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Abstract We consider the cosmological implications of a
gravitational theory containing two vector fields coupled via
a generalized Chern–Simons term. One of the vector fields
is the usual Maxwell field, while the other is a constrained
vector field with constant norm included in the action via a
Lagrange multiplier. The theory admits a de Sitter type solu-
tion, with healthy cosmological perturbations. We also show
that there are seven degrees of freedom that propagate on
top of de Sitter space-time, consisting of two tensor polar-
izations, four degrees of freedom related to the two vector
fields, and a scalar degree of freedom that makes one of the
vector fields massive. We investigate the cosmological evo-
lution of Bianchi type I space-time, by assuming that the
matter content of the Universe can be described by the stiff
and dust. The cosmological evolution of the Bianchi type I
Universe strongly depends on the initial conditions of the
physical quantities, as well as on the model parameters. The
mean anisotropy parameter, and the deceleration parameter,
are also studied, and we show that independently of the matter
equation of state the cosmological evolution of the Bianchi
type I Universe always ends in an isotropic de Sitter type
phase.

1 Introduction

One of the most interesting findings of modern cosmology
is that our Universe is in a phase of accelerated expansion
[1–4]. To explain this fundamental observation, one has to
adopt a theory of gravity that admits an accelerating solu-
tion. Historically, such a solution was first obtained by the
addition of the cosmological constant to the Einstein grav-
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itational field equations. But we now know that gravita-
tional models assuming the existence of the cosmological
constant suffer from some theoretical problems, such as, for
example, the fine tuning problem [5]. An alternative way to
explain the recent acceleration of the Universe is to mod-
ify the dynamics of general relativity, such that the self-
accelerated expansion is obtained from the modified Einstein
gravitational field equations. There are two ways to achieve
this goal. The first one is to generalize the Einstein–Hilbert
action, such as in f (R) theories [6,7], or, more generally,
in f (R, Q) theories where Q can be any scalar combina-
tion of the curvature tensor/energy-momentum tensor [8–
14]. However, these theories are generically unstable [15,16].
The second possibility is enriching the graviton itself, such
that it admits more than two degrees of freedom [17–20],
and constructing the massive gravity theory. In the latter
case, the helicity-0 mode of the massive graviton acts as a
repulsive gravity and produce an accelerated expanding solu-
tion.

An alternative way to produce an accelerated expanding
Universe is to add some light degrees of freedom to the theory
of general relativity. This can be considered as an addition of
some matter degrees of freedom to the theory. The simplest
possibility is to add a scalar field such that its equation of state
mimics the equation of state of the cosmological constant,
e.g. p+ ρ ≈ 0. This can be achieved by adding some higher
powers of first derivative kinetic terms [21,22], or by adding a
potential term of the scalar field to the theory [25,26]. Much
work has been done in the context of scalar field cosmol-
ogy, including inflationary [27–29] and dark energy models
[30–32]. Recently, an interesting scalar field theory was pro-
posed, which has higher than second order terms in the time
derivative interactions in the action, although their equations
of motion remains at most second order [33–35]. The cos-
mological implications of the Horndeski type theories have
been extensively investigated in the literature [36–43].
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Another interesting possibility is to add a vector degree
of freedom to the theory of Einstein general relativity. The
simplest example is to add a Maxwell kinetic term to the
Einstein–Hilbert action and obtain an Einstein–Maxwell sys-
tem [44]. One can also consider a massive vector field as an
Einstein–Proca system. Much work has been done in the con-
text of Einstein–Maxwell and Einstein–Proca theories [45–
64]. Another possibility is to consider Weyl gravity, in which
the metric compatibility condition does not hold anymore.
As a result the covariant derivative of the metric tensor can
be characterized by a vector field as ∇μgνρ = wμgνρ [65–
76]. One can also obtain the Einstein–Proca system from the
higher dimensional Gauss–Bonnet theory in the context of
Weyl geometry [78]. Cosmological implications of such a
theory has been considered in [79]. One can also think of a
generalization of the Proca action (as in the Horndeski the-
ory), in which the action has higher order derivatives, with
at most second order time derivative terms in the equations
of motion similar to the case of scalar galileon. But assum-
ing the U (1) symmetry, one can prove that such a vector
galileon theory does not exist [80], meaning that the U (1)-
vector galileon theory cannot exist. However, relaxing this
constraint, one can generalize the Proca action, in a way that
the zero helicity of the vector field mimics the scalar galileon
interactions [81,82]. The cosmology of this vector galileon
theory, as well as a possible generalization, has been inves-
tigated in the literature [83–88].

Other higher derivative interaction terms which are not
included in the vector galileon theory may also be considered.
These terms in general produce Ostrogradski instabilities that
cause the propagation of ghost degrees of freedom at large
scales. However, one can tune the coupling constants in a way
that the ghost becomes non-dynamical at scales comparable
to the Hubble radius. This will make the theory effectively
reliable in these scales [89].

Other possibility of generalizing Einstein’s general rela-
tivity within a purely geometric approach is to consider the
effects of the torsion tensor [90–95]. The torsion tensor can in
general be decomposed into a vector field Qμ, an axial vec-
tor field Sμ and a tensor field tμνρ satisfying the conditions
tμνρ + tνρμ + tρμν = 0, and gμν tμνρ = 0 = gμρ tμνρ , respec-
tively. Assuming that the tensor tμνρ is zero, one can obtain
a vector-tensor theory of gravity, which is well known in the
context of supergravity theory. The cosmological implica-
tions of the Gauss–Bonnet theory coupled to a Weyl vector
in Cartan space-time were considered in [96].

An interesting vector-tensor theory of gravity is the
Einstein-aether theory [97,98]. In this theory, one imposes a
dynamical condition through a Lagrange multiplier in order
to make the vector field always time-like. In this case the
Universe has a predefined preferred time direction, which
breaks the Lorentz invariance. Such a theory can explain
the self-accelerated expansion of the Universe. The rela-

tion between the Einstein-aether theory and Horava–Lifshitz
gravity [99,100], as well as its relation to the scalar-tensor
theory [101–103], has been carefully investigated in the phys-
ical literature.

Scalar field dark energy models have provided a very suc-
cessful description of the observational properties of the Uni-
verse, including the explanation of its late acceleration. How-
ever, a priori one cannot simply reject the interesting idea that
dark energy may have a more complex field structure. One
such possibility is to describe dark energy in terms of a vector
or Yang–Mills type field, which is also allowed to directly
couple to gravity. The simplest possible action for a Yang–
Mills type dark energy model minimally coupled to gravity
is [104]

SV = −
∫

d4x
√−g

{
R

2
+

3∑
a=1

[
1

16π
Fa

μνF
aμν + V (A2)

]

+Lm

}
, (1)

where Fa
μν = ∇μAa

ν −∇ν Aa
μ, a = 1, 2, 3, ∇μ represents the

covariant derivative with respect to the metric, while V (A2)

with A2 = gμν Aa
μA

a
ν represents a self-interaction potential

explicitly violating gauge invariance. In the action given by
Eq. (1), the dark energy component is represented by three
vector fields, and thus the action (1) generalizes the Einstein–
Maxwell single vector field dark energy model. The astro-
physical and cosmological implications of the vector type
dark energy models and of their generalizations have been
extensively investigated in [105–122].

Extended vector field dark energy models either, in which
the vector field non-minimally couples to the gravitational
field, have also been studied. Such models have been pro-
posed, and their cosmological properties have been inves-
tigated in, for example, [123]. The action for the non-
minimally massive vector field coupled to gravity can be
represented as

S = −
∫

d4x
√−g

[
R

2
+ 1

16π
FμνF

μν − 1

2
μ2

�AμA
μ

+ωAμA
μR + ηAμAνRμν + Lm

]
, (2)

where μ� is the mass of the massive cosmological vector
field, and Aμ (xν), μ, ν = 0, 1, 2, 3 is its four-potential,
which is allowed to couple non-minimally to gravity. Here ω

and η are dimensionless coupling parameters. By following
a close analogy with electrodynamics, the dark energy vector
type field tensor is defined again by Fμν = ∇μAν − ∇ν Aμ.

A so called superconducting type dark energy model was
recently introduced in [124,125]. Inspired by some con-
densed matter concepts, the starting point of this approach
is represented by the deep connection of the gravita-
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tional actions for scalar field models, given by Sφ =
− ∫ d4x

√−g
[ R

2 − 1
2∇αφ∇αφ + V (φ)

]
, where V (φ) the

self-interaction potential of the scalar field, and (1), respec-
tively. Despite having very different mathematical forms, the
two actions for scalar and vector fields, respectively, can be
interpreted and described as the two limiting cases of a sin-
gle unified fundamental physical model that describes the
spontaneous breaking of the U(1) symmetry of the “electro-
magnetic” type dark energy, with the corresponding action
given by

S = −
∫ [

R

2
+ 1

16π
FμνF

μν − λ

2
gμν

(
Aμ − ∇μφ

)

× (Aν − ∇νφ) + V
(
A2, φ

)
− α

2
gμν jμ (Aν −∇νφ)

+Lm

]√−gd4x, (3)

where λ and α are arbitrary constants, Lm = Lm
(
gμν, ψ

)
is the Lagrangian of the total (ordinary baryonic plus dark)
matter, and jμ = ρuμ is the total mass current. In Eq. (3)
ρ denotes the total matter density (including the dark matter
one), while uμ is the matter four-velocity. Hence, as one
can easily see, the gravitational action defined by Eq. (3)
provides a unified theoretical framework for the scalar–vector
interactions in a gravitational background.

In the theory of electromagnetism, one can add to the
electromagnetic Lagrangian a very interesting interaction
term, known as the “Chern–Simons” term, and defined as
[126,127]

kμεμνρσ BνBρσ , (4)

where Bμν = ∂μBν − ∂νBμ, and kμ is a constant vector act-
ing as a coupling constant. This term was initially defined
as a topological mass term for gauge fields in (2+1) dimen-
sions [128,129]. One can see that because of the appearance
of the Levi-Civita tensor, the CPT symmetry will be bro-
ken. On the other hand, because of a constant vector kμ, the
Poincaré invariance will be broken by this term. For exam-
ple, for the time-like vector kμ, the time translational sym-
metry together with a boost will be broken, while the spatial
translation and rotations are preserved. For the space-like
vector, the spatial rotations in a plane orthogonal to the vec-
tor is preserved. Many works has been done in the context
of Chern–Simons electrodynamics, including applications to
quantum electrodynamics [130–132]. In [133] the authors
obtain the Chern–Simons term from dimensional reduction
of the Carroll–Field–Jackiw Higgs model. Also in [134] the
Chern–Simons theory with boundaries has been considered
in more details.

The Chern–Simons modified gravity represents an inter-
esting modification of general relativity, in which the Ein-

stein–Hilbert action is extended by adding a parity-violating
Chern–Simons term [135–137]. This term couples to grav-
ity via a scalar field. The Chern–Simons correction enhances
parity violation through a pure curvature term, as opposed
to the matter term, as is considered in standard general rel-
ativity. It is important to note that Chern–Simons modified
gravity can be obtained explicitly from superstring theory,
where upon four-dimensional compactification the Chern–
Simons term, appearing the Lagrangian density, plays an
essential role due to the Green–Schwarz anomaly-canceling
mechanism [138,139]. Two distinct formulations of Chern–
Simons modified gravity have been proposed, namely, the
non-dynamical formulation and the dynamical formulation
(see [137] for a review of the early results). In the first
formulation, the Chern–Simons field is an arbitrary func-
tion, prescribed a priori, with its effective evolution equation
being equivalent to a differential constraint on the space of
its allowed solutions. In the second approach, the Chern–
Simons field is treated as a dynamical field, with its own
effective stress-energy tensor, and obeying a dynamical evo-
lution equation. The possibility of observationally testing
the dynamical Chern–Simons modified gravity by using the
accretion disk properties around slowly rotating black holes
was considered in [140]. Specific signatures do appear in
the electromagnetic spectrum, thus leading to the possibil-
ity of directly testing Chern–Simons modified gravity by
using astrophysical observations of the emission spectra from
accretion disks.

In this paper, we are going to investigate the cosmological
implications of the Chern–Simons term as a representative
of dark energy effect. To this end, we will restore the Lorentz
invariance of the theory by promoting the constant vector kμ

to a dynamical field and impose a constant norm constraint by
adding this property by a Lagrange multiplier. The addition
of such a constraint by Lagrange multiplier to the action will
spontaneously breaks the Lorentz symmetry of the theory.
The Chern–Simons term will be generalized to

αεμνρσ BμAνBρσ + λ(AμAμ + η),

where λ is a Lagrange multiplier, η and α are constant and
εμνρσ is the Levi-Civita tensor. The new vector field Aμ

plays the role of the constant vector kμ in the theory and it
is constrained to have a constant norm. In the Minkowski
background, if one wants to quantize the resulting electro-
dynamics theory, one should assume that the constant kμ be
purely spatial and has a form kμ = (0, �k) [141,142]. In this
paper, we will not be interested in the quantization of the
theory and as a result we will not impose any constraint on
the sign of the norm of the vector field Aμ. Also, as we will
see in the following, in the case of FRW cosmology, one
should assume that the vector field be time-like and has only
a (t)-component, because otherwise the spatial isotropy will
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be broken. However, for the sake of completeness, we will
consider the case of anisotropic cosmological implications of
the theory and assume that the vector field Aμ be space-like
in this case.

The present paper is organized as follows. In the next sec-
tion we will introduce the basic theoretical model, and obtain
the necessary results for considering the cosmological impli-
cations of the model. In Sect. 3 we will consider the isotropic
cosmology of the Chern–Simons model by obtaining the de
Sitter solution, and performing the cosmological perturba-
tions around it. In Sect. 4 we will assume that the vector Aμ

becomes space-like, and then consider the case of anisotropic
cosmology with the geometry described by the Bianchi type
I metric. The field equations and the basic physical parame-
ters of the model are also introduced. In Sect. 5 we present
a detailed numerical analysis of the evolution equations for
different equations of state of the matter content of the Uni-
verse. In the last section we discuss our results and conclude.

2 The Maxwell–Chern–Simons gravity model

We propose an action functional of the form

S =
∫

d4x
√−g

[
κ2R − 1

4
Aμν A

μν − 1

4
BμνB

μν

+ αεμνρσ BμAνBρσ + λ(AμAμ + η) + V (A2)

]
+ Sm,

(5)

where Aμ and Bμ are two vectors fields, A2 = AμAμ, Sm
is the matter action, η is the norm of vector field Aμ with
dimension of mass squared and λ is the Lagrange multiplier
which dynamically enforces that the vector field Aμ has a
constant norm. This action consists of an Einstein–Maxwell
system coupled to a constant norm vector field Aμ. The two
vector fields then interact via the topological Chern–Simons
term.

Varying the action with respect to the Lagrange multiplier
results in

AμA
μ + η = 0, (6)

which states that the vector field Aμ should have a constant
norm. One should note that because the norm of the vec-
tor field Aμ is constant due to the constraint (6), the poten-
tial term V (A2) in (5) is effectively the cosmological con-
stant. However, certain choices of this potential may affect
the dynamics of the model. Therefore, we will keep this term
in the theory.

The equation of motion for Bμ can be written as

∇βB
βα − αεαβγ δBβ Aγ δ + 2αεαβγ δAβBγ δ = 0. (7)

The equation of motion for Aμ is

∇β A
βα + 2λAα + 2V ′Aα = αεαβγ δBβBγ δ, (8)

where we have defined V ′ = dV/dA2. One can see that
the Aμ field is generated by the Bμ vector field through the
Chern–Simons term. Also the Bμ vector field is generated
by the Aμ field through the Chern–Simons term. In the case
of vanishing α, the two vector fields evolve independently.

The equation of motion for the metric is

κ2Gαβ + 1

8
gαβ Aμν A

μν − 1

2
AμαA

μ
β + 1

8
gαβBμνB

μν

− 1

2
BμαB

μ
β + λAαAβ

− 1

2
λgαβ(AμA

μ + η) − 1

2
Vgαβ

+ V ′AαAβ = 1

2
Tαβ. (9)

In order to obtain the conservation of energy-momentum ten-
sor in this model, first note that from the constraint equation
(6), one has Aμ∇αAμ = 0. Also, by taking the divergence
of equation (8), one can obtain

Aα∇αλ + λ∇αA
α + V ′∇αA

α = 1

4
εαβγ δBαβBγ δ. (10)

Now, taking the derivative of Eq. (9), we arrive at

∇αTαβ = 1

4
αεμργ δ

[
2BρBγ δAμβ + BμρBγ δAβ

+ 2Bρ Aγ δBμβ − 4AρBγ δBμβ

]
. (11)

From the action functional (5), one can see that the ordinary
matter sector is minimally coupled to the vector fields and
also to gravity. From the diffeomorphism invariance of the
action, since there is no energy transfer from matter to the
vector fields, the matter sector should be conserved indepen-
dently [143]. Hence, we obtain

∇αTαβ = 0, (12)

and then

1

4
αεμργ δ

[
2BρBγ δAμβ + BμρBγ δAβ

+ 2Bρ Aγ δBμβ − 4AρBγ δBμβ

]
= 0. (13)

One can see from the above expression that the vector fields
can transfer energy to each other, which is due to the non-
minimal Chern–Simons coupling between them. One should
note that Eq. (11) is obtained by taking the covariant diver-
gence of the metric field equation, and should be satisfied
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automatically for the given system of field equations (for
more details see [144]).

3 Isotropic Cosmology of the Maxwell–Chern–Simons
gravity

In this paper, we will consider the cosmology of Maxwell–
Chern–Simons gravity theory. We will assume that the poten-
tial term in the action (5) is

V (A2) = −2κ2� + βAμA
μAν A

ν, (14)

where � is the cosmological constant.

3.1 de Sitter solution

Let us assume that our Universe can be described by a flat
FRW metric of the form

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2). (15)

Moreover, because we are interested in the self-accelerated
solutions to the theory, we assume that the energy-momentum
tensor vanishes. In this case, the most general ansatz for the
vector field which respects the spatial isotropy is

Aμ = (A0, 0, 0, 0), (16)

Bμ = (B0, 0, 0, 0). (17)

From the above equation, one can see that the vector field
Aμ should be time-like in this case, and we will assume that
η = m2 > 0. For the space-like vector field η < 0, there is
no FRW solution unless Aμ = 0, which contradicts Eq. (6).

By substituting the above ansatz to the field equations (6)–
(9), one can see that the constraint equation (6) gives A0 = m.
Also, the Bμ equation of motion (7) is automatically satisfied
in this case. The equations of motion for the vector field Aμ

and for the metric can then be written as

2m(λ − 2βm2) = 0, (18)

− 3κ2H2 + κ2� + 3

2
βm4 − m2λ = 0, (19)

− 2κ2 Ḣ − 3κ2H2 + κ2� − 1

2
βm4 = 0, (20)

which can be solved as

λ = 2βm2, H2 = �

3
− βm4

6κ2 . (21)

We will also assume that B0 = constant for the sake of
simplicity. In order to have a consistent de Sitter solution,
one should has β < 2κ2�/m4. Note that, in the absence of

cosmological constant �, the coupling constant β should be
negative in order to have a de Sitter solution.

3.2 Cosmological perturbations

In this section we will perform the cosmological perturba-
tion analysis on top of the de Sitter solution obtained in the
previous section. For the metric perturbation, we have

ds2 = −(1 + 2φ)dt2 + 2a(Si + ∂i B)dtdxi

+ a2((1 + 2ψ)δi j + ∂i∂ j E + ∂(i Fj) + hi j
)
dxidx j ,

(22)

where φ, ψ , E and B are the scalar perturbations, Fi and Si
are the vector perturbations with the property ∂i Fi = 0 =
∂i Si , and hi j is associated with the tensor perturbation, which
is transverse and traceless hii = 0 = ∂i hi j . Also, the spatial
indices are raised and lowered by δi j .

For the vector fields, we decompose the perturbed vector
field as

Aμ = (A0 + δA0, ξi + ∂iδA), (23)

Bμ = (B0 + δB0, εi + ∂iδB), (24)

where δA0, δB0, δA and δB are the scalar perturbations, and
ξi and εi are the vector perturbations, respectively, with the
property ∂iξi = 0 = ∂iεi . The perturbation of the Lagrange
multiplier is λ = λ0 + δλ.

Under the general linear coordinate transformation xμ →
xμ + δxμ, the metric perturbations transforms as

φ → φ − ∂tδx
0, (25a)

B → B + 1

a
δx0 − a∂tδx, (25b)

ψ → ψ − Hδx0, (25c)

E → E − 2δx, (25d)

Si → Si − a∂tηi , (25e)

Fi → Fi − 2ηi , (25f)

hi j → hi j , (25g)

where we have decomposed δxμ as (δx0, ηi + ∂iδx), with
∂iηi = 0. Also the various components of a vector field Aμ

will be transformed according to

δA0 → δA0 − A0∂tδx
0, (26a)

δA → δA − A0δx
0, (26b)

ξi → ξi . (26c)

Likewise, we have a similar transformation rule for the vector
field Bμ. Also, one can find that the Lagrange multiplier will
not change under this transformation, and hence
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δλ → δλ. (27)

We should note that in obtaining the above relations we have
assumed that the background values A0, B0 and λ0 are con-
stant, as follows from the results of the previous section.

With the help of the above transformations, one can con-
struct seven independent gauge invariant scalar perturba-
tions, three independent gauge invariant vector perturbations,
and one gauge invariant tensor perturbation, as follows:

� = φ + ∂t

(
aB − a2

2
∂t E

)
,

� = ψ + H

(
aB − a2

2
∂t E

)
, (28)

δA0 = δA0 + A0∂t

(
aB − a2

2
∂t E

)
,

δA = δA + A0

(
aB − a2

2
∂t E

)
, (29)

δB0 = δB0 + B0∂t

(
aB − a2

2
∂t E

)
,

δB = δB + B0

(
aB − a2

2
∂t E

)
. (30)

The perturbation of the Lagrange multiplier is already gauge
invariant. The vector perturbations ξi and εi are also gauge
invariant, and the remaining gauge invariant vector perturba-
tion can be constructed as

βi = Si − 1

2
a∂t Fi . (31)

Moreover, the tensor perturbation hi j is already gauge invari-
ant, and we end up with 11 gauge invariant perturbation vari-
ables.

After substituting the above expressions in (5), and
expanding the resulting action up to second order in per-
turbations, one can see that the tensor, vector and scalar parts
are completely decoupled from each other. In the following
we will consider them separately.

3.2.1 Tensor perturbation

The tensor perturbation hi j is transverse and traceless, and
can be described by two polarization modes h+ and h×.
After Fourier decomposition, one can obtain the second order
action of tensor perturbation as

S(2)
tensor = 1

2
κ2
∫

dtd3�ka3
∑

λ=+,×

(
|ḣλ|2 − �k2

a2 |hλ|2
)

, (32)

where �k is the comoving wave vector, and the dot represents
the time derivative. Also, it is understood that due to the def-

inition of the Dirac delta function, in any term in the second
order action, the argument of one of the perturbation vari-
ables is k, while for the other variable is −k. One can see
that the Chern–Simons coupling term does not contribute to
the tensor perturbations. The action (32) is equivalent to that
of Einstein–Hilbert theory. This conclusion can in fact be
obtained without performing the explicit calculations, since
the gravity sector of the model is the same as the one for
the Einstein–Hilbert theory, and the vector fields are mini-
mally coupled to gravity. Hence the theory has two tensor
propagating modes associated to the massless graviton.

3.2.2 Vector perturbation

For the vector sector of the theory, we have three transverse
independent gauge invariant vector perturbations βi , ξi and
εi . After expanding the action up to the second order in the
perturbed quantities and performing the Fourier transform,
one can obtain

S(2)
vector = 1

2

∫
dtd3�ka

2∑
i=1

[
κ2�k2β2

i + ξ̇2
i − �k2

a2 ξ2
i + ε̇2

i

− �k2

a2 ε2
i + 4

iαB0

a4
�k.(�ξ(−k) × �ε(k))

−4
iαA0

a4
�k.(�ε(−k) × �ε(k))

]
, (33)

where we have added the arguments of the last two terms
for clarity. The vector perturbation of the metric βi does not
couple to the other vector fields, and is non-dynamical. One
should note that the above expression for vector perturbation
is real. For real perturbed quantities εi (x) and ξi (x), one has
ξi (k) = ξ�

i (−k) and εi (k) = ε�
i (−k). Now, calculating the

complex conjugate of the last two terms in the action (33),
one can easily show that these terms are real.

After obtaining the equation of motion of βi , and substitut-
ing it back to the action, one can see that βi will vanish from
the action. Therefore we are left with two vector perturba-
tions associated to the two vector fields Aμ and Bμ. Hence it
follows that these vector perturbations interact non-trivially
with each other through the Chern–Simons coupling.

Let us now consider the high curvature regime k → ∞ of
the action (33). Since the vector perturbations ξi and εi have
the same order of magnitude, it turns out that the Chern–
Simons terms can be neglected when compared with the
terms containing �k2. In this case, one can write the action
as

S(2)
vector,k→∞ = 1

2

∫
dtd3�ka

2∑
i=1

[
ξ̇2
i − �k2

a2 ξ2
i +ε̇2

i − �k2

a2 ε2
i

]
,

(34)
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which shows that the theory has two non-interacting vector
modes. Hence, we remain with four healthy vector degrees
of freedom for the theory.

3.2.3 Scalar perturbation

Finally, we will obtain the scalar perturbation part of the the-
ory. There are five scalar modes, corresponding to the metric,
the vector fields and the Lagrange multiplier. Expanding the
action up to second order and performing the Fourier decom-
position, one can write the action in terms of gauge invariant
quantities as

S(2)
scalar =

∫
dtd3�ka3

[
− 6κ2�̇2 + 12κ2H��̇

+ 2κ2
�k2

a2

(
2�� + �2)+ 2

(
2βm4 − 3κ2H2)�2

− 8βm3�δA0 + 1

2

�k2

a2

( ˙δA2 − 2 ˙δAδA0 + δA2
0

)

+ 4βm2δA2
0 + 1

2

�k2

a2

( ˙δB2 − 2 ˙δBδB0 + δB2
0

)

− 2mδA0δλ + 2m2�δλ
]
. (35)

From the above equation one can see that δλ, δB0, δA0, and �

are non-dynamical. Varying the action with respect to these
variables leads to

2m(m� − δA0) = 0, (36)

�k2

a2 (δB0 − δ̇B) = 0, (37)

2mδλ −
( �k2

a2 + 8βm2

)
δA0 + 8βm3� + �k2

a2
˙δA = 0,

(38)

m2δλ + 2κ2
�k2

a2 � + 4βm3(m� − δA0)

+ 6κ2H(�̇ − H�) = 0. (39)

Solving the above equations for the non-dynamical variables,
and substituting them back into the action gives

S(2)
scalar =

∫
dtd3�k 2�k2κ2a

H
(

12κ2H2 − m2 �k2

a2

)

×
[
H

(
12κ2H2 − m2

�k2

a2 + 4κ2
�k2

a2

)
�2

− 2

(
m2

�k2

a2 − 12κ2H2

)
��̇

−2m
�k2

a2 ��̇ + 3H�̇2

]
, (40)

where we have defined a new variable � = HδA − m�.
Varying the action with respect to � results in

� = m

4Hκ2 �̇. (41)

Upon substituting the above relation into the action, one
obtains

S(2)
scalar =

∫
dtd3�k �k2

2H2 a�̇2, (42)

which can be solved for � with the result

� = c1 − c2

H
e−Ht .

Therefore, the scalar part of the perturbed action has one
degree of freedom, which decays exponentially in time. The
scalar degree of freedom does exist because the U (1) sym-
metry is broken by the addition of the Lagrange multiplier
constraint. This shows that the vector field Aμ is massive,
while the vector field Bμ is massless.

Hence, to summarize the results of the perturbative anal-
ysis of the present theory, we have found that it contains
two gravitational wave modes, four vector modes, associated
to the two vector fields, and one scalar degree of freedom,
respectively.

4 Anisotropic cosmology: Bianchi type I Universe

In this section, we want to consider the case that the vector
field Aμ is space-like. So, from now on we will set η = −μ2.
In this case, at least one of the spatial components of Aμ

should be non-zero. For simplicity, we choose the coordinate
system such that the direction of the x axis coincides with
the direction of Aμ. In this case the vector field Aμ has the
from

Aμ = (A0(t), A1(t), 0, 0), (43)

In this case the vector field Bμ may have any direction in
space and so we set

Bμ = (B0(t), B1(t), B2(t), B3(t)). (44)

The above ansatz for the vector field will break the spatial
isotropy of the space-time. In order to consider the cosmology
of this case, let us assume that the Universe is described by
the Bianchi type I metric of the form

ds2 = −dt2 +
3∑

i=1

a2
i (t)(dx

i )2, (45)
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where the ai are the directional scale factors. We also assume
that the matter content of the Universe has the form

Tμ
ν = diag

(− ρ(t), p1(t), p2(t), p3(t)
)
, (46)

where ρ is the energy density and pi , i = 1, 2, 3, is the pres-
sure in the direction i . Let us define the Hubble parameter,
the deceleration parameter and the anisotropy parameter as
[145–147]

Hi = ȧi
ai

, i = 1, 2, 3, V = a1a2a3, H = 1

3

3∑
i=1

Hi ,

(47)

A = 1

3

3∑
i=1

(
�Hi

H

)2

, �Hi = H − Hi , i = 1, 2, 3,

(48)

�2 = 1

2

(
3∑

i=1

H2
i − 3H2

)
, q = d

dt

(
1

H

)
− 1. (49)

From Eqs. (47) we obtain immediately the important relation

V̇

V
= 3H. (50)

The anisotropy parameter can be represented in an equivalent
form as

A = 1

3H2

(
3∑

i=1

H2
i − 3H2

)
, (51)

giving

3∑
i=1

H2
i = 3 (1 + A) H2. (52)

4.1 Gravitational field equations

Before writing the equations of motion of the theory, we
should note that the (t)-component of the vector field Bμ

does not contribute to the field equations. From now on,
we will assume that B0 = 0. On the other hand, the (t)-
component of the Aμ equation of motion (8), implies that
A0 = 0. So, the constraint equation (6) gives the remaining
component of the vector field Aμ as A1 = μa1(t). Also, the
off-diagonal elements (i j), i 	= j , of the metric field equa-
tion gives Ḃi Ḃ j = 0. This implies that at least two out of
three components of the vector field Bμ should be constant.
We will assume that B1 and B2 is constant. Now, the (y)
-component of the Aμ field equation gives B1 Ḃ3 = 0, which
implies either B1 = 0 or B3 is constant. We will choose

the first possibility to make the vector field Bμ evolves in
time. In this case, one can see that the vector fields Aμ and
Bμ are orthogonal. With these in hand, the only remaining
component of the Aμ field equation becomes

2
(
λ + 2βμ2

)
+H2

1 +2
α

μ
b2(b3H3+ḃ3)− 1

V

d

dt
(V H1) = 0.

(53)

The remaining components of the Bμ equation of motion are

2
(
b3H3 + ḃ3

)+ b3H1 = 0, (54)

or, equivalently,

H1 = 2H3 + 2
ḃ3

b3
, (55)

and

−2μαb2H1 + b3H
2
3 − 3Hḃ3 − b̈3 − b3

V

d

dt
(V H3) = 0.

(56)

The Friedmann equation can be written as

κ2

(
3Ḣ +

3∑
i=1

H2
i − �

)
+ 1

4

(
1

4
b2

3 + μ2
)
H2

1

−1

2
μ2(λ + βμ2) = −1

4

(
ρ +

3∑
i=1

pi

)
, (57)

and the Raychaudhuri equations are

κ2
(

1

V

d

dt
(V H1) − �

)
− 1

4

(
1

4
b2

3 − μ2
)
H2

1

+1

2
μ2(λ + 3βμ2) = 1

4
(ρ + p1 − p2 − p3), (58)

κ2
(

1

V

d

dt
(V H2) − �

)
− 1

4

(
1

4
b2

3 + μ2
)
H2

1

−1

2
μ2(λ + βμ2) = 1

4
(ρ − p1 + p2 − p3), (59)

and

κ2
(

1

V

d

dt
(V H3) − �

)
+ 1

4

(
1

4
b2

3 − μ2
)
H2

1

−1

2
μ2(λ + βμ2) = 1

4
(ρ − p1 − p2 + p3). (60)

In the above equations we have defined

b2(t) = B2(t)

a2(t)
, b3(t) = B3(t)

a3(t)
. (61)
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Equation (55) can be solved for b3 with the result

b3(t) = c3

a3
√
a1

, c3 = const. (62)

From Eq. (12), one has the conservation of the energy-
momentum tensor

ρ̇ + 3Hρ +
3∑

i=1

Hi pi = 0. (63)

Also, Eq. (13) satisfies automatically.

4.2 Deceleration parameter and anisotropy

In the following we will restrict our analysis to the case
of a geometrically anisotropic Universe filled with a cos-
mological fluid with an isotropic pressure distribution, with
p1 = p2 = p3 = p.

By adding Eqs. (58)–(60) we obtain

κ2 1

V

d

dt
(3HV ) = 3κ2

(
Ḣ + 3H2

)
= κ2 V̈

V
= 3κ2�

+1

4

(
1

4
b2

3 + μ2
)
H2

1 + μ2

2

(
λ − βμ2

)
+ 3

4
(ρ − p) .

(64)

By substituting 3Ḣ from the above equation into Eq. (57)
we find the consistency condition

κ2

(
−9H2 +

3∑
i=1

H2
i + 2�

)
+ 1

2

(
1

4
b2

3 + μ2
)

×H2
1 − βμ4 = −ρ. (65)

With the use of Eqs. (54), (53) becomes

1

V

d

dt
(V H1) = 2

(
λ + 2βμ2

)
+ H2

1 − α

μ
b2b3H1. (66)

By combining Eqs. (58) and (66) we find
[

1 − 1

4κ2

(
1

4
b2

3 − μ2
)]

H2
1 − α

μ
b2b3H1

−� + λ

(
2 + μ2

2κ2

)
+ βμ2

(
4 + 3μ2

2κ2

)
= 1

4κ2 (ρ − p).

(67)

With the help of Eqs. (55), (56) can be reformulated as

1

V

d

dt
(V H3) = 1

4
H2

1 − 1

b3

(
ḃ3 + 2μαb2

)
H1

− 1

V

d

dt

(
V
ḃ3

b3

)
, (68)

giving, after substitution into Eq. (60), the equation

1

4

[
1 + 1

κ2

(
1

4
b2

3 − μ2
)]

H2
1 − 1

b3

(
ḃ3 + 2μαb2

)
H1

− 1

V

d

dt

(
V
ḃ3

b3

)
− � − 1

2κ2 μ2(λ + βμ2) = 1

4κ2 (ρ − p)

(69)

Adding Eqs. (67) and (69) we obtain

5

4
H2

1 − 1

b3

(
α

μ
b2b

2
3 + ḃ3 + 2μαb2

)
H1 − 1

V

d

dt

(
V
ḃ3

b3

)

−2� +
(

4βμ2 + 2λ + β
μ4

κ2

)
= 1

2κ2 (ρ − p), (70)

while equating Eqs. (67) and (69) gives

1

2

[
3

2
− 1

κ2

(
1

4
b2

3 − μ2
)]

H2
1

− 1

b3

[
α

μ
b2b

2
3 − (

ḃ3 + 2μαb2
)]

H1 + 1

V

d

dt

(
V
ḃ3

b3

)

+ 1

κ2

(
2βμ2 + λ

) (
2κ2 + μ2

)
= 0. (71)

From Eq. (64) we obtain immediately the deceleration
parameter as

q = 2 − 1

H2

[
� + 1

12κ2

(
1

4
b2

3 + μ2
)
H2

1

+ μ2

6κ2

(
λ − βμ2

)
+ 1

4κ2 (ρ − p)

]
, (72)

while from Eq. (65) we obtain the anisotropy parameter in
the form

A = 2 + β
μ4

3H2κ2 − 2

3

�

H2 − 1

6κ2

1

H2

(
1

4
b2

3 + μ2
)
H2

1

− 1

3H2κ2 ρ. (73)

4.3 The evolution equations for the Bianchi type I
cosmological model

Since the field b2 does not appear in the expressions of q and
A, we can take b2 = 0 without any lack of generality. Then
from Eq. (67) we obtain for H1 the expression

H2
1 =

1
4κ2 (ρ − p) + �eff

1 − 1
4κ2

( 1
4b

2
3 − μ2

) , (74)

where we have denoted

�eff = � − λ

(
2 + μ2

2κ2

)
− βμ2

(
4 + 3μ2

2κ2

)
. (75)
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By substituting this expression of H2
1 into Eq. (64) we obtain

the evolution equation for V as

V̈

V
= 3� + μ2

2κ2

(
λ − βμ2

)
+ 1

4κ2

( 1
4b

2
3 + μ2

)
1 − 1

4κ2

( 1
4b

2
3 − μ2

)

×
[

1

4κ2 (ρ − p) + �eff

]
+ 3

4κ2 (ρ − p) . (76)

Equation (69) gives the time evolution of the field b3 as

1

V

d

dt

(
V
ḃ3

b3

)
= 1

4

[
1 + 1

κ2

(
1

4
b2

3 − μ2
)]

×
1

4κ2 (ρ − p) + �eff

1 − 1
4κ2

( 1
4b

2
3 − μ2

)

− ḃ3

b3

√√√√ 1
4κ2 (ρ − p) + �eff

1 − 1
4κ2

( 1
4b

2
3 − μ2

)

−�− 1

2κ2 μ2(λ+βμ2) − 1

4κ2 (ρ − p).

(77)

4.4 Dimensionless form of the cosmological evolution
equations

In order to simplify the mathematical formalism we rescale
the physical and geometrical quantities by introducing the set
of dimensionless variables (τ, r, P, B0, μ0, β0, h), defined
as

t = 1√
3� + μ2

2κ2

(
λ − βμ2

)τ,

H =
√

3� + μ2

2κ2

(
λ − βμ2

)
h,

ρ = 4κ2�effr, p = 4κ2�eff P, b3 = 2κB0,

μ = κμ0, β = β0

κ2 . (78)

Then the system of equations (76) and (77) becomes

1

V

d2V

dτ 2 = 1 + λ1

(
B2

0 + μ2
0

)
1 − 1

4

(
B2

0 − μ2
0

) [(r − P) + 1]

+12λ1 (r − P) , (79)

1

V

d

dτ

(
V

1

B0

dB0

dτ

)

= λ1

[
1 +

(
B2

0 − μ2
0

)] (r − P) + 1

1 − 1
4

(
B2

0 − μ2
0

)

−2
√

λ1
1

B0

dB0

dτ

√
(r − P) + 1

1 − 1
4

(
B2

0 − μ2
0

)
−4λ1(r − P) − λ2, (80)

where

λ1 =
� − λ

(
2 + μ2

0
2

)
− β0μ

2
0

(
4 + 3μ2

0
2

)

4

[
3� + μ2

0
2

(
λ − β0μ

2
0

)] (81)

and

λ2 = � + 1
2μ2

0(λ + β0μ
2
0)

3� + μ2
0

2

(
λ − β0μ

2
0

) . (82)

The energy conservation equation can be written as

dr

dτ
+ 3h (r + P) = 0. (83)

By assuming an equation of state of the form

P = (γ − 1)r, γ = constant, 1 ≤ γ ≤ 2, (84)

we obtain for the energy density of the cosmological matter
the expression

r = r0

V γ
, (85)

where r0 is an arbitrary integration constant. The numerical
value of r0 can be taken as one without any loss of gen-
erality, so that the present density of the Universe, at the
time t = tpres, is given by ρ

(
tpres

) = 4κ2�eff/V γ
(
tpres

)
.

Therefore the system of equations (79) and (80), describing
the evolution of a Bianchi type I Universe in the Maxwell–
Chern–Simons theory can be reformulated as a first order
dynamical system given by

dV

dτ
= u, (86)

du

dτ
=
{

1+λ1

(
B2

0 +μ2
0

)
1 − 1

4

(
B2

0 − μ2
0

)
[
(2 − γ ) r0

V γ
+ 1

]

+12λ1
(2 − γ ) r0

V γ

}
V, (87)

dB0

dτ
= b0, (88)

db0

dτ
= 1

B0
b2

0+λ1

[
1+
(
B2

0 −μ2
0

)] (2 − γ ) r0V−γ + 1

1 − 1
4

(
B2

0 − μ2
0

) B0

−
[

2
√

λ1

√
(2 − γ ) r0V−γ + 1

1 − 1
4

(
B2

0 − μ2
0

) + u

V

]
b0

−
[

4λ1
(2 − γ ) r0

V γ
+ λ2

]
B0. (89)

The system of differential equations (86)–(89) must be inte-
grated with the initial conditions V (0) = V0, u(0) = u0,
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B0(0) = B(0)
0 , and b0(0) = b(0)

0 , respectively. The behavior
of the solutions of the dynamical system is determined by
two arbitrary parameters, λ1 and λ2, representing the combi-
nation of the four free model parameters (�, λ, β, μ).

The deceleration parameter can be written as

q = 2 − 9
V 2

u2

[
1

3
+ 1

3
λ1

(
B2

0 + μ2
0

) (2 − γ ) r0V−γ + 1

1 − 1
4

(
B2

0 − μ2
0

)

+ 4λ1
(2 − γ ) r0

V γ

]
. (90)

From Eq. (57) we obtain the following relation between the
deceleration and the anisotropy parameters:

A = q + 3V 2

u2

{
λ2 − λ1

(
B2

0 + μ2
0

)
1 − 1

4

(
B2

0 − μ2
0

) [(2 − γ ) r0V
−γ + 1

]

−4 (3γ − 2) λ1
r0

V γ

}
. (91)

Hence the behavior of both q and A is determined by the set
of model parameters (μ0, λ1, λ2, r0).

5 Cosmological evolution of the Bianchi type I
Universes in the Maxwell–Chern–Simons theory

In the present Section we will investigate the time depen-
dence of the geometrical and thermodynamical parameters
of the Bianchi type I space-times in the Maxwell–Chern–
Simons theory. In order to obtain a relevant physical and cos-
mological picture we adopt for the description of the matter
content a number of equations of state that could be relevant
for the understanding of the properties of the ultra-high den-
sity matter the Universe may have contained in its very early
stages.

In order to numerically integrate the evolution equations
(86)–(89) we will fix the numerical values of the parameters
(λ1, λ2). Once this is done, the numerical values of the free
parameters of the model, μ0 and β0, can be obtained from
Eqs. (81) and (82) as

μ0 =
√

2 − 6λ2√
4λ1 + 2λ2 − 1

, (92)

and

β0 = (4λ1 + 2λ2 − 1) [−λλ2 + λ + �(4λ1 + 2λ2 − 1)]

6λ2
2 + 4λ2 − 2

,

(93)

respectively. It is interesting to note that the numerical value
of the coefficient μ0 is determined by λ1 and λ2 only, while
β0 is also determined by the arbitrary values of λ.

5.1 Stiff fluid filled Bianchi type I Universe

An important equation of state, extensively used to describe
the properties of high density matter, is the Zeldovich (or
stiff matter) equation of state, which can be used for mat-
ter densities significantly higher than nuclear densities, ρ >

10ρn , where ρn is the nuclear density. The Zeldovich equa-
tion of state can be obtained theoretically from a relativis-
tic Lagrangian that allows bare nucleons to interact attrac-
tively by exchanging a scalar meson, and to interact repul-
sively by exchanging a massive vector meson [148]. In
the non-relativistic limit both the quantum and the clas-
sical description of strong interactions yield Yukawa-type
potentials. At the highest matter densities the nuclear inter-
actions are dominated by the vector meson exchange, and
one can show, by using a mean field approximation, that in
the extreme limit of infinite densities the pressure tends to
the energy density, p → ρ. In this high density limit the
speed of sound, given by c2

s = dp/dρ → 1. Therefore
the stiff fluid equation of state satisfies the causality con-
dition, which requires that the speed of sound is less than
the speed of light, cs ≤ c. For the Zeldovich fluid with
r = P , the energy conservation gives the dependence of
the density as a function of the comoving V in the form
r = r0/V 2.

In the case of the stiff fluid the cosmological evolution
equations take the simple form

dV

dτ
= u,

du

dτ
=
{

1 + λ1

(
B2

0 + μ2
0

)
1 − 1

4

(
B2

0 − μ2
0

)
}
V, (94)

dB0

dτ
= b0,

db0

dτ
= 1

B0
b2

0 +
⎡
⎣λ1

1 +
(
B2

0 − μ2
0

)

1 − 1
4

(
B2

0 − μ2
0

) − λ2

⎤
⎦ B0

−
⎡
⎢⎣2

√√√√ λ1

1 − 1
4

(
B2

0 − μ2
0

) + u

V

⎤
⎥⎦ b0. (95)

The results of the numerical integration of the above system
are presented in Figs. 1 and 2, respectively.

In order to numerically integrate the cosmological evo-
lution equations for the stiff fluid case we have fixed the
value of the free parameter λ2 as λ2 = 0.33. As initial con-
ditions we have adopted the values V (0) = 0.8, u(0) = 4,
B0(0) = 0.7, and b0(0) = −0.001. The comoving volume
element of the Bianchi type I Universe, presented in the left
panel of Fig. 1, is a monotonically increasing function of the
cosmological time τ , indicating an expansionary evolution
of the Bianchi type I Universe. For small times the increase
of V is almost linear, and the variation of the numerical val-
ues of the parameter λ1 influences the behavior of V only in
the large time limit. The mean Hubble function, shown in the
right panel of Fig. 1, is a monotonically decreasing function
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Fig. 1 Variation of the comoving volume element V (upper leftfigure),
of the mean dimensionless Hubble function h (upper right figure), of
the dimensionless vector field B0 (lower left figure), and of the dimen-
sionless matter energy density r for a Bianchi type I Universe filled with
a stiff fluid in the Maxwell–Chern–Simons theory, for different values
of the parameters λ1 and μ0: λ1 = 0.11, μ0 = 0.447 (solid curve),
λ1 = 0.12, μ0 = 0.377 (dotted curve), λ1 = 0.13, μ0 = 0.333 (short

dashed curve), λ1 = 0.14, μ0 = 0.301 (dashed curve), and λ1 = 0.15,
μ0 = 0.277 (long dashed curve), respectively. The initial conditions
used to numerically integrate the cosmological evolution equations are
V (0) = 0.8, u(0) = 4, B0(0) = 0.7, and b0(0) = −0.001, respectively.
In all cases the numerical value of the parameter λ2 has been fixed as
λ2 = 0.33

of time, and its behavior is slightly influenced in the large
time limit by the variation of λ1. In the large time limit h
tends to a constant value, indicating that in the presence of
the Maxwell–Chern–Simons terms the stiff fluid filled Uni-
verse ends in an exponentially expanding de Sitter type era.
The time evolution of the vector field B0, depicted in the
left lower panel of Fig. 1 shows a strong dependence on the
numerical values of λ1. B0 is a monotonically decreasing
function of time, and in the large time limit it takes very
small numerical values. The energy density of the matter,
represented in the right lower panel of Fig. 1, is a monoton-
ically decreasing function of time, whose evolution is prac-
tically independent on the variation of the numerical val-
ues of λ1. In the large time limit the matter energy density
tends to zero, indicating that the de Sitter time expansion
leads to a vacuum Universe, whose dynamics is dominated
by the contributions of the Maxwell–Chern–Simons vector
fields.

The time variations of the deceleration parameter of the
Bianchi type I Universe, and of its anisotropy parameter, are
represented in Fig. 2.

The expansion of the Bianchi type I Universe begins in its
very early stages with q having values around q ≈ 2. The
Universe is initially in a decelerating state, withq > 0, but for
τ ≈ 0.7 the deceleration parameter reaches the value q ≈ 0,
and the Universe enters in an accelerating phase. In the large
time limit q reaches values of the order of q ≈ −1, indicating
the presence of the de Sitter expansion. The overall evolution
of q is slightly dependent on the numerical values of λ1. The
time variation of the anisotropy parameter A, shown in the
right panel of Fig. 2, is also strongly dependent on the model
parameter λ1. In the large time limit A → 0, indicating that
when the Universe enters the de Sitter phase it is already in
an isotropic state. High values of λ1 lead to a rapid transition
to the de Sitter era, as well as to the rapid isotropization of
the Bianchi type I geometry.
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Fig. 2 Variation of the deceleration parameter q (left figure), and of the
anisotropy parameter A (right figure) for a Bianchi type I Universe filled
with a stiff fluid in the Maxwell–Chern–Simons theory, for different val-
ues of the parameters λ1 and μ0: λ1 = 0.11, μ0 = 0.447 (solid curve),
λ1 = 0.12, μ0 = 0.377 (dotted curve), λ1 = 0.13, μ0 = 0.333 (short
dashed curve), λ1 = 0.14, μ0 = 0.301 (dashed curve), and λ1 = 0.15,

μ0 = 0.277 (long dashed curve), respectively. The initial conditions
used to numerically integrate the cosmological evolution equations are
V (0) = 0.8, u(0) = 4, B0(0) = 0.7, and b0(0) = −0.001, respectively.
In all cases the numerical value of the parameter λ2 has been fixed as
λ2 = 0.33

5.2 The dust Bianchi type I Universe

As a next cosmological application of our model we will con-
sider the case of the dust Universe, with the matter having
negligibly small thermodynamic pressure, corresponding to
the choice γ = 1. The overall dynamics is very similar to the
stiff fluid case, with the Bianchi I type Universe isotropizing
in the large time limit, and ending in a de Sitter type expan-
sionary phase. In the following we will investigate the effect
of the variation of the parameter μ0 on the cosmological
dynamics.

In order to numerically integrate the cosmological evo-
lution equations in the case of the dust Universe we fix the
numerical value of the free parameter λ1 as λ1 = 0.1, and
we vary the numerical values of μ0, and of λ2, as given by

λ2 = −4λ1μ
2
0 + μ2

0 + 2

2
(
μ2

0 + 3
) . (96)

Similarly to the stiff fluid case, as initial conditions we adopt
the values V (0) = 0.8, u(0) = 4, B0(0) = 0.7, and b0(0) =
−0.001, respectively. The time variations of the comoving
volume element, Hubble function, vector field, matter energy
density, deceleration parameter and anisotropy parameter are
plotted in Figs. 3 and 4, respectively.

The comoving volume element of the dust fluid filled
Bianchi type I Universe, plotted in the left panel of Fig. 3,
is a monotonically increasing function of the cosmological
time τ , indicating that the Bianchi type I Universe is glob-
ally expanding. For small time intervals the variation of V
is almost linear. The mean Hubble function, depicted in the
right panel of Fig. 3, is a monotonically decreasing function

of time. The time variations of both V and h are practically
independent on the modifications of the numerical values of
the parameter μ0, with a very slight influence manifesting
itself only in the large time limit. On the other hand for large
values of τ , h tends to a constant value, indicating that in
the presence of the Maxwell–Chern–Simons terms the dust
fluid filled Bianchi type I Universe experiences a transition
to an accelerating phase, ending in a de Sitter type regime.
The time evolution of the vector field B0, represented in the
left lower panel of Fig. 3, indicates a strong dependence on
the numerical values of μ0. B0 is a monotonically decreasing
function of time, and it continues to decrease even during the
accelerated expansion of the Bianchi type I geometry, and in
the isotropic phase. The energy density r of the dust matter,
depicted in the right lower panel of Fig. 3, is a monotonically
decreasing function of time, whose dynamics is essentially
independent on the modifications of the numerical values of
μ0. In the large time limit the matter energy density tends
to zero, limτ→∞ r = 0, thus showing that the accelerated
expansion of the dust Bianchi type I Universe in the pres-
ence of a Maxwell–Chern–Simons type field leads in its final
stages to a vacuum Universe, in which the energy density of
the ordinary matter gives a negligibly contribution to the total
energy of the Universe.

The time variations of the deceleration parameter and of
the anisotropy parameter of the dust Bianchi type I Universe
in the presence of the Maxwell–Chern–Simons field are plot-
ted in Fig. 4.

The time variation of the deceleration parameter is pre-
sented in the left panel of Fig. 4. For the chosen numerical
values of the model parameters the expansion of the Bianchi
type I Universe starts with values of q of the order of 1.5,
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Fig. 3 Variation of the comoving volume element V (upper left figure),
of the mean dimensionless Hubble function h (upper right figure), of
the dimensionless vector field B0 (lower left figure), and of the dimen-
sionless matter energy density r for a dust fluid filled Bianchi type I
Universe in the Maxwell–Chern–Simons theory, for different values
of the parameter μ0: μ0 = 0.10 (solid curve), μ0 = 0.20, (dotted
curve), μ0 = 0.30, (short dashed curve), μ0 = 0.40 (dashed curve),

and μ0 = 0.50 (long dashed curve), respectively. The initial conditions
used to numerically integrate the cosmological evolution equations are
V (0) = 0.8, u(0) = 4, B0(0) = 0.7, and b0(0) = −0.001, respectively.
In all cases the value of the parameter λ1 has been fixed as λ1 = 0.1,
while λ2 = (−4λ1μ

2
0 + μ2

0 + 2
)
/2
(
μ2

0 + 3
) ≈ 0.33 for all considered

values of μ0
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Fig. 4 Variation of the deceleration parameter q (left figure), and of
the anisotropy parameter A (right figure) for a dust fluid filled Bianchi
type I Universe in the Maxwell–Chern–Simons theory, for different val-
ues of the parameter μ0: μ0 = 0.10 (solid curve), μ0 = 0.20, (dotted
curve), μ0 = 0.30, (short dashed curve), μ0 = 0.40 (dashed curve),
and μ0 = 0.50 (long dashed curve), respectively. The initial conditions

used to numerically integrate the cosmological evolution equations are
V (0) = 0.8, u(0) = 4, B0(0) = 0.7, and b0(0) = −0.001, respectively.
In all cases the value of the parameter λ1 has been fixed as λ1 = 0.1,
while λ2 = (−4λ1μ
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q ≈ 1.5 at τ = 0. The dust Bianchi I Universe is in a decel-
erating phase for small values of τ , with q > 0. However,
for τ = τcr ≈ 0.9, the deceleration parameter reaches its
borderline value q ≈ 0, and for τ > τcr the Universe enters
in an accelerating phase, with q < 0. In the large time limit
q reaches values of the order of q ≈ −1. The time evolution
of q is basically independent on the numerical values of μ0.
The time variation of the anisotropy parameter A, depicted
in the right panel of Fig. 4, does show a mild dependence on
the numerical values of the parameter μ0. In the large time
limit A becomes zero, A → 0. This situation corresponds to
values of q of the order of q ≈ −1, which shows that the Uni-
verse is already isotropic before entering the de Sitter phase.
The large time behavior of A, before the full isotropization
period, shows a small dependence on the numerical values
of μ0.

6 Discussions and final remarks

In this paper we have considered the effects of the topolog-
ical Chern–Simons term on the cosmological evolution of
the Universe. The original Chern–Simons term consists of a
constant vector field, which breaks a subset of the Poincaré
group containing the time translation and boost. In order to
restore the whole Poincaré symmetry, we have promoted this
constant vector to a dynamical vector field, with constant
norm, through a condition which is imposed in the action
by a Lagrange multiplier term. Another example of a grav-
ity theory with two dynamical vector fields was considered
in [96] where the Weyl vector and the trace of torsion ten-
sor are two vector fields coupled minimally to gravity. The
norm of the vector field Aμ in our model could in princi-
ple be positive or negative or even zero. However, in order
to respect the spatial isotropy of the Universe in the FRW
space-time this constrained vector field should be time-like.
The theory has a self-accelerating de Sitter solution. We have
performed the cosmological perturbation analysis of the the-
ory around this de Sitter background, and we have found that
the theory has two gravitational wave modes, together with
four vector modes, corresponding to the two vector fields
of the theory. The vector modes of the theory interact with
each other through the Chern–Simons interaction term. This
interaction makes the vector degrees of freedom of the the-
ory non-trivial. Also there is one scalar mode in this theory,
leaving seven degrees of freedom around the de Sitter back-
ground. It should be mentioned that the constrained vector
field Aμ has three dynamical degrees of freedom around the
de Sitter background, since we have a Lagrange multiplier
term which breaks the U (1) gauge invariance for Aμ. This is
similar to the case Einstein-aether theory where a constrained
time-like vector field is added to the Einstein–Hilbert action.
The main difference is that here we have a gravity theory with

two dynamical vector field which couple through a non-trivial
Chern–Simons interaction term. The perturbation analysis of
the theory then shows that the theory is stable and healthy
around de Sitter background. Of course we have to perform
Hamiltonian analysis in order to find the exact number of
degrees of freedom of the theory.

In order to investigate the cosmological implications of
the space-like constrained vector field one should consider
an anisotropic space-time. In this paper, we have consid-
ered the dynamical behavior of a Bianchi type I space-time
in the framework of the Maxwell–Chern–Simons gravity
model. The Bianchi type I anisotropic space-time repre-
sents the simplest, and most natural, extension of the stan-
dard FRW metric, to which it reduces in the particular
limit of equal directional scale factors. Bianchi type mod-
els can be considered as viable alternatives to the standard
flat FRW cosmologies [149–152]. The small observed devi-
ations from the exact isotropy and the anomalies in the Cos-
mic Microwave Background could be explained by the pres-
ence of an anisotropic expansion of the Universe. Bianchi
type VIIh anisotropic cosmological models were considered
in [153], in a tentative to explain the large scale asymme-
try observed in the Cosmic Microwave Background distri-
bution. An in-depth comparison with the WMAP first-year
data on large angular scales did show that a chance align-
ment can be eliminated at a 3σ level. On the other hand,
the recent Planck Collaboration results [154] did show con-
vincingly that the Bianchi type VIIh anisotropic cosmolog-
ical model cannot fit the recent observational data obtained
by the Planck satellite. However, one of the large angle
anomalies of the Cosmic Microwave Background, the low
quadrupole moment, indicates a great amount of power sup-
pression at large scales. In this context it is important to
note that this anomaly is within the cosmic variance. On
the other hand the presence of such an anomaly, if confirmed
by further observations, seems to indicate the existence of a
Bianchi type I anisotropic geometry of the Universe, which
could indeed alleviate the low quadrupole moment problem
[155–158]. The extreme smallness of the quadrupole com-
ponent of the Cosmic Microwave Background temperature
distribution seems to suggest that for a homogeneous but
anisotropic Universe the deviation from the isotropic flat
FRW geometry must be small. Therefore such a deviation
can be naturally explained by the existence of a background
Bianchi type I geometry. However, it is important to point
out that in order to alleviate the low quadrupole moment, the
anisotropy must have a specific and well-determined evolu-
tion. Moreover, the presence in the Universe of an anisotropic
geometry could also raise the quadrupole moment, and this
is more likely to happen during the cosmological dynam-
ics [159]. It is also important to point out that cosmologi-
cal observations do not favor the Bianchi type I geometry
[154].
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In the present paper we have found that in the framework
of Maxwell–Chern–Simons gravity theory the Bianchi type
I homogeneous but anisotropic Universe presents a complex
dynamics. In our analysis we have assumed that the matter
content of the Universe consists of a perfect barotropic cos-
mological fluid. In particular, for this type of matter source,
the Bianchi type I models we have considered do always
isotropize. The nature of the cosmological evolution strongly
depends on the dimensionless model parameters λ1 and λ2, as
well as on the adopted initial conditions for the matter energy
density, Hubble function, and of the vector field itself. The
transition to an isotropic phase of the Universe is associated
with an accelerated, de Sitter type expansion, in which the
considered cosmological models end in the large time limit.
This type of behavior is independent on the nature of the cos-
mological fluid, and it does appear in the two cases of stiff
and dust fluids, respectively.

Hence, the inclusion in the gravitational action of two
vector fields, coupled via a Chern–Simons term, leads to the
possibility of obtaining more general gravitational models,
thus allowing for the possibility of a better and more real-
istic physical description of both the very early and the late
evolution of our Universe.
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