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Damping of primordial gravitational waves due to the anisotropic stress contribution owing to the cosmological neutrino
background (C]B) is investigated in the context of a radiation-to-matter dominated universe. Besides its inherent effects on the
gravitational wave propagation, the inclusion of the C]B anisotropic stress into the dynamical equations also affects the tensor
mode contribution to the anisotropy of the cosmological microwave background (C𝛾B) temperature. The mutual effects on the
gravitational waves and on the C𝛾B are obtained through a unified prescription for a radiation-to-matter dominated scenario.
The results are confronted with some preliminary results for the radiation dominated scenario. Both scenarios are supported by
a simplified analytical framework, in terms of a scale independent dynamical variable, k𝜂, that relates cosmological scales, k, and
the conformal time, 𝜂. The background relativistic (hot dark) matter essentially works as an effective dispersive medium for the
gravitational waves such that the damping effect is intensified for the universe evolving to the matter dominated era. Changes on
the temperature variance owing to the inclusion of neutrino collision terms into the dynamical equations result in spectral features
that ratify that the multipole expansion coefficients 𝐶𝑇

𝑙
’s die out for 𝑙 ∼ 100.

1. Introduction

The theoretical investigation and the phenomenological anal-
ysis of anisotropies in the cosmological microwave back-
ground (C𝛾B) radiation are recursively considered as a
singular valuable check on the validity of simple inflation-
ary cosmological models. The fast growth of primordial
masses and of energy density fluctuations is identified as the
simplest mechanism for producing cosmological structures
and observable C𝛾B temperature anisotropies. In addition, a
primordial spectrum of gravitational waves [1, 2] may also
have been perturbatively induced during the inflationary
epoch. It could, for instance, change the theoretical predic-
tions for cluster abundances and work as a pertinent test for
inflationarymodels as it produces some imprints on radiation
tensor modes.

Cosmological tensor fluctuations should produce not
only temperature anisotropies but also distinct imprints in
the so-called magnetic or 𝐵-modes of its polarization field
[3], which has been identified through the C𝛾B polarization
experiments [1, 2, 4, 5]. Current experiments have indeed

been able to put upper limits on polarizations of the C𝛾B that
might be owed to a gravitational wave background [6–14].

The observed pattern of temperature anisotropies, when
combined with probes of inhomogeneities in matter on
large scale structures, and with measurements of the total
energy density in the universe, is in striking agreement with
the simplest predictions for the spectrum of anisotropies
due to gravitational waves produced during inflation. These
facts support the inclusion of extra ingredients in the fine-
tuning analysis involving the theoretical predictions and the
observable data for C𝛾B anisotropies.

The C]B contribution to the dark matter inventory at
present can be estimated from the modifications on the
matter power spectrum, even for neutrinos behaving like a
relativistic fluid at higher redshifts [15]. This phenomeno-
logical characteristic is related to the large scale structures,
such that effective mass values for neutrinos through the
C𝛾B results are inferred through the transfer function in the
matter power spectrum at small scales [16–18]. Depending
on the current thermodynamic regime, the free-streaming
massive neutrinos can affect the cosmological evolution of
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tensor modes by increasing the magnitude of the anisotropic
stress, which acts as an effective viscosity, absorbing gravita-
tional waves in the low frequency.That is the theoretical point
discussed in some previous issues [19–21] where it has been
given some emphasis on the cosmological evolution of per-
turbation tensormodes coupled to cosmological neutrinos in
the radiation dominated (RD) universe.

Our aim is to extend such a preliminary approach involv-
ing the RD cosmic inventory to a transient, radiation-to-
matter dominated (RMD) background universe. We will
follow the analytical setup based on the multipole formal-
ism that reproduces the procedure which deals with scalar
perturbations [15, 19, 20, 22]. Even in the framework for a
RMD scenario, it can be shown that equations can be manip-
ulated in order to avoid explicit (and sometimes confused)
dependencies on cosmological scales, 𝑘, which, in this case,
are absorbed by the scale independent variable, 𝑘𝜂. Besides
quantifying the dynamical evolution of gravitational waves
and identifying the role of neutrinos and collision terms
inherent to the model, one will be able to quantify a modified
tensor mode variance for the temperature anisotropy. Once
extended to the RMD background scenario, our analysis
follows several theoretical prescriptions provided by some
preliminary studies like in [15, 19–21].

Our paper is therefore organized as follows. In Section 2,
we report about the textbook multipole formalism [22],
with the corresponding modifications for reconstructing the
pattern of tensor perturbations [19, 20]. In Section 3, we
reproduce the framework for including the anisotropic stress
effects on the propagation of gravitational waves by assuming
physically reliable conditions over the collision parameters.
The dynamical evolution of tensor modes and its corre-
sponding potential modifications on the C𝛾B temperature
for a RMD environment is therefore quantified. Since the
neutrino viscosity underlies an increasing wave damping
effect, we expect to have a frequency-dependent absorption
of gravitational waves in the frequency range where neutrino
decoupling happens. We draw our conclusions in Section 4.

2. Theoretical Preliminaries

As supported by the decomposition theorem [15, 17, 22, 23],
the perturbation equations for the cosmological scenario
in the synchronous gauge allow one to depict simpler
and clearer properties of cosmological tensor perturbations.
In general lines, the cosmological evolution of a homo-
geneous Friedmann-Robertson-Walker (FRW) flat universe
with background energy density, 𝜌(𝜂), and pressure, P(𝜂),
is described in terms of the scale factor, 𝑎(𝜂), through the
following components of the Einstein equation:
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where 𝜂 is the conformal time defined by 𝑑𝜂 = 𝑑𝑡/𝑎 and 𝐺
is the Newtonian constant, and one sets the natural units 𝑐 =
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modifies the isotropic and homogeneous characteristics of
perfect fluids, 𝜌 and P, and provides a natural coupling
for observing interactions between the tensor modes, that
is, gravitational waves, in the (RMD) cosmological environ-
ment. It changes the dynamical behavior of the tensor per-
turbation components, ℎ

𝑖𝑗
, through the following equation of
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In this case, the traceless component of the energy-momen-
tum tensor is defined by Π
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By turning (5) into its Fourier space transformed form,
one has
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where H = ̇𝑎/𝑎, and dots correspond to conformal time
derivatives. The anisotropic stress Π
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which appears in the Boltzmann equation [19] as
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where the interactions brought up by 𝐶[𝑓] will be discussed
later. By following the same notation from [19], one finds that
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where 𝜑 is the polar angle such that 𝑑Ω = sin 𝜃𝑑𝜃𝑑𝜑. Upon
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are prescribed. The zeroth-order multipole contribution that
appears in (7) is effectively the unique nonvanishing contri-
bution of 𝐹] into (10), which is computed from the above
multipole expansion forF
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the anisotropic stress contribution written in terms of F(0)
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manipulations, one obtains [19]
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The above equations are constrained by the dynamical behav-
ior of ℎ

𝑖𝑗
, which turns them into a system of ℓ+1 decomposed

first-order ordinary differential equations completely equiva-
lent to the Boltzmann equation.

Since we are concerned with the fact that the anisotropic
stress is only cosmologically relevant for massless particles
[23], independently of our previous arguments, the condition
of having background neutrinos in ultrarelativistic thermo-
dynamic regime is assumed along the RMD era. In this case
one can write 𝜌] in terms of the total energy density, 𝜌, and
of the rates 𝑅] = Ω]/Ω𝑟 ≡ 𝜌]/𝜌𝑟 and 𝑅𝑚/𝛾 = Ω𝑚/Ω𝛾,
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and 𝑚 (matter). By substituting (7) with the above-defined
parameters into (5), and using (2) for 𝜌, one obtains a suitably
modified picture of [19] given by
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where the inclusion of the elements of the RMD cosmic
inventory is evinced by 𝑅

𝑚/𝛾
on the right-hand side (by

setting 𝑅
𝑚/𝛾

= 0 one is able to recover the results for the RD
cosmic inventory as in [19]).

3. Gravitational Waves Coupled to Neutrinos
in the RMD Scenario

The background solutions of the Friedmann equation for
the RMD universe, with the corresponding equation of state,
respectively, represented byP
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where we have neglected the cosmological constant phase.
For a RMD cosmological background, the scale factor depen-
dence on the conformal time reproducing the radiation-to-
matter transition can be exactly given by
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with 𝜂eq = (3Ω𝑟/(8𝜋𝐺))
1/2
/Ω
𝑚
, where a scale independent

parameter 𝑘𝜂 has been introduced, and the boundary con-
ditions are set as 𝑎(0) ≡ 0. Equation (23) also fiducially
describes the dynamics deep inside radiation ormatter domi-
nated (MD) eras separately. Assuming the above dependence
of 𝑎 on 𝜂 into the coupled equations of the previous section,
one can treat the gravitational waves entering the horizon
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even after the time of matter-radiation equality, that is, with
the redshift 𝑧 < 10

4. Therefore, besides being applied to
the analysis of waves that have entered the horizon well
inside the RD era, with 𝑘 ≫ 0.1 [Mpc]−1, our result can be
extended to the analysis of waves with 𝑘 ∼ 0.1 [Mpc]−1. In
addition, from the point of view of themathematicalmanipu-
lation/resolution of the equations, the explicit dependence on
the cosmological scales, 𝑘, will be relegated to the parameter
𝑘𝜂eq at (23), so that one can express all the subsequent results
in terms of 𝑘𝜂, with 𝜂 in units of 𝜂

0
≈ 1/𝐻

0
≈ 5000 [Mpc].

In this case, 𝑘𝜂 ∼ 1 corresponds to the horizon crossing
parameter.

The system of coupled equations ordinarily defined in
terms of 𝑘𝜂 also allows one to depict the behavior of waves
deep inside the horizon (𝑘𝜂 ≫ 1). Given the scale covariance
introduced by 𝑘𝜂 (in place of a factorized dependence on 𝜂),
it is always possible to rescale the initial value of ℎ

𝑖𝑗
(𝑘𝜂) as to

have ℎ
𝑖𝑗
(0) = ℎ

(0). The choice of the initial amplitude after
crossing the causal horizon, ℎ(0), is arbitrary and it does not
affect our results. The variables ℎ̇

𝑖𝑗
and F

(ℓ)

𝑖𝑗
are concerned

with the information about the effect of damping oscillation.
It is attributed to the expansion of the universe, in case of ℎ̇

𝑖𝑗
,

and to the interactionwith theC]B, in case ofF(ℓ)
𝑖𝑗
.Therefore,

these terms should be taken into account just after crossing
the causal horizon; that is, for 𝑘𝜂 > 𝑘𝜂

0
≈ 0. Because of that, it

is reasonable to assume ℎ̇
𝑖𝑗
(0) = 0 andF(ℓ)

𝑖𝑗
(0) = 0. Finally, we

also have assumed the standard cosmological values for Ω
𝑖
,

with 𝑖 = 𝛾, ] and𝑚, such thatΩ]/Ω𝛾 > 0 andΩ𝛾/Ω𝑚 ≈ 10
−4.

The corresponding dynamical evolution of the gravita-
tional waves, that is, of the tensor modes, ℎ

𝑖𝑗
, in terms of the

scale independent variable, 𝑘𝜂, can be depicted in Figures
1 and 3. Once gravitational waves have entered the horizon
(𝑘𝜂 ≳ 1), their amplitude dies away (c.f. Figure 1) more
rapidly at a universe with the cosmic inventory containing
the matter component contribution. By suppressing the
contribution due to the neutrino anisotropic stress at (20),
one recovers a damped harmonic oscillator- (DHO-) like
equation for which the damping factor is given by 𝛾 ≡ 2H.
One can notice that deep inside the MD era the 𝛾 factor is
two times the value corresponding to that of deep inside the
RD era. The amplitude of the gravitational waves is relatively
suppressed when it penetrates into the MD era.

The neutrino free-streaming regime is obtained by setting
a vanishing collision term, C(ℓ)

𝑖𝑗
= 0, at the evolution

equations. Figure 1 shows the results for 𝑅] = 0.4052 (three
neutrino species) and 𝑅] ≈ 1 (not so realistic large number
of neutrino degrees of freedom, which includes extra flavor
quantum numbers) obtained from numerical calculations
involving 1200 multipoles for RD and RMD scenarios. The
results are relevant for modes which enter the horizon at the
universe’s temperature about𝑇 ≲ 1MeV [21].The anisotropic
stress effects are relatively suppressed for modes which enter
the horizon at the MD era, as one can observe from the
right side of (20). The exception is for the situation where 𝑅]
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Figure 1: Evolution of the normalized wave amplitude ℎ
𝑖𝑗
/ℎ
(0)

𝑖𝑗
as

function of 𝑘𝜂 for RD (red lines) and RMD (black lines) background
cosmic inventories. Results are for vanishing anisotropic stress, with
𝑅] = 0 (dotted lines), for 𝑅] = 0.4052 (dashed lines) and for
𝑅] = 1 (solid lines). The RD curves are scale independent so that 𝑘𝜂
is given in units of 𝑘𝜂

0
. The RMD curves are correctly interpreted

by observing that 𝑘𝜂eq = 1, which correspond to scales that have
entered the Hubble horizon at the time of matter-radiation equality
(see also Figure 7 for comparison). In spite of beingmore evident for
the RMD scenario, in both situations the largely increasing values of
𝑅] result in a more relevant suppression of the tensor modes during
the cosmological evolution. Notice that just for the first peak, solid
lines are overpassing dashed- and dotted-lines.

approximates to unity. The amplitude ℎ
𝑖𝑗
is constant outside

the horizon and starts decreasing after the horizon crossing.
The inclusion of the matter background into the cos-

mic inventory introduces an additional subtle effect on the
amplitude of the gravitational waves under the influence of
the anisotropic stress. Scales just entering the horizon at late
times have the corresponding oscillation modes undergoing
a delayed suppression due to the coupling to neutrinos.
It propagates to the following oscillation peaks in a kind
of translational effect of the oscillation pattern, which is
naturally expected if one observes that, in the limit of
radiation domination, one has

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑘𝜂)

󵄨󵄨󵄨󵄨󵄨
=
sin (𝑘𝜂)
𝑘𝜂

, (24)

and, in the limit of matter domination, one has

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑘𝜂)

󵄨󵄨󵄨󵄨󵄨
= 3

(sin (𝑘𝜂) − 𝑘𝜂 cos (𝑘𝜂))
(𝑘𝜂)
3

. (25)
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The reason for such a behavior is engendered by the fact the
RMD curves are correctly interpreted only for 𝑘𝜂eq = 1,
which correspond to scales that have entered the Hubble
horizon at the time of matter-radiation equality. In the
Appendix we show the corresponding results for 𝑘𝜂eq = 100.
In spite of being evinced for the RMD scenario, increasing
values of𝑅] result in amore relevant suppression of the tensor
modes even for the RD scenario.

In [19] one identifies that for the standard case corre-
sponding to 𝑅] = 0.4052 for three families of neutrinos,
roughly 22% of the intensity of the gravitational waves is
absorbed by the C𝛾B environment. In spite of not considering
the same steps for numerical integrations as assumed in [19],
our results for the RD era agrees with those presented in
[19], as it can be depicted in Figures 1 and 2 by comparing
dashed and dotted red lines. The effective suppression due
to the inclusion of neutrinos can be depicted from Figure 2
where we have computed the time-averaged quantity𝐷(𝑘)2 =
⟨2(𝑘𝜂)

2
|ℎ
𝑖𝑗
(𝑘𝜂)|
2
⟩ as function of the cosmological scale, 𝑘.

Such a time-averaged quantity is processed from a cut-off 𝜂∗.
Although 𝜂∗ is arbitrary, the time-averaged operation over
(𝑘𝜂)
2
|ℎ
𝑖𝑗
(𝑘𝜂)|
2 is effective only for scales entering the horizon

at times 𝜂 ≫ 𝜂
∗.

When the elements for describing the RMD regime
are introduced, our results are considerably different, in
spite of exhibiting a conceptual agreement with those from
[19]. The point is that once the cosmic inventory enters
into the MD era, the effects due to anisotropic stress over
the corresponding gravitational wave modes are highly
suppressed. There is an expected overall suppression of
the gravitational wave modes (cf. the black lines depicted
in Figures 1 and 2) driven by the MD regime. Likewise,
given that the realistic neutrino effects are suppressed,
in the RMD scenario the relative rate of absorption of
waves turns into a tiny value ≪ 0.1% (cf. the dashed
and dotted overlapping black lines depicted in Figures 1
and 2). One can notice that the lines obtained for 𝑅] ≈ 1

overpass the lines obtained for 𝑅] ≈ 0 at some ordinary scale
𝑘̃. Scale values for which 𝑘 > 𝑘̃ have tried out a sufficient
number of oscillating cycles to average ℎ

𝑖𝑗
(𝑘𝜂) and produce

some representative damping effect. In this case, the realistic
effects produced by neutrinos correspond to a suppression of
the power spectrum of gravitational waves for which 𝑘 ≫ 𝑘̃.

Themaximum amount of damping occurs for the extrap-
olating limit of 𝑅] → 1. In this case, the influence of matter
on the cosmic inventory (𝑅

𝑚/𝛾
∼ 10
4) is highly suppressed

from (19) and therefore the damping effect increases (cf. solid
black lines depicted in Figures 1 and 2). Such a pictorial
situation results in an unrealistic scenario forwhich, however,
the absorption rate is roughly similar to that of 43% from [19]
(cf. black lines crossing red lines in Figure 2).

Finally, the highest first oscillation peak for the RMD
results depicted in Figure 2 appears because of the abovemen-
tioned relative delay (phase difference) of the first oscillation
damping of the gravitational waves in the RMD era, as
depicted in Figure 1 and supported by (24) and (25). Even
creating a kind of horizon crossing fake-resonance effect, it
disappears along the cosmological 𝜂 evolution. Moreover, the
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Figure 2: Time-averaged values of 2⟨(𝑘𝜂)2|ℎ
𝑖𝑗
(𝑘𝜂)|
2
⟩ as function

of 𝑘[Mpc−1] for RD (red lines) and RMD (black lines) background
cosmic inventories. Results are for vanishing anisotropic stress, with
𝑅] = 0 (dotted lines), for 𝑅] = 0.4(0.4052) (dashed lines) and for
𝑅] = 1 (solid lines). Notice the fake resonance effect for modes with
𝑘𝜂 ≳ 1 followed by the neutrinos damping effect which is more
relevant for scales deep inside the horizon.

increasing damping caused by the anisotropic stress of the
standard (three family) neutrinos is much more effective at
the RD regime.

Turning back to the collision term contributions, we
will follow the parametrization from [19] that sets 𝐶[𝑓] =
−𝑓
0
Ψ/𝜏, where 𝜏 is the mean time between collisions. In

this case one has C(ℓ)
𝑖𝑗
= −F

(ℓ)

𝑖𝑗
/𝜏. The auxiliary parameter

in defining the strength of the interactions, 𝑘𝜏, corresponds
to the ratio between the wave frequency and the collision
frequency. One can compare the effects of including the
collision term parameterized by 𝜏 = 0.01, 0.1, 1, and 10 in
Figures 3 and 4. One should notice that the inclusion of
collision effects parameterized by 𝑘𝜏 at C(0)

𝑖𝑗
into (18) affects

the gravitational wave evolution in a very subtle way. Since
one has 𝜏 in units of 𝜂

0
and 𝑘 in units of 1/𝜂

0
, upon setting 𝜏 >

10 ≫ 1 one recovers the free-streaming (collisionless) results.
Otherwise, small values for 𝑘𝜏 would correspond to very
frequent collisions that dominate the dynamical evolution
described by (15)–(18). It results in F

𝑖𝑗
∝ 𝑒
−𝜂/𝜏, which leads

to an exponential decay suppression of the anisotropic stress.
Decreasing values of 𝜏 therefore represent increasing collision
rates and consequently a less dispersive environment/effect
due to the anisotropic stress. Although strong deviations
from the standard scenario with 𝑅] = 0.4052 are unlikely,
damping effects as those obtained for 𝑅] = 1 become
effective just when neutrinos enter the free-streaming regime
and can be interpreted either as the existence of additional
neutrino degrees of freedom (d.o.f) or as the existence of
exotic fluid/particles in the early universe.

Figures 3 and 4 also show that, for 𝑘 ≫ 𝑘̃, the amount
of damping with respect to the vanishing stress contribution
in case of RMD era is not regular. It corresponds to a scale
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dependent effect. The effects of increasing the frequency of
the collisions by diminishing 𝜏 can be, at least superficially,
quantified. It is important to notice that either in the limit
of radiation domination (cf. (24)) or in the limit of matter
domination (cf. (25)), where

󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑘𝜂)

󵄨󵄨󵄨󵄨󵄨
≈
sin (𝑘𝜂)
𝑘𝜂

(1 + O(𝑘𝜂)
2
) , (26)

scales just entering the horizon lead to nondecaying values
for 𝐷(𝑘)2. By following the same analogy with a DHO, it is
also relevant to notice that𝐷(𝑘)2 parameterizes the damping
of the averaged valued of the DHO energy. In fact,

(𝑘𝜂)
2󵄨󵄨󵄨󵄨󵄨
ℎ
𝑖𝑗
(𝑘𝜂)

󵄨󵄨󵄨󵄨󵄨

2

∝ 𝑘
3
𝑃
ℎ (𝑘) , (27)

where 𝑃
ℎ
(𝑘) is the power spectrum related to tensor modes

[17].
Figure 4 shows the time-averaged quantity, 𝐷(𝑘)2, by

considering the effective collisions parameterized by 𝑘𝜏 =

0.01 and 10. The effect of rare collisions is recovered for 𝑘𝜏 ∼
10. As in Figure 2, it is possible to identify the crossing value
of 𝑘̃ for which the correct interpretation of𝐷(𝑘)2 is pertinent.

To end up, the damping of gravitational waves also affects
some spectral features related to the tensor contribution
to the anisotropy spectrum. From the analytical multipole
decomposition [17], the contribution to the 𝐶𝑇

𝑙
’s can be

written as

𝐶
𝑇

𝑙,𝑖
=
(𝑙 − 1) 𝑙 (𝑙 + 1) (𝑙 + 2)

𝜋

× ∫

∞

0

𝑑𝑘𝑘
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Θ
𝑇

𝑙−2,𝑖

(2𝑙 − 1) (2𝑙 + 1)
+ 2

Θ
𝑇

𝑙,𝑖

(2𝑙 − 1) (2𝑙 + 3)

+
Θ
𝑇

𝑙+2,𝑖

(2𝑙 + 1) (2𝑙 + 3)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

(28)

where 𝑖 denotes + and ×modes. Θ𝑇
𝑙,𝑖
is obtained through

Θ
𝑇

𝑙,𝑖
= −

1

2
∫

𝜂0

𝜂
∗

𝑑𝜂𝑗
𝑙
[𝑘 (𝜂
0
− 𝜂)] ℎ̇

𝑖𝑗
(𝑘, 𝜂) ,

Θ
𝑇
(MD)

𝑙,𝑖
≈−
1

2
∫

𝜂0

𝜂
∗

𝑑𝜂𝑗
𝑙
[𝑘 (𝜂
0
−𝜂)]

𝑑

𝑑𝜂
[
3𝑗
1
(𝑘𝜂)

𝑘𝜂
](𝑃
ℎ (𝑘))
1/2
,

(29)

where the last step stands for the analytical approximation for
the MD scenario. In this case, the departing amplitude of the
gravitational waves is given in terms of 𝑃1/2

ℎ
.

Substituting the results for Θ𝑇
𝑙

into (28) allows one
to compute the tensor imprints on the map of the C𝛾B
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Figure 3: Evolution of the normalized wave amplitude ℎ
𝑖𝑗
/ℎ
(0)

𝑖𝑗
as

function of 𝑘𝜂 for the RMD scenario in case of including the
collision terms. Results are for 𝜏 = 0.01, 0.1, 1, and 10 and for the
collisionless case. 𝜏 is given in units of 𝜂

0
and 𝑘 in units of 1/𝜂

0
. We

have considered three neutrino species with 𝑅] = 0.4052(0.4) (red
lines) and the extreme case of a huge number of neutrino species
with 𝑅] = 1 (black lines). The RMD curves are correctly interpreted
by observing that 𝑘𝜂eq = 1 (see also Figure 8 for comparison).
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temperature. After some mathematical manipulations [17],
the analytical expression for the RD scenario results in

𝐶
𝑇

𝑙
= 2

9 (𝑙 − 1) 𝑙 (𝑙 + 1) (𝑙 + 2)

4𝜋
∫

∞

0

𝑑𝑘𝑘
2
𝑃
ℎ (𝑘)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝜂0

0

𝑑 (𝑘𝜂)
𝑗
2
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𝑘𝜂
[
𝑗
𝑗−2
(𝑘 [𝜂
0
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(2𝑙 − 1) (2𝑙 + 1)

+ 2
𝑗
𝑙
(𝑘 [𝜂
0
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(2𝑙 − 1) (2𝑙 + 3)

+
𝑗
𝑙+2
(𝑘 [𝜂
0
− 𝜂])

(2𝑙 + 1) (2𝑙 + 3)
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

(30)

where we have set the lower limit on the time integral equal to
zero since the time 𝜂∗ at which the modes enter the horizon
is assumed to satisfy 𝜂∗ ≪ 𝜂

0
. We have identically followed

the approximations set by [17]. Since one has

𝑃
ℎ (𝑘) =

8𝜋

𝑘3

𝐻
2

𝑚2
𝑃𝑙

, (31)

by defining novel integration variables 𝑦 ≡ 𝑘𝜂
0
and 𝑥 ≡ 𝑘𝜂,

one gets the analytical form given by

𝐶
𝑇

𝑙
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𝑃𝑙

)

2
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]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

,

(32)

where 𝐻inf is the Hubble rate when the modes crossed the
horizon (when 𝑘𝜂 = 1 early on), after being modulated by
some transfer function that connects MD to RD scenarios
[17].

The numerical results obtained for the tensor modes,
ℎ
𝑖𝑗
(𝑘, 𝜂), allow one to compute the neutrino and collision

effect imprints on the map of C𝛾B temperature in the RMD
scenario.

After entering the horizon, the amplitude of gravitational
waves dies away (cf. Figure 1). The anisotropy spectrum is
consequently affected by gravitational waves only on scales
larger than the horizon at recombination. This corresponds
to angular scales 𝑙 ≲ 100 in the multipole expansion.
The tensor curves that we have obtained in Figure 5 for
the same set of parameters introduced into Figure 1 in the
RMD era show that 𝐶𝑇

𝑙
’s die out after 𝑙 ≳ 100. The ana-

lytical curve is obtained for RD connected to MD scenarios
through a transfer function [24]. The coupling to neutrinos
suppresses the contribution of tensor modes from the sum
of anisotropies. Therefore, if tensor perturbations grow up
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Figure 5: Tensor contribution to the angular power spectrum in the
RMD scenario. Results are for vanishing anisotropic stress (dotted
lines), for 𝑅] = 0.4 (0.4052) (dashed lines), and for 𝑅] = 1

(solid lines) for the collisionless case. The blue line corresponds
to the analytical results obtained for a vanishing anisotropic stress
component, where we have used an analytical transfer function to
account for RD and MD scenarios.

during the inflationary era, and if the total scalar plus tensor
anisotropy spectrum is fit to the large scale structure data,
then the small-scale scalar amplitude is smaller than it would
be.Thepresence of the coupled anisotropic stress of neutrinos
just shows the effects of the neutrinos (like a fluid) on
the variance of temperature due to gravitational waves. In
Figure 6 we compare the effects of including the collision
term parameterized by 𝑘𝜏 = 0.01, 0.1, 1, and 10 assuming
three neutrino species, 𝑅] = 0.4052, and a larger number of
neutrino species,𝑅] = 1. From Figure 3 one just notices some
smooth suppression relative to decreasing of the frequency of
collisions (𝜏 ≫ 1). The collision frequency also diminishes as
like neutrinos go deep inside the free-streaming propagation
regime, which intensifies the damping effect.

Figure 5 shows that for neutrinos with only three flavor
degrees of freedom, the modifications on the 𝐶𝑇

𝑙
coefficients

are minimal. The damping of the angular power spectrum
and, more properly, of the temperature variance, 𝐶𝑇

2
, is more

relevant for 𝑅] ≲ 1. The analytical curve reproduces the
numerical results up to 𝑙 ∼ 30. For larger multipole values,
with 𝑙 ≫ 100, even numerically, the coefficients 𝐶𝑇

𝑙
die out.

The sharp fall observed in Figures 5 and 6 is consistent with
the multipole decomposition solution.
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Figure 6: Tensor contribution to the angular power spectrum for
the RMD scenario in case of including the collision terms. Results
are for 𝜏 = 0.01, 0.1, 1, and 10, in units of 𝜂

0
, and for the collisionless

case. Notice that, for decreasing values of the 𝜏 parameter, the
suppression due to a huge number of neutrinos (d.o.f.) is not
so relevant; that is, the increasing collision effect attenuates the
damping effect on the tensor mode propagation and it is reflected
on the tensor contribution to the angular power spectrum.

4. Conclusions

The observation of primordial gravitational waves indeed
provides a renewed overview about the earliest moments in
the history of the universe and on possible new physics at
energies many orders of magnitude beyond those accessible
at particle accelerators. The recent positive fit-back from
experimental physics [1, 2] has indeed provided a crucial
evidence for inflation in the early universe, which can also
constrain the physics from the grand unification scale to the
Planck scale.

Since a universe overfilling viscosity results in gravita-
tional wave damping effects, we have considered the possi-
bility of observing some frequency-dependent absorption in
the frequency range where neutrino decoupling is relevant.
By mixing analytical and numerical procedures, we have
obtained the evolution of tensormodes and its corresponding
imprints on the C𝛾B temperature in case of considering a
RMD environment in the presence of an overfilling C]B.
Departing from the evolution of the gravitational waves from
the time of their production, transversing theRD, the relevant
modes exhibit a substantial damping on their amplitudes
attributed to the expansion of the universe when they enter
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as

function of 𝑘𝜂 for RD (red lines) and RMD (black lines) background
cosmic inventories, in correspondence with Figure 1. Again, the RD
curves are scale independent and the RMD curves are correctly
interpreted by observing that 𝑘𝜂eq = 100, which correspond to scales
that have entered the Hubble horizon before the time of matter-
radiation equality.

into the MD era. Meanwhile, the anisotropic stress com-
ponent of the energy-momentum tensor changes the wave
pattern when the cosmological neutrino background C]B is
taken into account [25]. It has been noticed that the effective
neutrino viscosity introduces some increasing contribution
to the overwhelming dynamics during the decoupling period.

The damping effects owing to the influence of the (neu-
trino) anisotropic stress have been computed for a RMD sce-
nario and compared to previous results for the RD scenario.
We have compared the effects of including collision terms
with collision frequency parameterized by 𝜏 = 0.01, 0.1, 1,

and 10 assuming three neutrino species (𝑅] = 0.4052) and
a larger number of (neutrinos) degrees of freedom (𝑅] =

1). The collision dynamics is shown to introduce a tiny
shift between two successive peaks of the gravitational wave
spectrum.

The connection between the anisotropic stress of neu-
trinos and its effects on the C𝛾B temperature has also been
identified, as it is used to be intermediated by gravitational
waves. Our results suggest that an extra number of neutrino
degrees of freedom might be related either to some exotic
neutrino family or even to some arbitrary composing con-
tribution to the anisotropic stress. In fact, considering 𝑅] = 1

has intensified the damping effects up to its maximal value,
as depicted in the map of the tensor contribution to the
angular power spectrum, 𝐶𝑇

𝑙
. For decreasing values of the
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Figure 8: Evolution of the normalized wave amplitude ℎ
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as

function of 𝑘𝜂 for the RMD scenario in case of including the
collision term, in correspondence with Figure 3, with RMD curves
being correctly interpreted by observing that 𝑘𝜂eq = 100.

collision 𝜏 parameter, the suppression of the gravitational
wave amplitudes due to a huge number of degrees of freedom
related to neutrinos is not so relevant, and the increasing
collision frequency attenuates the damping effect on the
tensor mode propagation. It has also been reflected on the
map of tensor contributions to the angular power spectrum.

Finally, a time-averaged quantity, 𝐷(𝑘)2, introduced to
implicitly quantify the power spectrum of gravitational
waves, has shown that the RMD environment reduces the
damping effect for realistic three flavor neutrino scenarios
in spite of exhibiting the same maximal rate of damping for
hypothesized scenarios with 𝑅] = 1: a relevant aspect which
may be considered in improving the computer programs used
to analyze the future facilities.

Appendix

Figures 7 and 8 reveal the intrinsic dependence on the
cross horizon driving parameter 𝑘𝜂eq. They correspond to
qualitative complementary results to Figures 1 and 3, in case
of considering 𝑘𝜂eq = 100 in place of 𝑘𝜂eq = 1. For the RMD
scenario, it corresponds to scales that have entered theHubble
horizon before the time of matter-radiation equality.
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