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Abstract. In this paper we introduce an enclosure of the numerical range
of a class of rational operator functions. In contrast to the numerical
range the presented enclosure can be computed exactly in the infinite
dimensional case as well as in the finite dimensional case. Moreover, the
new enclosure is minimal given only the numerical ranges of the opera-
tor coefficients and many characteristics of the numerical range can be
obtained by investigating the enclosure. We introduce a pseudonumeri-
cal range and study an enclosure of this set. This enclosure provides a
computable upper bound of the norm of the resolvent.
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1. Introduction

The spectral properties of operator functions play an important role in math-
ematical analysis and in many applications [4,13,20]. A classic enclosure of
the spectrum is the closure of the numerical range [15]. Furthermore, the
norm of the resolvent in a point ω is under some conditions bounded by a
quantity that depend on the distance from ω to the numerical range [16].
Knowledge of the numerical range is also important in perturbation theory
and in several other branches of operator theory [12]. However, in most cases
it is not possible to analytically determine the numerical range, not even in
the finite dimensional case.

The geometric properties of the numerical range of matrix polynomi-
als and rational matrix functions have been studied extensively [3,14] and
it is possible to numerically approximate the shape of the numerical range
of matrix polynomials [6]. However, as matrix functions generated by a dis-
cretization of a differential equation are very large, the available algorithms
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are very time consuming. Furthermore, the methods developed for matrix
problems are not applicable in the infinite dimensional case.

In this paper we introduce an enclosure of the numerical range of a
class of rational operator functions whose values are linear operators in a
Hilbert space H. Importantly, this new enclosure is applicable in the infinite
dimensional case as well as in the finite dimensional case. Let A and B be
selfadjoint operators in H, where B is non-zero and bounded. We consider
rational operator functions of the form

T (ω) := A − ω2 − ω2

c − idω − ω2
B, dom T (ω) = dom A, ω ∈ C\{δ+, δ−},

(1.1)

where c and d are non-negative real numbers, and δ± are the poles of the
coefficient of B. If d = 0, then the operator function ω2 �→ T (ω2) is selfadjoint.
This function has been studied extensively [1,2,9,11]. In the case B ≥ 0 the
rational function is the first Schur complement of a selfadjoint block operator
matrix [1,20]. The non-selfadjoint case, d > 0 (as well as the case d = 0), has
applications in electromagnetic field theory and cover important applications
in optics [8,10,21]. The presented enclosure of the numerical range is minimal,
given only the numerical ranges of A and of B, and we will show that this
enclosure can be computed exactly.

Resolvent estimates and pseudospectra can be used to investigate quan-
titative properties of non-normal operators and operator functions [7,19].
In particular, estimates of the resolvent of bounded analytic operator func-
tions were considered in [16]. To derive a computable estimate for (1.1), we
introduce a pseudonumerical range and study an enclosure of this set. The
derived enclosure of the pseudonumerical range provides a computable upper
bound of the norm of the resolvent in the complement of the new enclosure
of the numerical range. This enclosure of the pseudospectra can be used to
understand how the resolvent behaves outside the enclosure of the numerical
range. Moreover, the enclosure of the pseudospectra shows where the resol-
vent potentially is large and can in the finite dimensional case be combined
with a numerical estimate of the pseudospectra [19].

The the paper is organized as follows: In Sect. 2, we present the enclosure
of the numerical range, the theoretical framework used in the paper, and
conditions for determining if ω ∈ C belong to the enclosure. Our main results
are Theorem 2.9 and the algorithm in Proposition 2.19, which can be used
to determine the enclosure of the numerical range.

In Sect. 3, properties of the boundary of the enclosure are analyzed in
detail. Our main results are conditions for the existence of a strip in the com-
plement of the numerical range given in Propositions 3.15 and 3.29. Moreover,
Propositions 3.16 and 3.31 provide important properties of the strip.

In Sect. 4, the ε-pseudonumerical range is introduced and we determine
an enclosure of this set. Our main results are Theorem 4.3, which shows how
the boundary of the enclosure of the pseudospectra can be determined and
Corollary 4.6 gives an estimate of the resolvent of (1.1).
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Throughout this paper, we use the following notation. Let ω� and ω�
denote the real and imaginary parts of ω, respectively. If M is a subset of an
Euclidean space, then ∂M denotes the boundary of M. Further, we denote
by

√· the principal square root.

2. Enclosure of the Numerical Range

In this section we derive an enclosure of the numerical range of the operator
function (1.1). Define for a non-negative real number c and a positive d the
constants

θ :=

√
c − d2

4
, δ± := ±θ − i

d

2
. (2.1)

Note that the operator-valued function (1.1) is defined for ω ∈ C :=
C\{δ+, δ−}, where δ+ and δ− are the poles of T and the domain is inde-
pendent of ω ∈ C. For u ∈ dom T\{0} we define the functionals αu :=
(Au, u)/(u, u), βu := (Bu, u)/(u, u), and

t(αu,βu)(ω) :=
(T (ω)u, u)

(u, u)
= αu − ω2 − ω2

c − idω − ω2
βu, ω ∈ C. (2.2)

The numerical range of T is by definition

W (T ) :=
⋃

u∈dom A\{0}
{ω ∈ C : t(αu,βu)(ω) = 0}.

For convenience we will in some cases not explicitly write the dependence of
u in the functionals αu and βu. To simplify the investigation of W (T ), we
define the polynomial

p(α,β)(ω) := t(α,β)(ω)(c − idω − ω2) = (α − ω2)(c − idω − ω2) − βω2. (2.3)

For fixed values on the constants c and d we order the roots

rn : R × R → C, n = 1, . . . , 4, (2.4)

of pα,β such that they are continuous functions of (α, β) ∈ R
2. The numerical

range of T can then be written as

W (T ) =
4⋃

n=1

⋃
u∈dom A\{0}

rn(αu, βu). (2.5)

From (2.5) it is apparent that W (T ) consists of at most four components,
i.e., W (T ) is a union of at most four maximal connected subsets of W (T ).
Let R := R∪ {±∞} denote the extended line of real numbers and denote by
C := C∪ {∞} the Riemann sphere. We extend the functions rn, n = 1, . . . , 4
to rn : R × R → C such that the extension coincides with the limit values.
For a given set X ⊂ R × R let WX(T ) ⊂ C denote the set

WX(T ) :=
4⋃

n=1

rn(X), rn(X) :=
⋃

(α,β)∈X

rn(α, β). (2.6)
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The roots rn of (2.3) are given by particular pairs (αu, βu) in

Ω := W (A) × W (B) ⊂ R × R. (2.7)

Hence, by taking X = Ω in (2.6), we get the enclosure

WΩ(T ) =
4⋃

n=1

rn(Ω) ⊃ W (T ). (2.8)

Moreover, from this definition it follows that WΩ(T ) is the minimal set that
encloses W (T ) given only W (A) and W (B).

Lemma 2.1. The polynomial p(α,β) defined in (2.3) has in the limits α → ±∞
the roots δ+, δ−, and ∞, where ∞ is a double root.

Proof. Define p2(ω) := (ω − δ+)(ω − δ−), then the roots of pα,β coincide with
those of

p(α,β)(ω)
α

= p2(ω) + ω2 β − p2(ω)
α

. (2.9)

The poles δ+ and δ− are roots of p2 and (2.9) is for large |α| a small per-
turbation of p2. Then, since the roots of a polynomial depend continuously
on its coefficients, δ+ and δ− are roots in the limits α → ±∞. There can
be no other finite roots in the limit since the perturbation of p2 is arbitrary
small. �

Proposition 2.2. The enclosure WΩ(T ) as defined in (2.8) has the following
properties:

(i) WΩ(T ) is symmetric with respect to the imaginary axis.
(ii) 0 ∈ WΩ(T ) if and only if 0 ∈ W (A) or c = 0.
(iii) δ+ ∈ WΩ(T ) if and only if W (A) is unbounded or 0 ∈ W (B) or c = 0.
(iv) δ− ∈ WΩ(T ) if and only if W (A) is unbounded or 0 ∈ W (B).
(v) ∞ ∈ WΩ(T ) if and only if W (A) is unbounded.

Proof. (i) The polynomial p(α,β)(iω) has real coefficients. Hence, the sym-
metry follows from the complex conjugate root theorem. (ii) Follows directly
from (2.3) and (2.8). (iii) c = 0 implies δ+ = 0 and δ+ ∈ WΩ(T ) then
follows from (ii). The number p(α,β)(δ+) = βδ2

+ is zero for β = 0, which
implies δ+ ∈ WΩ(T ) if 0 ∈ W (B). If W (A) is unbounded the statement
follows directly from Lemma 2.1. Suppose none of the above holds, then
p(α,β)(δ+) = βδ2

+ �= 0, and since W (A) is bounded, p(α,β)(ω) �= 0 in a neigh-
borhood of δ+. The proof of (iv) is similar to (iii) with the difference δ− �= 0
for c = 0. (v) is immediate from Lemma 2.1. �

Corollary 2.3. Let WΩ(T ) denote the enclosure (2.8) and take ω ∈
{0, δ+, δ−,∞}. Then ω ∈ WΩ(T ) if and only if rn(α, β) = ω for some
n ∈ {1, 2, 3, 4} and (α, β) ∈ ∂Ω.

Proof. Similar to Proposition 2.2. �

The following propositions provide simple tests for ω ∈ WΩ(T ).
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Proposition 2.4. Let WΩ(T ) denote the enclosure (2.8) and assume that ω is a
point on the imaginary axis with ω = iω� ∈ iR\{0, δ+, δ−}. Then ω ∈ WΩ(T )
if and only if at least one of following conditions hold:

−ω2
� − ω2

�
c + dω� + ω2

�
inf W (B) ∈ W (A),

−ω2
� − ω2

�
c + dω� + ω2

�
supW (B) ∈ W (A),

−c + dω� + ω2
�

ω2
�

(
ω2

� + inf W (A)
) ∈ W (B).

(2.10)

Proof. By definition iω� ∈ WΩ(T ) ∩ iR\{0, δ+, δ−} if and only if there exists
a (α, β) ∈ Ω such that

α = −ω2
� − ω2

�
c + dω� + ω2

�
β. (2.11)

Thus α is a non-constant real linear function in β. Since (α, β) ∈ Ω and
β belongs to a bounded set, rn(α′, β′) = iω� for some pair (α′, β′) ∈ ∂Ω.
Equation (2.11) has two solutions unless the pair is a corner of Ω. Hence
it is enough to investigate three of the line segments on ∂Ω to determine if
iω� ∈ WΩ(T ). The converse holds trivially. �

Let D denote the open disk

D :=
{

ω :
∣∣∣ω + i

c

d

∣∣∣ <
c

d

}
⊂ C. (2.12)

Lemma 2.5. Let WΩ(T ) denote the enclosure (2.8) and denote by D the disk
(2.12), then it holds that ∂D ∩ WΩ(T ) ⊂ {0, δ+, δ−,−2ic/d}.
Proof. Assume that ω ∈ ∂D\{δ+, δ−} ∩ WΩ(T ), then the imaginary part of
t(α,β)(ω) in (2.2) is −2ω�ω�, which is zero only for ω ∈ {0,−2ic/d}. �

Proposition 2.6. Let WΩ(T ) and D be the enclosure (2.8) and the disk (2.12),
respectively. Take ω ∈ C\(iR ∪ {δ+, δ−,∞}). Then ω ∈ WΩ(T ) if and only if
ω /∈ ∂D and

β̂(ω) :=
−2ω�

((−ω2
� + ω2

� + dω� + c
)2 + ω2

�(2ω� + d)2
)

d|ω|2 + 2cω�
∈ W (B), (2.13)

and

α̂(ω) :=
(2ω� + d)|ω|4
d|ω|2 + 2cω�

∈ W (A). (2.14)

Proof. Assume that ω ∈ WΩ(T ) for some ω /∈ iR ∪ {δ+, δ−}, then the real
and imaginary parts of the equality t(α,β)(ω) = 0 give the following linear
system of equations:

−2ω�
((−ω2

� + ω2
� + dω� + c

)2
+ ω2

�(2ω� + d)2
)

= (d|ω|2 + 2cω�)β, (2.15)
(2ω� + d)|ω|4 = (d|ω|2 + 2cω�)α. (2.16)
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The expression d|ω|2 +2cω� is only zero for ω ∈ ∂D. Hence (2.13) and (2.14)
follows from (2.15), (2.16), and Lemma 2.5. �

Define the sets

Πβ := {ω ∈ C\D : ω� ≤ 0},
Πα := {ω ∈ C\D : ω� ≥ −d/2} ∪ {ω ∈ D : ω� ≤ −d/2}.

(2.17)

Corollary 2.7 presents several general properties of the enclosure WΩ(T ). In
particular (iii)–(iv) show that Πβ and Πα determine the the sign of β̂(ω) and
of α̂(ω), where β̂ and α̂ are defined in Proposition 2.6.

Corollary 2.7. Let WΩ(T ) denote the enclosure (2.8) and denote by D the disk
(2.12). Let α̂ and β̂ be the functions defined in (2.13) and in (2.14), respec-
tively. Let Πβ and Πα denote the sets (2.17). Then the following properties
hold:

(i) If ω /∈ iR, then ω /∈ WΩ(T ) provided that |ω�| is large enough.
(ii) For sequences {ωn} ∈ WΩ(T ), with |ωn

�| → ∞, n → ∞, it holds that
β̂(ωn) ∼ −2ωn

� (ωn
�)2 /d and ωn

� = O((ωn
�)−2).

(iii) If ω /∈ iR ∪ ∂D then β̂(ω) ≥ 0 if and only if ω ∈ Πβ.
(iv) If ω /∈ iR ∪ ∂D then α̂(ω) ≥ 0 if and only if ω ∈ Πα.

Proof. (i) The value |β̂(ω)| gets arbitrary large as ω� → ±∞ but W (B) is
bounded. (ii) Assume {ωn} ∈ WΩ(T ), |ωn

�| → ∞, then (i) implies that ωn
� is

bounded and β̂(ωn) ∼ −2ωn
� (ωn

�)2 /d from (2.15). Hence, the boundedness
of β̂(ωn) yields that ωn

� = O((ωn
�)−2). (iii) and (iv) follow by straightforward

calculations. �

Lemma 2.8. The functions rn in (2.4) have the following properties:

(i) For given ω ∈ C\(iR ∪ {δ+, δ−,∞}) there is a unique pair (α, β) ∈ R
2

such that rn(α, β) = ω for some n ∈ {1, 2, 3, 4}. Further, if rm(α, β) =
ω, m �= n, then α = c, β = d2/4, and ω = ±√

c − d2/16 − id/4.
(ii) For given ω ∈ iR\{δ+, δ−} and β ∈ R, the unique α ∈ R such that

rn(α, β) = ω for some n ∈ {1, 2, 3, 4} is

α = −ω2
� − ω2

�
c + dω� + ω2

�
β.

(iii) For given ω ∈ iR\{0} and α ∈ R, the unique β ∈ R such that rn(α, β) =
ω for some n ∈ {1, 2, 3, 4} is

β = −(c + dω� + ω2
�)

(
1 +

1
ω2

�
α

)
.

Proof. (i) Proposition 2.6 yields that ω ∈ WΩ(T ) if and only if (α̂(ω), β̂(ω)) ∈
Ω. Thus rm(α, β) = ω is only possible for (α, β) = (α̂(ω), β̂(ω)). Assume
ω = rn(α, β) = rm(α, β), n �= m. Then, −ω is also a double root since ω /∈ iR
and roots of p(α,β) are symmetric with respect to the imaginary axis. The
result is then obtained using an ansatz with these two double roots. (ii)–(iii)
Follows trivially from the definition of pα,β . �
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In Theorem 2.9, we show that the enclosure of the numerical range
WΩ(T ) is closely related to the set

W∂Ω(T ) =
4⋃

n=1

rn(∂Ω). (2.18)

Theorem 2.9. Let WΩ(T ) denote the enclosure (2.8) and let W∂Ω(T ) denote
the set (2.18). Then the following equalities hold:

(i) WΩ(T ) ∩ iR = W∂Ω(T ) ∩ iR.
(ii) ∂WΩ(T )\iR = W∂Ω(T )\iR.

Proof. (i) The inclusion WΩ(T ) ∩ iR ⊃ W∂Ω(T ) ∩ iR is clear from (2.8) and
(2.18). Let ω ∈ WΩ(T ) ∩ iR, then the result follows from Corollary 2.3 and
Proposition 2.4. (ii) Assume δ+ ∈ WΩ(T )\iR, then δ+ ∈ ∂WΩ(T ) follows
from Lemma 2.5 and Corollary 2.3 implies δ+ ∈ W∂Ω(T ). The proof for δ−
is similar to the proof for δ+ and for ∞ the result follows directly. Apart
from iR ∪ {δ+, δ−,∞}, Lemma 2.8 (i) yields that rn : R × R → C � R

2 is
injective. Then ∂rn(Ω)\iR = rn(∂Ω)\iR is a consequence of the invariance of
domain theorem [5]. Hence, ∂WΩ(T )\iR ⊂ W∂Ω(T )\iR and (ii) follows from
Lemma 2.8 (i). �

Corollary 2.10. The boundary of WΩ(T )\iR is W∂Ω(T )\iR.

Definition 2.11. Let N := ∅ for d < 2
√

c and N := [δ−, δ+] for d ≥ 2
√

c.
Define the sets

τ1 := {inf W (A), inf W (B)} ∪ {sup W (A), sup W (B)},
τ2 := {inf W (A), sup W (B)} ∪ {supW (A), inf W (B)},

R1 :=
(⋃4

n=1 rn(τ1)
)

∩ iR\N , R2 :=
(⋃4

n=1 rn(τ2)
)

∩ N .

Let m : R1∪̇R2 → N denote a counting function, where for iμ ∈ Rj we set

m(iμ) :=
4∑

n=1

#{τ ∈ τj : rn(τ) = iμ}.

Due to continuity ∪nrn(−∞, β) = {δ±,±i∞} and ∪nrn(∞, β) = {δ±,±∞}.

Proposition 2.12. Let W∂Ω(T ) denote (2.18), and let R1,R2, τ1, τ2, and m
be defined as in Definition 2.11. Assume that c > 0, then iμ ∈ W∂Ω(T ) is
an endpoint of a line segment of W∂Ω(T ) ∩ iR if and only if iμ ∈ R1∪̇R2

and m(iμ) is odd. Further, if iμ is an isolated point of W∂Ω(T ) ∩ iR, then
iμ ∈ R1∪̇R2 and m(iμ) is even.

Proof. The result is first shown for iμ /∈ {0, δ+, δ−,±i∞}. Assume iμ /∈ N ∪
{0,±i∞} is an endpoint of a line segment or an isolated point of W∂Ω(T )∩iR.
Then

α + μ2 +
μ2

c + dμ + μ2
β = 0,

for some (α, β) ∈ ∂Ω. Assume that (α, β) /∈ τ1, then since μ2

c+dμ+μ2 > 0 it
follows by similar arguments as given in Proposition 2.4 that there exist a pair



158 C. Engström, A. Torshage IEOT

(α′, β′) ∈ Ω\∂Ω such that α′ + μ2 + μ2

c+dμ+μ2 β′ = 0. Then, Lemma 2.8 (ii)–
(iii) gives a contradiction. Hence (α, β) ∈ τ1 and iμ ∈ R1. Assume that iμ is
an isolated point, then from the symmetry of the roots with respect to the
imaginary axis it follows that m(iμ) is even. Assume that iμ is an endpoint
of a line segment. From the injectivity proven in Lemma 2.8 (ii)–(iii) follows
then that exactly one root must be on the line segment. Thus from the roots
symmetry with respect to the imaginary axis it follows that m(iμ) is odd.

If iμ ∈ N\{0, δ+, δ−} a similar argument proves the claim for R2. For
the converse, assume iμ ∈ R1 and m(iμ) odd. Then since μ2

c+dμ+μ2 > 0 it
follows that iμ is the root for an unique pair (α, β) ∈ τ1. Assume that iμ is
not the endpoint of a line segment, then since it is not an isolated point it
is an inner point of a line segment in W∂Ω(T ) ∩ iR. From injectivity proven
in Lemma 2.8 (ii)–(iii), symmetry with respect to the imaginary axis, and
that m(iμ) is odd, it follows that for (α′, β′) ∈ ∂Ω sufficiently close to (α, β)
there is exactly one simple root on the imaginary axis that is in the vicinity
of iμ. Take points iμ1, iμ2 in the vicinity of iμ such that, μ1 < μ < μ2 and

μ2
i

c+dμi+μ2
i

> 0. Then there is some (α1, β1), (α2, β2) ∈ ∂Ω such that

α1 + μ2
1 +

μ2
1

c + dμ1 + μ2
1

β1 = 0, α2 + μ2
2 +

μ2
2

c + dμ2 + μ2
2

β2 = 0.

Since μ2
i

c+dμi+μ2
i

> 0 there is a line of solutions (α, β) intersecting ∂Ω twice.
Hence we can assume that α1 = α2 = α. By continuity there must exist
a β3 between β1 and β2 such that (α, β3) has the root iμ. But β3 �= β
which contradicts Lemma 2.8 (iii). The proof for iμ ∈ R2 and m(iμ) odd is
similar. Assume iμ ∈ {0, δ+, δ−}, then the result is shown by investigating
each case for iμ ∈ R1∪̇R2 and when iμ is an endpoint of a line segment of
W∂Ω(T ) ∩ iR. �

Remark 2.13. If c = 0 the point μ = 0 is always a solution to (2.3) and
similar results as in Proposition 2.12 can for this case be obtained from the
reduced cubic polynomial.

Proposition 2.14. Let W∂Ω(T ) denote (2.18), and let R1,R2, and m be
defined as in Definition 2.11. Then W∂Ω(T ) ∩ iR is obtained from R1∪̇R2

by the following algorithm:

1. Set I := {iμ ∈ R1∪̇R2 : m(iμ) is odd} and enumerate μ ∈ I increas-
ingly μ1 < μ2 < . . ..

2. Add an interval between iμj , iμj+1 in I if j is odd.
3. Set W∂Ω(T ) ∩ iR = I ∪ (R1∪̇R2).

Proof. From Proposition 2.12 it follows that step 1 defines I as the set of
endpoints of line segments of R1∪̇R2, where iμ1 is the minimal imaginary
part of a line segment. Then iμ2 must be the endpoint of that segment, which
is the point with maximum imaginary part. Doing this iteratively gives that
for all odd j, iμj is the minimal imaginary part of a line segment and for
even j, iμj is the maximal imaginary part of a line segment. Hence, step 2
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Figure 1. Visualization of how WΩ(T )\iR is obtained from
W∂Ω(T ) using the algorithm in Proposition 2.17. Red and
blue denotes points given by α ∈ [0,∞] and α ∈ [−∞, 0),
respectively

sets I to W∂Ω(T ) ∩ iR apart from isolated points. These points are added in
step 3. �

The following lemma and Lemma 2.8 implies that W∂Ω(T )\iR has a
finite number of points where more than one curve component intersect.

Lemma 2.15. The roots of the polynomial pα,β defined by (2.3) have the fol-
lowing properties:

(i) Fix α ∈ R\{0}, then p(α,·) has a multiple root for at most 4 values
β ∈ R.

(ii) Fix β ∈ R\{0}, then p(·,β) has a multiple root for at most 5 values
α ∈ R.

(iii) p(0,β) has a double root at 0 and the roots ±√
β + c − d2/4 − id/2.

(iv) p(α,0) has the roots ±√
α and ±√

c − d2/4 − id/2.

Proof. If α = 0 or both β = 0 and d = 2
√

c, then the discriminant Δp(α,β)

is zero and p(α,β) has a double root. For all other cases, we conclude from
definition that Δp(α,β) is a fifth-degree polynomial in α and a fourth-degree
polynomial in β. �

Definition 2.16. Two disjoint sets Γ1,Γ2 ∈ C are neighbors if ∂Γ1 ∩ ∂Γ2

contains at least one curve segment.

The algorithm presented in Proposition 2.17 is described in Fig. 1.

Proposition 2.17. Let WΩ(T ) denote the enclosure (2.8) and let W∂Ω(T )
denote (2.18). Then WΩ(T )\iR = W∂Ω(T )\iR if W (A) or W (B) is con-
stant. Otherwise WΩ(T )\iR is obtained from W∂Ω(T )\iR by the following
algorithm:

1. Let O be the component of C\(W∂Ω(T )\iR) containing values of ω with
arbitrarily large imaginary parts.

2. Let I ⊂ C\(W∂Ω(T )\iR) be the union of all components that are neigh-
bors of O.
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3. Let O ⊂ C\(W∂Ω(T )\iR) be the union of all components that are neigh-
bors of I.

4. If I ∪ O �= C\(W∂Ω(T )\iR), go to step 2.
5. Set WΩ(T )\iR = I ∪ W∂Ω(T )\iR.

Proof. If W (A) or W (B) are constant the result follows by definition.
Corollary 2.7 shows that only one component of C\(W∂Ω(T )\iR) contains
values of ω with arbitrarily large imaginary parts. Hence the initial set
O ⊂ C\WΩ(T )\iR in Step 1 is well-defined. From Lemmas 2.8 and 2.15
it follows that W∂Ω(T )\iR has a finite number of points with more than one
curve component intersecting it and by definition W∂Ω(T ) has at most 4 com-
ponents. Hence, C\(W∂Ω(T )\iR) consists of a finite number of components,
which implies that the algorithm will terminate after a finite number of steps.
Corollary 2.10 yields that the set W∂Ω(T )\iR is the boundary of a closed set
and if two components of C\(W∂Ω(T )\iR) are neighbors, one is a subset of
WΩ(T )\iR, and one is a subset of C\WΩ(T )\iR. Thus the algorithm gives
the sets I ⊂ WΩ(T )\iR and O ⊂ C\WΩ(T )\iR, and the Proposition follows
therefore from the termination criteria. �

Remark 2.18. In graph theory the algorithm in Proposition 2.17 is related to
the 2-colorability of the dual graph of W∂Ω(T )\iR, [18, Theorems 2–3].

3. Analysis of the Enclosure of the Numerical Range

In this section, the boundary of the enclosure is analyzed in detail. We derive
conditions for the existence of a strip in the complement of the numerical
range and prove properties of that strip.

The function T̃ (λ) := −T (
√

λ) is analytic in the upper half-plane C
+

and

Im(T̃ (λ)u, u) ≥ 0, for λ ∈ C
+,

if and only if inf W (B) ≥ 0. Since operator functions with applications in
physics often have non-negative imaginary part [1,10], we analyze in this sec-
tion the enclosure WΩ(T )\iR under the assumption inf W (B) ≥ 0. However,
the analysis when inf W (B) is allowed to be negative is similar.

Let ω1, ω2, ω3, ω4 be the roots of pα,β as defined in (2.3) and define

it1 := ω1 + ω2, it2 := ω3 + ω4, v1 := −ω1ω2, v2 := −ω3ω4. (3.1)

From the relation between the coefficients and roots of a polynomial it follows
that

t1 + t2 = −d,

t1t2 + v1 + v2 = α + β + c,

t1v2 + t2v1 = −αd,

v1v2 = αc. (3.2)

It is of interest to see when pα,β has purely imaginary solutions and the
following result shows that it depends on the sign of α.
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Lemma 3.1. Let pα,β be defined as in (2.3). Then, the following statements
hold for the roots on the imaginary axis:

(i) If α < 0, then pα,β has at least two roots of the form iμ, μ ∈ R, where
μ > 0 for exactly one root and μ ≤ 0 (μ < 0 if c > 0) for at least one
root.

(ii) If α > 0, then all roots of pα,β of the form iμ, μ ∈ R, satisfies μ ≤ 0
(μ < 0 if c > 0). If d < 2

√
c there are no purely imaginary root and if

d ≥ 2
√

β + c there are at least two purely imaginary roots.

Proof. (i) If β = 0, the result follows from Lemma 2.15. Assume β > 0 and
that μ is a root of the real function p̂α,β defined by p̂α,β(μ) := p(α,β)(iμ).
Then,

p̂α,β(μ) = (μ2 + α)(μ2 + dμ + c) + βμ2 = 0, (3.3)
where p̂α,β is positive and of even order. For α < 0 it follows that
p̂α,β(0) ≤ 0 (with equality if and only if c = 0) and thus there is a
positive and a non-positive root (negative if c > 0). There can be no
other roots μ > 0 since p̂′

α,β(0) = αd < 0 and p̂′
α,β is convex on [0,∞).

Hence, p̂α,β(μ) = 0 for exactly one value μ > 0.
(ii) If α > 0 then p̂α,β(μ) > 0 whenever μ > 0 or d < 2

√
c. Assume α > 0,

d ≥ 2
√

β + c, then p̂α,β(−d/2) ≤ 0, which implies that p̂α,β has at least
two real roots. �
The set W∂Ω(T ) is given by the values on the rectangle ∂Ω. Hence, there

are two types of curves that are interesting to analyze. In Sect. 3.1, β ∈ W (B)
is fixed and in Sect. 3.2, α ∈ W (A) is fixed.

3.1. Variation of the Numerical Range W (A)
The set W∂Ω(T ) defined in (2.18) was in Proposition 2.17 used to determine
the enclosure WΩ(T ). In this section, we will describe the subset of W∂Ω(T )
obtained by fixing β and varying α ∈ W (A) in greater detail. To this end we
consider the set

W
R×{β}(T ) =

4⋃
n=1

rn(R × {β}), (3.4)

defined according to (2.6). Note that for ω ∈ C\(iR ∪ {δ+, δ−}), the point ω

is in W
R×{β}(T ) if and only if β = β̂(ω), where β̂(ω) is defined in (2.13). The

set W
R×{β}(T ) can in the variable α ∈ W (A) be parametrized into a union

of four curves. For β = 0, the set W
R×{β}(T ) is completely characterized

by Lemma 2.15 and we will therefore assume β > 0 in the rest of Sect. 3.1.
Figure 2 illustrates possible behaviors of W

R×{β}(T ).

Proposition 3.2. Let W
R×{β}(T ) denote the set (3.4) and take β, c > 0. Then

iμ ∈ W
R×{β}(T )\iR for μ ∈ R if and only if μ = 0 or μ is a real solution to

qβ(μ) := μ4 + 2dμ3 + (2c + d2)μ2 + d

(
β

2
+ 2c

)
μ + c (β + c) = 0. (3.5)

The statement above holds also if c = 0, with the exception that zero is not
in the set W

R×{β}(T )\iR.
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Figure 2. Examples of the set W
R×{β}(T ) ⊂ C, where red

and blue denotes W[0,∞]×{β}(T ) and W[−∞,0)×{β}(T ),
respectively

Proof. Assume that iμ for some μ ∈ R is a root of p(α,β) of order greater than
one. Hence, iμ has to be at least a double root and we set t1 = 2μ, v1 = μ2

in (3.1). The system (3.2) can then be written as

2μ + t2 = −d,

2μt2 + μ2 + v2 = α + β + c,

2μv2 + μ2t2 = −αd,

μ2v2 = αc. (3.6)

Solving (3.6) shows that μ is a solution if and only if μ = 0 or μ is a root of
(3.5). Assume iμ ∈ W

R×{β}(T )\iR for some μ ∈ R. Then, by the symmetry
with respect to the imaginary axis, iμ is a double root of p(α,β) for some α.
Hence μ = 0 or μ is a real solution to (3.5).

For the converse, assume that one of the poles is purely imaginary and
that iμ ∈ {δ+, δ−} is a root of qβ . Then it follows from (3.5) that c ∈ {0, d2/4}.
Furthermore, for c = d2/4, μ = −d/2 is a solution to (3.5). For c = d2/4,
δ+ = δ− = −id/2 is in the limit α → ∞ a root of p(α,β), but p(α,β) do not have
a purely imaginary root for any α ∈ R

+, which implies −iμ ∈ W
R×{β}(T )\iR.

For c = 0 is μ = 0 a solution to (3.5), and thus a double root of p(α,β)

for some α ∈ R. Moreover, zero is a root of p(α,β) for all α ∈ R. Hence,
the symmetry with respect to the imaginary axis implies that zero only can
belong to the set W

R×{β}(T )\iR if for some α, zero is a triple root of p(α,β).
An ansatz with a triple root implies β = 0, which yields a contradiction.
Now assume that μ = 0, or μ is a real solution to (3.5), and iμ /∈ {δ+, δ−}.
Then iμ is a double root of p(α,β) for some α ∈ R and Lemma 2.8 (ii) yields
iμ ∈ W

R×{β}(T )\iR. �

Let Δqβ
denote the discriminant of qβ .

Corollary 3.3. Let pα,β and qβ denote the polynomials (2.3) and (3.5), respec-
tively. Then pα,β has a root iμ, μ ∈ R\{0} of multiplicity n > 1 for some
α ∈ R if and only if μ is a root of qβ of multiplicity n − 1.
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Proof. The assumptions on the coefficients imply that qβ can not have an
quadruple root. A straightforward calculation shows that p(·,β) has a quadru-
ple root iμ for some α if and only if μ is a triple root of qβ . Assume that
p(·,β) has a triple root iμ for some α. From (3.1) and (3.2) follows that this
assumption is equivalent to Δqβ

= 0. Hence, qβ has a multiple root and the
multiplicity must be two. For n = 2, we showed that the multiplicity of a
root of qβ can not be larger than one. Then the result follows from Proposi-
tion 3.2. �

The multiplicity of a real root μ of qβ determine the number of segments
of W

R×{β}(T )\iR intersecting iμ, (if c = 0 there is no intersection in zero).
For convenience, we set in Lemma 3.4 some constants to ∞. These

constants are used in Proposition 3.5.

Lemma 3.4. Let qβ be the polynomial (3.5) and Δqβ
its discriminant. Then

the following properties hold:
(i) For β < 4c, Δqβ

= 0 has an unique non-negative solution d1 ∈ (0, 2
√

c).
Set d2 = d3 = ∞.

(ii) For 4c ≤ β < 8c, Δqβ
= 0 has the three non-negative solutions d1 ∈

(0, 2
√

c), d2 ∈ (2
√

c, 2
√

β], and d3 ∈ [2
√

β,∞).
(iii) For β ≥ 8c > 0, Δqβ

= 0 has two non-negative solutions d1 ∈ (0, 2
√

c),
d2 ∈ (2

√
c, 2

√
β]. Set d3 = ∞.

(iv) For c = 0, Δqβ
= 0 has two non-negative solutions d1 = 0, d2 = 27β/32.

Set d3 = ∞.
(v) The polynomial qβ has zero real roots if d < d1 and four real roots if

d2 ≤ d ≤ d3. In all other cases qβ has two real roots.

Proof. Let d̂ := d2/4 and consider f(d̂) := Δqβ
as a polynomial in d̂, where

each positive root will correspond to exactly one positive solution d. By the
definition of the discriminant, we obtain

f(d̂)
32β2

= (β − 8c)d̂3 −
(

27
32

β2 − 6βc − 24c2

)
d̂2 − 3c2(5β + 8c)d̂ + 8c3(β + c).

(3.7)
(iv) For c = 0 the roots are 0, 27β/32 and the result follows. If c > 0,
the existence of a root d̂1 ∈ (0, c) follows from f(0) > 0, f(c) < 0. The
discriminant of f is Δf = 2 · 69β12c3(β − 4c)3.

(i) Assume β < 4c, then Δf < 0 and thus f has only one real root.
(ii) Assume 4c ≤ β < 8c, then Δf ≥ 0 and f is a cubic polynomial. It can

be seen that f(β) ≥ 0 and f(d̂) → −∞, d̂ → ∞. Hence there is one root
d̂2 in (c, β] and one root d̂3 in [β,∞).

(iii) Assume β ≥ 8c. Then f(β) > 0, thus there is a root d̂2 in (c, β]. In the
special case β = 8c, f is a quadratic polynomial and thus there are no
more roots. Otherwise β > 8c and then the last root will be negative.

(v) The sign of f will be negative if and only if d1 < d < d2 or d > d3 and
thus in these cases qβ has two roots. In all other cases it will either have
zero or four roots. When d = 0, qβ has no roots and by continuity qβ

has no roots for d < d1. For d2 ≤ d ≤ d3 it holds that d > 2
√

c and
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Figure 3. Examples of the set W
R×{β}(T ) ⊂ C, where

red and blue denotes W[0,∞]×{β}(T ) and W[−∞,0)×{β}(T ),
respectively. In a there is a double root of the function qβ

in (3.5). In b there are two distinct roots. In c there is one
distinct root and one triple root

qβ(−d/2 − √
d2/4 − c) < 0. Then, since the highest order term of qβ is

positive it must have at least one root and thus four roots. �

Figure 3a and c depict W
R×{β}(T ) for d = d1 and d = d2 = d3, respec-

tively. In Fig. 3c the set W
R×{β}(T ) intersects the imaginary axis three times

at −1. This can only happen when d = 2
√

β = 4
√

c and μ = −d/4, which
implies that all sets W

R×{β}(T ) with this property are linear scalings of the
case presented in Fig. 3c.

Proposition 3.5. Let dk ∈ R, k = 1, 2, 3 denote the constants defined in
Lemma 3.4 and set

I1 := (−d/2 −
√

2d2 − 8c)/2,−d/2), I2 := (−∞,−d/2 −
√

2d2 − 8c/2),

l3 := (−d/2 −
√

d2 − 4c/2,−d/2), I4 := (−∞,−d/2 −
√

d2 − 4c/2).

For c > 0, the set W
R×{β}(T )\iR defined as in (3.4) intersects the imaginary

axis at zero and in the following points, counting multiplicity:
(i) For d < 2

√
c, there are no intersections if d < d1. If d ≥ d1 there are

two intersections in the interval (−∞,−d/2).
(ii) For d = 2

√
c, the two intersections are −d/2 and −(d + 3

√
4βd)/2.

(iii) For 2
√

c < d < 2
√

β + c there is one intersection in I2. Additionally,
if d2 ≤ d ≤ d3 there are three intersections in (−d/2, 0), and if d ≥ d3

one intersection in (−d/2, 0).
(iv) For d = 2

√
β + c, −d/2 is an intersection and there is one intersection

in the interval I2. If d ≥ d3 there are two further intersections in the
interval (−d/2, 0), and if d < d3 there are no further intersections.

(v) For d > 2
√

β + c, there is one intersection in I4, and one in
(−∞, d/2)\I4. If d ≥ d3 there are two further intersections in the inter-
val (−d/2, 0), and if d < d3 there are no further intersections.

Proof. Assume c > 0, then the intersections will coincide with roots of qβ .
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(i) From Lemma 3.4 (iv) follows that there are no intersections when d ∈
(0, d1) and two intersections for d ∈ [d1, 2

√
c). Since qβ(μ) > 0 for

μ ≥ −d/2, d ∈ [d1, 2
√

c) the two intersections are in (−∞,−d/2).
(ii) Follows from straight forward computations.
(iii) The value qβ(μ) is negative on (−∞, d/2)\I2, thus there are no intersec-

tions in (−∞, d/2)\I2. The function qβ is convex on I2 and qβ(−∞) > 0.
Hence, there is one intersection in I2. All other intersections are in
(−d/2, 0) and the number of intersections is given by Lemma 3.4 (iv).

(iv) A straight forward computation show that q(−d/2) = 0 and the remain-
ing statements follows as in (iii).

(v) We have q(−d/2) > 0, q′(μ) > 0 for μ ∈ I3, and q(−(d+
√

d2 − 4c)/2) <
0, thus one root of q is in I3. The function qβ is convex on I4 and
qβ(−∞) > 0. Hence, there is one intersection in I4. All other inter-
sections are in (−d/2, 0) and the number of intersections is given by
Lemma 3.4 (v). �

Remark 3.6. The statements of Proposition 3.5 hold also in the case c = 0
except that there is no intersection in 0.

Proposition 3.7. Let W
R×{β}(T )\iR be defined as in (3.4). Then the point ω

is in W
R×{β}(T )\iR if and only if ω ∈ {0,∞} (ω = ∞ if c = 0) or ω� �= 0

and one of the following four equations hold:

ω� = ±
√

Pω� ±
√

P 2
ω� − Qω� − ω2

�, (3.8)

where

Pω� := c − d2

2
− dω� − βd

4ω�
,

Qω� := βc + c2 + 2cdω� + 4cω2
�.

(3.9)

Proof. Due to the symmetry with respect to the imaginary axis we can choose
t1 = 2ω� in (3.1). The result then follows from straight forward computations,
where (3.2) is used. �

The system (3.2) can be solved for a given α by computing the roots of a
fourth order polynomial. However, Proposition 3.7 shows that if ω� is known,
ω� can be computed independently of α. Hence, for ω ∈ W

R×{β}(T )\iR this
allows us to regard ω� as a multivalued function in ω�.

By a horizontal strip S ⊂ C we mean an open set of the form

S = {ω ∈ C : s0 < ω� < s1}, (3.10)

where s0, s1 ∈ R and s0 < s1.

Definition 3.8. For a closed set Γ ⊂ C, a horizontal strip S ⊂ C\Γ as defined
in (3.10) is said to be maximal with respect to Γ if

Γ ∩ (R + is0) �= Ø, Γ ∩ (R + is1) �= Ø. (3.11)

The set Γ ∩ (R+ is0) is called the local minimum points and Γ ∩ (R+ is1) is
called the local maximum points.
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Definition 3.9. For a closed set Γ ⊂ {ω ∈ C : |ω�| < s ∈ R} assume that
there are n maximal horizontal strips, S1, . . . ,Sn, with respect to Γ. Further
let pmin and pmax denote the points in Γ with the smallest respectively largest
imaginary values in Γ. Define the set

M :=

(
n⋃

i=1

Γ ∩ Si

)
∪ (pmin ∪ pmax), (3.12)

where the points in M will be called the extreme points of Γ.

In the following a strip is always assumed to be horizontal and maximal
with respect to a given set.

Figure 2c depicts W
R×{β}(T )\iR for a case with a strip S as defined in

(3.11). Note that the point in W
R×{β}(T )\iR with largest imaginary part is

always zero.

Corollary 3.10. The smallest imaginary part for a point in W
R×{β}(T )\iR as

defined in (3.4) is less than Im(δ−).

Proof. The claim follows immediately since there exists an ω with ω� =
Im(δ−), ω� �= 0 satisfying (3.8). �
Lemma 3.11. Let W

R×{β}(T )\iR denote the set in (3.4) and let Pω� and Qω�
denote the expressions in (3.9). A point ω ∈ W

R×{β}(T )\iR is an extreme
point in the sense of Definition 3.9 if and only if ω� is a distinct root of
f(ω�) := ω2

�(P 2
ω� − Qω�). The roots of f are

i) ω� =
−d ±

√
d2 − 4β

4
, ii) ω� =

−d ± d
√

1 + 4β
4c−d2

4
. (3.13)

A double root of f is only possible if d = 2
√

β < 4
√

c, where ω =
±√

c − d2/16 − id/4. Assume that ω� is a double root of f . Then, ω is a
point where more than one curve component intersects W

R×{β}(T )\iR.

Proof. By simple computations it follows that the roots of f are (3.13).
Lemma 2.8 (i) and Proposition 3.7 imply that a double root μ of f exists if
and only if μ = −d/4 = −√

β/2 <
√

c. Then, Proposition 3.7 yields that the
corresponding points on W

R×{β}(T ) are ω = ±√
c − d/16− id/4. P 2

ω� −Qω�
is non-negative in a neighborhood of −d/4, thus it is not an extreme point
but a point where more than one curve component intersects.

Assume that ω ∈ W
R×{β}(T )\iR is an extreme point and that f(ω�) �=

0. Then since one of the Eq. (3.8) hold it follows that P 2
ω� − Qω� > 0.

Likewise Pω� ± √
P 2

ω� − Qω� − ω2
� > 0, since ω� �= 0. The function Pω� ±√

P 2
ω� − Qω� − ω2

� is continuous in ω�. Hence, there exists an open interval

Iω� containing ω� such that Pμ ±
√

P 2
μ − Qμ − μ2 > 0 for each μ ∈ Iω� .

Then (3.8) holds for any point in the interval, which contradicts that ω is an
extreme point. Hence it follows that ω� is a distinct root of f . Now suppose
ω� is a distinct root of f . Then for every open interval Iω� containing ω�,
there exists an μ ∈ Iω� such that f(μ) < 0, and it is thus an extreme point
by (3.8). �
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Figure 2c shows a case where the local extreme points as well as the
points with smallest imaginary part are not on the imaginary axis.

Lemma 3.12. Let W
R×{β}(T )\iR and Pω� , Qω� be defined as in (3.4) and

in (3.9), respectively. A point iμ ∈ iR, where μ ∈ R\{0} is an extreme point
(3.12) to W

R×{β}(T )\iR if and only if 0 = Pμ +
√

P 2
μ − Qμ − μ2 and μ is a

distinct intersection of the imaginary axis.

Proof. From Proposition 3.2 follows that each intersection of the imagi-
nary axis is equivalent to a root of qβ as defined in (3.5). Assume iμ ∈
W

R×{β}(T )\iR is an extreme point. Then by Proposition 3.7, P 2
μ − Qμ ≥ 0

and one of the equations 0 = Pμ ±
√

P 2
μ − Qμ − μ2 hold. If P 2

μ − Qμ = 0,
then by continuity iμ is for some α a quadruple root of the polynomial p(α,β)

defined in (2.3). Hence, by Proposition 3.7 the root can not be an extreme
point. Furthermore, Corollary 3.3 implies that μ is a triple root of qβ , thus

not distinct. Assume that P 2
μ −Qμ > 0 and 0 �= Pμ +

√
P 2

μ − Qμ −μ2, then it

follows from Lemma 3.11 that iμ ∈ W
R×{β}(T )\iR is not an extreme point.

Hence, we have shown that 0 = Pμ+
√

P 2
μ − Qμ−μ2 and P 2

μ−Qμ > 0. Assume

μ is not a distinct root of qβ , then at least two segments of W
R×{β}(T )\iR

intersect iμ. Since Pμ −
√

P 2
μ − Qμ − μ2 < 0, Proposition 3.7 implies that

in some interval containing μ there is for a given ω� at most two solutions
ω. Combining these results shows that iμ is not an extreme point and the
intersection must then be distinct. Assume Pμ+

√
P 2

μ − Qμ−μ2 = 0 and that

μ is a distinct root of qβ , then there is only one segment of W
R×{β}(T )\iR

intersecting iμ. Furthermore, P 2
μ −Qμ > 0 and thus Pμ−

√
P 2

μ − Qμ−μ2 < 0.
Proposition 3.7 implies that iμ is an extreme point. �
Proposition 3.13. Let W

R×{β}(T ) denote the set (3.4). Then every real num-
ber is the real part of some point in the set W

R×{β}(T ).

Proof. For ω� = ±√
c − d2/4 note that δ+, δ− ∈ W

R×{β}(T ). In all other
cases, Eq. (2.13) has a solution ω� for given β = β̂(ω) and ω�. Then α := α̂(ω)
is uniquely given by (2.14). Hence, p(α,β)(ω) = 0 in (2.3) has for fixed ω�
and β a solution for some ω ∈ C, and α ∈ R. �
Lemma 3.14. Let W

R×{β}(T )\iR be defined as in (3.4). Then, for each
bounded component γ ⊂ W

R×{β}(T )\iR and α ∈ R either one root of the
polynomial pα,β in (2.3) belongs to γ, or one root of pα,β can be written as
iμ, for μ ∈ J := [min(γ\iR)�,max(γ\iR)�].

Proof. If the bounded component of W
R×{β}(T )\iR does not intersect iR

it contains by continuity a root for all α ∈ R. If the bounded component
γ ⊂ W

R×{β}(T )\iR intersects with iR the curve is closed with an even num-
ber of intersections of the imaginary axis (counting multiplicity in (3.5)).
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Assume that there is an α ∈ R such that no root is on γ, and none of the
roots are purely imaginary with imaginary part in J . Then, by definition
(3.4), rn(α, β) is not on γ ∪ iJ for n = 1, 2, 3, 4. From the continuity of the
roots it follows that there exists an α′ such that rn(α′, β) ∈ γ ∪ iJ and for a
sufficiently small |ε|, the roots rn(α′ + ε, β), n = 1, 2, 3, 4 are not on γ ∪ iJ .
Since this can only happen on the imaginary axis it follows that (2.3) for α′

has a purely imaginary multiple root iμ on γ. Thus for some ordering of the
roots r1(α′, β) = r2(α′, β) = iμ. Since r1(α′ + ε, β) /∈ γ and r2(α′ + ε, β) /∈ γ
it follows by continuity that they are imaginary. From Lemma 2.8 (ii) follows
that one of the roots has a larger imaginary part and one has a smaller imag-
inary part than μ. Then if both are outside J , it follows that J will consist of
only one point. Hence μ is a double root of (3.5) and from Corollary 3.3, iμ
is a triple root of p(α,β). Hence r3(α′, β) = iμ and by injectivity (Lemma 2.8)
one root will belong to γ for α′ + ε, which is a contradiction. �
Definition 3.15. Denote the k real roots of qβ defined in (3.5) by

μ1 ≤ μ2 ≤ . . . ≤ μk, (3.14)

where k might be zero.

Proposition 3.16. Let W
R×{β}(T )\iR be defined as in (3.4) and let d2 denote

the constant defined in Lemma 3.4. Then, there is a unique maximal strip
S with respect to W

R×{β}(T )\iR, as in Definition 3.8, if and only if d >

min(2
√

β, d2). If d ≤ min(2
√

β, d2), there is no such strip.

Proof. By definition (3.4) the imaginary part of W
R×{β}(T ) is bounded and

there is a strip maximal with respect to W
R×{β}(T )\iR if and only if there

are at least three extreme points with different imaginary parts (disregarding
the point 0).

If d > 2
√

β it follows from Proposition 3.7 that ω /∈ W
R×{β}(T )\iR for

ω� = −d/4 and Corollary 3.10 implies that −d/4 is not the least imag-
inary part. Hence, there exists a strip that is maximal with respect to
W

R×{β}(T )\iR containing the set R − id/4.
If 2

√
β ≥ d > d2, it follows that (3.5) has four distinct real roots (if

d3 = 2
√

β it follows from Lemma 3.4 that d2 = 2
√

β and this contradicts
2
√

β ≥ d > d2). Thus, it follows from Corollary 3.3 that there are five inter-
sections of W

R×{β}(T )\iR with the imaginary axis. Assume that the point
with smallest imaginary part is not on the imaginary axis. Then it follows
from Lemma 3.11 and d2 > 2

√
c that the least imaginary part is larger than

−d/2, which contradicts Corollary 3.10. Hence the point with the small-
est imaginary part is on the imaginary axis and thus given by the root μ1,
where Pμ1 +

√
P 2

μ1
− Qμ1 − μ2

1 = 0 by Lemma 3.12. Assume that there is

no strip maximal with respect to W
R×{β}(T )\iR. Then Lemma 3.12 implies

Pμ +
√

P 2
μ − Qμ − μ2 > 0, with P 2

μ − Qμ ≥ 0 for all μ ∈ (μ1, 0).

Define for μ ∈ (μ1, 0) the function f(μ) := Pμ −
√

P 2
μ − Qμ − μ2. Then

Proposition 3.7 implies f(μi) = 0 for i = 2, 3, 4. Take i ∈ {2, 3, 4} and assume
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that f(μ) is either positive or negative in an open punctured interval around
μi. Then it follows from Corollary 3.3 that μi is not a distinct root of qβ . Hence
f(μ) alternates signs between the roots. Proposition 3.7 implies that there
must be two bounded components of W

R×{β}(T )\iR. Since d < 2
√

β + c,
Proposition 3.5 implies that μi > −d/2 for i = 2, 3, 4. Then from Lemma 3.14
it follows that both poles are larger than −d/2, which gives a contradiction
and a strip maximal with respect to W

R×{β}(T )\iR must therefore exist.
Assume that there are at least two strips maximal with respect to

W
R×{β}(T )\iR, then it must be at least three components of W

R×{β}(T )\iR,
one is unbounded and two are bounded. Lemma 3.14 implies that the bounded
components will both enclose a pole. This yields that the poles are imaginary
and thus each bounded component intersects the imaginary axis twice and
we have four real roots of (3.5). Since the imaginary parts of these roots
approach 0 as the real parts approach ±∞, the points 0 and ∞ will be in
the same component with no other intersections of the imaginary axis. This
means that for α ≥ 0 there are two roots in the unbounded component. By
Lemma 3.14 there are always at least one root on or enclosed by a bounded
component. Hence, for α ≥ 0 there is only one root in each bounded com-
ponent. Thus due to symmetry the roots in the bounded components are
imaginary for all α ≥ 0. Hence, if ω belongs to a bounded component of
W

R×{β}(T )\iR then ω� ≤ −d/2 and thus all the solutions μ to (3.5) satisfy
μ ≤ −d/2, which contradicts Proposition 3.5.

Assume d ≤ min(2
√

β, d2) and that there is a strip maximal with respect
to W

R×{β}(T )\iR. Then W
R×{β}(T )\iR has at least three extreme points. It

follows that (3.5) has at most two distinct roots, μ1, μ2, and thus at most two
extreme point on iR. Hence, there has to be an extreme point in C\iR. This
implies that d < 2

√
c since otherwise none of the constants in (3.13) can be

real and negative. Then since d < 2
√

c and d ≤ min(2
√

β, d2), Lemma 3.11
and Proposition 3.5 yield that all possible extreme points have imaginary
parts smaller than −d/2, which is the imaginary part of the poles. Hence by
Lemma 3.14 there is no strip maximal with respect to W

R×{β}(T )\iR. �

Figure 4 depicts W
R×{β}(T ) and illustrates the claim of Proposi-

tion 3.16. The following proposition gives a detailed description of the strip,
S, maximal with respect to W

R×{β}(T )\iR. If there is a strip maximal with
respect to W

R×{β}(T )\iR, we let s0 denote the local minimum and s1 denote
the local maximum, as defined in Definition 3.8. Moreover, M denotes the set
of extreme points (3.12) to W

R×{β}(T )\iR.

Proposition 3.17. Let W
R×{β}(T )\iR be defined as in (3.4). Given the order-

ing of the roots μi in Definition 3.15, the following properties hold:
(i) If β < 4c there is a unique strip maximal with respect to W

R×{β}(T )\iR

if and only if d > 2
√

β.
• If d < β+4c

2
√

c
then the local maximum points are not on the imag-

inary axis and s0 = (−d −
√

d2 − 4β)/4. If d ≥ β+4c
2
√

c
the local

maximum point is iμ2.
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• The local minimum points are not on the imaginary axis and s1 =
(−d +

√
d2 − 4β)/4.

(ii) If β ≥ 4c > 0 there is a unique strip maximal with respect to
W

R×{β}(T )\iR if and only if d2 < d.
• The local maximum point is iμ2.
• If d ≤ β+4c

2
√

c
then the local minimum point is iμ3. If d > β+4c

2
√

c

the local minimum points are not on the imaginary axis and s1 =
(−d +

√
d2 − 4β)/4.

Proof. We will first show that s0 = μ2 if the local maximum point is on
the imaginary axis and s0 = (−d −

√
d2 − 4β)/4 if the local maximum is

not on the imaginary axis. If a strip maximal with respect to W
R×{β}(T )\iR

exists then it follows from Corollary 2.7 that there is exactly one unbounded
component and one bounded component of W

R×{β}(T )\iR. By continuity the
bounded component intersects the imaginary axis an even number of times.
If the local maximum is on the imaginary axis it must thus be the largest
root of the bounded component. Hence, the local maximum is the root μ2 in
(3.15) if the bounded component intersects the imaginary axis two times and
the root μ4 in (3.15) if there are four intersections.
Assume there are four intersections with the imaginary axis. This leads to a
contradiction by arguments analogous to the proof of the uniqueness of the
strip maximal with respect to W

R×{β}(T )\iR in Proposition 3.16. Thus, the
local maximum is iμ2 and similarly it follows that the local minimum is iμ3.

Assume that the local maximum is not on the imaginary axis. Then
f(s0) = s2

0(P
2
s0

− Qs0) = 0 from Lemma 3.11 and s0 satisfies one of (3.13),
(i) or (ii). Since it is a local maximum, f(s0 − ε) > 0 and f(s0 + ε) < 0 for
sufficiently small ε > 0, which implies s0 = (−d + d

√
1 + 4β/(4c − d2))/4 or

s0 = (−d −
√

d2 − 4β)/4. Assume that s0 = (−d + d
√

1 + 4β/(4c − d2))/4,
then d2 > 4β + 4c since otherwise s0 is not negative. Then f(s0) := Ps0 ±√

P 2
s0

− Qs0 − s2
0 < 0 and we have a contradiction to Proposition 3.7. Hence,

s0 = (−d −
√

d2 − 4β)/4. The proof for the local minimum points is similar.

(i) Assume β < 4c, then by Lemma 3.4 it follows that d2 > 2
√

β. Hence
by Proposition 3.16 there is a gap if and only if d > 2

√
β. The point

ω is a local maximum not on the imaginary axis if and only if ω� =
(−d −

√
d2 − 4β)/4 and Pω� − ω2

� ≤ 0. The condition Pω� − ω2
� ≤ 0

holds if and only if d ≥ β+4c
2
√

c
. For the local minimum the same idea is

used.
(ii) Assume β ≥ 4c then by Lemma 3.4, d2 ≤ 2

√
β. Hence Proposi-

tion 3.16 implies that there is a gap if and only if d > d2. The
point ω is a local maximum not on the imaginary axis if and only if
ω� = (−d −

√
d2 − 4β)/4 and Pω� − ω2

� > 0, which never holds. For
the local minimum the same idea is used for ω� = (−d +

√
d2 − 4β)/4

and then it follows that Pω� − ω2
� > 0 holds if and only if c > 0 and

d > β+4c
2
√

c
. �
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Figure 4. Examples of the set W
R×{β}(T ) ⊂ C, where

red and blue denotes W[0,∞]×{β}(T ) and W[−∞,0)×{β}(T ),
respectively. The figure describes how W

R×{β}(T ) changes
with increasing d. In a there is no strip maximal with respect
to W

R×{β}(T )\iR. In b such a strip exists and the point with
smallest imaginary part is moving to the imaginary axis. In
c the local maximum is moved to the imaginary axis

Proposition 3.18. Let W
R×{β}(T )\iR be defined as in (3.4). If c = 0 set d̂ := 0

and if c > 0 let d̂ be the unique solution of

cd̂3 +
(

β2

16
− βc − 3c2

)
d̂2 + c2(2β + 3c)d̂ − c3(β + c) = 0, (3.15)

that satisfies 0 < d̂ < c. Then if d < 2
√

d̂, the extreme points as in Def-
inition 3.9 with smallest imaginary part of W

R×{β}(T )\iR are not on the
imaginary axis and the imaginary part of the points are

1
4

(
−d − d

√
1 +

4β

4c − d2

)
. (3.16)

If d ≥ 2
√

d̂ the point with smallest imaginary part is iμ1 as defined in (3.14).

Proof. From Proposition 3.5, Lemma 3.11, and Corollary 3.10 it follows that
ω with imaginary part (3.16) and iμ1 are the only possible points that can
have smallest imaginary part. Moreover if the points with smallest imaginary
part are not on the imaginary axis then d < 2

√
c since otherwise ω� < Im(δ−)

does not hold. It thus follows that if c = 0 the point with smallest imaginary
part is iμ. Assume c > 0, then ω is a point with smallest imaginary part not
on the imaginary axis if and only if d < 2

√
c and by Proposition 3.7 follows

Pω� − ω2
� > 0. This holds if and only if d < 2

√
d̂, where d̂ is the unique

solution to (3.15) satisfying 0 < d̂ < c. In the remaining case the point with
smallest imaginary part must be on the imaginary axis and thus iμ1. �

In Fig. 4b the local minimum is clearly not on the imaginary axis but
by increasing d, Fig. 4c is obtained, where the local maximum point is on the
imaginary axis.
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The operator function T defined in (1.1) depends on d and in the follow-
ing we study the dependence of W

R×{β}(T )\iR on the parameter d. Moreover,
we consider properties of a strip maximal with respect to W

R×{β}(T )\iR as
in Definition 3.8.

Proposition 3.19. Let W
R×{β}(T )\iR be defined as in (3.4) and consider the

extreme points of W
R×{β}(T )\iR depending on d. Then the extreme points of

W
R×{β}(T )\iR in Definition 3.9 are continuous in d and the extreme points

with smallest imaginary parts are decreasing with d. Furthermore, if a strip
maximal with respect to W

R×{β}(T )\iR exists, then s0 is strictly decreasing
and s1 is strictly increasing with respect to d.

Proof. Propositions 3.17, 3.18, and 3.7 yield the continuity of the extreme
points. Hence, it is enough to show the results for the extreme points on and
off the imaginary axis separately. For each extreme point on W

R×{β}(T )\iR,
the result follows directly from Propositions 3.17 and 3.18. All other extreme
points can be written in the form ω = iμ, μ ∈ R where μ is a solution to (3.5)
and the smallest imaginary part is then μ1 as defined in (3.14). Let qd

β(μ)
denote the polynomial (3.5) for a given d > 0 and take ε > 0. Then

qd+ε
β (μ) = qd

β(μ) + 2μ
(

μ2 + dμ + c +
β

4

)
ε + ε2μ2. (3.17)

Let μd
i for i = 1, 2, 3, 4 denote the real roots of qd

β ordered non-decreasingly.
If the point with the smallest imaginary part is on the imaginary axis then
it is given by μd

1 and Proposition 3.5 implies (μd
1)

2 + dμd
1 + c+β/4 > 0. Thus

qd+ε
β (μd

1) < 0 for ε > 0 small enough and (3.17) then implies that the smallest
imaginary part of W

R×{β}(T )(d)\iR is decreasing in d.
Assume that it exists a strip S that is maximal with respect to

W
R×{β}(T )\iR and that the local maximum (minimum) point is0 (is1) is

on the imaginary axis. Then Proposition 3.17 implies s0 = μd
2 (s1 = μd

3) and
we conclude that qd

β(μ) > 0 for μ ∈ S. In particular the maximum (minimum)
is decreasing (increasing) if and only if qd+ε

β (μd
2) > 0 (qd+ε

β (μd
3) > 0) for ε > 0

small enough. In general, qd+ε
β (μ) > 0 for ε > 0 small enough if and only if

μ2 + dμ + c + β/4 ≤ 0, which is equivalent to

μ ∈
[
−d

2
−

√
d2 − β

4
− c,−d

2
+

√
d2 − β

4
− c

]
:= Id.

What remains to show is that all local extreme points μd
2, μd

3 are in Id. It
can be seen that if for some d̃ > 0 it holds that μd̃

2, μ
d̃
3 ∈ I d̃, then μd

2, μ
d
3 ∈ Id

for all d ≥ d̃.
If β < 4c then it follows from Proposition 3.17 (i) that only the local

maximum can be on the imaginary axis. Moreover, the condition d ≥ d0 :=
(β +4c)/(2

√
c) holds, which together with μd0

2 = −√
c ∈ Id0 yields the result.

If β > 4c, there is a strip maximal with respect to W
R×{β}(T )\iR if and

only if d > d2. Furthermore μd2
2 = μd2

3 holds. Thus it is enough to show μd2
2 ∈
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Figure 5. Visualization of how the set W{α}×R+
(T )

depends on the sign of α, where α > 0 in panel a, α = 0
in b, and α < 0 in c

Id2 to prove the claim. Since β > 4c, it follows from Lemma 3.4 that d2 ≤
2
√

β < d0. Hence, for d0−d2 ≥ ε > 0 and d = d2+ε the set W
R×{β}(T )\iR has

both the local minimum and maximum on the the imaginary axis. However,
under the assumption that there is a strip with respect to W

R×{β}(T )\iR it
follows from μd2

2 = μd2
3 that either μd

2 is decreasing in the vicinity of d2 or μd
3

is in the vicinity of d2 increasing in d. Hence either μd
2 ∈ Id or μd

3 ∈ Id. Since
this holds for arbitrarily small ε > 0, μd2

2 = μd2
3 ∈ Id2 .

For β = 4c, the result follows immediately since the roots of (3.5) are
continuous in β and Proposition 3.17. �

3.2. Variation of the Numerical Range W (B)
In this section, we describe the subset of W∂Ω(T ) obtained when fixing α and
varying β ∈ W (B). Let R+ := [0,∞] and consider the set

W{α}×R+
(T ) =

4⋃
n=1

rn(α,R+), (3.18)

defined according to (2.6).

Remark 3.20. In the definition of W{α}×R+
(T ), we set W (B) = [0,∞] since

[0,∞] is the smallest closed interval containing W (B) for all bounded B. The
limit of the roots rn(α, β) are 0 and ±∞ − id/2 as β → ∞. These points are
in W{α}×R+

(T ) but for α �= 0 not in W{α}×W (B)(T ), for any bounded B.

For α = 0 this is completely solved in Lemma 2.15, and we assume
therefore that α ∈ R\{0}.

The set W{α}×R+
(T ) can in the variable β ∈ R+ be parametrized into a

union of four curves. For ω ∈ C\(iR∪{δ+, δ−}), ω ∈ W
R×{β}(T ) is equivalent

to ω ∈ Πβ as defined in (2.17), and α = α̂(ω) in Eq. (2.14). The following
results for this curve are similar to the results for W

R×{β}(T ), but the behav-
ior will greatly depend on the sign of α, as can be seen in Proposition 2.7
and in Fig. 5.
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Proposition 3.21. Let W{α}×R+
(T ) denote the set (3.18) and take α, c �= 0,

ν ∈ R\{−2c/d}. Then iν ∈ W{α}×R+
(T )\iR if and only if α > ν = 0, or ν

is a solution to

qα(ν) := ν4 +
d

2
ν3 − αd

2
ν − αc = 0, ν ≤ −2c

d
, (3.19)

where the inequality is strict if α < −c. For c = 0, the statements of the
proposition hold but zero is in that case not in the set W{α}×R+

(T )\iR.

Proof. The proof follows the same steps as in Proposition 3.2, with the addi-
tional condition β ≥ 0, which by Corollary 2.7 (iii) simplifies to ν ≤ −2c

d or
ν = 0 on the imaginary axis. �

Corollary 3.22. Let pα,β and qα denote the polynomials (2.3) and (3.19),
respectively. Then pα,β has a root iν, ν ∈ R\{0} of multiplicity n > 1 for
some β ∈ [0,∞) if and only if ν ≤ −2c/d and ν is a root of qα of multiplicity
n − 1.

Proof. Similar to Corollary 3.3, with the additional condition β ≥ 0. �

Lemma 3.23. Let qα be the polynomial in (3.19) and let Δqα
be its discrim-

inant. Let d0 denote the largest real d solving Δqα
= 0. If c = 0 and α < 0,

then d0 = 0, otherwise d0 is the unique positive solution. The following prop-
erties hold for qα and for d0:

(i) If α > 0 then d0 ∈ [4
√

max(α, c),∞) and the polynomial qα has four
real roots if d ≥ d0, and if d < d0 it has two real roots.

(ii) If α < 0 the polynomial qα has two real roots if d ≥ d0, and if d < d0 it
has no real roots. If c > 0 then d0 ∈ (0, 2

√
c].

Proof. Let d̂ := d2/4 and study f(d̂) := Δqα
as a polynomial in d̂. By defini-

tion, the discriminant of qα is

f(d̂) = 4α3d̂3 − α2(27α2 − 6αc + 27c2)d̂2 + 192α3c2d̂ − 256α3c3. (3.20)

For c = 0 the roots are 0, 27α/4 and the result follows. If c > 0 the discrim-
inant of f is Δf = −2 · 69α9c3(α − c)4(α + c)2.
(i) Assume α > 0 then Δf ≤ 0 with equality only if c = α. In that case

d̂ = 4c is a triple root of f , else Δf < 0 and then there is one real root.
Hence, there is in each case exactly one real solution to f(d̂) = 0. Denote
this solution d̂0 and define d0 = 2

√
d̂0. Then d0 is the unique positive

solution to Δqa
= 0. Further since f(4α), f(4c) ≤ 0 and f(d̂) → ∞, d̂ →

∞ it follows that the unique positive solution d̂0 ∈ [4max(α, c),∞). If
d̂ < d̂0 then f(d̂) < 0 and thus there are two real roots of qα. If d̂ ≥ d̂0

then f(d̂) ≤ 0 and since qα(0) ≤ 0 there is always at least one root and
thus it must be four.

(ii) Assume α < 0, then there are always three real roots since Δf ≥ 0.
From f(−8c) ≤ 0, f(0) > 0 and f(d̂) → ∞, d̂ → −∞, follows that
exactly one root is positive. Since f(c) ≤ 0 the unique solution d̂ is in
(0, c]. Assume d < d0, then by continuity there is no root since qα has
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no real root for d = 0 and Δqα
> 0 for d < d0. Assume d̂ ≥ d̂0, then

f(d̂) ≤ 0 and thus there are two roots of qα. �

Proposition 3.24. Let qα be the polynomial (3.19) and let d0 denote the largest
real d solving Δqα

= 0. Then the set W{α}×R+
(T )\iR, defined as in (3.18),

intersects the imaginary axis in the following points, counting multiplicity:
(i) If α > 0 and c > 0, there is one intersection in 0. There are no further

intersections if d < 2
√

c, one more intersection if 2
√

c ≤ d < d0, and
three more intersections if d ≥ d0. If α > 0 and c = 0 there is no
intersections if d < d0 and two intersections if d ≥ d0.

(ii) If −c ≤ α < 0, there is no intersection if d < 2
√

c, and one intersection
if d ≥ 2

√
c.

(iii) If α < −c, there is no intersection if d < d0, two intersections if d0 ≤
d < 2

√
c, and one intersection if d ≥ 2

√
c.

Proof. The intersections of W{α}×R
(T )\iR coincide with the roots of the

polynomial (3.19) in Proposition 3.21. In each case Lemma 3.23 is used to
obtain the number of real roots.

(i) Assume α > 0 and c > 0, then by Proposition 3.21, there is a simple
intersection in 0. For d < 2

√
c Proposition 3.21 implies that there are

no solutions to (3.19). For d = 2
√

c, the point −2c/d = −d/2 is a simple
root of qα and by Proposition 3.21, there is a simple intersection of the
imaginary axis. For ν < −d/2, qα(ν) > 0 and hence there are no more
intersections of the imaginary axis. For d > 2

√
c, qα(−2c/d) < 0, thus

there is either one or three solutions of (3.19). If 2
√

c < d < d0, there
is one intersection. Assume d ≥ d0. Then qα(ν) < 0 for ν ∈ (−2c/d, 0)
and qα is convex for ν ≥ 0. Hence, (3.19) has three solutions. Now
assume c = 0, then Proposition 3.21 shows that zero does not give an
intersection and thus there is one less intersection of the imaginary axis
in this case.

(ii) For ν ≤ −2c/d the derivative q′
α (ν) is non-positive with equality only

if α = c. Thus there is at most one solution to (3.19). If 2
√

c > d then
qα(−2c/d) > 0 and there is no solution. For 2

√
c ≤ d, qα(−2c/d) ≤

0 and it follows from Proposition 3.21 and α ≥ −c that (3.19) has
one solution. Assume 2

√
c = d and α = −c, then −2c/d is a double

root of (3.5) and by Corollary 3.22 a triple root of p(α,0). From the
injectivity stated in Lemma 2.8 (iii) it follows that there is only one
intersection of the imaginary axis at this point. The result then follows
from Proposition 3.21.

(iii) If d < d0 then there are no real solutions to (3.19). If d0 ≤ d < 2
√

c,
then qα(ν) > 0 for ν > −d/2. For −d/2 ≥ ν > −2c/d we have

qα(ν) ≥
(−2c

d
+

d

2

)(
−d3

8
− αd

2

)
− α

(
c − d2

4

)
=

d2

4

(
c − d2

4

)
> 0.

Thus, the two roots satisfy ν ≤ −2c/d. Assume d = 2
√

c, then by
Proposition 3.19 the value −2c/d is not an intersection of the imagi-
nary axis. However, there is an intersection at the distinct root 3

√
αd/2,
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Figure 6. Examples of the set W{α}×R+
(T ) ⊂ C with dif-

ferent numbers of intersections of the imaginary axis. In the
panels a and b are α > 0 and in panel c is α < 0

which shows that we have one root. For d > 2
√

c > 0 it follows that
qα(−2c/d) < 0 and it can be seen that (3.19) has one solution. �

The multiplicity of a real root ν < −2c/d of qα in (3.19) will determine
the number of segments of W{α}×R+

(T )\iR intersecting iν. However, this will
in general not hold if −2c/d is a root of qα. This case is addressed in Propo-
sition 3.24. Figure 6b, shows an example where −2c/d = 2 is an intersection
of the imaginary axis, while in Fig. 6c, −2c/d = 2 is not an intersection
despite being a root of qα. Cases with different numbers of intersections are
illustrated in Figs. 5 and 6.

Proposition 3.25. Assume c > 0 and let W{α}×R+
(T )\iR and Πβ denote the

sets defined in (3.18) and in (2.17), respectively. Then ω ∈ W{α}×R+
(T )\iR

if and only if ω = ∞ or one of the following conditions hold:
(i) d ≤ 2

√
c and ω = δ±, where the inequality is strict if α < −c.

(ii) ω ∈ Πβ\{R − id/2} and one of the below four identities hold:

ω� = ±
√

Rω� ±
√

R2
ω� − Sω� − ω2

�, (3.21)

where
Rω� = αd

2(d+2ω�) , Sω� = − 2αcω�
d+2ω� . (3.22)

If c = 0 then 0 /∈ W{α}×R+
(T )\iR but all other statements hold as for the

case c > 0.

Proof. Similar to Proposition 3.7 subject to β ≥ 0. �

Remark 3.26. Since in the limit β → ∞ the roots rn(α, β) approach 0
and ±∞ − id/2, it is convenient to assume the imaginary part in infinity
is −d/2. Using this convention, for α > 0 the largest imaginary part of
W{α}×R+

(T )\iR is 0 and the smallest imaginary part is −d/2. For α < 0 the
largest imaginary part of W{α}×R+

(T )\iR is −d/2.
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Lemma 3.27. Let W{α}×R+
(T )\iR denote the set (3.18) and let Rω� and

Sω� denote the expressions in (3.22). A point ω ∈ W{α}×R+
(T )\iR, with

ω� /∈ {0,−d/2} is an extreme point in the sense of Definition 3.9 if and only
if it is a distinct root to g(ω�) := (d + 2ω�)2(R2

ω� − Sω�). The roots of g are

ω� =
−d ± d

√
1 − α

c

4
. (3.23)

A double root of g is only possible if α = c > d2/16, where ω =
±√

c − d2/16 − id/4. Assume ω� is a double root of f . Then, ω is a point
where more than one curve component in W{α}×R+

(T )\iR intersect.

Proof. The proof is similar to that of Lemma 3.11. �

Figure 6b show an example where the set W{α}×R+
(T ) contains points

with more than one curve component intersecting it in W{α}×R+
(T )\iR.

Lemma 3.28. Let W{α}×R+
(T )\iR and let Rω� , Sω� denote the expressions

in (3.18) and in (3.22), respectively. A point iν ∈ iR with ν ∈ R\{−d/2, 0} is
an extreme point to W{α}×R+

(T )\iR in the sense of Definition 3.9 if and only
if 0 = Rν +

√
R2

ν − Sν − ν2 and ν is a distinct intersection of the imaginary
axis.

Proof. The condition Rν +
√

R2
ν − Sν − ν2 = 0 implies Rν > 0. Hence

ν > −d/2 for α > 0 and ν < −d/2 for α < 0. Then it follows from Propo-
sition 2.7 (iv) that the points (3.23) are obtained for positive β. The rest of
the proof is similar to the proof of Lemma 3.12. �

Lemma 3.29. Let W{α}×R+
(T )\iR be defined as in (3.18) and let γ ∈

W{α}×R+
(T )\iR be a bounded component such that C\γ consists of more

than one component. Then for each β ∈ [0,∞), either one root of the poly-
nomial pα,β in (2.3) belongs to γ or one root of pα,β can be written as iμ, for
μ ∈ J := [min(γ\iR)�,max(γ\iR)�].

Proof. The proof is similar to the proof of Lemma 3.29 with the exception
that for a bounded component γ the set C\γ does not necessarily consists of
more than one component. �

Proposition 3.30. Let W{α}×R+
(T )\iR be defined as in (3.18) and let d0 be

the constant in Lemma 3.23. Then, if α > 0 and either α < c or d > d0 there
is a unique strip with respect to W{α}×R+

(T )\iR. In all other cases, there is
no such strip.

Proof. Similar to the proof of Proposition 3.16, using Proposition 3.25 and
Lemmata 3.27, 3.28 and 3.29. �

Definition 3.31. Denote the k real solutions to (3.19) by

ν1 ≤ ν2 ≤ . . . ≤ νk, (3.24)

where k might be zero.
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Proposition 3.32. Let W{α}×R+
(T )\iR be defined as in (3.18) and νi as in

Definition 3.31. The extreme points of W{α}×R+
(T )\iR in Definition 3.9 have

the following properties:
(i) If α ≥ c there is a unique maximal strip with respect to W{α}×R+

(T )\iR

if and only if d > d0. The local maximum point is iν1 and the local
minimum is iν2.

(ii) If c > α > 0 there is a unique maximal strip with respect to
W{α}×R+

(T )\iR.
• If (3.25) (a) holds then the local maximum points are not on the

imaginary axis and s0 = (−d − d
√

1 − α/c)/4. If (3.25) (a) does
not hold, then the local maximum point is iν1.

• If (3.25) (b) holds then the local minimum points are not on the
imaginary axis and s1 = (−d + d

√
1 − α/c)/4. If (3.25) (b) does

not hold, then the local minimum point is iν2.
(iii) If α < 0, the points in ω ∈ W{α}×R+

(T )\iR with smallest imaginary
parts are not on the imaginary axis if (3.25) (a) holds and ω� = (−d−
d
√

1 + α/c)/4. If (3.25) (a) does not hold, then the point with the
smallest imaginary part is iν1. If c = 0 the point with smallest imaginary
part is always iν1.

a) d <
4
√

c√
1 +

√
1 − α

c

, b) d <
4
√

c√
1 − √

1 − α
c

. (3.25)

Proof. The proof is similar to Proposition 3.17. �
Proposition 3.33. Let W{α}×R+

(T )\iR be defined as in (3.18) and let S denote
a strip defined in Definition 3.8. The extreme points of W{α}×R+

(T )\iR in
Definition 3.9 are continuous in d and have the following properties:

(i) If α > c and a maximal strip with respect to W{α}×R+
(T )\iR exists,

then the local minimum of W{α}×R+
(T )\iR is increasing in d, and the

local maximum is decreasing in d.
(ii) If c = α > 0 and a maximal strip with respect to W{α}×R+

(T )\iR

exists, then the local minimum of W{α}×R+
(T )\iR is −i

√
c, and the

local maximum is −id/4 − i
√

d2/16 − c.
(iii) If c > α > 0 then the local maximum and local minimum of

W{α}×R+
(T )\iR are decreasing in d.

(iv) For α < 0 the smallest imaginary part of W{α}×R+
(T )\iR is decreasing

in d.

Proof. The continuity in d of the extreme points follows from Proposi-
tions 3.32 and 3.25.

(i)–(iii) Assume that a maximal strip with respect to W{α}×R+
(T )\iR

exists. If an extreme point is located not on the imaginary axis then α < c
by Lemma 3.27 and then the result follows from (3.23). Thus it is sufficient
to show the result for the roots of (3.19) and for the case α = c it is easy to
verify that ν1 = −d/4−√

d2/16 − c and ν2 = −√
c, which proves (ii). Hence,
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assume that α �= c. Similarly as in Proposition 3.19, observe the polynomial
(3.19), where d is shifted by some small ε > 0 is

qd+ε
α (ν) := qd

α(ν) +
ν

2
(ν2 − α)ε. (3.26)

For α > 0 it follows from Proposition 3.30 that d ≥ d0 since otherwise the
local minimum and maximum are not on the imaginary axis, and thus there
are three roots. The local maximum is iν1 and the local minimum is iν2 by
Proposition 3.32. The local maximum (minimum) is decreasing (increasing)
if and only if qd+ε

α (νd
1 ) < 0 (qd+ε

α (νd
2 ) < 0), for ε > 0 sufficiently small. In

general, if qd
α(ν) = 0, then qd+ε

α (ν) > 0 for ε > 0 small enough if and only if
(ν2 − α) > 0, and thus ν < −√

α. Hence, what needs to be shown is whether
νd
1 , νd

2 < −√
α. Since qα(−√

α) = α(α − c), there is an even number of roots
in (−∞,−√

α] if α > c and an odd number of roots (−∞,−√
α] if α < c.

The polynomial qd
α(ν) is concave only on the interval [−d/4, 0], hence there

can at most be two roots in this interval. From Lemma 3.23 and that d ≥ d0

it follows that −d/4 ≤ −√
α and thus there has to be at least one root in

the interval (−∞,−d/4]. Hence, if α > c there are two roots in (−∞,−√
α],

thus νd
1 , νd

2 < −√
α, which proves (i).

If α < c it follows that q′
α(−√

α) and q′
α(−d/4) are positive and since

qα is concave on [−d/4,−√
α] there is at most one root in that interval.

On (−∞,−d/4], qα is convex and since qα(−d/4) < 0 it follows that qα

has exactly one root in this interval. Since the number of roots is odd in
(−∞,−√

α] it follows that there is only one root in the interval, this proves
(iii).

(iv) The result follows from Lemma 3.27 if the point with smallest imag-
inary part is not on the imaginary axis. Assume α < 0 and that the point
with smallest imaginary part is on the imaginary axis. Then the point with
smallest imaginary part will be iνd

1 , which implies ((νd
1 )2 − α) > 0 and thus

the smallest imaginary part is decreasing, due to (3.26). �

4. Resolvent Estimates

In this section, the ε-pseudonumerical range is introduced and we determine
an enclosure of this set. We show how the boundary of the new enclosure of
the pseudospectra can be determined and give an estimate of the resolvent
of (1.1).

For given ε > 0 the ε-pseudospectrum σε(T ) is the union of σ(T ) and
the set of all ω ∈ C such that ‖T−1(ω)‖ > ε−1. An equivalent condition for
ω ∈ σε(T ) is that there exists a function u ∈ dom T , ‖u‖ = 1 for which
‖T (ω)u‖ < ε. Such u is called an approximate eigenvector or ε-pseudomode
[7, p. 255]. To be able to see how well-behaved T−1 is close to WΩ(T ), as
defined in (2.8), we will for ω ∈ C = C\{δ+, δ−} make an upper estimate of
the resolvent for the rational function (1.1).

Definition 4.1. For an operator function T define the ε-pseudonumerical range
as the set

W ε(T ) := W (T ) ∪ {ω ∈ C\W (T ) : ∃u ∈ dom T, |(T (ω)u, u)|/‖u‖2 < ε}.
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Figure 7. Examples of the set WΩ(T ) in red and blue and
the set W 1

Ω(T ) in grey with c = 6, d = 4. In a W (A) = [1,∞],
W (B) = [0, 11] and in b W (A) = [−∞,∞], W (B) = [4, 11]

From Definition 4.1 it is clear that W ε(T ) ⊃ W (T ). Moreover,
the inequality ‖T (ω)u‖‖u‖ ≥ |(T (ω)u, u)| for u ∈ dom T yields that
W ε(T )\σ(T ) ⊃ σε(T )\σ(T ).

In the following, T is the rational operator function defined in (1.1).
Similar to the enclosure of W (T ) in (2.8), we define an enclosure of W ε(T ) ⊂
C as

W ε
Ω(T ) := WΩ(T ) ∪ {ω ∈ C\WΩ(T ) : ∃(α, β) ∈ Ω, |t(α,β)(ω)| < ε}, (4.1)

where t(α,β)(ω) is given in (2.2).

Remark 4.2. For ω ∈ {δ+, δ−,∞}, ω ∈ WΩ(T ) if and only if ω ∈ W ε
Ω(T ) for

all ε > 0.

Figure 7 illustrates WΩ(T ) and W ε
Ω(T ) in two cases. Note in particular

that the distance between a point ω ∈ ∂W ε
Ω(T ) and ∂WΩ(T ) is not constant.

Define the set,

γε(T ) := ∂Γε(T )\WΩ(T ), Γε(T )
:= {ω ∈ C\W∂Ω(T ) : ∃(α, β) ∈ ∂Ω, |tα,β(ω)| < ε}. (4.2)

Theorem 4.3. Assume that ε > 0 and define ∂W ε
Ω(T ) and γε(T ) as in (4.1)

and in (4.2), respectively. Then ∂W ε
Ω(T ) = γε(T ).

Proof. Assume that ω /∈ {δ+, δ−,∞}. If ω ∈ ∂W ε
Ω(T ), then min(α,β)∈Ω |

t(α,β)(ω)| = ε by continuity. Conversely assume min(α,β)∈Ω |t(α,β)(ω)| = ε
and let (α0, β0) be such that |t(α0,β0)(ω)| = ε. Since ε > 0 and t(α0,β0) is
non-constant and holomorphic, the minimum modulus principle states that
for each neighborhood N of ω, there is an ω′ ∈ N such that |t(α0,β0)(ω

′)| < ε.
Hence, min(α,β)∈Ω |t(α,β)(ω′)| < ε and thus ω ∈ ∂W ε

Ω(T ) is equivalent to
min(α,β)∈Ω |t(α,β)(ω)| = ε.
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Assume ω /∈ WΩ(T ), then min(α,β)∈Ω |t(α,β)(ω)| > 0 by definition (4.1).
Since t(α,β)(ω) is linear in α and β, and nonzero it follows that |t(α,β)(ω)|
attains its minimum for (α, β) ∈ ∂Ω. Hence,

min
(α,β)∈∂Ω

|t(α,β)(ω)| = min
(α,β)∈Ω

|t(α,β)(ω)| = ε,

and thus ω ∈ ∂W ε
Ω(T ). It then follows that ∂W ε

Ω(T )\{δ+, δ−,∞} =
γε(T )\{δ+, δ−,∞}.

By definition W (B) �= {0}, which implies that the points {δ+, δ−,∞}
are not isolated. Then, since ∂W ε

Ω(T ) and γε(T ) are closed sets, ∂W ε
Ω(T ) =

γε(T ) follows by continuity. �
Remark 4.4. From the minimum modulus principle it follows that W ε

Ω(T )
has no new components compared with WΩ(T ). However, components dis-
connected in WΩ(T ) might be connected in W ε

Ω(T ); see Fig. 7a.

Define the complex constants

κ :=
ω2

c − idω − ω2
, λ := ω2. (4.3)

From Definition 2.2 it follows that the absolute value of t(α,β) can be written
in the form

|t(α,β)(ω)| =
∥∥∥∥
(

0 −κ�
1 −κ�

) (
α
β

)
−

(
λ�
λ�

)∥∥∥∥ . (4.4)

The following proposition is proven by a technique similar to the active
set algorithm for constrained linear least squares problems presented in [17,
Chapter 16.5].

Proposition 4.5. Assume ω ∈ C, and let W ε
Ω(T ), κ, and λ be defined as in

(4.1) and (4.3), respectively. Define the constant ε0 as follows: If κ� = 0
define

ε0 :=
√

min
β∈W (B)

|βκ� + λ�|2 + min
α∈W (A)

|α − λ�|2.

If κ� �= 0, define the constants βinf and βsup as the values in W (B) closest
to

−κ�λ� − κ�(inf W (A) − λ�)
|κ|2 and − κ�λ� − κ�(sup W (A) − λ�)

|κ|2 ,

respectively. Define the interval

B :=
[
inf W (A) − λ�

κ�
,
supW (A) − λ�

κ�

]
.

If B ∩ W (B) = ∅ set Ω′ := {(inf W (A), βinf), (sup W (A), βsup)}. If B ∩
W (B) �= ∅ set Ω′ := {(inf W (A), βinf), (sup W (A), βsup), (αop, βop)}, where
βop denotes the value in B∩W (B) closest to −λ�/κ� and αop := βopκ�+λ�.
If κ� = 0 the choice of βop ∈ B ∩ W (B) is arbitrary. Define

ε0 := min
(α,β)∈Ω′

√
|βκ� + λ�|2 + |α − κ�β − λ�|2.

Then ω ∈ W ε
Ω(T ) if and only if ε > ε0.
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Proof. Note that ω ∈ W ε
Ω(T ) if and only if ε > min(α,β)∈Ω |t(α,β)(ω)|. This is

in the sense of (4.4) a constrained linear least squares optimization problem.
If κ� = 0 the result is trivial. Otherwise, the minimizing value α of this linear
problem is either on one of the endpoints of W (A) or an α that makes the
second equation solvable in β ∈ W (B). Computing the optimal β ∈ W (B)
in all of these cases gives three possible pairs in Ω that minimizes (4.4) and
the result follows. �
Corollary 4.6. Let W ε

Ω(T ) be defined as in (4.1) and assume that ω ∈
C\WΩ(T ). Then, ‖T−1(ω)‖ ≤ 1/ε0, where ε0 is given by Proposition 4.5.

Proof. Assume that ω ∈ C\(WΩ(T ) ∪ {δ+, δ−}), then from Proposition 4.5
it follows that min(α,β) |t(α,β)(ω)| = ε0 > 0. Hence, the result follows from
‖T (ω)u‖/‖u‖ ≥ |(T (ω)u, u)|/‖u‖2 ≥ min(α,β) |t(α,β)(ω)|. �

Figure 8 illustrates the upper bound of ‖T−1(ω)‖ in Corollary 4.6 for
arbitrary operators with W (A) = [−32, 4], W (B) = [0, 4], where a solid
line depicts W∂Ω(T )\iR. For ω ∈ WΩ(T ), we chose particular matrices A
and B with the given numerical ranges and compute ‖T−1(ω)‖ numeri-
cally. Note that on the imaginary axis a simpler result than Proposition 4.5
holds.

Proposition 4.7. Let W ε
Ω(T ) be defined as in (4.1). Let Aε be an arbitrary

selfadjoint operator with W (Aε) = [inf W (A) − ε, sup W (A) + ε] and define

T ε(ω) := Aε − ω2 − ω2

c − idω − ω2
B, dom T ε(ω) = dom Aε, ω ∈ C.

Let WΩ(T ε) be defined as in (2.8). Then W ε
Ω(T ) ∩ iR = WΩ(T ε) ∩ iR.

Figure 8. Example of the upper bound of ‖T−1(ω)‖ from
Corollary 4.6 for ω ∈ C\WΩ(T ) with W (A) = [−32, 4],
W (B) = [0, 4], c = 4, and d = 4. For ω ∈ WΩ(T ) the
resolvent is computed numerically for particular matrices A
and B
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Proof. Assume ω ∈ iR\{δ+, δ−}, then as in the proof of Theorem 4.3 we have
ω ∈ W ε

Ω(T ) if and only if min(α,β)∈Ω |t(α,β)(ω)| ≤ ε. Hence, ω ∈ W ε
Ω(T ) if

and only if

α + ω2
� +

ω2
�

c + dω� + ω2
�

β = e, (4.5)

for some (α, β) ∈ Ω and for some e with |e| ≤ ε. Assume ω ∈ iR\{δ+, δ−}
satisfies (4.5), then α − e ∈ R, α − e ∈ W (Aε) and thus ω ∈ WΩ(T ε). The
converse is obvious. Hence, W ε

Ω(T ) ∩ iR\{δ+, δ−} = WΩ(T ε) ∩ iR\{δ+, δ−},
which by continuity yields W ε

Ω(T ) ∩ iR = WΩ(T ε) ∩ iR. �

The set W ε
Ω(T ) ∩ iR can then be obtained by the algorithm given in

Proposition 2.14.
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