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We analyze two-dimensional (2D) random systems driven by a symmetric Lévy stable noise which in the presence of confining
potentials may asymptotically set down at Boltzmann-type thermal equilibria. In view of the Eliazar-Klafter no-go statement, such
dynamical behavior is plainly incompatible with the standard Langevin modeling of Lévy flights. No explicit path-wise description
has been so far devised for the thermally equilibrating random motion we address, and its formulation is the principal goal of the
present work. To this end we prescribe a priori the target pdf 𝜌

∗
in the Boltzmann form ∼exp[−Φ(𝑥)] and next select the Lévy

noise (e.g., its Lévy measure) of interest. To reconstruct random paths of the underlying stochastic process we resort to numerical
methods.We create a suitablymodified version of the time honoredGillespie algorithm, originally invented in the chemical kinetics
context. A statistical analysis of generated sample trajectories allows us to infer a surrogate pdf 𝜌(𝑥, 𝑡) dynamics which sets down
at a predefined target, in consistency with the associated kinetic (master) equation.

1. Introduction

Various random processes in real physical systems admit a
simplified description based on stochastic differential equa-
tions.Then, there is a routine passage procedure frommicro-
scopic randomvariables tomacroscopic (statistical ensemble,
mean field) data, like, for example, the time evolution of
an associated probability density function (pdf) which is a
solution of a deterministic transport equation. A paradigm
example is so-called the Langevin modeling of diffusion-type
and jump-type processes. The presumed microscopic model
of random dynamics is provided by the Langevin (stochastic)
equation, which additively decomposes into a (Newtonian
by origin) drift and purely random (perturbing noise) term.
Its direct consequence is the Fokker-Planck equation for an
associated probability density function (pdf); confer [1] for
a discussion of the Brownian motion and [2, 3] for that
of Lévy flights in external forces. We note that the Lévy-
Langevin formulation results in the space-fractional Fokker-
Planck equation.

The subject of our further discussion is two-dimensional
(2D) random systems driven by a symmetric Lévy stable
noise which, under the sole influence of external (force)
potentials Φ(𝑥), asymptotically set down at Boltzmann-type

thermal equilibria. Such behavior is excludedwithin standard
ramifications of the Langevin approach to Lévy flights, where
the action of a conservative force field∼ −∇Φ(𝑥) stands for an
explicit reason for the emergence of an asymptotic invariant
probability density function (pdf). The latter cannot be
represented in the Boltzmann form 𝜌

∗
(𝑥) ∼ exp[−Φ(𝑥)], and

the thermal equilibrium concept appears to be alien to
Langevin-modeled Lévy flights.

In the present paperwe address the response of Lévy noise
not to an external conservative force field, but directly to its
potential Φ(𝑥). That is explicitly encoded in nonsymmetric
jump transition rates of the master equation for the pdf
𝜌(𝑥, 𝑡).

We prescribe a priori the target pdf 𝜌
∗
in the Boltzmann

form ∼exp[−Φ(𝑥)] and next select the Lévy noise of interest.
Given suitable initial data, this allows to infer a reliable path-
wise approximation to a true (albeit analytically beyond the
reach) solution of the pertinent master equation, with the
property 𝜌(𝑥, 𝑡) → 𝜌

∗
(𝑥) as time 𝑡 goes to infinity.

No explicit path-wise description has been so far devised
for such thermally equilibrating random motion. To recon-
struct random paths of the underlying stochastic process we
resort to numerical methods, where long jumps of the Lévy
stable processes are statistically significant but are truncated
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to become amenable to simulation procedures. We create a
suitably modified version of the time honored Gillespie algo-
rithm, originally invented in the chemical kinetics context.

A statistical analysis of generated sample trajectories
allows us to infer a surrogate pdf dynamicswhich consistently
sets down at a predefined target pdf. We pay special attention
to the response of the 2D Cauchy noise to an exemplary
locally periodic “potential landscape” Φ(𝑥), 𝑥 ∈ 𝑅

2.
As a necessary prerequisite for our further discussion, let

us discuss a transformation of the Fokker-Planck equation
into the Schrödinger-type (generalized diffusion) equation,
often employed in the theoretical framework of the Brownian
motion. Here, the Langevin equation, the induced Fokker-
Planck equation, and its Schrödinger-type image are dynami-
cally equivalent and describe the same diffusion-type process.
This is not the case if one turns over to jump-type processes.

For clarity of arguments, let us consider the Langevin
equation for a one-dimensional diffusion process in an
external conservative force field 𝐹(𝑥) = −𝑑𝑉(𝑥)/𝑑𝑥 in the
form 𝑑𝑥/𝑑𝑡 = 𝐹(𝑥) + √2]𝑏(𝑡), where 𝑏(𝑡) stands for the
normalized white noise: ⟨𝑏(𝑡)⟩ = 0, ⟨𝑏(𝑡



)𝑏(𝑡)⟩ = 𝛿(𝑡 − 𝑡


)

and the mass parameter is scaled away. The corresponding
Fokker-Planck equation for the probability density function
𝜌(𝑥, 𝑡) reads

𝜕
𝑡
𝜌 = ]Δ𝜌 − ∇ (𝐹𝜌) (1)

and, in the confining regime, is known to enforce the
existence of an asymptotic invariant pdf, 𝜌(𝑥, 𝑡) → 𝜌

∗
(𝑥) as

𝑡 → ∞, in the explicit Boltzmann form exp(−Φ/2), where
Φ(𝑥) = 𝑉(𝑥)/].

By means of a standard substitution 𝜌(𝑥, 𝑡) = 𝜓(𝑥, 𝑡)

exp[−𝑉(𝑥)/2]] [1], the Fokker-Planck equation can be trans-
formed into a generalized diffusion equation for an auxiliary
function 𝜓(𝑥, 𝑡). This Schrödinger-type equation (no imagi-
nary unit 𝑖) reads

𝜕
𝑡
𝜓 = ]Δ𝜓 − V (𝑥) 𝜓, (2)

whereV(𝑥) = (1/2)((𝐹
2

/2]) + ∇𝐹) and 𝐹 = 𝐹(𝑥).
By reintroducing a normalization constant (divide and

multiply by a suitable number 𝑍
1/2 in the factorization

formula for 𝜌(𝑥, 𝑡)), we can rewrite 𝜌(𝑥, 𝑡) in the form
𝜌(𝑥, 𝑡) = Ψ(𝑥, 𝑡)𝜌

1/2

∗
(𝑥), where 𝜌

1/2

∗
= 𝑍
−1/2 exp(−Φ/2) while

Ψ = 𝑍
1/2

𝜓. Clearly, Ψ(𝑥, 𝑡) → 𝜌
1/2

∗
(𝑥) as 𝑡 goes to infinity.

Moreover, we can rewrite the semigroup potential as follows:
V = (] Δ𝜌

1/2

∗
)/𝜌
1/2

∗
.

The transformation of (1) into (2) cannot be adopted
to Lévy jump-type processes, where the Langevin and
Schrödinger-type (semigroup) modeling are known to be
incompatible. Moreover, the Eliazar-Klafter no go statement
[4] disconnects the Langevin-modeled Fokker-Planck equa-
tion for any Lévy-stable noise

�̇� = 𝑏 (𝑥) + 𝐴
𝜇

(𝑡) ⇒ 𝜕
𝑡
𝜌 = −∇ (𝑏 ⋅ 𝜌) − 𝜆|Δ|

𝜇/2

𝜌. (3)

From the very notion of the Boltzmann thermal equilibrium.
(We note in passing that an ample literature is available on
various aspects of the Lévy-Langevin random motion (3),

specifically on the associated asymptotic invariant pdfswhose
inverse polynomial decay may be much steeper than that of
any Lévy-stable pdf; see, for example, [5].)

However, the thermal equilibrium notion remains a
valid concept within an immediate Lévy transcript of the
semigroup dynamics (2) (e.g., replace ]Δ by −𝜆|Δ|

𝜇/2):

𝜕
𝑡
Ψ = −𝜆|Δ|

𝜇/2

Ψ − VΨ; (4)
see, for example, [6, 7], where we assume that Ψ(𝑥, 𝑡)

asymptotically sets down at a square root 𝜌
1/2

∗
(𝑥) of a well-

defined pdf 𝜌
∗
. The semigroup potential V(𝑥) follows from

the compatibility condition:

V = −𝜆
|Δ|
𝜇/2

𝜌
1/2

∗

𝜌
1/2

∗

. (5)

In this particular context, while adopting a multiplicative
decomposition of the time-dependent pdf 𝜌(𝑥, 𝑡) → 𝜌

∗
(𝑥),

𝜌 (𝑥, 𝑡) = Ψ (𝑥, 𝑡) 𝜌
1/2

∗
(𝑥) , (6)

a novel fractional generalization of the Fokker-Planck equa-
tion governing the time evolution of 𝜌(𝑥, 𝑡) has been intro-
duced in [8, 9, 16] (see also [7, 10, 11]) to handle systems that
are randomized by symmetric Lévy-stable drivers and may
asymptotically set down at Boltzmann-type equilibria under
the influence of external potentials (thus not Newtonian
forces anymore).

The pertinent Fokker-Planck type equation, whose origin
has been discussed before in a number of papers [8–11, 16],
has the familiar master equation form, presently reproduced
in the explicit 2D form:

𝜕
𝑡
𝜌 (𝑥, 𝑦) = ∬

𝐴

[𝑤
𝜙

(𝑥, 𝑦 | 𝑢, V) 𝜌 (𝑢, V)

−𝑤
𝜙

(𝑢, V | 𝑥, 𝑦) 𝜌 (𝑥, 𝑦)] ]
𝜇

(𝑥, 𝑦, 𝑑𝑥, 𝑑𝑦) .

(7)
Here, anticipating the effectiveness of numerical routines to
be described below, from the start we impose cut-offs upon
the size of jumps to be accounted for during the simulations.
A contribution of larger jump sizes nonetheless remains sta-
tistically significant.This happens because the unconstrained
Lévy distribution is used in sampling procedures. We have
verified this property before in the 1D considerations of [12],

𝐴 = { (𝑥, 𝑦) ∈ R
2

; 𝜀
𝑥

1
⩽ |𝑥 − 𝑢|

⩽ 𝜀
𝑥

2
∧ 𝜀
𝑦

1
⩽

𝑦 − V
 ⩽ 𝜀
𝑦

2
} ,

𝑤
𝜙

(𝑥, 𝑦 | 𝑢, V) = exp[
(Φ (𝑢, V) − Φ (𝑥, 𝑦))

2
] ,

(8)

and the Lévy measure ]
𝜇
(𝑥, 𝑦, 𝑑𝑥, 𝑑𝑦) in R2 is given by

]
𝜇

(𝑥, 𝑦, 𝑑𝑥, 𝑑𝑦)

=
2
𝜇

Γ ((2 + 𝜇) /2)

𝜋
Γ (−𝜇/2)



1

(𝑥2 + 𝑦2)
(2+𝜇)/2

𝑑𝑥 𝑑𝑦

= ]̃
𝜇

(𝑥, 𝑦) 𝑑𝑥 𝑑𝑦, 𝜇 ∈ (0, 2) .

(9)
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It is the quantity 𝑤
𝜙
(𝑥, 𝑦 | 𝑢, V)]̃

𝜇
(𝑥, 𝑦) which has an

interpretation of the jump transition rate from the point
(𝑢, V) ∈ 𝑅

2 to another point (𝑥, 𝑦) ∈ 𝑅
2. The potential

function Φ(𝑥, 𝑦) can be chosen quite arbitrarily. However,
we need to secure a 𝐿

1

(𝑅
2

) normalization of the target
pdf 𝜌
∗

(𝑥, 𝑦) ∼ exp(−Φ(𝑥, 𝑦)). We note that exp(−Φ(𝑥, 𝑦))

becomes a genuine stationary solution of (7) once we let
𝜀
𝑥,𝑦

1
→ 0 and 𝜀

𝑥,𝑦

2
→ ∞.

2. Gillespie’s Algorithm: Fine Tuning in 2D

Gillespie’s algorithm has been originally constructed to give
a dynamical picture of a finite chain of chemical reactions
[13, 14]. There, switches between different chemical reaction
channels can be reinterpreted as jumps between points in
a finite state space. Since the number of allowed chemical
channels is finite, a serious modification of an original
algorithmmust be created to account for very large (virtually
infinite) state space we need to consider in connection
with Lévy flights. As an example, a jump process analog of
chemical reaction channels could comprise (take 𝑅

1 for a
while) all jumps form a fixed point 𝑥

0
to any point in the set

[𝑥
0

− 𝜖
2
, 𝑥
0

− 𝜖
1
] ∪ [𝑥

0
+ 𝜖
1
, 𝑥
0

+ 𝜖
2
].

Since numerical simulations impose intrinsic lower and
upper bounds upon the jump size, it is obvious that what
we actually implement is a truncated jump process, with the
“representative” truncated Lévy distribution of jumps.

Basic tenets of the modified Gillespie’s algorithm, fine-
tuned to account for Lévy jumps in 𝑅

1, have been described
in detail elsewhere [12]. Presently, we shall give a brief outline
of the algorithm that is capable of accounting for Lévy
flights in 𝑅

2. We mimic previously devised 1D steps [12],
while adopting them to the 2D situation. Namely, (7) can be
rewritten as follows:

𝜕
𝑡
𝜌 (𝑥, 𝑦)

= ∬
𝐴


𝐶
𝜇

[𝑤
𝜙

(𝑥, 𝑦 | 𝜉 + 𝑥, 𝜂 + 𝑦) 𝜌 (𝜉 + 𝑥, 𝜂 + 𝑦)

−𝑤
𝜙

(𝜉 + 𝑥, 𝜂 + 𝑦 | 𝑥, 𝑦) 𝜌 (𝑥, 𝑦)] 𝑑𝜉 𝑑𝜂,

(10)

where

𝐴


= {(𝜉, 𝜂) ∈ R
2

; 𝜀
𝑥

1
⩽

𝜉
 ⩽ 𝜀
𝑥

2
∧ 𝜀
𝑦

1
⩽

𝜂
 ⩽ 𝜀
𝑦

2
} ,

𝐶
𝜇

=
2
𝜇 sin (𝜋𝜇/2) [Γ ((𝜇 + 2) /2)]

2

𝜋2(𝜉2 + 𝜂2)
(𝜇+2)/2

.

(11)

The algorithm outline reads as follows.

(i) Set time 𝑡 = 0 and the point of origin for jumps,
(𝑥
0
, 𝑦
0
) ∈ 𝑅
2.

(ii) Create the set of all admissible jumps from (𝑥
0
, 𝑦
0
) to

(𝑥
0

+ 𝜉, 𝑦
0

+ 𝜂), compatible with the transition rate
𝑤
𝜙
(𝑥, 𝑦 | 𝑥 + 𝜉, 𝑦 + 𝜂).

(iii) Evaluate

𝑊
1

(𝑥
0
, 𝑦
0
) = ∫

−𝜀
𝑥

1

−𝜀
𝑥

2

∫

−𝜀

𝑦

1

−𝜀

𝑦

2

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜉 𝑑𝜂,

𝑊
2

(𝑥
0
, 𝑦
0
) = ∫

−𝜀
𝑥

1

−𝜀
𝑥

2

∫

𝜀

𝑦

2

𝜀

𝑦

1

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜉 𝑑𝜂,

𝑊
3

(𝑥
0
, 𝑦
0
) = ∫

𝜀
𝑥

2

𝜀
𝑥

1

∫

−𝜀

𝑦

1

−𝜀

𝑦

2

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜉 𝑑𝜂,

𝑊
4

(𝑥
0
, 𝑦
0
) = ∫

𝜀
𝑥

2

𝜀
𝑥

1

∫

𝜀

𝑦

2

𝜀

𝑦

1

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜉 𝑑𝜂,

(12)

and𝑊(𝑥
0
, 𝑦
0
) = 𝑊

1
(𝑥
0
, 𝑦
0
)+𝑊
2
(𝑥
0
, 𝑦
0
)+𝑊
3
(𝑥
0
, 𝑦
0
)+

𝑊
4
(𝑥
0
, 𝑦
0
).

(iv) Using a random number generator draw 𝑝
𝑥
, 𝑝
𝑦

∈

[0, 1] from a uniform distribution.

(v) Employing above 𝑝
𝑥
and 𝑝

𝑦
and the identities

∫

𝑏
𝑥

−𝜀
𝑥

2

(∫

−𝜀

𝑦

1

−𝜀

𝑦

2

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜂

+ ∫

𝜀

𝑦

2

𝜀

𝑦

1

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜂) 𝑑𝜉

= 𝑝
𝑥
𝑊 (𝑥
0
, 𝑦
0
) , 𝑝

𝑥
<

𝑊
12

(𝑥
0
, 𝑦
0
)

𝑊 (𝑥
0
, 𝑦
0
)

,

𝑊
12

(𝑥
0
, 𝑦
0
)

+ ∫

𝑏
𝑥

𝜀
𝑥

1

(∫

−𝜀

𝑦

1

−𝜀

𝑦

2

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜂

+ ∫

𝜀

𝑦

2

𝜀

𝑦

1

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜂) 𝑑𝜉

= 𝑝
𝑥
𝑊 (𝑥
0
, 𝑦
0
) , 𝑝

𝑥
⩾

𝑊
12

(𝑥
0
, 𝑦
0
)

𝑊 (𝑥
0
, 𝑦
0
)

,

∫

𝑏
𝑦

−𝜀

𝑦

2

(∫

−𝜀
𝑥

1

−𝜀
𝑥

2

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜉

+ ∫

𝜀
𝑥

2

𝜀
𝑥

1

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
, 𝜂 + 𝑦

0
| 𝑥
0
, 𝑦
0
) 𝑑𝜉) 𝑑𝜂

= 𝑝
𝑦

𝑊 (𝑥
0
, 𝑦
0
) , 𝑝

𝑦
<

𝑊
13

(𝑥
0
, 𝑦
0
)

𝑊 (𝑥
0
, 𝑦
0
)

,
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Figure 1: Gaussian target; statistics of 100000 random paths: surrogate pdf evolution and its OXY projection, displayed in the vertical order
for 𝑡 = 0.2, 𝑡 = 0.7, and 𝑡 = 15. The bottom subfigure refer to the asymptotic pdf (14). All trajectories were started form the origin (0, 0).
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Figure 2:We have displayed the𝑦 = 0 projection of the previous pdf
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𝑡 = 0.7, and (c) 𝑡 = 15; (d) a projection of the target pdf is depicted.
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0
| 𝑥
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) 𝑑𝜉
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𝜀
𝑥

2

𝜀
𝑥

1

𝐶
𝜇
𝑤
𝜙

(𝜉 + 𝑥
0
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0
| 𝑥
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𝑦
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) , 𝑝

𝑦
⩾

𝑊
13

(𝑥
0
, 𝑦
0
)

𝑊 (𝑥
0
, 𝑦
0
)

,

(13)

where 𝑊
12

(𝑥
0
, 𝑦
0
) = 𝑊

1
(𝑥
0
, 𝑦
0
) + 𝑊

2
(𝑥
0
, 𝑦
0
) and

𝑊
13

(𝑥
0
, 𝑦
0
) = 𝑊

1
(𝑥
0
, 𝑦
0
) + 𝑊
3
(𝑥
0
, 𝑦
0
), find 𝑏

𝑥
and 𝑏
𝑦

corresponding to the “transition channel” (𝑥
0
, 𝑦
0
) →

(𝑏
𝑥
, 𝑏
𝑦

).
(vi) Draw a new number 𝑞 ∈ (0, 1) from a uniform

distribution.
(vii) Reset time label 𝑡 = 𝑡 + Δ𝑡, where Δ𝑡 = − ln 𝑞/𝑊

(𝑥
0
, 𝑦
0
).

(viii) Reset (𝑥
0
, 𝑦
0
) to a new location (𝑥

0
≐ 𝑥
0

+ 𝑏
𝑥
, 𝑦
0

≐

𝑦
0

+ 𝑏
𝑦

), considered as a reference point for the
iterative procedure.

(ix) Return to step (ii), and repeat the procedure anew.

Remark 1. All precautions respected in 1D need to be
respected in 2D as well (cf. comment 1 in [12]).The following
jump size bounds (integration boundaries) were adopted for
exemplary numerical procedures to be described, 𝜀

𝑥

1
= 𝜀
𝑦

1
=

𝜀
1

= 0.001 i 𝜀
𝑥

2
= 𝜀
𝑦

2
= 𝜀
2

= 1, provided that one keeps in
memory our convention not to reproduce the 𝑥, 𝑦 index in
𝜀
𝑥,𝑦

1,2
anymore.

3. Statistics of Random Paths in 2D: Case
Studies of the PDF Evolution

Our main purpose in the present section is to analyze the
response of free Lévy noise to generic external potentials,
that has been previously found to be encoded in jump
transition rates. Now we address the same problem in a path-
wise fashion. We shall faithfully follow the outlined random
path generation procedure. Once suitable path ensemble data
are collected, we shall verify whether statistical (ensemble)
features of generated random trajectories are compatible with
those predicted by the master equation (7). This includes a
control of an asymptotic behavior 𝜌(𝑥, 𝑡) → 𝜌

∗
(𝑥) with

𝑥 ∈ 𝑅
2, when 𝑡 → ∞.

3.1. Harmonic Confinement: Gaussian Target. Let us pre-
scribe an asymptotic invariant pdf 𝜌

∗
to be in a 2D Gaussian

form:

𝜌
∗

(𝑥, 𝑦) =
1

𝜋
𝑒
−𝑥
2
−𝑦
2

. (14)

As an exemplary source of random noise we assume the
Cauchy driver, that is, 2D Lévy-stable noise with the stability
index 𝜇 = 1. Accordingly, the jump transition rate reads

𝐶
1
𝑤
𝜙

(𝜉 + 𝑥, 𝜂 + 𝑦 | 𝑥, 𝑦) =
1

2𝜋

𝑒
−𝜉
2
/2−𝑥𝜉−𝜂

2
−𝑦𝜂

(𝜉2 + 𝜂2)
3/2

. (15)

To generate sample paths of the process, we need first to
evaluate integrals of (15) over suitable integration volumes.
If the integration volume comprises 𝑥, 𝑦 which are close to
the jump size boundaries ±𝜀

1
, one develops a numerator

of an expression into Taylor series and keeps terms up to
the quadratic one. Errors induced by such approximation
procedure are marginal. On the other hand, if 𝑥, 𝑦 are
far away from ±𝜀

1
integrals (15) are amenable to standard

evaluation methods (like, e.g., Simposon’s one). To be more
explicit in this respect, let 𝜀

12
= 0.05. If |𝑎|, |𝑏|, |𝑐|, |𝑑| ⩽ 𝜀

12
;

then

∫

𝑏

𝑎

∫

𝑑

𝑐

𝑒
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2
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2
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𝑐
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2

− 1) /2) 𝜉
2
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2
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2

+ 𝜂
2

)
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6
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𝑖=1

I
𝑖
,

(16)

where

I
1
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𝑏

𝑎

∫

𝑑

𝑐

𝑑𝜉 𝑑𝜂

(𝜉2 + 𝜂2)
3/2
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𝑏

𝑎

(
𝑑

𝜉2√𝜉2 + 𝑑2
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𝑐

𝜉2√𝜉2 + 𝑐2
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Figure 3: Time evolution of (a) the first moment (average 𝑟 = √𝑥2 + 𝑦2 value), (b) secondmoment (mean value of 𝑟
2). All 100000 trajectories

originate from (0, 0).
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)
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𝑎 + √𝑎2 + 𝑐2
)) ,

I
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𝑏
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𝑦
2

− 1

2
(𝑏 ln(
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−𝑎 ln(
𝑑 + √𝑎2 + 𝑑2

𝑐 + √𝑎2 + 𝑐2
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(17)

Numerical routines were written in terms of C-codes [15].
In Figure 1 we have depicted the statistical data inferred

from 100 000 trajectories, for three running time instants 𝑡 =

0.2, 𝑡 = 0.7, and 𝑡 = 15, together with the asymptotic expres-
sion (14). The right-hand-side column depicts projections of
those data upon the 𝑂𝑋𝑌 plane. A substantial increase of the
analyzed ensemble data (like, e.g., 300000, 500000, or 10

6) is
merely amatter of the simulation time span and adds nothing
inspiring to the obtained behavior.

It is clear that the surrogate pdf evolution consistently
goes towards an invariant asymptotic pdf. We note a low-
ering and flattening of the maximum around (0, 0), in
consistency with the ultimate target outcome, whose height
directly follows from 𝜌

∗
(0, 0) = 1/𝜋. Visually accessible

inhomogeneities of circular shapes in OXY projections, are
a consequence of still relatively low number (100 000) of
sample paths data and approximations involved in evaluating
involved integrals. The shape of the top (initial) OXY projec-
tion is a consequence of the initial data choice.

Our problemhas a radial symmetry.Therefore in Figure 2
we depict a projection of the trajectory induced data upon
the 𝑦 = 0 plane. The projection shows as well a consistent
convergence towards the target pdf.

An additional control method for the path-wise inferred
pdf evolution addresses the time evolution and an asymptotic
behavior of the pdf moments ⟨𝑅(𝑡)⟩ and ⟨𝑅

2

(𝑡)⟩. Here ⟨𝑅(𝑡)⟩
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Figure 4: Cauchy target; surrogate pdf evolution inferred from 100000 sample trajectories and theOXY projection for running times (vertical
order) 𝑡 = 0.2, 𝑡 = 3, and 𝑡 = 500. The bottom subfigure refers to the target Cauchy pdf (19). In the course of simulations all trajectories were
started from (0, 0).
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Figure 5:The projection of the previous pdf data on the𝑦 = 0 plane,
at time instants 𝑡 = 0.2, 𝑡 = 3, and 𝑡 = 500. The latter curve actually
appears to coincide with the target pdf (asymptote) projection, at
least within adopted scales.

is the mean distance of (𝑥, 𝑦) points of a trajectory from the
origin (0, 0) at the running time instant 𝑡, while ⟨𝑅

2

(𝑡)⟩ is a
mean square distance from (0, 0). In view of

⟨𝑅⟩as =
1

𝜋
∬

R2
√𝑥2 + 𝑦2𝑒

−𝑥
2
−𝑦
2

=
√𝜋

2
≈ 0.886,

⟨𝑅
2

⟩
as

=
1

𝜋
∬

R2
(𝑥
2

+ 𝑦
2

) 𝑒
−𝑥
2
−𝑦
2

= 1,

(18)

the ⟨𝑅(𝑡)⟩ dynamics should set down at √𝜋/2, while this
is of ⟨𝑅

2

(𝑡)⟩ at 1. Figure 3 depicts the evolution of ⟨𝑅(𝑡)⟩

and ⟨𝑅
2

(𝑡)⟩, inferred from the simulated sample of 100000

jumping paths.
The observed convergence ⟨𝑅(𝑡)⟩ → 1/𝜋 and ⟨𝑅

2

(𝑡)⟩ →

1 validates the number generator choice we have used to
arrive at sample jumping paths.

3.2. Logarithmic Confinement: 2D Cauchy Target. We con-
sider the target pdf 𝜌

∗
in the 2D Cauchy form:

𝜌
∗

(𝑥, 𝑦) =
1

2𝜋

1

(1 + 𝑥2 + 𝑦2)
3/2

. (19)

Like previously, we take the Cauchy driver, 𝜇 = 1, as a
reference Lévy stable noise. Accordingly,

𝐶
1
𝑤
𝜙

(𝜉 + 𝑥, 𝜂 + 𝑦 | 𝑥, 𝑦)

=
1

2𝜋

1

(𝜉2 + 𝜂2)
3/2

(
1 + 𝑥
2

+ 𝑦
2

1 + (𝑥 + 𝜉)
2

+ (𝑦 + 𝜂)
2

)

3/4

.

(20)

Proceeding like in the Gaussian case, for small 𝜉 and 𝜂, (20)
can be approximated by

1

2𝜋

1

(𝜉2 + 𝜂2)
3/2

(1 −
3𝑥

2 (1 + 𝑥2 + 𝑦2)
𝜉

−
3𝑦

2 (1 + 𝑥2 + 𝑦2)
𝜂) ,

(21)

where terms linear in 𝜉 i 𝜂 were preserved. The result can be
analytically integrated term after term by employing (17).

Accumulated trajectory data have been analyzed to pro-
duce Figure 4, where a surrogate pdf evolution is displayed.
Figure 5 reproduces the 𝑦 = 0 projection of the obtained
pdf data. If compared with the 1D case analyzed in [12]
a convergence to Boltzmannian equilibrium (target pdf) is
substantially slowed down.

3.3. Locally Periodic Confinement in 𝑅
2. We consider target

pdf whose Boltzmannian exponent is locally periodic (within
a finite rectangle) and almost entirely localized within a
finite spatial area due to harmonically confining tails of the
potential:

𝜌
∗

(𝑥, 𝑦) =
1

𝐶

{{{{{

{{{{{

{

𝑒
−3sin2(2𝜋𝑥)sin2(2𝜋𝑦)

, |𝑥| ⩽ 2𝑖
𝑦

 ⩽ 2,

𝑒
−𝑥
2
−𝑦
2
+8

, |𝑥| > 2𝑖
𝑦

 > 2,

𝑒
−𝑥
2
+4

, |𝑥| > 2𝑖
𝑦

 ⩽ 2,

𝑒
−𝑦
2
+4

, |𝑥| ⩽ 2𝑖
𝑦

 > 2.

(22)

The normalization constant 𝐶 actually reads 𝐶 = 13.5921.
Subsequently adopted numerical integration routines

heavily rely on the experience gained during our previous
case studies. In Figure 6 we report the surrogate pdf evo-
lution, inferred from 100000 sample trajectories. A con-
vergence rate to the asymptotic (target) pdf is satisfactory,
although a reasonable agreement with the target data has
been achieved for relatively large running time values, here
𝑡 = 300.

We are aware of the fact that the number of 100000 tra-
jectories may be considered as a too small and not sufficiently
representative sample.Our tentative 300000 paths data do not
show significant qualitative changes in the obtained evolution
picture.

We should mention that there are significant statistical
fluctuations to be kept under control. They become very
conspicuous if the number of involved trajectories gets sig-
nificantly lowered by imposing constraints (like, e.g., various
spatial projections). All trajectory data, after being gathered,
are safely stored in the computer memory. Therefore we can
get access to any conceivable and more detailed statistical
picture of what is going on, even if the outcome is hampered
by significant random deviations from the reference (target)
pdf data.

A sample of such fluctuating data is provided in Figure 7,
where we have considered projections of the surrogate pdf
data upon planes 𝑦 = 0, 𝑦 = 1/4, and 𝑦 = 𝑥 at time 𝑡 = 300.
We have set them in a direct comparison with respective
target pdf (12) data.
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Figure 6: Locally periodic target; surrogate pdf evolution and its OXY projection inferred from 100000 trajectories at running time instants
(vertical order) 𝑡 = 0.2, 𝑡 = 3 and 𝑡 = 300. The bottom subfigure depicts the asymptotic pdf (22). All trajectories have been started from (0, 0).
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4. Outlook

Wehave taken into consideration jump-type processes which
cannot be handled by standard stochastic differential equa-
tion methods (e.g., the Langevin modeling, where a conspic-
uous motion “tendency” quantified by an additive drift term
can be unambiguously isolated from the noise contribution).
Existing popular algorithms cannot provide a direct numeri-
cal simulation of sample paths of such nonstandard processes.
In the present paper, we have proposed a working method to
generate stochastic trajectories (sample paths) of a random
jump-type process that avoids any reference to a stochastic
differential equation. An additional gain of that procedure is
that we are in fact capable of reliably approximating the time
evolution 𝜌(𝑥, 𝑡) of a true (typically not available in a closed
analytic form) solution of the master equation.

To this end we have modified the Gillespie algorithm,
[13, 14], normally devised for sample paths generation if
the transition rates refer to a finite number of states of a
system. The essence of our modification is that we take into
account the continuum of possible transition rates, thereby
changing the finite sums in the original Gillespie algorithm
into integrals. The corresponding procedures for stochastic
trajectories generation have been changed accordingly.

In other words, here we are able (i) to extract the
background sample paths of a jump process and (ii) to infer a
reliable approximation of an actual (analytically unavailable)
solution of the master equation (7)-(8). We emphasize once
more here that we have focused on those jump-type processes
that cannot be modeled by any stochastic differential equa-
tion of the Langevin type.

Although heavy-tailed Lévy stable drivers were involved
in the present considerations, we have clearly confirmed that
a large variety of stationary target distributions is dynamically
accessible for each particular 𝜇 ∈ (0, 2) Lévy driver choice.
That variety comprises not only the standard Gaussian pdf,
casually discussed in relation to the Brownian motion (e.g.,
the Wiener process), but the whole non-Gaussian family,
associated with the Lévy stable conceptual imagery.

Among heavy-tailed distributions, we have paid attention
to the Cauchy pdf which can stand for an asymptotic target
for any 𝜇 ∈ (0, 2) driver, provided a steering environment
(e.g., “potential landscape”) is properly devised. In turn, the
Cauchy driver, while excited in a proper environment, may
lead to an asymptotic pdf with an arbitrarily large number
of moments, the previously mentioned Gaussian case being
included.

An example of the locally periodic environment has been
considered as a toy model for more realistic physical systems.
Our major hunch are strongly inhomogeneous “potential
landscapes,” modeled by relatively smooth potentials. We
note that a radically extreme variant could comprise random
potentials of [16].

In connection with the master equation which was our
departure point let us stress that, even if various mean field
data are available in experimentally realizable systems, it is of
vital interest to gain some knowledge about the microscopic
dynamics (random paths) realized by the random system
under consideration. The detailed analysis of sample path

data with a focus on their specific features, like, for example,
ergodicity, mixing, or lack of those properties, deserves a
separate analysis. These goals can be achieved as well within
the present simulation framework. It suffices to reanalyze the
path-wise data we have collected and stored in the trajectory
generation process.
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