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Technological innovations can be assumed to have made the driving task more complex. It is, however, not yet clear to what extent
this complexity leads to changes in longitudinal driving behavior. Furthermore, it remains to be seen how these adaptation effects
can best be modeled mathematically. In order to determine the effect of complexity on empirical longitudinal driving behavior
we performed a driving simulator experiment with a repeated measures design. Through this experiment we established that
complexity of the driving task leads to substantial changes in speed and spacing. In order to provide insight into how complexity
is actually related to changes in longitudinal driving behavior we introduce a new theoretical framework based on the Task-
Capability-Interface model. Finally in this paper we take some first steps towards modeling of adaptation effects in longitudinal
driving behavior in relation to complexity of the driving task through the introduction of a new neurofuzzy car-following model
and based on the proposed theoretical framework. In this paper we show that this model yields a relatively good prediction of
longitudinal driving behavior in case of driving conditions with differing complexity. The paper finishes with a discussion section
and recommendations for future research.

1. Introduction

Technological innovations have increased the amount of
information provided by road side and in-vehicle informa-
tion systems dramatically. Systems such as adaptive cruise
control (ACC), navigation systems, smart phones, in-vehicle
and road side traffic information systems, and automatic lane
control (ALC) have shifted drivers from being a controller
of the driving task towards being a manager of information
while driving. This shift in the role of the driver can be
assumed to have made the driving task more complex.

This shift in the complexity of the driving task can
be assumed to have a substantial influence on longitudinal
driving behavior (i.e., driving behavior in the same lane) with
presumably an influence on traffic safety. In this sense, the
most compelling evidence of the influence of driving task

complexity on traffic safety may stem from crash statistics.
Violanti and Marshall [1] compared 100 randomly selected
US drivers involved in a crash over the last two years
with another 100 drivers who were not involved in crashes.
The results indicated a risk ratio of 5.6 : 1 for drivers who
talk more than 50 minutes per month on mobile phones.
Furthermore, in Redelmeier and Tibshirani [2] 70 drivers
who were mobile phone users and were involved in crashes
with substantial property damage were studied. Redelmeier
and Tibshirani reported the risk of a crash occurring being
4.3 times higher when using a mobile phone.

In addition, Tijerina et al. [3] investigated operating four
commercial navigation systems while driving on an oval
test track with traffic. In their experiment 16 drivers were
involved. From this study it followed that when operating
these devices drivers are often not looking at the road, and
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accident risk increased substantially. An important question
is, however, to what extent complexity of the driving task
actually influences empirical longitudinal driving behavior.
Therefore, the first research question of this paper is “to
what extent does complexity of the driving task influence
empirical longitudinal driving behavior, represented by
changes in speed v and following distance s?”

In order to answer this first research question we
performed a driving simulator experiment with a repeated
measures design among 25 participants. In a control condi-
tion, normal driving conditions were simulated, while in the
experimental condition complexity was added to the driving
task through the introduction of narrow lanes with road side
concrete barriers. Using the obtained driving simulator data
we statistically analyzed speed v and spacing s, providing
us with an indication of adaptation effects in longitudinal
driving behavior following a change in the complexity of the
driving conditions.

In the influence of complexity of the driving task
on longitudinal driving behavior, human factors may be
assumed to play a substantial role. Examples of likely
candidates in this context are mental workload (e.g., [4]),
situational awareness [5], and static driver characteristics
(e.g., age and driving experience). Drivers may, for example,
be distracted by the information which is provided to them
or distracted due to the need to operate the system and
consequently pay less attention to what the lead vehicles are
doing with an influence on their driving behavior (see, e.g.,
[6]). It is, however, not yet clear how these human factors
are actually related to the adaptation effects in longitudinal
driving behavior in relation to changes in the complexity
of the driving task due to the previously mentioned shift
in the role of the driver. In this sense in this paper,
we introduce a theoretical framework based on the Task-
Capability-Interface model by Fuller [7]. In this theoretical
framework adaptation effects in longitudinal driving behav-
ior, consisting of compensation and performance effects,
come forth from interactions between driver capability and
task demands.

Furthermore, it is not yet clear how the possible adap-
tation effects in longitudinal driving behavior following a
change in the complexity of the driving task should be
modeled mathematically. Modeling of driving behavior (i.e.,
car-following) is of high importance, as these mathematical
models form the core of microscopic simulation models.
These models are used to ex ante determine the influence
of for example information systems and new vehicular
technology on traffic flow operations, safety, and emissions.
However, current mathematical models of longitudinal
driving behavior insufficiently incorporate human factors.
As we argued in the aforementioned that human factors
may be assumed to play a substantial role in the occurrence
of changes in longitudinal driving behavior in relation to
complexity of the driving task, we conjecture that current
mathematical models of longitudinal driving behavior are
fundamentally inadequate to model these effects. Therefore,
the second research question is “in which way can the
influence of complexity of the driving task on longitudinal
driving behavior best be modeled mathematically?”

In order to answer the second research question, we
also take a first step towards modeling of the influence
of complexity of the driving task on longitudinal driving
behavior. We aimed at developing a new model based on
a neurofuzzy logic modeling approach including human
factors with structure and parametric learning using data
derived from the driving simulator experiment. In this sense
we determined the optimal model complexity and trained
this model with optimal complexity. Finally we compared the
predictions of the model with actual data.

The objective of this paper is therefore to experimentally
determine the influence of complexity of the driving task on
empirical longitudinal driving behavior as well as to develop
and test a new mathematical model aimed at modeling the
influence of complexity of the driving task on longitudinal
driving behavior.

In the next section we provide a brief state of the art.
In this section we present an overview of the available
research on the influence of the complexity of the driving
task on empirical longitudinal driving behavior. This section
is followed by the introduction of a theoretical framework
relating complexity of the driving task to longitudinal
driving behavior based on the Task-Capability-Interface
model by Fuller [7], followed by a discussion of mathematical
modeling of longitudinal driving behavior in relation to
complexity of the driving task.

The state of the art is followed by a presentation of the
research method. In this section we provide an introduction
to the driving simulator used in this study, followed by a
description of the driving environment developed for this
experiment, the characteristics of the participants, and the
data analysis method used to statistically determine the
effect of the complexity of driving conditions on empirical
longitudinal driving behavior. In the following section we
present the results with regard to the influence of driving task
complexity on adaptation effects in empirical longitudinal
driving behavior.

In the following section we describe the proposed
approach to modeling the influence of the complexity of
the driving task on longitudinal driving behavior, that
is, the neurofuzzy modeling approach. Here, we describe
the results of the structure and parametric learning, the
training of the model, and validation of the model through
a comparison of the predicted behavior versus the actual
longitudinal driving behavior in relation to complexity of
the driving task. This paper concludes with a discussion
section in which conclusions are drawn from the results and
recommendations for future research are provided.

2. State of the Art

2.1. Adaptation Effects in Empirical Longitudinal Driving
Behavior in relation to Complexity of the Driving Task.
Adaptation effects in longitudinal driving behavior due to
complexity may be assumed to be governed by compensation
and performance effects. Compensation effects entail the
assumption that drivers regulate their driving behavior in
order to compensate for any reduction in attention to the
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driving task. Very little research has been performed on
compensation effects in relation to complexity of the driving
task, as research is mainly focused on performance effects.
However, research strongly suggests that drivers do engage
in a range of conscious adaptations in their driving behavior
in order to maintain a certain level of risk [8]. Numerous
studies have shown that, at the operational level [9], drivers
aim at reducing their risk level during the use of in-vehicle
technology or due to external circumstances (e.g., adverse
weather conditions). Compensation effects in longitudinal
driving behavior may consist of speed reductions [8, 10, 11]
and changes in the distance to the lead vehicle [12, 13].

In Haigney et al. [8] it was shown that mean speed
decreased while participants were conversing on a mobile
telephone. More recent research carried out in a driving
simulator by Rakauskas et al. [11] also found that drivers’
mean speed decreased and their speed variability increased
while carrying out a conversation on a mobile phone. The
aforementioned speed reductions could be the result of
a modification of performance goals of drivers and the
acceptance of a suboptimal level of performance. Finally in
Strayer et al. [13] it was shown that conversing on a hands-
free mobile phone while driving led to an increase in the
distance to the lead vehicle.

Besides compensation effects due to changes in the
complexity of the driving task, adaptation effects in driving
behavior are also governed by performance effects (i.e., the
quality of conducting the driving task). For example, in
Brookhuis et al. [4] it was shown that significant effects were
found in telephone conversations while driving on rearview
mirror checking, the adaptation of speed to the speed of the
lead vehicle, and braking in reaction to decelerations of the
lead vehicle. In Makishita and Matsunaga [14] an experiment
was performed in which reactions of drivers in various
age groups were examined in order to assess the influence
of driving task complexity. In their research experiments
were performed on a simulated street in order to identify
drivers with large reaction times and drivers whose reaction
times are strongly affected by driving task complexity. The
results show that a secondary task (mental calculations)
increased average reaction times for all age groups. This
secondary task increased the differences between age groups
and individuals and increased differences in the drivers’
individual performance. Reaction times especially of elderly
drivers were affected substantially.

From the aforementioned it can be concluded that
complexity of the driving task (e.g., through the addition
of a secondary task) has a substantial influence on driving
behavior through compensation effects and performance
effects. However, as was mentioned before, research espe-
cially on conscious compensation effects following a change
in the complexity of driving conditions is scarce and focuses
mainly on mobile telephone conversations. It is therefore
crucial to gain more insight into the influence of complexity
of driving conditions on empirical longitudinal driving
behavior. Furthermore, from the available research it does
not become clear how these compensation and performance
effects in driving behavior are actually related to complexity
of the driving task. To this end in the next section we

introduce a new theoretical framework based on the Task-
Capability-Interface model by Fuller [7].

2.2. Introducing a Theoretical Framework Behavioral Adap-
tation to Changes in Complexity of Driving Conditions. In
the previous section we discussed the available research
on changes in driving behavior following a change in the
complexity of the driving task. It was concluded that it
may be assumed that complexity of the driving task has
a substantial influence on longitudinal driving behavior,
although research is quite scarce. The aforementioned,
however, does not yet inform us how these changes in
driving behavior are actually related to complexity of the
driving task. To this end in this section we introduce a new
theoretical framework.

In the proposed theoretical framework based on the
Task-Capability-Interface model by Fuller [7], external cir-
cumstances (such as road design, weather interactions with
other vehicles, roadside traffic management measures, and
in-car technology) determine the complexity of the driving
task. Complexity may have an influence on driver capability,
moderated by driver characteristics, as well as on task
demands. Therefore, in the proposed theoretical framework
driving task difficulty comes forth from a dynamic interface
between the demands of the driving task and the capability
of the driver (see Figure 1).

In this context, Fuller [7] mentions that driver capa-
bilities are restricted by biological personal characteristics
of the driver as well as by driving experience. However,
these capabilities due to biological personal characteristics
(e.g., age, gender, and ethnicity) and driving experience
alone do not determine the total temporal capabilities of
the driver, as more dynamic variables play a substantial role
as well. An example of a dynamic driver characteristic is
activation level. Activation level is defined as the individuals
degree of energy mobilization [15]. Activation level has been
shown to have a substantial influence on driving behavior.
For example, in Matthews et al. [16] the hypothesis was
tested whether activation level is associated with driving
performance. Eighty young adult participants performed
a simulated test drive concurrently with a reasoning task.
The data indicated that performance was characterized by
adaptive mobilization of effort in order to meet the changing
task demands. Drivers with a high activation level adapted
to high levels of demand fairly efficiently, but were at risk of
performance reduction when the task required little effort.

Another important determinant influencing driver capa-
bility is distraction. It can be assumed that in case of
distraction (e.g., due to mobile telephone conversations
while driving) driver capability will be reduced [4]. It can be
assumed that especially driver distraction plays a substantial
role in adaptation effects in driving behavior in relation to
complexity of the driving task due to the shift in the role of
the driver.

As is the case with driver capabilities, driving task
demands are also related to a multitude of elements [7].
However, important elements in task demands are the
elements over which the driver of the vehicle has direct
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Figure 1: Theoretical framework of adaptation effects in longitudinal driving behavior in relation to complexity.

control. These conscious actions of the driver are in the
ensuing referred to as compensation effects. Here, speed of
the vehicle is clearly the most significant element: the faster a
driver is moving, the less time is available to perceive stimuli,
process information, and make decisions. As Taylor [17]
regards the driving task as self-paced, driving task demand is
in a fundamental way under the control of the driver through
speed selection.

When drivers fail the driving task, a loss of control can be
observed as a consequence. Thus, in essence, task difficulty is
inversely proportional to the difference between task demand
and the capability of the driver. According to Fuller [7],
at the threshold where task demand begins to exceed the
capability of the driver, a fragmented degradation of the
driving task is to be expected. Fuller [7] continues by stating
that with a static level of capability, any event that increases
task demand will therefore reduce this critical difference,

increase task difficulty, and potentially influence driving task
performance.

In sum, changes in driver capability or task demands
related to complexity (due to, e.g., in-vehicle systems or
roadside traffic management measures) are expected to lead
to compensatory changes in driving behavior (see also [4]).
When these compensatory reductions are insufficient in
order to balance task demand with driver capability, driving
performance will suffer (performance effects).

2.3. Mathematical Models of Longitudinal Driving Behavior
in relation to Complexity of the Driving Task. In the previ-
ous sections we discussed the available knowledge on the
influence of complexity of the driving task on longitudinal
driving behavior and proposed a new theoretical framework
relating changes in driving behavior to complexity. This
does not, however, yet inform us how adaptation effects
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in longitudinal driving behavior due to changes in the
complexity of the driving task can best be modeled. To
this end in the present section a brief overview is provided
on current mathematical models of longitudinal driving
behavior in relation to complexity of the driving task. In this
context we will start with discussing a few often used models
in which we will show that current models insufficiently
incorporate human factors.

The GHR model [18] is perhaps the most well-known
model of longitudinal driving behavior and dates from the
late fifties and early sixties. The model is expressed in the
following equation:

a(t) = cvm(t)
Δv(t − τ)
Δxl(t − τ)

. (1)

In (1) a is the acceleration of a vehicle implemented at
time t and is proportional to the speed v, relative speed Δv
(speed difference with the lead vehicle), and relative distance
to the lead vehicle Δx (distance headway) assessed at an
earlier time t − τ. In this equation τ represents the reaction
time of the driver. Furthermore, in this equation m, l and
c are the parameters to be determined. As acceleration a is
dependent on relative speed Δv and relative distance Δx this
model can be qualified as a stimulus-response model.

From this model it can clearly be observed that human
factors are to a very limited degree incorporated. The only
human factor that is incorporated in the GHR model [18] is
a finite reaction time.

An alternative approach to car-following modeling was
taken by Treiber et al. [19]. Their Intelligent Driver Model
(IDM) was developed as the models developed up to this
point had unrealistically small acceleration and deceleration
times (e.g., in case of Bando et al. [20]) and because the
more high fidelity models like the Wiedemann model [21]
have too many parameters. Furthermore, Treiber et al. [19]
conjectured that most models do not adequately incorporate
traffic flow phenomena, such as traffic instabilities and
hysteresis.

Acceleration in the IDM [19] is a continuous function
incorporating different driving models for all speeds in
freeway traffic as well as city traffic [22]. Besides the following
distance Δx and speed v the IDM [19] also takes relative
speed Δv into account. The IDM acceleration is given by

a = amax

[
1−

(
v

v0

)δ
−
(
s∗(v,Δv)

Δx

)2
]

,

s∗(v,Δv) = s0 + vT +
vΔv

2
√
amax bmax

.

(2)

The expression combines a free flow acceleration regime
a[1 − (v/v0)δ] with a deceleration strategy −a(s∗/Δx)2.
The latter becomes relevant when the distance to the
lead vehicle Δx is not significantly larger than the desired
distance to the lead vehicle s∗. The free flow acceleration is
characterized by free speed v0, maximum acceleration amax,
and the component δ. The component δ characterizes how
acceleration decreases with speed.

The desired distance to the lead vehicle s∗ is composed of
a minimal stopping distance (jam distance) s0, and a speed

dependent distance vT . This corresponds to following the
lead vehicle with a constant desired time headway T and a
dynamic contribution which is only active in nonstationary
traffic conditions. This implements an “intelligent” driving
behavior that, in normal situations, limits braking decelera-
tions to the maximum deceleration bmax [22].

A good step towards the incorporation of human factors
in car-following models was taken by Tampere et al. [23]
as in their macroscopic flow model finite reaction times,
anticipation and driving style variations (i.e., attention level)
were incorporated. In their gas-kinetic model the general law
for the conservation of probability was transformed through
use of the method of moments. Through this method the
following macroscopic traffic flow model was derived:

∂k

∂t
+
∂kV

∂x
=
(
dk

dt

)
event

,

∂kV

∂t
+
∂
(
kV 2 + kθ

)
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v

+
(
dkV

dt

)
event

.

(3)

In these equations k denotes the density, V denotes the
speed, and θ denotes the distribution of speed. Driving
style variations were implemented by characterizing an
individual’s state not only by the individual speed v and the
distance to the lead vehicle, but also by the attention level a.
Again the authors use the method of moments in order to
obtain the speed dynamic equation [23]:

∂A

∂t
+ V

∂A

∂x
=
〈
da

dt



v,a

+
1
k

∫
a

∫
v
a

(
dρ

dt

)
event

dv · da− A

k

(
dk

dt

)
event

.

(4)

In (4) the first term on the right represents the effect of
driver induced changes in the attention level A. The second
term represents the effect due to events in the flow while the
last term represents the redistribution of the total attention
level A over the population k in case the density does not
remain constant [23].

From this section it can be concluded that in its current
form, current mathematical models such as the GHR model
[18] and the IDM [19] insufficiently incorporate human
factors (e.g., attention level, mental workload, and personal
characteristics of drivers) and can therefore assumed to be
less adequate in describing the effect of complexity of the
driving task on longitudinal driving behavior and traffic flow
operations. These elements are, to some extent, incorporated
in the macroscopic traffic flow model by Tampere et al. [23].
As this is a macroscopic model, individual changes in driving
behavior can be less adequately observed. Furthermore, this
model lacks a thorough theoretical framework.

In Hoogendoorn et al. [24] we therefore proposed a
new car-following model based on the theoretical framework
discussed in this section. Besides the theoretical framework,
this model was based on the previously discussed Intel-
ligent Driver Model [19]. In the proposed model it was
assumed that compensation effects and performance effects
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in longitudinal driving behavior following a change in the
complexity of the driving task come forth from the difference
between task driver capability and task demands at a certain
time instant. The difference between task demands and
driver capability md(t) at time t is formulated as follows:

md(t) = mt(t)−mc(t). (5)

In this equation mc(t) represents driver capability, while
mt(t) represents task demands of a driver at time t. In the
proposed model it was assumed that −1 < md(t) < 1. A
driver will try to minimize the difference between driver
capability and task demands, by exerting influence of those
elements in driving behavior over which he has direct control
(compensation effects). We assumed in the proposed model
that a driver has direct control over maximum acceleration
amax, maximum deceleration bmax, free speed v0, and desired
time headway T (see also [25]). This is mathematically
formulated as follows:

a(t)=
((
−md(t)3amax

)
+ amax

)

×
⎡
⎢⎣1−

⎛
⎝ v(t)(
−md(t)3v0

)
+v0

⎞
⎠
δ

−
(
s∗(v(t),Δv(t))

Δx(t)

)2
⎤
⎥⎦,

s∗(v(t),Δv(t))

=s0 +v
((

md(t)3T
)

+T
)

+
v(t)Δv(t)

2
√((

−md(t)3amax

)
+amax

)((
−md(t)3bmax

)
+bmax

) .
(6)

In these equations it was shown that the contribution
of maximum acceleration amax, maximum deceleration bmax,
free speed v0, and desired time headway T to the IDM
acceleration a is dependent on the difference between task
demands and driver capability md. The effect of md on amax,
bmax, v0, and T is assumed to be cubic.

Besides these conscious compensation effects, the adap-
tation of the Task-Capability-Interface model [7] also
assumed that when a driver is unable to resolve the imbalance
between driver capability and task demands, performance
effects will occur. It is assumed that the difference between
driver capability and task demands is related to performance
effects with an inverted U-shaped function (see also [4]):

mp(t) = −
(
αm2

d + βmd + γ
)
. (7)

In this equation mp represents the performance effects in
driving behavior due to complexity of the driving task at time
t. Furthermore, in the equation α, β and γ are parameters.

Integrating performance effects into the Intelligent
Driver Model [19] yields the following equations:

a(t) =
(

1−mp(t)
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v(t)Δv(t)

2
√((

−md(t)3amax

)
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)((
−md(t)3bmax

)
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) .
(8)

From Hoogendoorn et al. [24] it followed that the
model showed quite well the influence of the difference
between task demands and driver capability on longitudinal
driving behavior and that the model was also able to
provide a relatively adequate explanation for the so-called
capacity funnel phenomenon as well as the influence of
an optimal amount of information provision and informa-
tion overload on driving behavior and macroscopic traffic
flow operations. However, one of the main problems is
to actually estimate changes in task demands and driver
capability following a change in the complexity of the driving
task. For instance, how does using a navigation system
influence the balance between task demands and driver
capability.

To determine these relationships in this paper we propose
a new car-following model based on a neurofuzzy network
approach. We chose this approach as a neurofuzzy network
modeling approach allows for learning of the model struc-
ture and enables the establishment of relationships between
stimuli and output variables. However, before presenting
this model more insight is needed into the influence of
complexity on empirical driving behavior. To this end in
the following section the research method of the driving
simulator experiment is presented.

3. Research Method

In the previous section we discussed the available research
on changes in driving behavior following a change in the
complexity of the driving task and proposed a new theo-
retical framework aimed at relating complexity to changes
in driving behavior. The introduction of the theoretical
framework was followed by a discussion of the available
mathematical models of driving behavior in relation to
complexity. We concluded that human factors are not
incorporated in these models and can therefore be assumed
to be fundamentally inadequate in describing adaptation
effects following a change in the complexity of the driving
task.

However, in order to be able to propose an adequate
mathematical model of longitudinal driving behavior in
relation to complexity of the driving task, more insight
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(a) (b)

Figure 2: Driving environment developed for the purpose of the experiment. On the left the control condition is displayed, while on the
right the experimental condition is displayed.

was needed into the extent to which complexity of the
driving task actually influences empirical longitudinal driv-
ing behavior. To this end in the present section we
present the research method. In this sense we present the
experimental design, followed by an introduction into the
used driving simulator and a presentation of the devel-
oped driving environment. This section is followed by a
description of the research sample and the data analysis
method.

3.1. Experimental Design. All participants participated in the
experimental condition as well as in the control condition,
rendering up a complete within-subjects design. Adaptation
effects in longitudinal driving behavior, represented by
adaptations in speed v and spacing s, were measured through
registered behavior in the driving simulator at a sampling
rate of 10 samples per second during both conditions.

3.2. The Driving Simulator and Driving Environment. The
fixed-base driving simulator consists of three screens placed
at an angle of 120 degrees, a driver’s seat mockup, and
hardware and software interfacing of this mockup to a central
computer system. From the driver’s seat the view consists
of a projection of 210 degrees horizontally and 45 degrees
vertically. The software was developed by ST Software.

For the purpose of the experiment, a driving environ-
ment was developed consisting of three segments. The first
segment consisted of a short test drive through a suburban
area to accustom participants to driving in a driving
simulator and also to investigate whether the participants
were prone to simulator sickness.

The other two segments were used in the experiment.
These test trials took place on a virtual motorway with three
lanes in the same direction. The length of the three segments
combined was 9.45 km. In the control condition normal
driving conditions with a medium density were simulated,
while in the experimental condition narrow lanes and
roadside concrete barriers were applied aimed at increasing
the complexity of the driving task (Figure 2). Traffic with a
medium intensity was simulated. The behavior of the other
vehicles was derived from a pilot study and consisted of larger
values of spacing s as well as a reduction in speed s.

3.3. Participants and Data Analysis Method. The research
population consisted of 25 employees and students of
Delft University of Technology (16 male and 9 female
participants). The age of the participants varied from 22 to
54 years with a mean age of 29.68 years (SD = 6.93). Driving
experience varied from 1 to 35 years with a mean of 9.6 years
(SD = 7.50).

Adaptation effects were analyzed through a comparison
of the indicators of longitudinal driving behavior (i.e., speed
v and spacing s) between the control and the experimental
condition using a paired samples t-test with a significance
level of 0.05.

4. Results of Driving Task Complexity and
Empirical Longitudinal Driving Behavior

In the previous section we presented the research method
aimed at establishing the influence of complexity of the
driving task (i.e., concrete barriers with narrow lanes) on
empirical longitudinal driving behavior. In this context, the
first research question was “to what extent does complexity
of the driving task influence empirical longitudinal driving
behavior, represented by changes in speed v and spacing s?”

From the paired samples t-test it followed that a signifi-
cant reduction in mean speed in the experimental condition
(M = 77.80, SD = 12.64) compared to the control condition
(M = 100.84, SD = 16.12) could be observed, t(24) =
4.23,P < .05. As an illustration individual speeds and mean
speeds along with the standard deviations are displayed in
Figure 3.

Spacing s also showed a significant difference between
the control and the experimental condition. In the control
condition mean spacing amounted to 15.44 m (SD = 27.04),
while in the experimental condition it amounted to 39.94 m
(SD = 31.44). The difference between the two conditions was
significant, as t(24) = 9.88, P < .05.

This leads to the conclusion that a change in the
complexity of the driving task (i.e., narrow lanes and
roadside concrete barriers) leads to substantial and signifi-
cant compensation effects in longitudinal driving behavior,
represented by a significant reduction in speed v and spacing
s.
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Figure 3: Individual speeds and mean speeds along with the standard deviation (expected value plus or minus the standard deviation) in
case of normal and complex driving conditions. The dotted line indicates where the complex driving condition started.

5. Neurofuzzy Modeling of Longitudinal
Driving Behavior in relation to
Complexity of Driving Conditions

In the proposed theoretical framework we stated that
complexity of the driving task has an influence on longi-
tudinal driving behavior through task demands and driver
capability. Indeed, it was established through the driving
simulator experiment that complexity of the driving task
has a substantial influence on empirical longitudinal driving
behavior.

These adaptation effects in empirical longitudinal driv-
ing behavior due to a change in the complexity of the driving
task reported in the previous section, however, do not inform
us how these adaptation effects can best be modeled. In this
sense the second research question was “in which way can the
influence of complexity of the driving task on longitudinal
driving behavior best be modeled mathematically?” In the
state of the art we discussed several car-following models and
concluded that these models, in general, can be assumed to
be less adequate in describing longitudinal driving behavior
in relation to complexity of driving conditions as they
insufficiently incorporate human factors. In this sense we
also briefly discussed the model introduced in Tampere et al.
[23]. We argued that this model, as it is a macroscopic flow
model, is less adequate in showing the influence of individual
driving behavior and lacks a theoretical framework.

We also discussed the adaptation of the Intelligent
Driver Model [19] as proposed in Hoogendoorn et al. [24].
Although this model shows relatively well the influence of
the difference between task demands and driver capability
as proposed in the theoretical framework, the main problem
of this model is to actually estimate the influence of com-
plexity of driving conditions on the difference between task
demands and driver capability and ultimately longitudinal
driving behavior. Therefore, in order to model adaptation

effects in longitudinal driving behavior in relation to com-
plexity of the driving task we propose a neurofuzzy modeling
approach using a Takagi-Sugeno fuzzy architecture [26] and
based on the proposed theoretical framework (difference in
task demands and driver capability). In the next section we
will start with an introduction into this approach.

5.1. An Introduction into Neurofuzzy Logic Modeling. A
Takagi-Sugeno fuzzy inference system [26] consists basically
of a set of r rules, such as

if x1 is A1
1 and x2 is A1

2 · · · and xn is a1
n

then y1 = f 1(x1, x2, . . . , xn)

...

if x1 is Ar
1 and x2 is Ar

2 · · · and xn is arn

then yr = f r(x1, x2, . . . , xn).

(9)

The antecedent of this equation is defined as a fuzzy
AND proposition, where Ai

j is a fuzzy set on the jth premise

variable defined by the membership function μij = �n →
[0, 1]. The consequent is a function f i with i = 1, . . . , r of
the input vector [x1, x2, . . . , xn]. Through the fuzzy sets Ai

j

the input is divided into smaller regions where the mapping
is approximated by the models f i. A weighted mean is
used to recombine all the local representations in a global
approximation:

y =
∑r

i=1 μ
i y1∑

μi
. (10)

In (10) μi represents the degree to which the ith rule is
fulfilled. However, when the consequent is a linear model, for
instance, in case of predicting accelerations, the system can
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be used to return a local linear approximation of a generic
point of the input domain. Suppose that we have the input
x̂ = [x̂1, x̂2, . . . , x̂m]. In this case (10) will return a linear
approximation of flin(x̂):

flin(x̂) =
∑r

i−1 μ
i
(∑n

j=1 pi j x̂ j + pi0
)

∑
μi

. (11)

In the aforementioned traditional approach to fuzzy
systems the membership functions and models are fixed
according to prior knowledge (expert opinions). However,
when this knowledge is (not yet) available, the components
(given a certain data set) can be represented in a parametric
form and the parameters are tuned through a learning
procedure. In this case the fuzzy system turns into a
neurofuzzy approximator [27]. In neurofuzzy systems, two
types of learning are required, namely,

(i) structural learning;

(ii) parameter learning.

The first aims at finding a suitable number of rules and a
proper partition of the input space (membership functions).
Given an optimal structure, a neurofuzzy approximator
searches for the optimal membership functions together with
the optimal parameters of the consequent models.

5.2. Structure and Parameter Learning. We started with
creating an input-output matrix with speed v, following
distance s and relative speed Δv as inputs of the system
derived from the driving simulator data discussed previously
in this paper. Additionally we added a variable to the
input-output matrix representing the difference between task
demands and driver capability Co as input (as proposed
in the previously discussed theoretical framework). In case
of normal driving conditions a 0 was attributed to this
variable while in case of a complex driving task (i.e., concrete
barriers and narrow lanes) a 1 was attributed. This represents
an increase in task demands following an increase in the
complexity of the driving task (see also (5)). As output of
the system we added acceleration a to the matrix. The input
and output variables were all scaled between −1 and 1.

With regard to the structure of the neurofuzzy logic
car-following models there may be a lot of different
structure/parameter combinations which provide a feasible
solution. We therefore aimed at finding the solution which
provides the best performance in terms of generalization
[28]. In the approach used in this paper we chose to use
the number of rules as a measure of model complexity. To
this end we adopted an incremental approach where different
architectures with different levels of model complexity
are assessed and cross-validated. The initialization of the
architecture is provided by a hyperellipsoidal fuzzy clustering
procedure [29]. In [29] it is proposed to cluster the data
in the input-output domain through which a set of hyper-
ellipsoids is obtained. This set can be regarded as a coarse
representation of the input-output mapping.

Methods for initializing the parameters of a neurofuzzy
system were derived from the procedure described in [30].

In the present paper we used the eigenvectors of the scatter
matrix to initialize the parameters of the consequent func-
tions f i. Furthermore, we projected the cluster centers on the
input domain to initialize the centers of the antecedents and
adopted the scatter matrix in order to compute the width of
the membership functions.

In the parametric estimation the best set of parameters
was searched for by minimizing the sum-of-squares cost
function JM dependent solely on the training data set. As
the model proposed in this paper is a linear model, the
minimization procedure was decomposed into a least squares
problem to estimate the linear parameters of the consequent
models f i [31] and a nonlinear minimization (Levemberg-
Marquant) to find the parameters of the membership
functions Ai

j [27] (see also (9)). In this context in this paper
we used triangular-shaped membership functions of the
antecedents. Mathematically, these membership functions
can be formulated as follows:

μi(x) =
n∏
j=1

max

⎛
⎝0, 1−

∣∣∣xj − cij
∣∣∣

bij

⎞
⎠. (12)

The consequent model is mathematically formulated as
follows:

yi =
n∑
j=1

pi j x j + pi0. (13)

We determined the best model structure (related to the
number of rules in the model) by gradually increasing the
number of local models. Next we compared the different
model structures in relation to their performance JCV using
a K-fold cross-validation [32]. We used a high proportion
of the training data to determine the structure and the
used method provided us with reliable estimates of the
performance in generalization.

In Figure 4 the cross-validation versus complexity dia-
gram is displayed. As was previously stated we chose the
model with the lowest cross-validation error.

This leads to the conclusion that 6 rules provide the best
model complexity:

if x1 is A1
1 and x2 is A1

2 · · · and xn is a1
n

then y1 = f 1(x1, x2, . . . , xn)

...

if x6 is A6
1 and x2 is A6

2 · · · and xn is a6
n

then y6 = f 6(x1, x2, . . . , xn).

(14)

As was mentioned before, with regard to the structure
learning, we aimed at determining the membership func-
tions, represented by the values of the centers cij and the bases

bij (see (12)). In Tables 1 and 2 the values of the centers cij
and bases bij are displayed, respectively. Note that i represents
the number of the rule in the model, while j represents,
respectively, the difference between task demands and driver
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Figure 4: Cross-validation error versus complexity diagram. On
the horizontal axis the number of rules is displayed, while on the
vertical axis the cross-validation error is displayed.

Table 1: Results of estimation of cij for the membership functions
of the antecedents.

cij j = 1 j = 2 j = 3 j = 4

i = 1 0.2671 0.2970 0.1258 −0.0586

i = 2 0.0042 0.9617 0.2265 −0.2185

i = 3 0.0056 0.8374 0.2332 0.1199

i = 4 0.0065 0.4219 0.8657 0.8456

i = 5 0.0596 0.2392 0.0822 −0.1867

i = 6 0.0278 0.2524 0.0796 −0.2273

Table 2: Results of estimation of bij for the membership functions
of the antecedents.

bij j = 1 j = 2 j = 3 j = 4

i = 1 1.4656 1.3729 1.7483 1.9349

i = 2 1.9915 1.8448 1.5469 2.2208

i = 3 1.9887 1.5963 1.5334 2.2399

i = 4 1.9869 0.9362 1.7228 3.6481

i = 5 1.8806 1.4886 1.4330 2.1912

i = 6 1.9443 1.4620 1.8406 2.2723

Table 3: Results of estimation of the parameters pi j and pi0 for the
consequences.

pi j j = 1 j = 2 j = 3 j = 4 pi0

i = 1 0.0000 5.1062 −22.2048 5.3034 4.9813

i = 2 0.0000 16.0963 −0.6176 2.5492 −11.7322

i = 3 0.8418 0.4348 −0.3756 0.3211 0.8418

i = 4 0.8095 2.7108 −0.3812 0.0757 0.8095

i = 5 0.0000 −2.9923 20.9578 −7.1156 2.4450

i = 6 0.0000 −1.5716 2.0211 −0.6674 1.2252

capability Co, speed v, distance to the lead vehicle s, and
relative speed Δv.

Using the data from the driving simulator experiment we
therefore aimed at estimating the parameters pi j and pi0 for

the consequences. In Table 3 the results of the estimation of
these parameters are displayed.

5.3. Neurofuzzy Prediction of Acceleration. The model struc-
ture and the value of the parameters, however, do not yet
inform us to what extent this model actually provides a
good prediction of accelerations in relation to complexity of
the driving task. To this end we compared the accelerations
of one driver given the established optimal complexity of
the fuzzy architecture, the centers cij and bases bij of the
membership functions, and the parameters pi j and pi0 of the
consequences to data from the driving simulator experiment.

In Figure 5 we provide two examples of the results
for one individual driver. In the left graph the output of
the fuzzy logic architecture is compared to the data from
the driving simulator experiment under normal driving
conditions while in the right graph the output is compared
to the data from the driving simulator experiment under
complex driving conditions. For convenience purposes in the
graphs the scaled accelerations are shown. In the graphs the
blue line represents the output accelerations from the fuzzy
logic architecture, while the red line represents the scales’
accelerations from the driving simulator experiment.

From Figure 5 it can be observed that overall the
output of the fuzzy logic architecture resembles the actual
accelerations of the driving simulator experiment fairly good,
although in some cases the output of the architecture is
somewhat less extreme. From an independent samples t-test
it followed that the difference between the predictions and
the driving simulator data was not significant (P > .05).

In this section we proposed a new car-following model
able to model the influence of complexity of the task on
longitudinal driving behavior using a neurofuzzy architec-
ture and based on the Task-Capability-Interface model by
Fuller [7]. We determined the optimal model complexity
and determined the values of the centers and bases of the
membership functions as well as estimated the parameters
for the consequences. Finally we compared the output of
the model to the actual data. We showed that the model
provides a relatively good representation of accelerations
under normal and in case of a complex driving task.

6. Discussion

Due to the technological innovations the amount of infor-
mation directed at road users has increased substantially
leading to shift in the role of the driver. Following this
development the driving task is becoming more complex.
Research has shown that complexity may be assumed to lead
to adaptation effects in driving behavior although research is
scarce and mainly focused on the use of mobile telephones
while driving. Furthermore, a thorough theoretical frame-
work on behavioral adaptation following a change in the
complexity of driving conditions was lacking. Finally it was
not yet clear how the adaptation effects in driving behavior in
relation to complexity of the driving task can best be modeled
mathematically.
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Figure 5: Scaled accelerations from the neurofuzzy acceleration model (blue line) and scaled accelerations from the driving simulator
experiment (red line) for one driver. The left graph represents normal driving conditions, while the right graph represents complex driving
conditions.

To this end we conducted a driving simulator experiment
aimed at simulating the influence of a change in the
complexity of the driving task on empirical longitudinal
driving behavior (i.e., driving behavior in the same lane).
Through this experiment we established that complexity of
the driving task has a significant influence on speed v and
spacing s. In our experiment speed v was significantly lower
in the experimental conditions compared to the control
condition, while spacing s was significantly higher in the
experimental condition compared to the control condition.

In order to explain the adaptation effects in longitudinal
driving behavior following a change in the complexity of
the driving task we introduced a new theoretical framework
based on the Task-Capability-Interface model by Fuller [7].
In this model adaptation effects in driving behavior come
forth from the dynamic interface between task demands and
driver capability following a change in the complexity of the
driving task.

This framework was used as a basis for the proposed
mathematical model of longitudinal driving behavior in rela-
tion to complexity. In the proposed mathematical model we
used a neurofuzzy architecture with structure and parameter
learning. We used this method as current mathematical
models insufficiently incorporate human elements. The
models which can be regarded as a good step towards the
incorporation of human elements either lack a theoretical
framework or are less adequate in determining the influence
of the complexity of the driving task on task demands and
driver capability (e.g., [24]).

In the context of the neurofuzzy approach we started with
determining the optimal model complexity, after which we
estimated the bases and centers of the membership functions
of the antecedents and the parameters of the consequences.
Finally we compared the proposed model to actual data
derived from the driving simulator experiment. We showed

that the accelerations under normal driving conditions as
well as complex driving conditions resemble the actual
accelerations fairly well.

From a human factors point of view the model is still
quite limited as we only incorporated the difference between
task demands and driver capabilities in the model. Also the
difference between task demands and driver capabilities was
fixed according to the conditions. We therefore recommend
to extend the model through adding human factors, such
as activation level, the level of distraction, age, and driving
experience as input into the neurofuzzy architecture. This
allows for a more adequate approximation of driver capabil-
ity and task demands.

Furthermore, the model does not make an explicit
distinction between compensation effects and performance
effects following a change in the complexity of the driving
task. Future research should therefore also focus on detailed
analyses of driving behavior under different levels of driving
task complexity. The results of these analyses can then be
used as training data for the neurofuzzy logic car following
model.

In this context, attention should be given to behavioral
explanations of the rules incorporated in the model. This can
be achieved through a more elaborate analysis of the model.
Finally, a very limited dataset was used in order to determine
the optimal model complexity and perform the estimations.
In this sense we recommend to conduct future research in
which a more elaborate data set is used, in which different
kinds of complexity are incorporated.
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