
Chapter 4

Quantum physics on a general Hilbert space

In this chapter we generalize the results of Chapter 2 to infinite-dimensional Hilbert
spaces. So let H be a Hilbert space and let B(H) be the set of all bounded op-
erators on H. Here a notable point is that linear operators on finite-dimensional
Hilbert spaces are automatically bounded, whereas in general they are not. Thus we
impose boundedness as an extra requirement, beyond linearity. This is very con-
venient, because as in the finite-dimensional case, B(H) is a C*-algebra, cf. §C.1.
At the same time, assuming boundedness involves no loss of generality whatsoever,
since we can alway replace closed unbounded operators by bounded ones through
the bounded transform, as explained in §B.21. Nonetheless, even the relatively easy
setting of bounded operators leads to some technical complications we have to deal
with. First, Definition 2.1 must be adjusted as follows:

Definition 4.1. Let H be a Hilbert space.

1. A (quantum) event is a closed linear subspace L of H.
2. A density operator is a positive trace-class operator ρ on H such that Tr(ρ)= 1;

we continue to denote the set of all density operators on H by D(H).
3. A (quantum) random variable is a bounded self-adjoint operator on H.
4. The spectrum σ(a) of a bounded operator a is the set of all λ ∈C for which the

operator a−λ is not invertible in B(H) (cf. Definition B.80).

As shown in Corollary B.88, if H is finite-dimensional this notion of a spectrum
reduces to the set of eigenvalues of a. Even H is infinite-dimensional, the spectrum
of a self-adjoint operator a is real (i.e., σ(a)⊂R); this is also true if a is unbounded
(see Theorem B.93). For any H, unit vectors ψ still define special density matrices
eψ , as in (2.7); we will later see that these are pure states on B(H), although the
set of pure states is no longer exhausted by such density matrices. Finally, quantum
events in H still bijectively correspond with projections on H; see Proposition B.76.
The Born rule as well as the correspondence between density matrices and states
require a separate discussion, to which we now turn.
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104 4 Quantum physics on a general Hilbert space

4.1 The Born rule from Bohrification (II)

In this section we extend the characterization of the Born rule in §2.5, which was
restricted to finite phase spaces X and finite-dimensional Hilbert spaces H, to the
general case. Recall that a probability space is a measure space (X ,Σ ,μ) for which
μ(X) = 1, and that, for compact X , a state on C(X) is a positive map ϕ : C(X)→ C
that is positive and satisfies ϕ(1X ) = 1. Theorem B.15 and Corollary (B.17) yield:

Theorem 4.2. Let X be a compact Hausdorff space. There is a bijective correspon-
dence between probability measures μ on X and states ω on C(X), given by

ω( f ) =
∫

X
dμ f , f ∈C(X). (4.1)

More precisely, the correspondence in question is between complete regular proba-
bility spaces (X ,Σ ,μ) and states on C(X), and this is understood in what follows.

Second, we recall that if H is a Hilbert space and a ∈ B(H), then C∗(a) is the
C*-algebra generated by a and 1H (i.e., the norm-closure of the algebra of all poly-
nomials in a). Theorems B.84, B.94, and B.93 give the following spectral theorem:

Theorem 4.3. If a∗ = a ∈ B(H), then C∗(a) is commutative, σ(a) ⊂ R is compact,
and there is an isomorphism of (commutative) C*-algebras

C(σ(a))∼=C∗(a), (4.2)

written f �→ f (a), which is unique if it is subject to the following conditions:

1. the unit function 1σ(a) : λ �→ 1 corresponds to the unit operator 1H;
2. the identity function idσ(a) : λ �→ λ is mapped to the given operator a.

Furthermore, this continuous functional calculus satisfies the rules

(t f +g)(a) = t f (a)+g(a); (4.3)
( f g)(a) = f (a)g(a); (4.4)

f (a)∗ = f ∗(a). (4.5)

Combining Theorems 4.2 and 4.3 gives a result of great importance:

Corollary 4.4. Let H be a Hilbert space, let a∗ = a ∈ B(H), and let ψ ∈H be a unit
vector. There exists a unique probability measure μψ on the spectrum σ(a) such that

〈ψ, f (a)ψ〉=
∫

σ(a)
dμψ f , f ∈C(σ(a)). (4.6)

In terms of the spectral projections eΔ = 1Δ (a) (defined for Borel sets Δ ⊆ σ(a))
constructed in (B.305) - (B.307) and Theorem B.102, the Born measure is given by

μψ(Δ) = ‖eΔ ψ‖2. (4.7)
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More generally, a density operator ρ ∈D(H) induces a unique probability measure
μρ on σ(a) for which

Tr(ρ f (a)) =
∫

σ(a)
dμρ f , f ∈C(σ(a)), ; (4.8)

μρ(Δ) = Tr(ρeΔ ). (4.9)

This measure on σ(a) is called the Born measure (defined by a and ψ or ρ).

Proof. The point is that the map f �→ 〈ψ, f (a)ψ〉 defines a state on C(σ(a)):

• Linearity follows from linearity of the continuous functional calculus f �→ f (a);
• Positivity follows because if f ≥ 0, then f =

√
f ·√ f , so that by (4.4) and (4.5),

〈ψ, f (a)ψ〉= ‖√ f (a)ψ‖2 ≥ 0;
• Unitality follows from Theorem 4.3.1, i.e., 〈ψ,1σ(a)(a)ψ〉= 〈ψ,1Hψ〉= 1.

To prove (4.7), use Lemma B.97 to approximate 1Δ by functions fn ∈ C(σ(a)) as
stated. By Theorem B.13.2 (i.e., the Lebesgue Monotone Convergence Theorem),
we have

∫
σ(a) dμψ fn→

∫
σ(a) dμψ 1Δ = μψ(Δ), whereas by (B.315) with an = fn(a),

one has 〈ψ, fn(a)ψ〉 → 〈ψ,eΔ ψ〉= ‖eΔ ψ‖2. Hence (4.7) follows from (4.6).
The proof for density operators is analogous. �

Defining the mean value 〈a〉ψ of a with respect to the Born measure μψ by

〈a〉ψ =
∫

σ(a)
dμψ(x)x, (4.10)

and similarly for ρ , using Theorem 4.3.2 we easily obtain

〈a〉ψ = 〈ψ,aψ〉; (4.11)
〈a〉ρ = Tr(ρa). (4.12)

As an important special case, suppose that σ(a) = σp(a) (i.e., each λ ∈ σ(a) is
an eigenvalue); this always happens if H is finite-dimensional. Eq. (A.57) then gives

〈ψ, f (a)ψ〉= ∑
λ∈σ(a)

f (λ ) · ‖eλ ψ‖2,

where eλ is the projection onto the eigenspace Hλ = {ψ ∈ H | aψ = λψ}. Thus

μψ(λ ) = ‖eλ ψ‖2, (4.13)

and using the notation Pψ(a = λ ) for μψ(λ ), eq. (4.11) just becomes

〈a〉ψ = ∑
λ∈σ(a)

λ ·Pψ(a = λ ). (4.14)

It is customary to extend the Born measure on σ(a)⊂ R to a (probability) measure
μ ′ψ on all of R by simply stipulating that
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μ ′ψ(Δ) = μψ(Δ ∩σ(a)); (4.15)

we will often assume this and omit the prime. This obviously implies that μψ(Δ)= 0
for any Borel set Δ ⊂ R disjoint from σ(a); in particular, if σ(a) is discrete, then
μψ is concentrated on the eigenvalues λ of a, in that

μψ(Δ) = ∑
λ∈Δ∩σ(a)

μψ(λ ). (4.16)

To state an interesting property of the Born measure we need Hausdorff’s solu-
tion to the relevant special case of the famous Hamburger Moment Problem:

Theorem 4.5. If K ⊂ R is compact, then any finite measure μ on K is determined
by its moments

αn =
∫

K
dμ(x)xn. (4.17)

Using f (x) = xn in (4.6), we therefore obtain:

Corollary 4.6. The Born measure μψ is determined by its moments

αn = 〈ψ,anψ〉. (4.18)

More precisely, we need to be sure that numbers (αn) of the kind (4.18) are the
moments of some (probability) measure. This follows from the spectral theorem by
running the above argument backwards, but one may also use the general solution
of the Hamburger Moment Problem, which we here state without proof:

Theorem 4.7. A sequence of real numbers (αn) forms the moments of some measure
μ on R iff for all N ∈ N and (β1, . . . ,βN) ∈ CN one has ∑N

n,m=0 βnβmαn+m ≥ 0.
Furthermore, if there are constants C and D such that |αn| ≤ CDnn!, then μ is
uniquely determined by its moments (αn).

These conditions are easily checked from (4.18).

If a is unbounded, but still assumed to be self-adjoint (in the sense appropriate
for unbounded operators, cf. Definition B.70), the spectrum σ(a) remains real (see
Theorem B.93) but it is no longer compact. Nonetheless, the Born measure on σ(a)
may be constructed in almost exactly the same way as in the bounded case, this time
invoking Corollary B.21 and Theorem B.158 instead of Theorems 4.2 and B.94,
respectively. Corollary 4.4 then holds almost verbatim for the unbounded case:

Corollary 4.8. Let H be a Hilbert space, let a∗ = a, and let ψ ∈ H be a unit vector.
There exists a unique probability measure μψ on the spectrum σ(a) such that

〈ψ, f (a)ψ〉=
∫

σ(a)
dμψ f , f ∈C0(σ(a)). (4.19)

Also, eqs. (4.7) and (4.9) hold, as does (4.8), with f ∈C0(σ(a)).
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There is no need to worry about domains, since even if a is unbounded, f (a) is
bounded for f ∈Cb(σ(a)), and hence also for f ∈C0(σ(a)).

The physical relevance of the Born measure is given by the Born rule:
If an observable a is measured in a state ρ , then the probability Pρ(a ∈ Δ) that the
outcome lies in Δ ⊂ R is given by the Born measure μρ defined by a and ρ , i.e.,

Pρ(a ∈ Δ) = μρ(Δ). (4.20)

As in the finite-dimensional case, the Born measure may be generalized to fami-
lies (a1, . . . ,an) of commuting self-adjoint operators. Assuming these are bounded,
the C*-algebra C∗(a1, . . . ,an) is defined in the obvious way, i.e., as the smallest C*-
algebra containing each ai, or, equivalently, as the norm-closure of the algebra of all
finite polynomials in the (a1, . . . ,an). This C*-algebra is commutative, as a simple
approximation argument shows: polynomials in the ai obviously commute, and this
property extends to the closure by continuity of multiplication. However, even in the
bounded case, the correct notion of a joint spectrum is not obvious. In order to mo-
tivate the following definition, it helps to recall Definition 1.4, Theorem C.24, and
especially the last sentence before the proof of the latter, making the point that the
spectrum σ(a) of a single (bounded) self-adjoint operator coincides with the image
of the Gelfand spectrum Σ(C∗(a)) in C under the map ω �→ ω(a).

Definition 4.9. 1. The joint spectrum σ(a) = σ(a1, . . . ,an)⊂ Rn of a finite family
a = (a1, . . . ,an) of commuting bounded self-adjoint operators is the image of the
Gelfand spectrum Σ(C∗(a1, . . . ,an)) = Σ(C∗(a)) under the map

Σ(C∗(a1, . . . ,an))→ Rn, ω �→ (ω(a1), . . . ,ω(an)). (4.21)

Since ω(ai) only utilizes the restriction of ω to C∗(ai)⊂C∗(a), we have ω(ai) ∈
σ(ai)⊂ R, so that Σ(C∗(a))⊆ σ(a1)×·· ·×σ(an) is a compact subset of Rn.

To justify this definition, we note that:

• For n = 1, this definition reproduces the usual spectrum, cf. Theorem C.24.
• For n > 1 and dim(H)< ∞, we recover the joint spectrum of Definition A.16.
• For n > 1 and dim(H) = ∞, Weyl’s Theorem B.91 generalizes in the obvious

way: we have λ ∈ σ(a) iff there exists a sequence (ψk) of unit vectors in H with

lim
k→∞

‖(ai−λi)ψk‖= 0, (4.22)

for each i = 1, . . . ,n. The proof is similar.

One way to see the second claim is to use Proposition C.14 joined with the ob-
servation that, as in the case of A = B(H) for finite-dimensional H, any pure state
on a finite-dimensional C*-algebra A ⊂ B(H) is a vector state (2.42), too. To see
this, we first specialize Theorem C.133 to the finite-dimensional case (where the
proof becomes elementary), so that each state on C∗(a) takes the form (2.33). Sub-
sequently, we use the spectral decomposition (2.6), and use the definition of purity:
suppose ω(b) = Tr(ρb) = ∑i pi〈υi,bυi〉 ≡ ∑i piωυi(b) is pure, where b ∈ C∗(a).
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Then ωυi = ω for each i, so that ω is a vector state, say ω(b) = 〈ψ,bψ〉 where ψ is
one of the υi. Once we know this, suppose λ = (λ1, . . . ,λn)∈ σ(a), with λi =ω(ai).
Multiplicativity of ω implies that for any finite polynomial in n real variables we
have 〈ψ, p(a)ψ〉 = p(λ ), which easily gives aiψ = λiψ for each i; for example,
take p(x) = (xi−λi)

2, so that the previous equation gives ‖(ai−λi)ψ‖2 = 0.
Conversely, if λ is a joint eigenvalue of a, then by definition there exists a joint

eigenvector ψ whose vector state ω(b) = 〈ψ,bψ〉 on C∗(a) is multiplicative.
Using this (perhaps contrived) notion of a joint spectrum, Theorem 2.19 now

holds by construction also if dim(H) = ∞, where the pertinent isomorphism f �→
f (a) is given as in the single operator case, that is, by starting with polynomials and
using a continuity argument to pass to arbitrary continuous functions.

Theorem 2.18 and Corollary 4.4 then generalize to:

Theorem 4.10. Let H be a Hilbert space, let a = (a1, . . . ,an) be a finite family of
commuting bounded self-adjoint operators, and let ψ ∈ H be a unit vector. There
exists a unique probability measure μψ on the joint spectrum σ(a) such that

〈ψ, f (a)ψ〉=
∫

σ(a)
dμψ f , f ∈C(σ(a)), (4.23)

or, equivalently, for special Borel sets Δ = Δ1×·· ·×Δn ⊆ σ(a), where Δi ⊂ σ(ai),

μψ(Δ) = ‖eΔ1 · · ·eΔn ψ‖2, (4.24)

where the eΔi = 1Δi(ai) are the pertinent spectral projections (which commute).

Similarly for density operators instead of pure states.
If (some of) the operators ai are unbounded, we use the trick of §B.21 and pass

to their bounded transforms bi, see Theorem B.152. We say that the bi commute iff
the corresponding bounded operators bi do; this is equivalent to commutativity of
all spectral projections of the ai. We then define, in self-explanatory notation,

σ(a) = {λ (1−λ 2)−1/2 | λ ∈ σ(b)∩ (−1,1)n}. (4.25)

This leads to Born measures on σ(a) defined either as in (4.23), with f ∈C(σ(a))
replaced by f ∈C0(σ(a)), cf. (4.19), or as in (4.24).

For example, if H = L2(Rn) and aiψ(x) = xiψ(x), defined on the domain

D(ai) = {ψ ∈ L2(Rn) |
∫
Rn

dnxx2
i |ψ(x)|2 < ∞}, (4.26)

as in (B.242), then biψ(x) = xi(1+ x2
i )
−1/2ψ(x), so that σ(b) = [−1,1]n and hence

σ(a) = Rn. For a measurable region Δ ⊂ Rn we then have Pauli’s famous formula

μψ(Δ) =
∫

Δ
dnx |ψ(x)|2 (4.27)

for finding the particle in the region Δ , given that the system is in a pure state ψ .
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4.2 Density operators and normal states

Definition 2.4 of a state still makes good sense in the infinite-dimensional case, as
it simply specializes the general definition of a state on a C*-algebra A to the case
A = B(H). Thus we continue to say that a state on B(H) is a complex-linear map
ω : B(H)→ C satisfying ω(b∗b) ≥ 0 for each b ∈ B(H) and ω(1H) = 1. Despite
this lack of novelty in the definition of a state (i.e., compared to finite-dimensional
Hilbert spaces), Theorem 2.7 no longer holds if H is infinite-dimensional: although
it (almost trivially) remains true that density operators ρ on H define states on B(H)
through the fundamental correspondence ω(a) = Tr(ρa), a∈B(H), cf. (2.33), there
are (many) states that are not given in that way (see below). Fortunately, states that
do arise through (2.33) can be characterized in a simple way.

Definition 4.11. A state ω : B(H) → C is called normal if for each orthogonal
family (ei) of projections (i.e., e∗i = ei and eie j = δi jei) one has

ω

(
∑

i
ei

)
= ∑

i
ω(ei). (4.28)

Here ∑i ei is defined as the projection on the smallest closed subspace K of H that
contains each eiH (that is, ∑i ei = ∨iei, i.e., the supremum in the poset P(H) of all
projections on H with respect to the partial order e≤ f iff eH ⊆ f H). Furthermore,
the sum over i on the right-hand side is defined by (B.11), i.e., as the supremum (in
R) of the set of all sums ∑i∈F ω(ei) over finite subsets F ⊂ I of the index set I in
which i takes values. It is finite because ∑i∈F ei ≤ 1H and hence, since ω is positive,

∑
i∈F

ω(ei)≤ ω(1H) = 1.

For example, let (υi) be a basis of H with associated one-dimensional projections

ei = |υi〉〈υi|. (4.29)

If ω is assumed to be a state, then the additivity condition (4.28) implies

∑
i

ω(ei) = 1, (4.30)

or, equivalently, using Definition B.6 etc. as well as the notation eF ≡ ∑i∈F ei,

lim
F

ω(eF) = 1. (4.31)

If H is separable, any orthogonal family (ei) of projections is necessarily countable,
and (4.28) is analogous to the countable additivity condition defining a measure.

Theorem 4.12. A state ω on B(H) takes the form ω(a) = Tr(ρa) for some (unique)
density operator ρ ∈D(H) iff it is normal.
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Proof. First, eq. (2.33) implies (4.28). To see this, take the trace with respect to
some basis (υ j) of H that is adapted to the family (ei) in the sense that for each j,
either eiυ j = υ j (i.e., υ j ∈ eiH) for one value of i, or eiυ j = υ j for all i. Then

ω

(
∑

i
ei

)
= Tr

(
ρ ∑

i
ei

)
= ∑

j
〈υ j,ρ ∑

i
eiυ j〉=

′
∑

j
〈υ j,ρυ j〉,

where the sum ∑′j is over those j for which υ j ∈ K ≡ ∨ieiH. On the other hand,
since the basis is adapted, we have υ j ∈K iff there is an i for which eiυ j = υ j (since
otherwise eiυ j = 0 and hence υ j ⊥ eiH for each i, so that υ j ∈ K⊥), so

∑
i

ω(ei) = ∑
i

Tr (ρei) = ∑
i

∑
j
〈υ j,ρeiυ j〉= sup

F⊂I
∑
j∈JF

〈υ j,ρυ j〉=
′

∑
j
〈υ j,ρυ j〉,

where JF consists of those j for which υ j ∈ ∑i∈F eiH. This gives (4.28).
Conversely, assume ω is normal. For the ei in (4.28) we now take the projections

(4.29) determined by some basis (υi). For each a ∈ B(H) we then have

ω(a) = lim
F

ω(eF a). (4.32)

Indeed, using Cauchy–Schwarz for the positive semi-definite form (a,b) = ω(a∗b),
as in (C.197), and using ∑i ei = 1H and hence ω(a) = ω(∑i eia) we have

|ω(a)−ω(eF a)|2 = |ω(eFc a)|2 ≤ ω(a∗a)ω(eFc)≤ ‖a‖2ω(eFc), (4.33)

since eFc ≡ ∑i/∈F ei is a projection. Since ω(eF)+ω(eFc) = ω(1H) = 1, eq. (4.31)
gives limF ω(eFc) = 0, so that (4.33) gives (4.32). For each finite F ⊂ I, the oper-
ator eF a has finite rank and hence is compact. According to Theorem B.146, the
restriction of ω : B(H)→ C to the C*-algebra B0(H) of compact operators on H is
induced by a trace-class operator ρ , which (from the requirement that ω be a state)
must be a density operator. Hence ω(eF a) = Tr(ρeF a), and we finally have

ω(a) = lim
F

ω(eF a) = lim
F

Tr(ρeF a) = Tr(ρa). (4.34)

To derive the final equality, we rewrite Tr(ρeF a) = Tr(eF aρ), cf. (A.78) and Propo-
sition B.144, note that aρ ∈ B1(H), as shown in Corollary B.147, and observe
that for any b ∈ B1(H) we have limF Tr(eF b) = Tr(b). To see this, simply com-
pute the trace in the basis (υi) defining the projections ei through (4.29), so that
Tr(eF b) = ∑i∈F〈υi,bυi〉, and note that by Definition B.6,

lim
F ∑

i∈F
〈υi,bυi〉= ∑

i
〈υi,bυi〉= Tr(b).

Finally, suppose ω(a) = Tr(ρ1a) = Tr(ρ2a) for each a ∈ B(H) and hence for
each a∈ B0(H). It follows from (B.476) that Tr(ρa) = 0 for all a∈ B0(H) iff ρ = 0.
Hence ρ1 = ρ2, i.e., a normal state ω uniquely determines a density operator ρ . �
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If ω is normal, we may therefore use the spectral resolution (2.6) of the corre-
sponding density operator ρ , i.e., ρ = ∑i pi|υi〉〈υi|, where (υi) is some basis of H
consisting of eigenvectors of ρ (which exists because ρ is compact and self-adjoint),
and the corrsponding eigenvalues satisfy pi ≥ 0 and ∑i pi = 1; see the explanation
after Definition B.148. Computing the trace in the same basis gives

Tr(ρa) = ∑
i

pi〈υi,aυi〉. (4.35)

We may characterize normality in a number of other ways. First note that because
of the duality B1(H)∗ ∼= B(H) of Theorem B.146, cf. (B.477), we may equip B(H)
with the w∗-topology in its role as the dual of the trace-class operators B1(H), see
§B.9; this means that aλ → a iff Tr(ρaλ )→ Tr(ρa) for each ρ ∈ B1(H), or, equiva-
lently, for each ρ ∈D(H), since each trace-class operator is a linear combination of
at most four density operators, as follows from Lemma C.53 with (C.8) - (C.9). The
w∗-topology on B(H), seen as the dual of B1(H), is called the σ -weak topology. By
Proposition B.46, the σ -weakly continuous linear functionals ϕ on B(H) are just
those given by ϕ(a) = Tr(ρb) for some trace-class operator b ∈ B1(H).

Secondly, B(H) is monotone complete, in the sense that each net (aλ ) of positive
operators that is bounded (i.e., 0 ≤ aλ ≤ c · 1H for some c > 0 and all λ ∈ Λ ) and
increasing (in that aλ ≤ aλ ′ whenever λ ≤ λ ′) has a supremum a with respect to the
standard ordering ≤ on B(H)+, which supremum coincides with the strong limit of
the net (i.e., limλ aλ ψ = aψ for each ψ ∈H); the proof is the same as for Proposition
B.98, and also here we write aλ ↗ a to describe this entire situation.

Corollary 4.13. The following conditions on a state ω ∈ S(B(H)) are equivalent:

1. ω is normal, cf. Definition 4.11;
2. ω(a) = limλ ω(aλ ) if aλ ↗ a;
3. ω(a) = Tr(ρa) for some density operator ρ ∈D(H);
4. ω is σ -weakly continuous.

Proof. We have seen 1↔ 3↔ 4, and 2→ 1 is obvious, so establishing 3→ 2 would
complete the proof. To this effect, we first note that because the sum (4.35) is con-
vergent, for ε > 0 we may find a finite subset F ⊂ I for which ∑i/∈F pi < ε/2‖a‖
(assuming a �= 0). Since 0≤ aλ ≤ a also implies aλ ≤ ‖a‖ ·1H (since a≤ ‖a‖ ·1H ),
we therefore have |∑i/∈F pi〈υi,(aλ −a)υi〉|< 2ε/3, uniformly in λ . Moreover, since
F is finite and aλ → a strongly, we can find λ0 such that for all λ ≥ λ0 we have

|∑
i∈F

pi〈υi,(aλ −a)υi〉|< ε/3. (4.36)

Consequently, for such λ ,

|Tr(ρ(aλ −a))| ≤ |∑
i∈F

pi〈υi,(aλ −a)υi〉|+ |∑
i/∈F

pi〈υi,(aλ −a)υi〉|< 2
3

ε +
1
3

ε = ε.

This shows that limλ |Tr(ρ(aλ −a))|= 0, so that assumption 3 implies no. 2. �
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We denote the normal state space of B(H), i.e., the set of all normal states on
B(H) by Sn(B(H)). It is easy to see from Definition B.148 that Sn(B(H)) is a convex
(but not necessarily compact!) subset of the total state space S(B(H)).

Corollary 4.14. The relation ω(a) = Tr(ρa) induces an isomorphism

Sn(B(H))∼= D(H) (4.37)

of convex sets (i.e., ω ↔ ρ). Furthermore, for the corresponding pure states we have

Pn(B(H))∼= P1(H), (4.38)

i.e., any pure state ω on B0(H), as well as any normal pure state on B(H), is given
by ω = ωψ for some unit vector ψ ∈ H, where ω(a) = 〈ψ,aψ〉, cf. (2.42).

The proof of (4.38) is practically the same as in the finite-dimensional case. From
Theorem B.146 we obtain another characterization of Sn(B(H)) and hence of D(H):

Corollary 4.15. If B0(H) is the C*-algebra of compact operators on H, we have

S(B0(H)) = Sn(B(H)); (4.39)
P(B0(H)) = Pn(B(H)), (4.40)

in the sense that any (pure) state ω on B0(H) has a unique normal extension to a
(pure) state ω ′ on B(H), given by the same density operator ρ that yields ω .

It can be shown that any state ω ∈ S(B(H)) has a convex decomposition

ω = tωn +(1− t)ωs, (4.41)

where t ∈ [0,1], ωn is a normal state, and ωs is called a singular state. In particular,
since for t ∈ (0,1) the state ω is mixed, a pure state is either normal or singular.

Singular states are not as aberrant as the terminology may suggest: such states are
routinely used in the physics literature and are typically denoted by |λ 〉, where λ lies
in the continuous spectrum of some self-adjoint operator (that has to be maximal for
this notation to even begin to make sense, see §4.3 below). Examples of such “im-
proper eigenstates” are |x〉 and |p〉, which many physicists regard as idealizations.
However, mathematically such states are at least defined, namely as singular pure
states on B(H). The key to the existence of such states lies in Proposition C.15 and
its proof, which should be reviewed now; we only need the case a∗ = a.

Proposition 4.16. Let a = a∗ ∈ B(H) have non-empty continuous spectrum, so that
there is some λ ∈ σ(a) that is not an eigenvalue of a. Then ωλ ( f (a)) = f (λ ) defines
a pure state on A =C∗(a), whose extension to B(H) by any pure state is singular.

Proof. Normal pure states on B(H) take the form ωψ(b) = 〈ψ,bψ〉, where ψ ∈H is
a unit vector and b∈B(H). We know from Proposition C.14 that ωλ is multiplicative
on C∗(a). However, if some multiplicative state ω on C∗(a) has the form ω = ωψ ,
then ψ must be eigenvector of a; cf. the proof of Proposition 2.3. �
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4.3 The Kadison–Singer Conjecture

To obtain deeper insight into singular pure states, and as a matter of independent
interest, we return to the Kadison–Singer problem, cf. §2.6. Recall that this problem
asks if some abelian unital C*-algebra A⊂ B(H) has the Kadison–Singer property,
stating that a pure state ωA on A has a unique pure extension ω to B(H). Here the is-
sue is uniqueness rather than existence, since at least one such extension exists: since
A is necessarily unital (with 1A = 1H ) and ωA is a state on A, so that in particular
ωA(1A) = ‖ωA‖ = 1, Corollary B.41 gives the existence of a bounded extension ω
satisfying ω(1H) = ‖ω‖= 1, which by Proposition C.5 is a state on B(H). Proposi-
tion 2.22 then gives the existence of a pure extension ω . As in the finite-dimensional
case, the Kadison–Singer property forces A to be maximal (in the poset C (B(H)) of
all abelian unital C*-subalgebras of B(H), ordered by inclusion):

Proposition 4.17. If some abelian unital C*-subalgebra A of B(H) has the Kadison–
Singer property, then A is necessarily maximal.

Proof. We use the Gelfand isomorphism A∼=C(P(A)), where P(A) is the pure state
space of A, cf. Theorem C.8 and Proposition C.14. If A has the Kadison–Singer
property and A⊆ B⊂ B(H), where B is an abelian unital C*-subalgebra A of B(H),
then ωA has a unique pure extension ω on B(H), which restricts to some state ωB on
B. The same reasoning as in the proof of Proposition 2.22 shows that ωB is a pure
state on B, so that we obtain a unique map

P(A) �→ P(B); (4.42)
ωA �→ ωB. (4.43)

The inverse of this map is simply the pullback of the inclusion A ↪→ B, i.e., ωB ∈
P(B) defines ωA ∈ P(A) by restriction, so that we have a bijection P(A) ∼= P(B),
ωA ↔ ωB. Since for any pair of C*-algebras A ⊆ B the pullback S(B)→ S(A) is
continuous (in the pertinent w∗-topology), the map ωB �→ ωA is continuous. As in
Lemma C.20, this implies that it is in fact a homeomorphism, so that A∼= B through
the inclusion A ↪→ B. This gives A = B, and hence A is maximal. �

Maximality of A implies A′ = A, so that A is a von Neumann algebra, sharing the
unit of B(H). To see the relevance of singular states for the Kadison–Singer prob-
lem, we first settle the normal case. We know what it means for a state on B(H)
to be normal (cf. Definition 4.11 and Corollary 4.13); for arbitrary von Neumann
algebras A ⊂ B(H) the situation is exactly the same: we define normality by (4.28)
and characterize it by the equivalent properties in Corollary 4.13, where the σ -weak
topology on A may be defined either as the one inherited from B(H), or, more in-
trinsically, and the w∗-topology from the duality A = A∗∗, where the Banach space
A∗ is the so-called predual of A, e.g., �∞∗ ∼= �1 and L∞(0,1)∗ = L1(0,1), cf. §B.9.

Theorem 4.18. Let H be a separable Hilbert space and let ωA be a normal pure
state on a maximal commutative unital C*-algebra A in B(H). Then ωA has a unique
extension to a state ω on B(H), which is necessarily pure and normal.
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Proof. As noted after (4.41), a pure state on B(H) is either normal or singular. The
possibility that ωA is normal whereas ω is singular is excluded by Corollary 4.13.3,
so ω must be normal and hence given by a density operator. The proof of uniqueness
is then the same as in the finite-dimensional case, cf. Theorem 2.21. �

We now recall the classification of maximal maximal abelian ∗-algebras (and
hence of maximal abelian von Neumann algebras) A in B(H) up to unitary equiva-
lence (cf. Theorem B.118). This classification is the relevant one for the Kadison–
Singer problem, since, as is easily seen, A⊂ B(H) has the Kadison–Singer property
iff uAu−1 ⊂ B(uH) has it. The uniqueness of the finite-dimensional case will be lost:

Theorem 4.19. If H is separable and infinite-dimensional, and A⊂ B(H) is a maxi-
mal abelian ∗-algebra, then A is unitarily equivalent to exactly one of the following:

1. L∞(0,1)⊂ B(L2(0,1));
2. �∞ ⊂ B(�2);
3. L∞(0,1)⊕ �∞(κ)⊂ B(L2(0,1)⊕ �2(κ)),

where �∞ ≡ �∞(N), �2 ≡ �2(N), and κ is either {1, . . . ,n}, in which case �2(κ) =Cn

and �∞(κ) = Dn(C), or κ = N, in which case �2(κ) = �2 and �∞(κ) = �∞.

This classification sheds some more light on Theorem 4.18. Since L∞(0,1) has no
pure normal states and Dn(C) has been dealt with in Theorem 2.21, the interesting
case is �∞. Using Corollary 4.13.3 (or the analysis below), it is easy to check that
the normal pure states on �∞ are given by ωA( f ) = f (x) for some x ∈ N; these are
vector state of the kind ωA( f ) = 〈ψ,m f ψ〉 with ψ = δx, or, in other words, they are
given by ωA( f ) = Tr(ρm f ) with ρ = |δx〉〈δx|. We now invoke a fairly deep result:

Proposition 4.20. A pure state ω on B(H) is singular iff one (and hence all) of the
following equivalent conditions is satisfied:

• ω(a) = 0 for each a ∈ B0(H);
• ω(e) = 0 for each one-dimensional projection e;
• ∑i ω(ei) = 0 for the projections ei = |υi〉〈υi| defined by some basis (υi).

One direction is easy: a normal pure state certainly does not satisfy the condition
in question. For example, given (2.42) one may take a = |ψ〉〈ψ|, which as a one-
dimensional projection lies in B0(H), so that ωψ(a) = 1. We omit the other direction
of the proof. We conclude from this proposition that a pure singular state on B(�2)
cannot restrict to a normal pure state on �∞, which reconfirms Theorem 4.18.

We now study the Kadison–Singer property for each of the three cases in Theo-
rem 4.19 (where the third will be an easy corollary of the first and the second). Since
the proofs of the first two cases are formidable, we just sketch the argument.

Theorem 4.21. • There exist (necessarily singular) pure states on L∞(0,1) that do
not have a unique extension to B(L2(0,1)), and similarly for L∞(0,1)⊕ �∞(κ).

• Any pure state on �∞ has a unique extension to B(�2).
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The statement about �∞ is the Kadison–Singer Conjecture, which dates from 1959
but was only proved in 2013. The first claim (which was already known to Kadison
and Singer themselves) is equally remarkable, however, as is the contrast between
the two parts of Theorem 4.21. In particular, Dirac’s notation |λ 〉may be ambiguous.

The key to the proof of the first claim lies in the choice of a total countable
family of normal states on L∞(0,1), from which all pure states may be constructed
by a limiting operation. Here we call a (countable) family (ωn)n∈N of states on some
C*-algebra A total if, for any self-adjoint a ∈ A, the conditions ωn(a)≥ 0 for each n
imply a≥ 0 (the converse is trivial). For example, the well-known Haar basis (hn)
of L2(0,1) provides such a family. The functions forming this basis are defined via
some bijection β between the set of pairs (k, l) and N, e.g., β (k, l) = k+2l , by

hn = χβ−1(n), (n ∈ N= {1,2, . . .}); (4.44)

χk,l(x) = 2k/2g(2kx− l), (k ∈ N∪{0}, 0≤ l < 2k); (4.45)
g(x) = 1[0,1/2)−1[1/2,1]. (4.46)

Basic analysis then shows that the Haar functions hn form a basis of L2(0,1) and
that the associated vector states ωn on L∞(0,1) form a total set, where obviously

ωn( f ) = 〈hn,m f hn〉=
∫ 1

0
h2

n f . (4.47)

The relevance of total sets to the conjecture is explained by the following lemma.

Lemma 4.22. If T ⊂ S(A) is a total set of states on a unital C*-algebra A, then

S(A) = co(T )−; (4.48)
P(A) ⊆ T−, (4.49)

where co(T )− is the w∗-closure of the convex hull of T in A∗ or in S(A).

Proof. The inclusion co(T )− ⊆ S(A) is obvious, since T ⊆ S(A) and S(A) is a com-
pact (and hence a closed) convex set. To prove the converse inclusion, suppose
a = a∗ ∈ A and s ∈R are such that ω(a)≥ s for each ω ∈ T . Then ω(a− s ·1A)≥ 0
and hence ω(a) ≥ s for each ω ∈ S(A). Using Theorem B.43 (of Hahn–Banach
type), this property would lead to a contradiction if S(A) were not contained in
co(T )−.

The second claim, which is the one we will use, follows from the first through a
corollary of the Krein–Milman Theorem B.50, stating that if T ⊂ K is any subset of
a compact convex set K such that K = co(T )−, then ∂eK ⊆ T−. This corollary may
be proved (by contradiction) from Theorem B.43 in a similar way. �

Our next aim is to get rid of the closure in (4.49). The Haar basis yields a map

h : N → S(L∞(0,1)); (4.50)
n �→ ωn, (4.51)
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with image T , i.e., the set of Haar states. Since S(A) is a compact Hausdorff space (in
its w∗-topology), the universal property (B.135) of the Čech–Stone compactification
βN of N implies that h extends (uniquely) to a continuous map

βh : βN→ S(A),

whose image is compact and hence closed (since βN is compact). Since T = h(N)⊂
S(A) we have T ⊆ βh(βN) and hence T− ⊆ βh(βN), so that, from (4.49),

P(L∞(0,1))⊆ βh(βN). (4.52)

Hence each pure state ωc ≡ ωL∞(0,1) on L∞(0,1) takes the form ωc = ω(U)
c , where

ω(U)
c ( f ) = lim

U
ωn( f ) =

⋂
A∈U

{ωn( f ) | n ∈ A}−, f ∈ L∞(0,1), (4.53)

and U ∈ βN is some ultrafilter on N, cf. (B.136). The point of this analysis, then, is
that ωU can immediately be extended to B(L2(0,1)) by the same formula, i.e.,

ω(U)(a) = lim
U

ωn(a) =
⋂

A∈U

{ωn(a) | n ∈ A}−, a ∈ B(L2(0,1)), (4.54)

where ωn(a) = 〈hn,ahn〉. If L∞(0,1) had the Kadison–Singer property, this were the
unique extension of ωU , and we will show that this leads to a contradiction.

Apart from the use of ultrafilters, the technically most challenging part of the
argument disproving the Kadison–Singer property for L∞(0,1) is as follows. If A =
C([0,1]), for any f ∈ A and any pure state ω ∈ P(A) there is some x ∈ [0,1] such
that ω( f ) = f (x); see Propositions C.14 and C.19. For A = L∞(0,1) the situation is
not that simple due to measure zero complications. Nonetheless, it is easy to show
that for each positive f ∈ L∞(0,1) and ωc ∈ P(L∞(0,1)) and each ε > 0 one has

μ({x ∈ (0,1) | f (x) ∈ [ωc( f )− ε,ωc( f )+ ε]})> 0. (4.55)

where μ is Lebesque measure on (0,1). Taking the projection

e = 1{x∈(0,1)| f (x)∈[ωc( f )−ε/2,ωc( f )+ε/2]},

it follows that for each positive f ∈ L∞(0,1), ω ∈ P(L∞(0,1)) and ε > 0 there exists
a projection e ∈P(L∞(0,1)) with ω(e) = 1 and ‖e f − eωc( f )‖< ε . Hard analysis
then generalizes this property from L∞(0,1) to B(L2(0,1)), as follows:

Lemma 4.23. If ωc ∈ P(L∞(0,1)) has a unique extension ω to B(L2(0,1)) (which is
necessarily pure if it is unique), then for each a ∈ B(L2(0,1)) and ε > 0 there exists
a projection e ∈P(L∞(0,1)) with ωc(e) = 1 and

‖ea− eω(a)‖< ε. (4.56)
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To derive a contradiction between (4.54) and (4.56), we use a bijection b : N→N
that cyclically permutes the ordered subsets (2k + 1, . . . ,2k+1), k = 0,1, . . ., that is,
(1,2), (3,4), (5,6,7,8), (9, . . . ,16), etc. This bijection induces a unitary operator

u : L2(0,1)→ L2(0,1); (4.57)
uhn = hb(n), (4.58)

which is easily shown to have the following properties:

ωn(u) = 0, n ∈ N; (4.59)
‖eue‖ = 1, e ∈P(L∞(0,1)),e �= 0. (4.60)

To show that L∞(0,1) fails to have the Kadison–Singer property, suppose it does, so
that any ωc ∈ P(L∞(0,1)) has a unique extension ω ∈ P(B(L2(0,1))). As already
noted, we may then assume that ωc = ω(U)

c , as in (4.53), whilst ω = ω(U), as in
(4.54). Taking a = u then gives ω(u) = 0, see (4.59), so that ‖eu‖< ε by (4.56). But
this contradicts (4.60), finishing the sketch of the proof of the first claim in Theorem
4.21. The remark about L∞(0,1)⊕ �∞(κ) follows from the one about L∞(0,1).

We now pass to the (even) more difficult case of �∞ ⊂ B(�2). Although this will
not be used in the proof, it gives some insight to know which states on �∞ we are
actually talking about, i.e., the singular pure states, and compare this with (4.53).

Theorem 4.24. There is a bijective correspondence

ωd( f ) =
∫
N

dμ f (4.61)

between states ωd on �∞ and finitely additive probability measures μ on N, where:

1. ωd is normal iff μ is countably additive (and hence is a probability measure).
2. ωd is pure iff μ corresponds to some ultrafilter U on N, in which case:

ωd is normal iff U is principal (and hence singular iff U is free).

This follows from case no. 5 in §B.9, notably eqs. (B.153) - (B.154). In other words,
the pure states ωd on �∞ are given by ultrafilters U on N through

ω(U)
d ( f ) = β f (U) = lim

U
f (n); (4.62)

the analogy with (4.53) is even clearer if we write f (n) = 〈δn,m f δn〉 ≡ ωn( f ). If
U =Un is a principal ultrafilter, n ∈ N, we thus recover the normal pure states

ω(Un)
d ( f ) = f (n). (4.63)

As in (4.54), we find at least one natural extension ω(U) of ω(U)
d to B(�2), namely

ω(U)(a) = lim
U

ωn(a). (4.64)
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We now show that that �∞ has the Kadison–Singer property, making ω(U) the
only extension of ω(U)

d . The proof relies on an extremely difficult lemma from linear
algebra (formerly known as a paving conjecture). We first define a linear map D :
Mn(C)→ Dn(C) by D(a)ii = aii, i = 1, . . . ,n, and D(a)i j = 0 whenever i �= j.

Lemma 4.25. For any ε > 0 there exist l ∈N such that for all n ∈N and a ∈Mn(C)
with D(a) = 0, there are l projections (e1, . . . ,el) in Dn(C) such that

l

∑
k=1

ek = 1n; (4.65)

‖eiaei‖ ≤ ε‖a‖, i = 1, . . . , l. (4.66)

Since this estimate is uniform in n, the lemma extends to �2, where D : B(�2)→ �∞

is defined analogously, i.e., D(a) is diagonal in the canonical basis (δn) of �2 with

D(a)δn = ωn(a)δn, n ∈ N. (4.67)

Lemma 4.26. For any ε > 0 there exist l ∈N such that for all a∈ B(�2) with D(a) =
0, there are l projections (e1, . . . ,el) in �∞ such that

l

∑
k=1

ek = 1H ; (4.68)

‖eiaei‖ ≤ ε‖a‖, i = 1, . . . , l. (4.69)

Now suppose that ωd ∈ P(�∞), that ω ∈ S(B(�2)) extends ωd , and that a∈ B(�2) has
D(a) = 0. Let ei be one of the projections in Lemma 4.26. Using Cauchy–Schwarz
for the sesquilinear form (a,b) = ω(a∗b), we obtain (using e2

i = e∗i = ei)

|ω(eiae j)|2 ≤ ω(ei)ω(e ja∗aei); (4.70)

|ω(eiae j)|2 ≤ ω(a∗eia)ω(e j). (4.71)

Since ω(ei) = ωd(ei) and ωd is a pure state (and hence is multiplicative), we have
ω(ei) ∈ {0,1}, since ei is a projection. Moreover, in view of (4.68) and the nor-
malization ω(1H) = 1, there must be exactly one value of i = 1, . . . , l, say i = i0,
such that ω(ei0) = 1, and ω(ei) = 0 for all i �= i0. Eqs. (4.70) - (4.71) there-
fore imply that ω(eiae j) �= 0 iff i = j = i0. Using (4.68) once more, we see that
ω(a) = ∑i, j ω(eiae j) = ω(ei0aei0), so that |ω(a)| ≤ ‖ω‖‖ei0aei0‖ ≤ 1 · ε‖a‖ by
(4.66). Letting ε → 0, we proved:

Lemma 4.27. If ω ∈ S(B(�2)) extends ωd ∈ P(�∞), and D(a) = 0, then ω(a) = 0.

Since D2 = D, we have D(a−D(a)) = 0, so that for any a ∈ B(�2), we have

ω(a) = ω(D(a)) = ωd(D(a)), (4.72)

provided that ω extends ωd , as before. This shows that ω is determined by ωd and
hence is unique, completing the proof (sketch) of Theorem 4.21.
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4.4 Gleason’s Theorem in arbitrary dimension

To a large extent the thrust and difficulty of the proof of Gleason’s Theorem 2.28
already lies in its finite-dimensional version, but some care is needed in the gen-
eral case, and also Corollary 2.29 needs to be refined. A major point here is that
Definition 2.23 has no unambiguous generalization to arbitrary Hilbert spaces.

Definition 4.28. Let H be an arbitrary Hilbert space with unit sphere H1.

1. A probability distribution on P(H) is a map p : H1 → [0,1] that satisfies

∑
i∈I

p(υi) = 1, for any basis (υi) of H, (4.73)

where, as in §B.12, the sum (over a possibly uncountable index set) is meant as
in Definition B.6. In particular, if H is separable and the basis is labeled and
ordered by I = N, then it is an ordinary convergent sum of the kind ∑∞

i=1 · · · .
2. A map P : P(H)→ [0,1] that satisfies P(1H) = 1 is called a:

a. finitely additive probability measure if

P

(
∑
j∈J

e j

)
= ∑

j∈J
P(e j) (4.74)

for any finite collection (e j) j∈J of mutually orthogonal projections on H (i.e.,
e jH ⊥ ekH, or equivalently, e jek = 0, whenever j �= k); this is equivalent to
the condition P(e+ f ) = P(e)+P( f ) whenever e f = 0, cf. Definition 2.23.2.

b. probability measure if (4.74) holds for any countable collection (e j) j∈J of
mutually orthogonal projections on H, where the first sum is defined in the
strong operator topology; note that the strong sum ∑ j e j coincides with the
supremum

∨
j e j of the given family, defined with respect to the usual ordering

of projections (that is, e≤ f iff eH ⊆ f H).
c. completely additive probability measure if (4.74) holds for arbitrary col-

lections (e j) j∈J of mutually orthogonal projections on H (the first sum again
meant in the strong operator topology, with the same comment as above).

Thus a probability measure is by definition σ -additive in the usual sense of mea-
sure theory; the other two cases are unusual from that perspective. However, if H is
separable, then J can be at most countable, so that complete additivity is the same
as σ -additivity and hence any probability measure is completely additive. Surpris-
ingly, assuming the Continuum Hypothesis (CH) of set theory, it can be shown that
this is even the case for arbitrary Hilbert spaces. The fundamental distinction, then,
is between finitely additive probability measures and probability measures (which
by definition are countably additive). As we shall see, this reflects the distinction
between arbitrary and normal states on B(H), respectively, cf. §4.2. In what fol-
lows, in dealing with non-separable Hilbert spaces we assume CH, in which case
probability distributions on H are equivalent to probability measures on P(H).
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The proof is the same as in finite dimension (taking into account that infinite sums
over projections are defined strongly). Even without CH, Gleason’s Theorem still
holds for non-separable Hilbert spaces if we assume P to be completely additive, and
probability distributions are equivalent to completely additive probability measures
on P(H). For separable Hilbert spaces, CH is irrelevant and unnecessary altogether.

We then have the following generalization (and bifurcation) of Theorem 2.28.

Theorem 4.29. Let H be a Hilbert space of dimension > 2.

1. Each probability measure P on P(H) is induced by a unique normal state on
B(H) via (2.122), i.e.,

P(e) = Tr(ρe), (4.75)

where ρ is a density operator on H uniquely determined by P.
Equivalently, each probability distribution p on P(H) is given by (2.123), or

p(υ) = 〈υ ,ρυ〉. (4.76)

Conversely, each density operator ρ on H defines a probability measure P on
P(H) via (4.75), as well as as a probability distribution p on P(H) via (4.76).

2. Each finitely additive probability measure P on P(H) is induced by a unique
state ω on B(H) via

P(e) = ω(e), (4.77)

and similarly each probability distribution p on P(H) is given by

p(υ) = ω(eυ). (4.78)

Conversely, each state ω on H defines a probability measure P on P(H) via
(4.77), as well as as probability distribution p on P(H) via (4.78).

Proof. The proof of part 1 is practically the same as in finite dimension, except for
the fact that in the proof of Lemma 2.33 the reference to Proposition A.23 should be
replaced by Proposition B.79, upon which one obtains a bounded positive operator ρ
for which (2.123) holds. The normalization condition (2.110) then yields Tr(ρ) = 1
if the trace is taken over any basis of H, and since ρ is positive this implies ρ ∈
B1(H), see §B.20 (complete additivity of P is just necessary to relate it to p).

Unfortunately, the proof of part 2 exceeds the scope of this book (see Notes). �

In infinite dimension, Corollary 2.29 becomes more complicated, too; for one
thing, Definition 2.26 of a quasi-state bifurcates into two possibilities. The one given
still makes perfect sense and is natural from the point of view of Bohrification; to
avoid confusion we call a map ω : B(H)→ C satisfying the conditions in Defi-
nition 2.26 a strong quasi-state. In the context of Gleason’s Theorem, a slightly
different notion is appropriate: a weak quasi-state on B(H) satisfies Definition 2.26,
except that linearity is only required on commutative C*-algebras in B(H) of the
form C∗(a), where a = a∗ ∈ B(H) (these are singly generated). Since commutative
unital C*-subalgebras of B(H) are not necessarily singly generated, and a specific
counterexample exists, weak quasi-states are not necessarily strong quasi-states.
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Proposition 4.30. The map ω �→ ω|P(H) gives a bijective correspondence between
weak quasi-states ω on B(H) and finitely additive probability measures on P(H).

Proof. For some finite family (e1, . . . ,en) of mutually orthogonal projections on H,
add e0 = 1H −∑ j e j if necessary and let a = ∑n

j=0 λ je j, with all λ j ∈ R different.
Then σ(a) = {λ0, . . . ,λn}, so that C∗(a)∼=C(σ(a)∼= Cn+1 (cf. Theorem B.94) co-
incides with the linear span of the projections e j. If ω is a weak quasi-state, then it
is linear on C∗(a) and hence also on the e j, so that ω|P(H) is finitely additive.

Conversely, let μ be a finitely additive probability measure on P(H). If a = a∗ ∈
B(H) is given, using the notation (B.328) we symbolically define ω on a by

ω(a) =
∫

σ(a)
dμ(eλ )λ . (4.79)

More precisely, for any ε > 0 we use Corollary B.104 to define ωε(a)=∑n
i=1 λiμ(eAi)

and let ω(a) = limε→0 ωε(a); it follows from Lemma B.103 (or the theory underly-
ing the Riemann–Stieltjes integral (4.79)) that this limit exists. Now let b,c∈C∗(a),
so that b = f (a) and c = g(a) for certain f ,g ∈C(σ(a)), and b+c = ( f +g)(a), cf.
Theorem B.94. By (B.325) we therefore have ωε(b+ c) = ∑n

i=1( f + g)(λi)μ(eAi),
which, since ( f + g)(λi) = f (λi)+ g(λi), again by (B.325) equals ωε(b)+ωε(c).
Since this holds for every ε > 0, letting ε → 0 we obtain ω(b+ c) = ω(b)+ω(c),
making ω linear on C∗(a). It is clear that the quasi-state ω thus obtained, on re-
striction to P(H) reproduces μ , making the map ω �→ ω|P(H) surjective. Finally,
injectivity of this map follows from Corollary B.104. �.

Corollary 4.31. If dim(H)> 2, then each weak quasi-state on B(H) (and a fortiori
each strong quasi-state) is linear and hence is actually a state.

This is immediate from Theorem 4.29.2. and Proposition 4.30.
Another corollary of Gleason’s Theorem is the Kochen–Specker Theorem, which

we will explain in detail in Chapter 6, where it will also be proved in a different way.

Theorem 4.32. If dim(H)> 2, there are no weak quasi-states ω : B(H)→C whose
restriction to each C*-subalgebra C∗(a)⊂ B(H) is pure (where a = a∗ ∈ B(H)).

Equivalently, there are no nonzero maps ω ′ : B(H)sa → R that are:

• Dispersion-free, i.e., ω ′(a2) = ω ′(a)2 for each a ∈ B(H)sa;
• Quasi-linear, i.e., linear on commuting operators.

Cf. Definitions 6.1 and 6.3. To see that these conditions are equivalent to those stated
in Theorem 4.32 (despite the impression that linearity on all commuting self-adjoint
operators seems stronger than linearity on each C∗(a)), extend ω ′ to ω : B(H)→
C by complex linearity, as in Definition 2.26.1, and note that dispersion-freeness
implies positivity and hence continuity on each subalgebra C∗(a) (cf. Theorem C.52
and Lemma C.4). We then see that the two conditions just stated imply that ω is
multiplicative on C∗(a), and hence pure, see Proposition C.14, which conversely
implies that pure states on C∗(a) are dispersion-free. We now prove Theorem 4.32.
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Proof. If e is a projection, then e2 = e, so that ω(e2) = ω(e). Since ω is dispersion-
free (as just explained), we also have ω(e2) = ω(e)2, whence ω(e)2 = ω(e) and
hence ω(e) ∈ {0,1}. Furthermore, since ω is a state by Corollary 4.31, we may ap-
ply the GNS-construction, see Theorem C.88 (whose notation we use). In particular,
for any projection e, using the fact that πω(e) = πω(e)∗πω(e), by (C.196) we have

ω(e) = 〈Ωω ,πω(e)Ωω〉= ‖πω(e)Ωω‖2. (4.80)

If ω(e) = 0, then πω(e)Ωω = 0 from the second equality. If ω(e) = 1, then
πω(e)Ωω = Ωω from the first inequality and Cauchy–Schwarz (in which we have
equality, so that πω(e)Ωω = zΩω for some z ∈ T, upon which (4.80) forces z = 1).

By the spectral theorem (e.g. in the form Corollary B.104) or the theory of von
Neumann algebras, the linear span of P(H) is norm-dense in B(H). Since Ωω is
cyclic for πω(B(H)) by the GNS-construction, it must be that Hω = C ·Ωω , and
hence πω(a) = ω(a) · 1Hω for any a ∈ B(H). Since πω(ab) = πω(a)πω(b) by the
GNS-construction, this gives ω(ab) = ω(a)ω(b) for all a,b ∈ B(H). However, such
multiplicative statesω on B(H) cannot exist if dim(H) > 1. This is clear if ω is
normal, cf. Proposition 2.10, so that the following argument (which also covers the
normal case) is especially meant for the case where ω is singular.

1. If dim(H) = n < ∞, there are n one-dimensional projections (e1, . . . ,en) such
that ∑ j e j = 1H . (indeed, we may assume that B(H) = Mn(C) and take diagonal
matrices e1 = diag(1,0, . . . ,0), etc.). Now for any pair (ei,e j) there is some v ∈
B(H) (which by definition is a partial isometry) such that ei = vv∗, e j = v∗v (in
the above case ei and e j are thus related if vi j = 1 and vi′ j′ = 0 otherwise). Hence

ω(ei) = ω(vv∗) = ω(v)ω(v∗) = ω(v∗v) = ω(e j), (4.81)

since ω is multiplicative. But ω is also additive, which implies

n

∑
j=1

ω(ei) = ω

(
n

∑
j=1

e j

)
= ω(1H) = 1. (4.82)

Since also ω(ei) ∈ {0,1}, eqs. (4.81) - (4.82) are clearly contradictory.
2. If dim(H) = ∞, separable or not, a similar contradiction arises from the halving

lemma, which states that there is a projection e and an operator v such that e =
vv∗, 1H − e = v∗v. For example, in the separable case assume H = �2 and take e
the projection onto the closed linear span �2

e of the basis vectors (δx) with x ∈ N
even, so that 1H − e projects onto the closed linear span �2

o of the basis vectors
(δx) with x ∈ N odd. Then �2 = �2

e ⊕ �2
o; take v = 0 on �2

e and v : �2
o → �2

e any
unitary operator. In general, a similar method works, for if I is a set indexing
some basis of H one may find a subset E ⊂ I that has the same cardinality as its
complement I\E, upon which �2(E)∼= �2(I\E), cf. Theorem B.63.
Multiplicativity of ω then leads to similar contradiction between the properties
ω(e) = ω(1H−e), as in (4.81), and ω(e)+ω(1H−e) = ω(1H) = 1, as in (4.82):
if ω(e) = 0 one finds 0 = 1, whereas ω(e) = 1 implies 2 = 1. �
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Notes

§4.1. The Born rule from Bohrification (II)
The Born measure (and its construction along the lines of this section) is well

known in functional analysis, cf. Pedersen (1989), §4.5. For the Hamburger Mo-
ment Problem see, for example, Reed, M. & Simon, B. (1975), Methods of Modern
Mathematical Physics. Vol II. Fourier Analysis, Self-adjointness (New York: Aca-
demic Press), Theorem X.4, p. 145 and Example 4, p. 205. In fact, the proof uses
spectral theory! Corollary 4.6 was suggested by the treatment of the Born rule in
Hall (2013). Definition 4.9 of the joint spectrum goes back (at least) to Arens (1961)
and Hörmander (1966), §3.1.13.
§4.2. Density operators and normal states

These are really results about von Neumann algebras and come from the pertinent
literature; our proofs derive from Li (1992), §1.8 and Takesaki (2002), Ch. III.
§4.3. The Kadison–Singer Conjecture

As already mentioned in the notes to §2.6, the Kadison–Singer Conjecture was
first discussed in Kadison & Singer (1959) and was finally proved by Marcus, Spiel-
man, & Srivastava (2014ab), following important intermediate contributions by e.g.
Anderson (1979) and Weaver (2004). For an introduction including a complete proof
see Stevens (2016), and for applications of the conjecture and its proof to other ar-
eas of mathematics see Casazza et al (2005) as well as Casazza & Tremain (2016).
Proposition 4.20 is due to Glimm (1960).
§4.4. Gleason’s Theorem in arbitrary dimension

The extension of Gleason’s Theorem to non-separable Hilbert space assuming
complete additivity of P is due to Maeda (1980). Maeda (1990) generalizes this
result to von Neumann algebras without summands of type I2. The proof that as-
suming CH countable additivity implies complete additivity (and hence Gleason’s
Theorem) was given by Eilers & Horst (1975). Proposition 4.30 is due to Aarens
(1970), whose Theorem 1 is wrong: see Aarens (1991). The proof of Theorem 4.32
is due to Döring (2004), using results of Hamhalter (1993).
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