
Research Article
Analysis of Parallel Multidimensional Wave Digital Filtering
Network on IBM Cell Broadband Engine

Chien Hsun Tseng

Department of Information Engineering, Kun Shan University, No. 195 Kun-Da Road, Yung-Kang, Tainan 71003, Taiwan

Correspondence should be addressed to Chien Hsun Tseng; jason.tseng.taiwan@gmail.com

Received 5 November 2013; Accepted 3 January 2014; Published 17 February 2014

Academic Editor: Delfim Soares Jr.

Copyright © 2014 Chien Hsun Tseng. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

As an alternative approach for the numerical integration of physical systems, the MDWDF technique has become of importance
in the field of numerical analysis due to its attractive features, for example, massive parallelism and high accuracy both inherent
in nature. In this study, speed-up efficiencies of a MDWDF network are studied for the linearized shallow water system, which
plays an important role in fluid dynamics. To achieve the goal, the full parallelism of the MDWDF network is established in
the first place based on the chained MD retiming technique. Following the implementation on the IBM Cell Broadband Engine
(Cell/BE), excellent performance of the full parallel architecture is revealed.The IBMCell/BE containing 1 power processor element
(PPE) and 8 synergistic processor elements (SPEs) perfectly fits the architecture of the retimed MDWDF model. Empirical results
have demonstrated that the full parallelized model with 8 processors (1PPE + 7SPEs) outperforms the other three models: partial
right/left-loop retimed models and the full sequential model with 4× improvements for scheduled grids 51 × 51. In addition, for
scheduled fine grids 201 × 201, the full parallel model is shown to possess significant performance over these models by up to 7×
improvements.

1. Introduction

Physical system modeling is an important discipline in all
fields as it enables the development of system simulation
engines for physically realistic processes such as fluid flow,
electrical, and acoustical phenomena.Themost popular kind
of models for multidimensional (MD) physical systems can
be represented by sets of linear and/or nonlinear partial
differential equations (PDEs) with properly imposed ini-
tial and boundary conditions. Many numerical approaches
existing to analyze the behavior of such physical systems
include finite elements (FEs) and finite differences (FDs).
The FEs permit easy inclusion of local grid refinement and
handling of complex geometries [1].Thesemethods, however,
are computationally expensive and harder to directly and
correctly set up the simulation plane than the frequently
used finite difference methods. The latter approaches, on the
other hand, have difficulties in handling irregular boundaries
and need extra care of the local grid refinement in order

to increase its measurement accuracy [2]. As FEs and FDs
require a large number of grid storage in order to get
results even at or around a point of interest with acceptable
accuracy, the requirements for excessive CPU runtime and
storage consumption are often unnecessarily large in such
cases. Furthermore, the computational load of the difference
method due to local grid refinement also prevents its use for
real-time hardware synthesis.

Built on properties of the traveling wave formulation of
lumped electrical elements to the modeling and simulation
of a system represented by PDEs, a novel approach named
wave digital filtering (WDF) network [3] had been proposed
in the past due to its excellent features that fit requirements
of practical interest [4, 5]. Unlike most types of digital filter,
every delay element in a WDF network can be interpreted
physically as holding the current state of a mass or spring
(or capacitor or inductors) [3]. Furthermore, because the
rules for interconnecting the elementarymodels are based on
scattering theory, all signals explicitly computed via a WDF

Hindawi Publishing Corporation
Journal of Computational Engineering
Volume 2014, Article ID 793635, 13 pages
http://dx.doi.org/10.1155/2014/793635

2 Journal of Computational Engineering

network are interpreted as traveling wave components of
physical variables [4, 6]. Making use of the WDF net-
work paradigm and analogies with electrical networks, the
MDWDF technique, thus, draws a maximum advantage of
essential physical properties of such systems, in particular
of causality, passivity, stability, finite propagation velocity,
and so forth, which can be all translated to the actually
considered physical problems so as to preserve important
relationships between variables [4, 5, 7–10]. Proceeding in
this way, it has the unique advantage of simultaneously
offering the second-order accuracy, high robustness and fault
tolerance, massive parallelism, full localness (also for taking
into account arbitrary boundary conditions and shapes), and
explicit or at least semiexplicit computability.

Fettweis and fellow researchers [3–5, 7] have carried out
the pioneering work in the area of this subject. Our interest
in the past and currently has revolved around the software
toolbox development and hardware designing aspects [8–
13]. In particular, the full parallel architecture of MDWDF
network based on the chainedMD retiming technique [14], a
class of software pipelining, is focused on partitioned nested
loop across distinct iterations in terms of spatial and temporal
updating of its corresponding nonparallelMDWDFnetwork.
With the full parallelism adopted within loops, it is then
desirable to exploit the multiple core hardware architecture
with safe and efficient multithreading paradigm per core to
further boost the performance of theMDWDF network.This
will be a significant advantage of parallel implementation.
Clearly, the proposed method is only attractive if it can
be shown that the resultant simulation models provide an
efficient technique to the solution of certain PDEs repre-
senting mechanical behaviors of the physical system when
it is compared with conventional approaches such as finite
elements.

Adopting the full parallel architecture [11], in this study,
the analysis of CPU runtime speed-up efficiencies is empir-
ically implemented on the IBM Cell Broadband Engine
(Cell/BE) to further improve performance of the MDWDF
network representing the linearized shallow water (LSW)
system, which plays an important role in fluid dynamics.
The IBM Cell/BE facilitates 1 power processor element (PPE)
core processor providing system functions together with 8
synergistic processor element (SPE) coprocessors optimized
for efficient data processing. As the key design goal of the full
parallel MDWDF network is to maximize the performance
in terms of speed-up efficiency, the IBM Cell/BE perfectly
fits the architecture of the retimed MDWDF network, which
requires at most 1 main processor and 7 routine processors
running independently. Empirical results have demonstrated
that the full parallelized model making use of 8 processors
(1PPE + 7SPEs) significantly outperforms other threemodels:
models with partial right/left-loop retimed bodies and the
full sequential model by at least 3× and 4× improvements
for scheduled grids 51 × 51, respectively. In addition, for
scheduled grids 201 × 201, the full parallel model is shown
to possess significantly performance over these models by up
to 7× improvements.

2. Summary of 2D LSW System and
Modeling Techniques

2.1. 2𝐷 LSW System and Its Corresponding Multidimensional
Wave Digital Filtering Network. Let us consider a linearized
shallow water (LSW) system characterized by a set of PDEs
for the surface displacement, 𝜂 [1, 8, 16]:

𝜕V
1

𝜕𝑡

− 𝑓V
2
+ 𝑔

𝜕𝜂

𝜕𝑥

= 0,

𝜕V
2

𝜕𝑡

+ 𝑓V
1
+ 𝑔

𝜕𝜂

𝜕𝑦

= 0,

𝐻

𝜕V
1

𝜕𝑥

+ 𝐻

𝜕V
2

𝜕𝑦

+

𝜕𝜂

𝜕𝑡

= 0.

(1)

Here the horizontal velocities V
1
and V

2
are directed along

the spatial domain of 𝑥 and 𝑦 direction, respectively. Fur-
thermore, ℎ is the total water depth defined as the sum of
the undisturbed water depth (a constant mean depth) 𝐻
and the free surface elevation 𝜂 measured upward from the
undisturbed surface; that is, ℎ = 𝐻 + 𝜂. The gravity accel-
eration 𝑔 and the Coriolis parameter 𝑓 are constants. This
hydrostatic formulation is the combined physical processes
of radiation, refraction, diffraction, and reflection when the
system is confined in a bounded domain with nonempty
piecewise boundary. In an unbounded domain, the LSW
system, however, generates divergent and nonreflective waves
based on some artificial open boundaries [2]. As a result, this
modeling is quite successful in fluid dynamics to predict the
dynamics of the surface gravity waves and is usually applied
to the global modeling on large scale oceanographic or
atmospheric quantities like transports and surface elevation,
Tsunami modeling, and simulation [2, 6].

Applying the standard procedure known from the MD
wave digital filtering [4, 5] for transforming the set of PDEs to
its equivalent discrete passive model, a lumped MD-passive
Kirchhoff circuit (MDKC) and its discrete approximation
of MDWDF network [11] depicted in Figures 1(a) and 1(b),
respectively, are obtained for the numerical integration of the
LSW system. Since the resulting network behaves in the same
way as the continuous one, it also preserves passivity for the
discrete dynamical system, thus ensuring full robustness and
stability of the algorithm [4, 12]. The reader is referred to [8]
for more details of converting the given physical system to
form the MDWDF network via the MDKC.

2.2. ChainedMultidimensional Retiming. Theobjective of the
chained MD retiming technique applied to the MDWDF
network of Figure 1(b) is to legally change the delay of edges
in theMD data flow graph (MDFG) such that nonzero delays
on all edges can be obtained in order to achieve the full
parallelism of the MDWDF network. Here the chained MD
retiming is based on the push up scheduling technique [14, 16]
where a good example illustrated in Figure 2(b) represents a
retimed MDFG from a valid MDFG depicted in Figure 2(a).
We note that the form of MDFG is described as a cyclic
data flow graph with the tuple (𝑉, 𝐸,𝐷, 𝑡) to represent a
node-weighted and edge-weighted graph where 𝑉 is the set

Journal of Computational Engineering 3

i1i1

i1

i1

i1

D2(t3 + t2) D2(t3 − t2)

D
1
(t
3
+
t 1
)

D
1
(t
3
−
t 1
)

i3 + i1 i3 − i1 i3

i3i3i3i3

i3

Rg

i2

i2 i2

i2

i2

D4(t3 − t2) D4(t3 + t2)

D3(t3 − t1)D3(t3 + t1)

−
1/
1

−
1/
1

i3 + i2i3 − i2

i3 D(t3 + t2)D(t3 − t2)

D5(t3 + t1) D5(t3 − t1) D6(t3 + t2) D6(t3 − t2)

(33, Dt3)L

(32, Dt3)L(31, Dt3)L

D
3
(t
3
+
t 1
)

D
3
(t
3
−
t 1
)

(a)

R2

Rs1
N

 (
1)

N
 (
1)

N

(1
)

N

(1
)

−1

−1

−1

(V1) (V2)

b2 b3

bg2bg1

bs2bs1

b4bs3

a2 a3

as1 as2

ag2ag1

a4

c2 d2

c1

c3

cs2cs1

c4
cs3d1

d3

ds3 d4

ds2
ds1

b1 a1 as3

R1 Rs3 R4

R3

Rs2

Rg Rg2Rg1

T2

T1

(𝜂)

T3

T
T

TT

4

(b)

Figure 1: The LSW system representation. (a) MDKC. (b) MDWDF network.

A

B

C

D

(0, 0) (1, 1)

(0, 0)

(0, 0)

(1, −1)

for i = 0 to . . .
for j = 0 to . . .

D(i, j) = B(i − 1, j + 1) + C(i − 1, j − 1)

A(i, j) = 5 + D(i, j)

B(i, j) = 3 ∗ A(i, j)

C(i, j) = 6 ∗ A(i, j)
end j

end i

(a)

A

B

C

D

(0, 1) (1, 0)

(0, 1) (1, −2)

(0, 0)

for i = 0 to . . .
for j = 0 to . . .

D(i, j + 1) = B(i − 1, j + 2) + C(i − 1, j)
A(i, j + 1) = 5 + D(i, j + 1)
B(i, j) = 3 ∗ A(i, j)

C(i, j) = 6 ∗ A(i, j)
end j

end i

(b)

Figure 2: (a) A valid MDFG and its corresponding loop body. (b) A retimed MDFG and its corresponding loop body.

4 Journal of Computational Engineering

of computation nodes in the loop body, 𝐸 denotes the set
of directed edges representing the dependence between two
nodes, 𝑑 is a function representing the MD delay between
two nodes, and 𝑡 is the discrete time required for computing
a certain node [14, 16].

Define a scheduled subspace of a realizable MDFG by
𝑆 = {𝑠 : 𝑑(𝑒) ⋅ 𝑠 ≥ 0, ∀𝑒 ∈ 𝐸}. The technique of the chained
MD retiming [14, 16] for schedulingMD problems starts with
finding a schedule vector 𝑠 ∈ 𝑆+ where 𝑆+ is a strictly positive
scheduled subspace defined by

𝑆
+
= {𝑠 ∈ 𝑆 : 𝑑 (𝑒) ⋅ 𝑠 > 0, ∀𝑑 (𝑒) ̸= (0, . . . , 0) , 𝑒 ∈ 𝐸} . (2)

Given any scheduled element 𝑠, a legal retiming function 𝑟
of a realizable MDFG for each node of a loop body can be
obtained when it is orthogonal to 𝑠 according to [11, 14].
As a consequence, the chained MD scheduling generates a
retiming vector 𝑟(𝑢) for each computing node 𝑢 in theMDFG
such that the MD delay is pushed from incoming edges of 𝑢
to its outgoing edges, and new delay of each edge is given by

𝑑
𝑟
(𝑒
𝑗
) =

{
{

{
{

{

𝑑(𝑒
𝑗
) + 𝑟 (𝑢) all outgoing edges 𝑒

𝑗
from 𝑢,

𝑑 (𝑒
𝑗
) − 𝑟 (𝑢) all incoming edges 𝑒

𝑗
of 𝑢.

(3)

It is of importance to note that following the principle of MD
retiming [14, 16], 𝑟(𝑢) can be obtained immediately without
any difficulty by the following formula:

𝑟 (𝑢) = (𝐾
𝑛
− 𝑖) ⋅ 𝑟, (4)

where 𝐾
𝑛
is the maximum length of the existing chains with

the highest level number 𝑛 in the construction process of a
MDFG, while 𝑖 is the level number of the node 𝑢. We notice
that if an incoming edge possesses zero delay, it is necessary
to apply the same retiming function to that incoming node
leaving the sum of delays of the loop body unchanged.

Provided the loop body depicted in Figure 3(a) of the
MDWDF network, the corresponding MDFG in Figure 3(b)
is scheduled by which each operation of the network loop
body in Figure 3(b) is executed in one clock cycle by one
time unit. As a result, the scheduled table in Table 1(a) is
obtained for reference, which clearly shows that the traverse
of an iteration of the loop requires a minimum of 7 clock
cycles. Choosing the maximum length of the existing chain
(D2, E2, F23, G23, H2 or D3, E3, F23, G23, H3) by 𝐾

𝑛
=

5 ((D1, E1, EF1, Gc1, F1, G1, H1 or D4, E4, EF4, Gc2, F4,
G4, H4) by 𝐾

𝑛
= 7, resp.) with the highest clock cycle

𝑛 = 4 (𝑛 = 6, resp.) for the left-loop body (the right-
loop body, resp.) of the MDFG of Figure 3(b), (4) yields
the retiming vectors listed in Table 2 for each node in the
MDFG. Substituting the retiming vector obtained into (3),
a full retimed MDFG using the MD push up scheduling
is then established as illustrated in Figure 4(a) with its
corresponding retimed MDFG loop body in Figure 4(b) and
the scheduled table can be traced back as listed in Table 1(b)
at each iteration. As compared to the level of clock cycle in
Table 1(a), analytical results listed in Table 1(b) have simply

Table 1: Schedule tables: (a) MDFG. (b) The retimed MDFG.

(a)

Clock cycle
(level number) Operations

0 D1 D2 D3 D4
1 E1 E2 E3 E4
2 EF1 F23 EF4
3 Gc1 G23 Gc2
4 F1 H2 H3 F4
5 G1 G4
6 H1 H4
7 C1 C2 C3 C4
Processor P0

(b)

Clock cycle
(level number) Operations

0 D1 E1 EF1 Gc1 F1 G1 H1 C1
0 D2 E2 F23 G23 H2 C2
0 D3 E3 H3 C3
0 D4 E4 EF4 Gc2 F4 G4 H4 C4
Processor P1 P2 P3 P4 P5 P6 P7 P0

demonstrated the achievement of full parallel architecture by
the retimed MDFG of Figure 4(a). In view of the retimed
MDFG, all edges contain nonzero delay, which eliminates the
intraiteration dependencies. Furthermore, the total delays of
each loop remains unchanged. To achieve the full parallelism,
clearly the left-loop body must require at most 5 parallel
processors synchronously executing all operations, while at
most 7 parallel processors are required for the right-loop
body. The loop body of the retimed MDFG illustrated in
Figure 4(b) containing prologue and epilogue processes is
executed by P0 to provide the necessary data for the parallel
loops, which complementarily completes the process. Thus,
provided at most 7 parallel processors named P1, . . . ,P7, the
retimed MDFG has achieved significantly full parallelism by
reducing the number of necessary clock cycles into one pass.

3. Hardware Experiment

In this section, we present empirical simulations for the study
of computational efficiency among different MDWDF net-
works all implemented on the IBMCell/BEwithin SONYPS3
with architecture depicted in Figure 5(a) [15]. Comparisons
between full parallel and partial/or sequential networks are
also given to demonstrate the excellent performance of the
proposed full parallel architecture.

3.1. Parallelization across Multiple SPEs and PPE. Before
discussing how to make parallelization across multiple
SPEs based on the retimed MDFG listed in Table 1(b), we
briefly mention some unique features of the IBM Cell/BE

Journal of Computational Engineering 5

for k = 1 to K
for m = 0 to M

for n = 0 to N
D1: ac1(m, n, k) = c1(m + 1, n, k − 1) + c2(m − 1, n, k − 1)
D2: dc1(m, n, k) = c1(m + 1, n, k − 1) − c2(m − 1, n, k − 1)
D3: dc2(m, n, k) = c4(m, n − 1, k − 1) − c3(m, n + 1, k − 1)
D4: ac2(m, n, k) = c4(m, n − 1, k − 1) + c3(m, n + 1, k − 1)
E1: a1(m, n, k) = −1/2 ∗ ac1(m, n, k)
E2: a2(m, n, k) = −1/2 ∗ dc1(m, n, k)
E3: a3(m, n, k) = −1/2 ∗ dc2(m, n, k)
E4: a4(m, n, k) = −1/2 ∗ ac2(m, n, k)
EF1: bg1(m, n, k) = −a1(m, n, k)
EF2: bg2(m, n, k) = −a4(m, n, k)
Gc1: ag1(m, n, k) = Rg1 ∗ bg1(m, n, k) − Rg2 ∗ bg2(m, n, k)
Gc2: ag2(m, n, k) = Rg2 ∗ bg1(m, n, k) + Rg1 ∗ bg2(m, n, k)
F1: SaR1(m, n, k) = a1(m, n, k) + ag1(m, n, k)
F23: SaL(m, n, k) = a2(m, n, k) + a3(m, n, k)
F4: SaR2(m, n, k) = a4(m, n, k) + ag2(m, n, k)
G1: MaR1(m, n, k) = −SaR1(m, n, k)
G23: MaL(m, n, k) = −SaL(m, n, k)
G4: MaR2(m, n, k) = −SaR2(m, n, k)
H1: b1(m, n, k) = a1(m, n, k) + MaR1(m, n, k)
H2: b2(m, n, k) = a2(m, n, k) + MaL(m, n, k)
H3: b3(m, n, k) = a3(m, n, k) + MaL(m, n, k)
H4: b4(m, n, k) = a4(m, n, k) + MaR2(m, n, k)
C1: c1(m, n, k) = b1(m, n, k) + b2(m, n, k)
C2: c2(m, n, k) = b1(m, n, k) − b2(m, n, k)
C3: c3(m, n, k) = b4(m, n, k) − b3(m, n, k)
C4: c4(m, n, k) = b4(m, n, k) + b3(m, n, k)

end n
end m

end k

(a)

C2

C3

D3 D4

D2

Multipliers Adders

C1

C4

D1E2

E3

E1

E4

F1

F4

EF1

EF2
F23G23

G1

G4H4

H2 H1

H3

(1, 0, 1)
(1, 0, 1) (−1, 0, 1)

(−1, 0, 1)

(0, −1, 1)
(0, −1, 1)

(0, 1, 1)

(0, 1, 1)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0) (0, 0, 0)

(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

Gc1

Gc2

(b)

Figure 3: (a) The loop body representing the MDWDF network. (b) A MDFG corresponding to the loop body.

6 Journal of Computational Engineering

C2

C3 C4

D3 D4

D2

Multipliers Adders

C1

D1E2

E3

E1

E4

F1

F4

EF1

EF2
F23G23

G1

G4

Gc1

H2 H1

H3 H4

(1, −7, 1)
(−1, −7, 1)

(−6, 0, 1)

(0, −8, 1)

(0, −6, 1)
(−5, 1, 1)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(−4, 0, 1)

(1, 0, 0)

(1, 0, 0)

(3, 0, 0)

(3, 0, 0)

(1, 0, 0)

(1, 0, 0)

(−5, −1, 1)

(1, 0, 0) (0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 5, 0)

(0, 1, 0)
(0, 5, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)
(0, 1, 0)

(0, 1, 0)

(0, 1, 0)
(0, 1, 0)

(0, 3, 0)

(0, 3, 0)

Gc2

Left-loop Right-loop

(a)

P1

P2

P1

P2

P3

P4

P5

P6

P7

P3
P4

P5

P0

for k = 1 to K
for n = 0 to N % left loop body

for m = 0 to M − 5

D2: dc1(m + 5, n, k) = c1(m + 6, n, k − 1) − c2(m + 4, n, k − 1)
D3: dc2(m + 5, n, k) = c4(m + 5, n − 1, k − 1) – c3(m + 5, n + 1, k − 1)

F23: SaL(m + 3, n, k) = a2(m + 3, n, k) + a3(m + 3, n, k)
G23: MaL(m + 2, n, k) = −SaL(m + 2, n, k)
H2: b2(m + 1, n, k) = a2(m + 1, n, k) + MaL (m + 1, n, k)

end m
P0 —epilogue—

end n

for m = 0 to M % right loop body
P0 —prologue—

P0 —prologue—

for n = 0 to N− 7

D1: ac1(m, n + 7, k) = c1(m + 1, n + 7, k − 1) + c2(m − 1, n + 7, k − 1)

EF1: bg1(m, n + 5, k) = −a1(m, n + 5, k)
EF2: bg2(m, n + 5, k) = −a4(m, n + 5, k)

F1: SaR1(m, n + 3, k) = a1(m, n + 3, k) + ag1(m, n + 3, k)
F4: SaR2(m, n + 3, k) = a4(m, n + 3, k) + ag2(m, n + 3, k)
G1: MaR1(m, n + 2, k) = −SaR1(m, n + 2, k)
G4: MaR2(m, n + 2, k) = −SaR2(m, n + 2, k)
H1: b1(m, n + 1, k) = a1(m, n + 1, k) + MaR1(m, n + 1, k)
H4: b4(m, n + 1, k) = a4(m, n + 1, k) + MaR2(m, n + 1, k)

P0 —epilogue—

for m = 0 to M
for n = 0 to N

C1: c1(m, n, k) = b1(m, n, k) + b2(m, n, k)
C2: c2(m, n, k) = b1(m, n, k) − b2(m, n, k)
C3: c3(m, n, k) = b4(m, n, k) – b3(m, n, k)
C4: c4(m, n, k) = b4(m, n, k) + b3(m, n, k)

end n

end n

end m

end m
end k

H3: b3(m + 1, n, k) = a3(m + 1, n, k) + MaL (m + 1, n, k)

D4: ac2(m, n + 7, k) = c4(m, n + 6, k − 1) + c3(m, n + 8, k − 1)

E2: a2(m + 4, n, k) = −1/2 ∗ dc1(m + 4, n, k)
E3: a3(m + 4, n, k) = −1/2 ∗ dc2(m + 4, n, k)

E1: a1(m, n + 6, k) = −1/2 ∗ ac1(m, n + 6, k)
E4: a4(m, n + 6, k) = −1/2 ∗ ac2(m, n + 6, k)

Gc1: ag1(m, n + 4, k) = Rg1 ∗ bg1(m, n + 4, k) – Rg2 ∗ bg2(m, n + 4, k)
Gc2: ag2(m, n + 4, k) = Rg2 ∗ bg1(m, n + 4, k) + Rg1 ∗ bg2(m, n + 4, k)

(b)

Figure 4: (a) A retimed MDFG of the MDWDF network. (b) The corresponding loop body of the retimed MDFG.

Journal of Computational Engineering 7

Ad
de

d
va

lu
e o

f B
E

co
m

pu
te

r p
ow

er
Tr

ad
iti

on
al

co
m

pu
ta

tio
n

SXU

LS

SXU SXU SXU SXU SXU SXU SXU

LS LS LS LS LS LS LS

DMADMADMADMADMADMADMADMA

ON-chip coherent bus (up to 96 bytes per cycle)

SPE

RISC

PPE
L2

L1
Power
core

Memory
controller

Dual rambus
XDR

Bus interface
controller

Rambus
flexIO

EI B

(a)

Prologue data
Epilogue data
Program Init.
SPEs Comm.

PPE

Element interconnection bus

D1
D2
D3
D4

SPE1 SPE2

E1
E2
E3
E4

EF1, EF2, F23

Gc1, Gc2, G23

F1
F4
H2
H3

SPE5SPE6

G1
G4

H1, H4

Locked

96 byte/cycle

SP
E4

SP
E3

SP
E7

SP
E8

(b)

Figure 5: (a) IBM cell/BE schema with one PPE and eight SPEs [15]. (b) A custom designed 64 bit power architecture based on the IBM
cell/BE for full parallelism of the MDWDF network.

in Figure 5(a). In particular, since the Cell/BE is recog-
nized as a best-of-breed design, which delivers significant
computational power, high bandwidth, excellent power and
performance, and leading area-saving efficiency within the
constraints of a process technology, we generally pinpoint
where it possesses some added values of cell broadband

engine computer power that is significantly different from the
traditional CPU architectures.

In view of Figure 5(a) also according to [15], the most
important differences to conventional multicore CPUs is that
theCell/BE is not a homogeneous systemwithmultiple copies
of the same core. Instead, the architecture possesses uniquely

8 Journal of Computational Engineering

Table 2: Retiming vector at each node in the MDFG.

Left-loop body, 𝑟 = (1, 0, 0), 𝐾
𝑛
= 5 Right-loop body, 𝑟 = (0, 1, 0), 𝐾

𝑛
= 7

𝑟(D2) = (5, 0, 0) 𝑟(D3) = (5, 0, 0) 𝑟(D1) = (0, 7, 0) 𝑟(D4) = (0, 7, 0)
𝑟(E2) = (4, 0, 0) 𝑟(E3) = (4, 0, 0) 𝑟(E1) = (0, 6, 0) 𝑟(E4) = (0, 6, 0)
𝑟(F2) = (3, 0, 0) 𝑟(F3) = (3, 0, 0) 𝑟(EF1) = (0, 5, 0) 𝑟(EF2) = (0, 5, 0)
𝑟(G2) = (2, 0, 0) 𝑟(G3) = (2, 0, 0) 𝑟(Gc1) = (0, 4, 0) 𝑟(Gc2) = (0, 4, 0)
𝑟(H2) = (1, 0, 0) 𝑟(H3) = (1, 0, 0) 𝑟(F1) = (0, 3, 0) 𝑟(F4) = (0, 3, 0)

𝑟(G1) = (0, 2, 0) 𝑟(G4) = (0, 2, 0)
𝑟(H1) = (0, 1, 0) 𝑟(H4) = (0, 1, 0)

𝑟(C1) = 𝑟(C2) = 𝑟(C3) = 𝑟(C4) = (0, 0, 0)

a heterogeneous system with each cell strategically designed
as a reduced instruction set computer (RISC), which consists
of a 64-bit PPE core and eight SPEs coprocessor running
independently. Furthermore, each SPE contains 256KB local
store, a memory flow controller (MFC), and a synergistic
processing unit (SPU) with a single instruction multiple data
(SIMD) processing unit and 128 registers of 128 bits each. In
addition, the architecture holds an element interconnection
bus (EIB) with an internal bandwidth of more than 300GB/s
(per 3.2 GHz Cell processor), responsible of controlling data
transfer between the SPEs. The maximum bandwidth from
the SPEs to main memory can be geared up to 25GB/s.

Since a homogeneous programming model is adopted
in the programming and therefore has no individual SPE-
to-SPE communication, from a programmer’s perspective
it makes no difference for which these SPEs are physically
located. In fact, keeping all 7 SPEs fully utilized (1 SPE is
basically locked by SONY) requires efficient load balancing.
We, thus, follow the standard approach of defining the SPE
working tasks by subdividing the retimed MDFG opera-
tions into a set of operations as listed in Table 1(b). More
specifically, with the help of memory flow controller-direct
memory access (MFC-DMA) queue installed in each SPE, the
8 processors, P0, . . . ,P7, scheduled in the loop body of the
retimedMDFG in Figure 4(b) can be assigned to the Cell/BE
as PPE, SPE1,. . ., SPE7, respectively. As a result, the full par-
allelism in the left-loop body renders 5 SPEs synchronously,
that is, SPE1,. . ., SPE5, while the right-loop body is tackled
by 7 SPEs, that is, SPE1,. . ., SPE7, all running independently.
From this shared task queue, each SPE dynamically fetches
a new set of MDFG operations and renders it. As accesses
to this task queue must be synchronized, we employ the
Cell’s atomic lookup and update capabilities meaning that
an integer variable specifying the ID of the next set to be
rendered must be allocated in system memory. Since this
variable is visible among all SPEs, each time when a SPE
queries the value of the variable, it performs an atomic fetch-
and-increment instruction. This atomic update mechanism
allows all SPEs to be working fully independently from
both other SPEs and PPE, requiring no communication
among those units. Figure 5(b) shows the efficiency of the
dynamic load balancing for the fully parallelized model
based on the retimed MDFG of Figure 4(a) to carry out
8 processors (1PPE + 7SPEs), while the nonparallel model
based on Figure 3(a) is implemented only by the PPE core

Table 3: Maximum CPU runtime for different types of model.

Maxi. CPU Time (sec) Field domain: 200 × 200 (m2)
Scheduled Time Step (group)

Grids Model Type 25
(G1)

50
(G2)

100
(G3)

200
(G4)

51 × 51

Full sequential 15.75
(4.15×)

32.33
(4.35×)

60.77
(4.14×)

121.3
(3.91×)

Left-loop parallel 13.71
(3.61×)

28.21
(3.79×)

56.75
(3.86×)

117.7
(3.79×)

Right-loop parallel 12.93
(3.41×)

26.26
(3.52×)

52.76
(3.59×)

110.25
(3.56×)

Full parallel 3.79 7.44 14.69 31.01

201 × 201

Full sequential 2931
(4.14×)

5337
(3.77×)

10234
(3.72×)

20622
(3.85×)

Left-loop parallel 4595
(6.49×)

9141
(6.46×)

17273
(6.27×)

37791
(7.05×)

Right-loop parallel 4053
(5.73×)

8465
(5.98×)

16813
(6.11×)

35026
(6.53×)

Full parallel 707 1415 2753 5356

itself. Apart from the parallel process implemented on the
SPE coprocessors, there are processes of prologue, epilogue,
and program initiation, which are controlled fully by the PPE
core.

3.2. Simulation Results and Performance between SPEs. In
this subsection, the CPU runtime of 4 different MDWDF
networkmodels with the scheduled computational grids (51×
51 and 201 × 201) has been put on test based on 4 groups of
temporal point for implementation: 𝐺

𝑘
, 𝑘 = 1, . . . , 4. These

models include the full sequential (Figure 3), full parallel
(Figure 4), right-loop body parallel (Figure 6), and left-loop
body parallel (Figure 7) MDWDF networks. As each group
implements a specified discrete temporal point at 𝑡

𝑘
= 25 ×

2
𝑘−1, the temporal point for implementation is increased
by 2 times between groups. Figure 8(a) shows results of
the full sequential model with grids 51 × 51, which has
clearly illustrated that its CPU runtime has nearly matched
the increment of its corresponding temporal point as also
indicated in the first-half part of Table 3. To improve the net-
work’s performance and make comparison with other partial
parallelism models, the computational efficiency based on

Journal of Computational Engineering 9

C2

C3 C4

D3 D4

D2

Multipliers Adders

C1

D1E2

E3

E1

E4

F1

F4

EF1

EF2
F23G23

G1

G4

Gc1

H2 H1

H3 H4

(1, −7, 1)
(−1, −7, 1)

(−1, 0, 1)

(0, −8, 1)

(0, −6, 1)
(0, 1, 1)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(1, 0, 1)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, −1, 1)

(0, 0, 0) (0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 5, 0)

(0, 1, 0)
(0, 5, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)

(0, 1, 0)
(0, 1, 0)

(0, 1, 0)

(0, 1, 0)
(0, 1, 0)

(0, 3, 0)

(0, 3, 0)

Gc2

Left-loop Right-loop

(a)

P0

P1

P2

P3

P4

P5

P6

P7

P0

for k = 1 to K
for n = 0 to N % left loop body

for m = 0 to M
D2: dc2(m, n, k) = c1(m + 1 , n, k − 1) − c2(m − 1, n, k − 1)
D3: dc2(m, n, k) = c4(m, n − 1, k − 1) – c3(m, n + 1, k − 1)

F23: SaL(m, n, k) = a2(m, n, k) + a3(m, n, k)
G23: MaL(m, n, k) = −SaL(m, n, k)
H2: b2(m, n, k) = a2(m, n, k) + MaL (m, n, k)
H3: b3(m, n, k) = a3(m, n, k) + MaL (m, n, k)

end m
end n

for m = 0 to M % right loop body
P0 —prologue—

for n = 0 to N− 7

D1: ac1(m, n + 7, k) = c1(m + 1, n + 7, k − 1) + c2(m − 1, n + 7, k − 1)

D4: ac2(m, n + 7, k) = c4(m + 1, n + 6, k − 1) + c3(m, n + 8, k − 1)

EF1: bg1(m, n + 5, k) = −a1(m, n + 5, k)

EF2: bg2(m, n + 5, k) = −a4(m, n + 5, k)

F1: SaR1(m, n + 3, k) = a1(m, n + 3, k) + ag1(m, n + 3, k)
F4: SaR2(m, n + 3, k) = a4(m, n + 3, k) + ag2(m, n + 3, k)

= −G1: MaR1(m, n + 2, k) SaR1(m, n + 2, k)
= −G4: MaR2(m, n + 2, k) SaR2(m, n + 2, k)

H1: b1(m, n + 1, k) = a1(m, n + 1, k) + MaR1(m, n + 1, k)
H4: b4(m, n + 1, k) = a4(m, n + 1, k) + MaR2(m, n + 1, k)

end n

P0 —epilogue—
end m

for m = 0 to M
for n = 0 to N

C1: c1(m, n, k) = b1(m, n, k) + b2(m, n, k)
C2: c2(m, n, k) = b1(m, n, k) − b2(m, n, k)
C3: c3(m, n, k) = b4(m, n, k) – b3(m, n, k)
C4: c4(m, n, k) = b4(m, n, k) + b3(m, n, k)

end n
end m

end k

E2: a2(m, n, k) = −1/2 ∗ dc1(m, n, k)
E3: a3(m, n, k) = −1/2 ∗ dc2(m, n, k)

E1: a1(m, n + 6, k) = −1/2 ∗ ac1(m, n + 6, k)

E4: a4(m, n + 6, k) = −1/2 ∗ ac2(m, n + 6, k)

Gc1: ag1(m, n + 4, k) = Rg1 ∗ bg1(m, n + 4, k) – Rg2 ∗ bg2(m, n + 4, k)
Gc2: ag2(m, n + 4, k) = Rg2 ∗ bg1(m, n + 4, k) + Rg1 ∗ bg2(m, n + 4, k)

(b)

Figure 6: (a)The right-loop body retimedMDFG of theMDWDF network. (b)The corresponding loop body of the right-loop body retimed
MDFG.

10 Journal of Computational Engineering

C2

C3 C4

D3 D4

D2

Multipliers Adders

C1

D1E2

E3

E1

E4

F1

F4

EF1

EF2
F23G23

G1

G4

Gc1

H2 H1

H3 H4

(1, −7, 1)
(−1, 0, 1)

(−1, 0, 1)

(0, −1, 1)

(0, 1, 1)
(−5, 1, 1)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(1, 0, 0)

(−4, 0, 1)

(1, 0, 0)

(1, 0, 0)

(3, 0, 0)

(3, 0, 0)

(1, 0, 0)

(1, 0, 0)

(−5, −1, 1)

(1, 0, 0) (0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

Gc2

Left-loop Right-loop

(a)
for k = 1 to K

for n = 0 to N % left loop body
P0 —prologue—

for m = 0 to M− 5

D2: dc2(m + 5, n, k) = c1(m + 6 , n, k − 1) − c2(m + 4, n, k − 1)
D3: dc2(m + 5, n, k) = c4(m + 5, n − 1, k − 1) – c3(m + 5, n + 1, k − 1)

F23: SaL(m + 3, n, k) = a2(m + 3, n, k) + a3(m + 3, n, k)
G23: MaL(m + 2, n, k) = −SaL(m + 2, n, k)
H2: b2(m + 1, n, k) = a2(m + 1, n, k) + MaL (m + 1, n, k)

H3: b3(m + 1, n, k) = a3(m + 1, n, k) + MaL (m + 1, n, k)
end m

P0 —epilogue—
end n

for m = 0 to M % right loop body
for n = 0 to N

D1: ac1(m, n, k) = c1(m + 1, n, k − 1) + c2(m − 1, n, k − 1)
D4: ac2(m, n, k) = c4(m, n − 1, k − 1) + c3(m, n + 1, k − 1)

EF1: bg1(m, n, k) = −a1(m, n, k)
EF2: bg2(m, n, k) = −a4(m, n, k)

F1: SaR1(m, n, k) = a1(m, n, k) + ag1(m, n, k)
F4: SaR2(m, n, k) = a4(m, n, k) + ag2(m, n, k)
G1: MaR1(m, n, k) =−SaR1(m, n, k)
G4: MaR2(m, n, k) =−SaR2(m, n, k)
H1: b1(m, n, k) = a1(m, n, k) + MaR1(m, n, k)
H4: b4(m, n, k) = a4(m, n, k) + MaR2(m, n, k)

end n

end m

P0

P1

P2

P3
P4

P5

P0

for m = 0 to M

for n = 0 to N

C1: c1(m, n, k) = b1(m, n, k) + b2(m, n, k)
C2: c2(m, n, k) = b1(m, n, k) − b2(m, n, k)
C3: c3(m, n, k) = b4(m, n, k) – b3(m, n, k)
C4: c4(m, n, k) = b4(m, n, k) + b3(m, n, k)

end n

end m

end k

E2: a2(m + 4, n, k) = −1/2 ∗ dc1(m + 4, n, k)
E3: a3(m + 4, n, k) = −1/2 ∗ dc2(m + 4, n, k)

E1: a1(m, n, k) = −1/2 ∗ ac1(m, n, k)
E4: a4(m, n, k) = −1/2 ∗ ac2(m, n, k)

Gc1: ag1(m, n, k) = Rg1 ∗ bg1(m, n, k) – Rg2 ∗ bg2(m, n, k)
Gc2: ag2(m, n, k) = Rg2 ∗ bg1(m, n, k) + Rg1 ∗ bg2(m, n, k)

(b)

Figure 7: (a) The left-loop body retimed MDFG of the MDWDF network. (b) The corresponding loop body of the left-loop body retimed
MDFG.

Journal of Computational Engineering 11

Iteration temporal points
25 50 100 200

0

20

40

60

80

100

120

140
Ru

nt
im

e (
s)

P0

(a)

25 50 100 200
0

5

10

15

20

25

30

35

Iteration temporal points

Ru
nt

im
e (

s)

P0
P1
P2
P3

P4
P5
P6
P7

(b)

25 50 100 200
0

20

40

60

80

100

120

Iteration temporal points

Ru
nt

im
e (

s)

P0
P1
P2
P3

P4
P5
P6
P7

(c)

25 50 100 200
0

20

40

60

80

100

120

Iteration temporal points

Ru
nt

im
e (

s)

P0
P1
P2

P3
P4
P5

(d)

Figure 8: Performance comparison between four models of MDWDF network with scheduled grids 51 × 51. (a) Full sequential model. (b)
Full parallel model. (c) Right-loop body retimed model. (d) Left-loop body retimed model.

the MDFG of Figures 4(a), 6(a), and 7(a) are presented in
Figures 8(b)–8(d) for full parallelism model, the right-loop
retimed body, and the left-loop retimed body, respectively.
Figure 8(b) shows that the full parallel model receives a
significant improvement with up to 4.35× more efficiency
than the full sequential one based on details given in Table 3.

Similar advantages of using the full parallel model are
also applied, which outperforms the right-loop and left-loop

retimed models. As can be seen from Figures 8(c) and 8(d),
the full parallel model has gained up to 3.59× and 3.86×
faster than the right-loop and left-loop retimed models,
respectively. The cause of less efficiency can be found in
Figure 6(b) where the left-loop body, although it technically
requests 5 SPEs according to the scheduled retimed MDFG
in Table 2, is implemented sequentially only by the PPE core
resulting in a huge burden of 5× average CPU runtime of

12 Journal of Computational Engineering

Iteration temporal points
25 50 100 200

0

0.5

1

1.5

2

2.5

Ru
nt

im
e (

s)

P0

×104

(a)

25 50 100 200
0

1000

2000

3000

4000

5000

6000

Iteration temporal points

Ru
nt

im
e (

s)

P0
P1
P2
P3

P4
P5
P6
P7

(b)

25 50 100 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Iteration temporal points

Ru
nt

im
e (

s)

×104

P0
P1
P2
P3

P4
P5
P6
P7

(c)

25 50 100 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Ru
nt

im
e (

s)

Iteration temporal points

×104

P0
P1
P2

P3
P4
P5

(d)

Figure 9: Performance comparison between four models of MDWDF network with scheduled grids 201 × 201. (a) Full sequential model. (b)
Full parallel model. (c) Right-loop body retimed model. (d) Left-loop body retimed model.

SPEs being added to the PPE core. Whereas for the left-loop
retimed body, Figure 7(b) indicates that the right-loop body
is sequentially performed by the PPE core encountering 7×
the average CPU workload of SPEs being added on the PPE
core.

Having the computational complexity increased 16 times
by arranging the grids of 201 × 201, Figures 9(a)–9(d) clearly
demonstrate that the full parallel architecture of MDWDF
network has achieved its goal by significantly boosting

the performance of nonparallel MDWDF network. More
specifically, the full parallel model outperforms models of
sequential and partial parallelism of right/left-loop bodies
by the least 3.72×, 5.73×, and 6.27× runtimes, respectively,
whose detail is listed in the second-half part of Table 3.
More specifically, we look at Table 3 concerning about the
performance of full parallel model against that of the full
sequential one for two scheduled grids. Despite the increase
of computational complexity, the full parallel model still

Journal of Computational Engineering 13

remains at the range of gain [3×, 4×] over the full sequential
model. By contrast, the full parallel model receives a bigger
range of gains with [3×, 6×] and [3×, 7×] over the right-
and left-loop retimed bodies, respectively. The increment of
gain over these partial parallel models may be attributed
to improper allocation of massive data transfer between
the PPE core and these SPEs coprocessors. These results,
nevertheless, have clearly suggested that the scheduled 64-
bit power architecture for full parallelism of the MDWDF
network model provides the key performance advantage by
fully equipping the 8 decoupled SPE SIMD engines (1PPE +
7SPEs) with dedicated resources including large register files
and DMA channels.

4. Conclusion

In this study, we have studied the significant computer run-
time performance for different models of MDWDF network
implemented on the IBM cell/BE. The full parallelism of the
MDWDFnetworkwas carried out byworking togetherwith 8
decoupled SPU SIMD engines, each with dedicated resources
including DMA channels. In particular of interest, a custom
design of 64-bit power architecture was developed, which
facilitates the PPE core processor to control the prologue,
epilogue, and program initiation, while the massive parallel
processes of the right- and left-loop bodies were performed
by at most 7 SPE coprocessors.This has rendered the Cell/BE
to utilize 8 times more SIMD capability (for up to 16-
way data parallelism) than the conventional processors with
vector architecture extensions, such as the PPC970 in the G5.
Simulation results have demonstrated that the CPU runtime
speed of the full parallel model outperforms that of the other
3 models by up to 4× improvement for scheduled grids 51 ×
51; while for scheduled grids 201 × 201, the full parallel model
can significantly gain by up to 7× improvement.

Conflict of Interests

The author declares that there is no conflict of interests
regarding the publication of this paper.

References

[1] P. K. Kundu, Fluid Mechanics, Academic Press, London, UK,
1990.

[2] Z. Kowalik and T. S. Murty, Numerical Modelling of Ocean
Dynamics, World Scientific Publishing, 1993.

[3] A. Fettweis, “Wave digital filters: theory and practice,” Proceed-
ings of the IEEE, vol. 74, no. 2, pp. 270–327, 1986.

[4] A. Fettweis and G. Nitsche, “Transformation approach to
numerically integrating PDEs by means of WDF principles,”
Multidimensional Systems and Signal Processing, vol. 2, no. 2, pp.
127–159, 1991.

[5] A. Fettweis and G. Nitsche, “Numerical integration of partial
differential equations using principles of multidimensional
wave digital filters,” Journal of VLSI Signal Processing, vol. 3, no.
1-2, pp. 7–24, 1991.

[6] J. C.-H. Tseng, N. D.-T. Dao, and C.-C. Chang, “Modeling
and visualizing seismic wave propagation in elastic medium

using multi-dimension wave digital filtering approach,” World
Academy of Science, Engineering and Technology, vol. 69, pp.
424–430, 2010.

[7] H. Krauß, R. Rabenstein, and M. Gerken, “Simulation of wave
propagation by multidimensional digital filters,” Simulation
Practice andTheory, vol. 4, no. 6, pp. 361–382, 1996.

[8] C. H. Tseng and S. S. Lawson, “Discrete modelling of shallow
water equations using themultidimensional wave digital filters,”
in Proceedings of the European Conference in Circuit Theory and
Design, Krakow, Poland, 2003.

[9] C.-H. Tseng and S. Lawson, “Initial and boundary conditions
in multidimensional wave digital filter algorithms for plate
vibration,” IEEE Transactions on Circuits and Systems I, vol. 51,
no. 8, pp. 1648–1663, 2004.

[10] C. H. Tseng, “Modelling and visualization of a time-dependent
shallow water system using nonlinear Kirchhoff circuit,” IEEE
Transactions on Circuits and Systems, vol. 59, no. 6, pp. 1265–
1277, 2012.

[11] C.-H. Tseng and S. Lawson, “Full parallel process for multidi-
mensional wave digital filtering via multidimensional retiming
technique,” in Proceedings of the IEEE International Symposium
on Cirquits and Systems (ISCAS ’04), pp. III209–III212, Vancou-
ver, Canada, May 2004.

[12] C. H. Tseng, “Numerical stability verification of a two-
dimensional time-dependent nonlinear shallow water system
usingmultidimensional wave digital filtering network,”Circuits,
Systems and Signal Processing, vol. 32, no. 1, pp. 299–319, 2013.

[13] C. H. Tseng and Y. L. Jeang, FPGA Digital IC Design and
Practice: Use Verilog HDL and Xilinx ISE, Tsang Hai Book
Publishing Co., 1st edition, 2012 (Chinese).

[14] N. L. Passos and E. H.-M. Sha, “Achieving full parallelism using
multidimensional retiming,” IEEE Transactions on Parallel and
Distributed Systems, vol. 7, no. 11, pp. 1150–1163, 1996.

[15] B. Flachs, S. Asano, S. H. Dhong et al., “A streaming processing
unit for a CELL processor,” in Proceedings of the IEEE Interna-
tional Solid-State Circuits Conference (ISSCC ’05), pp. 134–135,
February 2005.

[16] N. L. Passos and E. Sha, “Full parallelism in uniform nested
loops using multidimensional retiming,” in Proceedings of the
International Conference on Parallel Processing, pp. 130–133,
Saint Charles, Ill, USA, 1994.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

