamic amplitude of the CNT is a sort of exchange
between two consecutive odd modes laying on the veering
line. This will definitely has an effect on the system quality
factor, and we may have a sort of energy exchange among the
respective modes.

6. Conclusions

In this paper, the nonlinear dynamics of a CNT have been
investigated using a novel discretization technique: FDM and
DQM. In the static part, CNT responses to DC electric load

were calculated solving the static equation using DQM. We
have studied the static CNT behavior and how it is affected
by residual stress as well as initial curvature. The natural
frequencies of the CNT have been calculated for different
DC voltages and initial curvatures. This study revealed the
existence of the phenomenon of modes veering as both DC
voltage and initial curvature are varied.

Dynamic analysis was also investigated for the CNT
response to harmonic electric load near the natural fre-
quencies. Frequency-response curves have been plotted and
validated under different excitation conditions.

Veering of the modes has been analyzed by comparing
the dynamic behavior of the CNT before and after veering.
Veering of the modes with initial curvature as parameter is
found to exchange dynamic properties between modes. In
fact, the maximum deflection at resonant frequency of lower
mode before veering is higher than that after veering, and
maximum deflection at resonant frequency of higher mode
increases considerably during veering of the modes. This
proves that energy of the system is transferred from one mode
to the other during veering.
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