
 

A peer-reviewed version of this preprint was published in PeerJ on 24
October 2016.

View the peer-reviewed version (peerj.com/articles/cs-84), which is the
preferred citable publication unless you specifically need to cite this preprint.

Cánovas Izquierdo JL, Cabot J. 2016. Collaboro: a collaborative (meta)
modeling tool. PeerJ Computer Science 2:e84
https://doi.org/10.7717/peerj-cs.84

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/186966548?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Collaboro: A collaborative (Meta) modeling tool

Javier Luis Cánovas Izquierdo, Jordi Cabot

Software development processes are collaborative in nature. Neglecting the key role of

end-users leads to software unlikely to satisfy their needs. This collaboration becomes

specially important when creating Domain-Specific Modeling Languages (DSMLs), which

are (modeling) languages specifically designed to carry out the tasks of a particular

domain. While end-users are actually the experts of the domain for which a DSML is

developed, their participation in the DSML specification process is still rather limited

nowadays. In this paper, we propose a more community-aware language development

process by enabling the active participation of all community members (both developers

and end-users of the DSML) from the very beginning. Our proposal is based on a DSML

itself, called Collaboro, which allows representing change proposals on the DSML design

and discussing (and tracing back) possible solutions, comments and decisions arisen

during the collaboration. Collaboro also incorporates a metric-based recommender system

to help community members to define high-quality notations for the DSMLs. We also show

how Collaboro can be used at the model-level to facilitate the collaborative specification of

software models.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2046v1 | CC-BY 4.0 Open Access | rec: 17 May 2016, publ: 17 May 2016



Collaboro: A Collaborative (Meta) Modeling1

Tool2

Javier Luis Cánovas Izquierdo∗1 and Jordi Cabot2
3

1,2UOC, Barcelona, Spain4

2ICREA, Barcelona, Spain5

ABSTRACT6

Software development processes are collaborative in nature. Neglecting the key role of end-users

leads to software unlikely to satisfy their needs. This collaboration becomes specially important when

creating Domain-Specific Modeling Languages (DSMLs), which are (modeling) languages specifically

designed to carry out the tasks of a particular domain. While end-users are actually the experts of the

domain for which a DSML is developed, their participation in the DSML specification process is still rather

limited nowadays. In this paper, we propose a more community-aware language development process

by enabling the active participation of all community members (both developers and end-users of the

DSML) from the very beginning. Our proposal is based on a DSML itself, called Collaboro, which allows

representing change proposals on the DSML design and discussing (and tracing back) possible solutions,

comments and decisions arisen during the collaboration. Collaboro also incorporates a metric-based

recommender system to help community members to define high-quality notations for the DSMLs. We

also show how Collaboro can be used at the model-level to facilitate the collaborative specification of

software models.

7

8

9

10

11

12

13

14

15

16

17

18

19

Keywords: Collaborative Development, Domain-Specific Languages, Model-Driven Development20

INTRODUCTION21

Collaboration is key in software development, it promotes a continual validation of the software to be22

build (Hildenbrand et al., 2008), thus guaranteeing that the final software will satisfy the users’ needs.23

Furthermore, the sooner the end-users participate in the development life-cycle, the better, as several24

works claim (Hatton and van Genuchten, 2012; Rooksby and Ikeya, 2012; Dullemond et al., 2014). When25

the software artefacts being developed target a very specific and complex domain, this collaboration makes26

even more sense. Only the end-users have the domain knowledge required to drive the development. This27

is exactly the scenario we face when performing (meta) modeling tasks.28

On the one hand, end-users are key when defining a Domain-Specific Modeling Language (DSML), a29

modeling language specifically designed to perform a task in a certain domain (Sánchez Cuadrado and30

Garcı́a Molina, 2007). Clearly, to be useful, the concepts and notation of a DSML should be as close as31

possible to the domain concepts and representation used by the end-users in their daily practice Grundy32

et al. (2013). Therefore, the role of domain experts during the DSML specification is vital, as noted by33

several authors Kelly and Pohjonen (2009); Mernik et al. (2005); Völter (2011); Barišić et al. (2012).34

Unfortunately, nowadays, participation of end-users is still mostly restricted to the initial set of interviews35

to help designers analyze the domain and/or to test the language at the end (also scarcely done as reported36

in Gabriel et al. (2010)), which requires the development of fully functional language toolsets (including37

a model editor, a parser, etc.) Mernik et al. (2005); Cho et al. (2012). This long iteration cycle is a38

time-consuming and repetitive task that hinders the process performance Kelly and Pohjonen (2009) since39

end-users must wait until the end to see if designers correctly understood all the intricacies of the domain.40

On the other hand, those same end-users will then employ that modeling language (or any general-purpose41

modeling language like UML) to specify the systems to be built. Collaboration here is also key in order to42

enable the participation of several problem experts in the process. Recently, modeling tools have been43

increasingly enabling the collaborative development of models defined by GPLs and DSLs. However,44

∗Corresponding Author. Address: IN3 - UOC. Av. Carl Friedrich Gauss, 5. Building B3. 08860 Castelldefels. Email:

jcanovasi@uoc.edu



their support for asynchronous collaboration is still limited, specially when it comes to the traceability45

and justification of modeling decisions.46

Existing project management tools such as Trac1 or Jira2 provide the environments required to develop47

collaboratively software systems. These tools enable the end-user participation during the process, thus48

allowing developers to receive feedback at any time Cabot and Wilson (2009). However, their support49

is usually defined at file level, meaning that discussions and change tracking are expressed in terms of50

lines of textual files. This is a limitation when developing or using modeling languages, where a special51

support to discuss at language element level (i.e., domain concepts and notation symbols) is required52

to address the challenges previously described and therefore promote the participation of end-users.53

As mentioned above, a second major problem shared by current solutions is the lack of traceability of54

the design decisions. The rationale behind decisions made during the language/model specification are55

implicit so it is not possible to understand or justify why, for instance, a certain element of the language56

was created with that specific syntax or given that particular type. This hampers the future evolution of57

the language/model.58

In order to alleviate these shortcomings, we define a DSML called Collaboro, which enables the59

involvement of the community (i.e., end-users and developers) in the development of (meta) modeling60

tasks. The language allows modeling the collaborations between community members taking place during61

the definition of a new DSML. Collaboro supports both the collaborative definition of the abstract (i.e.,62

metamodel) and concrete (i.e., notation) syntaxes for DSMLs by providing specific constructs to enable63

the discussion. Also, it can be easily adapted to enable the collaborative definition of models. Thus, each64

community member has the chance to request changes, propose solutions and give an opinion (and vote)65

on those from others. We believe this discussion enriches the language definition and usage significantly,66

and ensures that the end result satisfies as much as possible the expectations of the end-users. Moreover,67

the explicit recording of these interactions provides plenty of valuable information to explain the language68

evolution and justify all design decisions behind it, as also proposed in requirements engineering Jureta69

et al. (2008). Together with the Collaboro DSML, we provide the tooling infrastructure and process70

guidance required to apply Collaboro in practice.71

The first version of Collaboro, which supported the collaborative development of textual DSMLs72

in an Eclipse-based enviroment, was presented in a previous work by Cánovas Izquierdo and Cabot73

(2013). Since then, the approach has evolved to include new features such as: (1) support for the complete74

collaborative development of graphical DSMLs, (2) a new architecture which includes a web-based75

front-end, thus promoting usability and participation for end-users; and (3) a metric-based recommender76

system, which checks the DSMLs under development to spot possible issues according to quality metrics77

for both the domain and the notation (relying on Moody’s cognitive framework Moody (2009)). In78

addition, the development of new features along with the experience gained in using the language in79

several cases studies allowed us to improve its general expressiveness and usability and realize the benefits80

of Collaboro also at the model level.81

Paper structure. The first two sections describe the proposal and approach to develop DSML collabora-82

tive. The following section shows then how our approach could be easily adapted to use any modeling83

language to model collaboratively. Next, the implemented tool and a case study are described. Finally, we84

review the related work and draw some conclusions and future work.85

COLLABORATIVE (META) MODELING86

While collaboration is crucial in both defining modeling languages and then using them to model concrete87

systems, the collaborative aspects of language development are more challenging and less studied since88

collaboration must cover both the definition of a new notation for the language and the specification of the89

language primitives themselves. Therefore, we will present first Collaboro in the context of collaborative90

language development and later its adaptation to cover the simpler modeling scenario. A running example,91

also introduced in this section, will help to illustrate the main concepts of such collaborations.92

A DSML is defined through three main components Kleppe (2008): abstract syntax, concrete syntax,93

and semantics. The abstract syntax defines both the language concepts and their relationships, and also94

includes well-formedness rules constraining the models that can be created. Metamodeling techniques are95

1http://trac.edgewall.org/
2http://www.atlassian.com/es/software/jira/overview

2/24



Abstract Syntax

(a)

Bag
weight : Float

0..* transports

Conveyor
capacity : Integer

IDElement
id : String

0..*
claimsFlight

arrival: Date
0..1

isClaimed

1..1 isTransported

Concrete Syntax Example

(b)

C01 (Cap: 35 pcs)
  IB8545, IB8392

C02 (Cap: 120 pcs)
  A57745 

IB8545:
  Arrival: 1315Z 
  Baggage: 30 pcs
    11B32C - 8 kg
    A92RR2 - 6 kg
    ...
    

A57745:
  Arrival: 1500Z 
  Baggage: 83 pcs
    622XD3 - 10 kg
    UU8221 - 15 kg
    ...   

IB8392:
  Arrival: 1750Z 
  Baggage: 21 pcs
    F9331C - 12 kg
    BVWL29 - 9 kg
    ...
    

Figure 1. Abstract syntax and an example of concrete syntax of the Baggage Claim DSML (grey-filled

boxes represent elements added after the collaboration).

normally used to define the abstract syntax. The concrete syntax defines a notation (textual, graphical or96

hybrid) for the concepts in the abstract syntax, and a translational approach is normally used to provide97

semantics, though most of the time it is not explicitly formalized.3.98

The development of a DSML usually consists in five different phases Mernik et al. (2005): decision,99

analysis, design, implementation and deployment. The first three phases are mainly focused on the DSML100

definition whereas the implementation phase is aimed at developing the tooling support (i.e., modeling101

environment, parser, etc.) for the DSML. Clearly, the community around the language is a key element102

in the process. In this paper we use the term community to refer to what is known as Communities of103

Practice, which is defined as groups of people informally bound together by shared expertise and passion104

for a joint enterprise Tamburri et al. (2013). In this case, the DSML community covers the group of105

people involved in its development, which includes both technical level users (i.e., language developers)106

and domain expert users (i.e., end-users of the language), where both categories can overlap.107

As a running example, imagine the development of a DSML to facilitate the planification of the108

baggage claim service in airports. Let’s assume that the airport baggage service needs to specify every109

morning the full daily assignment of flights to baggage claim conveyors so that operators can know well110

in advance how to configure the actual baggage system. For that, developers and domain experts (i.e.,111

baggage managers) collaborate to define a DSML that serves this purpose.112

Typically, domain experts are only involved at the very beginning and very end of the DSML113

development process. Assuming this is also the case for our example, during the analysis phase, developers114

would study the domain with the help of the baggage managers and decide that the DSML should include115

concepts such as Flight, Bag and Conveyors to organize the baggage delivery. Developers would116

design and later implement the tooling of the language, thus coming up with a textual DSML like, for117

instance, the one shown in Figure 1 (both abstract and concrete syntax proposals are shown, except for118

the elements included in grey-filled boxes that are added later as explained in what follows).119

Once the language is developed, end-users can play with it and check whether it fits their needs. Quite120

often, if the end-users only provided the initial input but did not closely follow how that was interpreted121

during the language design, they might detect problems in the DSML environment (e.g., missing concepts,122

wrong notation, etc.) that will trigger a new (and costly) iteration to modify the language and recreate all123

the associated tools. For instance, end-users could detect that the language lacks a construct to represent124

the capacity of conveyors, that may help them to perform a better assignment. Developers can also125

overlook design constraints and recommendations that could improve the DSML quality. For instance,126

constructs in the abstract syntax not having a concrete syntax definition could become an issue (e.g.,127

arrival attribute in Flight concept).128

The collaboration tasks can go beyond the definition of new DSML and can cover the usage of129

well-known GPLs, like UML. Let’s imagine for instance the collaborative definition of class diagrams in130

3The collaborative definition of the DSML semantics is out of the scope of this paper and has been considered as part of future

work.

3/24



Collaborations

End-users

Developers
Collaboration

History

Rendered Examples

evaluates<< <<

changes
<<

<<

isStored<< <<

Decision
Engine

2 3

Community
Manager

drives<< <<

updates<< <<

changes
<<

<<

DSML
Tooling

Abstract
syntax

Concrete
syntax

DSML Definition

Model 1

DSML Examples
conforms<< <<

1

Recommender

Renderer

Figure 2. Collaborative development of DSMLs.

order to identify the domain of a new software artefact. In fact, we could even reuse the running example131

to ilustrate this scenario. Thus, the definition of the abstract syntax of the previous DSML requires132

the collaborative creation of a UML class diagram. In this sense, end-users (i.e., domain experts) use133

a common language (i.e., UML) to create a new model required for a particular purpose (in this case,134

the definition of a DSML). As before, end-users can propose changes to the model, which can after be135

discussed and eventually accepted/rejected in the final version.136

Our aim is to incorporate the community collaboration aspect into all DSML definition phases,137

making the phases of the process more participative and promoting the early detection of possible bugs or138

problems. As we will see, this support also enables de collaborative creation of models conforming to139

modeling languages. Next section will present our approach.140

MAKING DSML DEVELOPMENT COLLABORATIVE141

We propose a collaborative approach to develop DSMLs following the process summarized in Figure 2.142

Roughly speaking, the process is as follows. Once there is an agreement to create the language, developers143

get the requirements from the end-users to create a preliminary version of the language to kickstart the144

actual collaboration process (step 1). This first version should include at least a partial abstract syntax but145

could also include a first concrete syntax draft (see DSML Definition). An initial set of sample models are146

also defined by the developers to facilitate an example-based discussion, usually easier for non-technical147

users. Sample models are rendered according to the current concrete syntax definition (see Rendered148

Examples). It is worth noting that the rendering is done on-the-fly without the burden of generating the149

DSML tooling since we are just showing the snapshots of the models to discuss the notation, not actually150

providing at this point a full modeling environment.151

Now the community starts working together in order to shape the language (step 2). Community152

members can propose ideas or changes to the DSML, e.g., they can ask for modifications on how some153

concepts should be represented (both at the abstract and concrete syntax levels). These change proposals154

are shared in the community, who can also suggest and discuss how to improve the change proposals155

themselves. All community members can also suggest solutions for the requested changes and give156

their opinion on the solutions presented by others. At any time, rendering the sample models with the157

latest proposals gives members an idea of how a proposal will evolve the language (if accepted). During158

this step, a recommender system (see Recommender) also checks the current DSML definition to spot159

possible issues according to quality metrics for DSMLs. If the recommender system detects possible160

improvements, it will create new proposals to be also discussed by the community. All these proposals161

and solutions (see Collaborations) are eventually accepted or rejected.162

Acceptance/rejection depends on whether the community reaches an agreement regarding the pro-163

posal/solution. For that, community members can vote (step 3). A decision engine (see Decision Engine)164

then takes these votes into account to calculate which collaborations are accepted/rejected by the com-165

munity. The engine could follow an automatic process but a specific role of community manager could166

also be assigned to a member/s to consolidate the proposals and get a consensus on conflicting opinions167

(e.g., when there is no agreement between technical and business considerations). Once an agreement168

is reached, the contents of the solution are incorporated into the language, thus creating a new version.169

4/24



End-User 1

Solution
Conveyor should include a new float attribute
called "capacity" representing the supported 
weight. The notation will include, between
parenthesis, the keyword "Cap." followed by 
the attribute value and the keyword ".kg"

Agreement:

REJECTED

Change Proposal
It is necessary to represent the capacity of the
conveyors 

Agreement:

ACCEPTED

Developer 1

1

2

3

4

Comment
The capacity of a conveyor should be indicated
in terms of the number of pieces it can support.

ACCEPTED

5

Agreement:End-User 1Developer 2

Developer 1 Developer 2

Solution
Conveyor should include a new int attribute
called "capacity" representing the supported 
pieces. The notation will include, between
parenthesis, the keyword "Cap." followed by 
the attribute value and the keyword "pcs"

6

ACCEPTED

End-User 1 Developer 2Agreement:

End-User 1 Developer 1

Figure 3. Example of collaboration in the Baggage Claim DSML.

The process keeps iterating until no more changes are proposed. Note that these changes on the language170

may also have an impact on the model examples which may need to be updated to comply with the new171

language definition.172

At the end of the collaboration, the final DSML definition is used to implement the DSML tooling (see173

DSML Tooling) with the confidence that it has been validated by the community. Note that even when the174

language does not comply with commonly applied quality patterns, developers can be sure that it fulfills175

the end-users’ needs. Moreover, all aspects of the collaboration are recorded (see Collaboration History),176

thus keeping track of every interaction and change performed in the language. Thus, at any moment, this177

traceability information can be queried (e.g., using standard OCL Object Management Group (OMG)178

(2015a) expressions) to discover the rationale behind the elements of the language (e.g., the argumentation179

provided for its acceptance).180

To illustrate our approach, the development of the Baggage Claim DSML mentioned above could have181

been the result of the imaginary collaboration scenario depicted in Figure 3. After developers completed a182

first version of the language, the collaboration begins with a community member detecting the need of183

expressing the capacity of the conveyors. Since now we are still in the definition phase, the community184

has the chance to discuss the best way to adapt the language to support this new information. The member185

that identified the problem would create a change proposal with that aim, and if the change is deemed186

as important by the community, other members could propose a solution/s to adapt the language. As an187

example, Figure 3 graphically depicts a possible collaboration scenario assuming a small community188

of one end-user and two developers. Each collaboration is represented as a bubble, and each step has189

been numbered. In the Figure, End-User 1 proposes a language change (step 1), which is accepted by190

the community (step 2), and then Developer 1 specifies a solution (step 3). The solution is rejected by191

End-User 1, including also the explanation of the rejection (step 4). As the rejection is accepted (step192

5), the Developer 1 redefines the solution, which is eventually accepted (step 6) and the changes are193

then incorporated into the language. The resulting changes in the abstract and concrete syntaxes are194

shown in grey-filled boxes in Figure 1. Clearly, it is important to make this collaboration iterations as195

quick as possible and with the participation of all the community members. Moreover, the discussion196

information itself must be preserved to justify the rationale behind each language evolution, from which197

design decisions can be derived.198

The recommender system may also participate in the collaboration and eventually improve the DSML.199

After checking the DSML definition, the recommender may detect that not all the attributes in the abstract200

syntax have a direct representation in the concrete syntax, as it happens with the arrival attribute of the201

Flight concept (as we will explain later, this is the result of applying the metric called Symbol Deficit).202

Thus, the system may create a new proposal informing about the situation and then the community could203

vote and eventually decide whether the DSML has to be modified.204

Our proposal for enabling the collaborative definition of DSMLs is built on top of the Collaboro DSML,205

5/24



a DSML for modeling the collaborations that arise in a community working towards the development of a206

DSML for that community. In the next sections, we will describe how Collaboro makes the collaboration207

feasible by:208

• Enabling the discussion about DSML elements,209

• providing the metaclasses for representing collaborations and giving support to the decision-making210

process,211

• providing a metric-based recommender that can help to develop high-quality DSMLs.212

Representing the Elements of a DSML213

To be able to discuss about changes on the DSML to-be, we must be able to represent both its abstract214

syntax (i.e., the concepts of the DSML) and its concrete syntax (the notation to represent those concepts)215

elements. Additionally, to improve the understanding of how changes in its definition affect the DSML,216

we provide a mechanism to automatically render DSML examples using the concrete syntax notation217

under development.218

Abstract Syntax219

The abstract syntax of a DSML is commonly defined by means of a metamodel written using a meta-220

modeling language (e.g., MOF Object Management Group (OMG) (2015b) or Ecore Steinberg et al.221

(2008)). Metamodeling languages normally offer a limited set of concepts to be used when creating DSML222

metamodels (like types, relationship or hierarchy). A DSML metamodel is then defined as an instantiation223

of this metamodeling concepts. Figure 4a shows an excerpt of the well-known Ecore metamodeling224

language, on which we rely to represent the abstract syntax of DSMLs.225

Concrete Syntax226

Regarding the concrete syntax, since the notation of a DSML is also domain-specific, to promote the227

discussion, we need to be able to explicitly represent the notational elements proposed for the language.228

Thanks to this, community members will have the freedom to create a notation specially adapted to229

their domain, thus avoiding coupling with other existing notations (e.g., Java-based textual languages or230

UML-like diagrams). The type of notational elements to represent largely depends on the kind of concrete231

syntax envisioned (textual or graphical). Nowadays, there are some tool-specific metamodels to represent232

graphical and textual concrete syntaxes (like the ones included in GMF 4 and Xtext 5), or to interchange233

model-level diagrams Object Management Group (OMG) (2014b). However, a generic metamodel234

covering both graphical and textual syntaxes (and combination of both) is still missing. Therefore, we235

contribute in this paper our own metamodel for concrete syntaxes. Figure 4b shows an excerpt of the core236

elements of this notation metamodel. As can be seen, the metamodel is not exhaustive, but it suffices to237

discuss about the concrete syntax elements most commonly used in the definition of graphical, textual or238

hybrid concrete syntaxes. Note that with this metamodel, it is possible to describe how to represent each239

language concept, thus facilitating keeping track of language notation changes.240

Concrete syntax elements are classified following the NotationElement hierarchy, which in-241

cludes graphical elements (GraphicalElement metaclass), textual elements (TextualElement242

metaclass), composite elements (Composite metaclass) and references to the concrete syntax of other243

abstract elements (SyntaxOf metaclass) to be used in composite patterns. The main graphical con-244

structs are provided by the GraphicalElement hierarchy, which allows referring to external pictures245

(External metaclass), building figures (see Figure hierarchy), lines (Line metaclass) and labels for246

the DSML elements. A label (Label metaclass) serves as a container for a textual element. Textual247

elements can be defined with the TextualElement hierarchy, which includes tokens, keywords and248

values directly taken from the abstract syntax elements expressed in a textual form (Value metaclass).249

It is possible to obtain the textual representation from either an attribute (AttValue metaclass) by250

specifying the attribute to be queried (attribute reference), or a reference (RefValue metaclass) by251

specifying both the reference (reference reference) and the attribute of the referred element to be used252

(attribute reference). The attribute separator of the Value metaclass allows defining the separa-253

tor for multivalued elements. The Composite element can be used to define complex concrete syntax254

4http://eclipse.org/gmf-tooling
5http://eclipse.org/Xtext

6/24



(b)

(a)

EStructuralFeature

EAttribute EReference

ETypedElement EClassifier

EClass EDataType

EEnum EEnumLiteral

EPackage
0..1 0..*

0..*

+eType

EReference
<<from ECore package>>

NotationElement

SyntaxOfComposite GraphicalElement

x : int

y : int

height : int

width : int

LabelFigure Line

Token Keyword

0..1

1..*
subElems

reference

id : String

TextualElement

separator : String

Value

RefValueAttValue

1..1

EAttribute
<<from ECore package>>

attribute

1..1

EReference
<<from ECore package>>

reference

1..1

text

1..1

1..1
separator

0..*

0..1

0..*

0..*

0..*

External

path: String

NotationDefinition
0..*
elements

OvalRectangle Polygon

fill : Color
stroke : Color

1..*

Figure 4. Excerpts of the (a) Ecore and (b) notation metamodels used to represent, respectively, the

abstract and concrete syntaxes of DSMLs in Collaboro.

structures, allowing both graphical and textual composites but also hybrids. Finally, the SyntaxOf255

metaclass allows referencing to already specified concrete syntax definitions of abstract syntax elements,256

thus allowing modularization and composition. The reference reference of the SyntaxOf metaclass257

specifies the reference to be queried to obtain the set of elements whereas the separator reference258

indicates the separator between elements.259

Renderer260

The current DSML notation specification plus the set of example models for the DSML (expressed261

as instances of the DSML abstract syntax) can be used to generate concrete visual examples that help262

community members get a better idea of the language being built. We refer to this generator as renderer.263

The renderer takes, as inputs: (1) the abstract and (2) concrete syntaxes of the DSML, and (3) the set of264

example models conforming to the abstract syntax; and returns a set of images representing the example265

models expressed according to the concrete syntax defined in the notation model (additional technical266

details about the render process will be given in Section ).267

We believe the advantages of this approach is twofold. On the one hand, it is a lightweight mechanism268

to quickly validate the DSML without generating the DSML tooling support. On the other hand, developers269

and end-users participating in the collaboration can easily assess how the language looks like without the270

burden of dealing with the abstract and concrete syntax of DSML, which are expressed as metamodels.271

Example272

Figure 1a shows an example of the abstract syntax for the Baggage Claim DSML while Figure 5 shows273

the notation model for the textual representation of the metaclass Conveyor of such DSML (Figure 5a274

shows a textual example and Figure 5b shows the corresponding notation model). Note that AttValue275

and RefValue metaclass instances are referring to elements from the abstract syntax metamodel. Figure276

1b shows a possible renderization of a model for such language.277

Representing the Collaborations278

The third metamodel required in our process focuses on representing the collaborations that anno-279

tate/modify the DSML elements described before. This collaboration metamodel, which is shown in280

Figure 6, allows representing both static (e.g., change proposals) and dynamic (e.g., voting) aspects of the281

7/24



C01 (Cap: 35 pcs)
  IB8545, IB8392
...

(a)

(b)

: Keyword

id = "C"

: AttValue

: Composite element

: Composite

: EClass

name = "Conveyor"
<<from ECore package>>

: EAttribute

name = "id"
<<from ECore package>>

: Token

id = "("

: Keyword

id = "Cap"

: Token

id = ":"

: Token

id = ")"

: AttValue

: Composite

: RefValue

sep = ","

: EAttribute

name = "id"
<<from ECore package>>

: EClass

name = "Flight"
<<from ECore package>>

: EAttribute

name = "capacity"
<<from ECore package>>

: EReference

name = "claims"
<<from ECore package>>

element

element

container

: Keyword

id = "pcs"

Figure 5. (a) Textual representation example of the metaclass Conveyor of the Baggage Claim DSML

and (b) the corresponding notation model.

Proposal
accepted : boolean

Solution Comment
included : boolean

sols
Version

id : String

proposals

Collaboration
id : String
rationale : String

User
id : String

proposedBy

MetaInfo

Priority
value : int

TagBased Tag
value : String

Change referredElement

target

Add Update Delete

Vote
agreement : boolean

votedBy

selected

comment

metaInfo

0..* 0..*
1..1

1..1

1..1

votes
0..*

comments 0..* 0..1

1..1
changes0..* 1..1

1..1

0..*

tags
source

1..1

0..*

1..1 1..1

1..1
1..1

1..1

1..1

1..1

1..1

0..1
0..*

0..*

1..1

collaborations

votes

1..1

SyntaxElement

VersionHistory
type : HistoryType

0..1

0..1versions

EModelElement
<<from ECore package>>

element1..1

ConcreteSyntaxElementAbstractSyntaxElement

element1..1

HistoryType
TRUNK
BRANCH

previous

0..10..1

NotationElement
<<from Notation package>>

0..*
conflictWith

0..*

1..1 maps

Figure 6. Core elements of the Collaboro metamodel.

collaboration. Being the core of our collaborative approach, we refer to this metamodel as the Collaboro282

metamodel.283

Static Aspects284

Similarly to how version control systems track source code, Collaboro also allows representing different285

versions of a DSML. The VersionHistory metaclass represents the set of versions (Version286

metaclass) through which the collaboration evolves. There is always a main version history set as trunk287

(type attribute in VersionHistory metaclass), which keeps the baseline of the collaborations about288

the language under development. Other version histories (similar to branches) can be forked when289

necessary to isolate the collaboration about concrete parts of the language. Different version histories can290

8/24



be merged into a new one (or the trunk).291

Language evolution is the consequence of collaborations (Collaboration metaclass). Collaboro292

supports three types of collaborations: change proposals (Proposal metaclass), solutions proposals293

(Solution metaclass) and comments (Comment metaclass). A collaboration is proposed by a user294

(proposedBy reference) and includes an explanation (rationale attribute).295

A change proposal describes which language feature should be modified and contains some meta296

information (e.g., priority or tags). Change proposals are linked to the set of solutions proposed by the297

community to be discussed for agreement. It is also possible to specify possible conflicts between similar298

proposals (e.g., the acceptance of one proposal can involve rejecting others) with the conflictWith299

reference.300

Solution proposals are the answer to change proposals and describe how the language should be301

modified to incorporate the new features. Each solution definition involves a set of add/update/delete302

changes on the elements of the DSML (Change hierarchy). Change links the collaboration metamodel303

with the DSML under discussion (SyntaxElement metaclass), which can refer to the abstract syn-304

tax (AbstractSyn taxElement metaclass) or the concrete syntax (ConcreteSyntaxElement305

metaclass). The latter links (maps reference) to the abstract element to which the notation is defined.306

Both AbstractSyntaxElement and ConcreteSyntaxElement metaclasses have a reference307

linking to the element which is being changed (element reference). Changes in the abstract syntax308

are expressed in terms of the metamodeling language (i.e., EModelElement elements, which is the309

interface implemented by every element in the Ecore metamodel) while changes in the concrete syntax310

are expressed in terms of elements conforming to the notation metamodel presented before.311

The Changemetaclass has a reference to the container element affected by the change (referredElement312

reference) and the element to change (target reference). Thereby, in the case of Add and Delete313

metaclasses, referredElement reference refers to the element to which we want to add/delete a314

“child” element whereas target refers to the actual element to be added/deleted. In the case of the315

Update metaclass, referredElement reference refers to the element which contains the element to316

be updated (e.g., a metaclass) whereas target reference refers to the new version of the element being317

updated (e.g., a new version for an attribute). The additional source attribute indicates the element to318

be updated (e.g., the attribute which is being updated).319

Dynamic Aspects320

During the process, community members vote collaboration elements, thus allowing to reach agreements.321

Votes (Vote metaclass) indicate whether the user (votedBy reference) agrees or not with a collaboration322

(agreement attribute). A vote against a collaboration usually includes a comment explaining the reason323

of the disagreement (comment reference of Vote metaclass). This comment can then be voted itself324

and if it is accepted by the community, the proponent of the voted proposal/solution should take such325

comment into account (the included attribute of Comment metaclass records this fact).326

The acceptance of a proposal means that the community agrees that the requested change is necessary327

(accepted attribute). For each proposal we can have several solutions but in the end one of them will328

be selected (selected reference of the Proposal metaclass) and its changes applied to the DSML329

definition. Part of this data (like the accepted and selected properties) is automatically filled by330

the decision engine analyzing and resolving the collaboration.331

Making Decisions332

Community votes are used to decide which collaborations are accepted and must be incorporated into the333

language. Collaboration models include all the necessary information, thus allowing the automation of334

the decision process (i.e., approval of change proposals and selection of solutions). A decision engine can335

therefore apply resolution strategies (e.g., unanimous agreement, majority agreement, etc.) to deduce (and336

apply) the collaborations accepted by the community. As commented before, most times it is necessary to337

have the role of the community manager to trigger the decision process and solve possible decision locks.338

Example339

As example of collaboration, we show in Figure 7 the collaboration model which would be obtained340

when using Collaboro to model the example discussed previously. The figure is divided in several parts341

according to the collaboration steps enumerated previously. For the sake of clarity, references to User342

metaclass instances have been represented as string-based attributes and the rationale attribute is343

9/24



: Version
id = "1"

: Proposal
id = "p1"
accepted = true
proposedBy = "End-User 1"

: Solution
id = "s1"
proposedBy = "Developer 1"

: Priority
value = "High"

: TagBased

: Tag
value = "extension"

: Vote
agreement = true
votedBy = "Developer 1"

: Vote
agreement = true
votedBy = "Developer 2"

: Vote
agreement = true
votedBy = "Developer 2"

: Vote
agreement = false
votedBy = "End-User 1"

sols

selected

proposals

changes

votes metaInfo
votes

: Comment
id = "c1"

comment

: Vote
agreement = true
votedBy = "Developer 1"

: Vote
agreement = true
votedBy = "Developer 2"

votes

included = false

1

2

3

4

5

: Add

: EAttribute
name = "capacity"
type = "EFloat" / "EInt"

referredElement

target

: AbstractSyntaxElement
element

: AbstractSyntaxElement

: EClass
name = "Conveyor"

element

proposedBy = "End-user 1"

referredElement

: Add

referredElement

target

: ConcreteSyntaxElement
element

: Keyword

id = "Cap."
: Add : ConcreteSyntaxElement

target

element

target
: AttValue: Add

attribute: ConcreteSyntaxElement
element

: Composite: ConcreteSyntaxElement

maps
element

: Composite

: Token

id = "("
: Add : ConcreteSyntaxElement

target

element

: Token

id = ":"
: Add : ConcreteSyntaxElement

target

element

: Keyword

id = "kgs" / "pcs"
: Add : ConcreteSyntaxElement

target

element

: Token

id = ")"
: Add : ConcreteSyntaxElement

target

element

maps

6

6

Figure 7. The collaboration model representing the collaborations arisen in the Baggage Claim DSML.

not shown. The figure shows the collaboration as an instance of the Collaboro metamodel. At the tool344

level, we offer a user-friendly interface enabling all kinds of users to easily contribute and vote during the345

discussion process while the tool updates the collaboration model behind the scenes in response to the346

user events.347

Part 1 of Figure 7 shows the collaboration model just after End-User 1 makes the request. It includes348

a new Proposal instance that is voted positively by the rest of the users and therefore accepted (see349

part 2). Then, a new solution is proposed by Developer 1 (see part 3), which involves enriching the350

Conveyor metaclass with a float attribute in addition to define the concrete syntax. However, this351

solution is not accepted by all the community members: End-User 1 does not agree and explains his352

disagreement (see part 4). Since the comment is accepted (see part 5), Developer 1 updates the solution to353

incorporate the community recommendations (see part 6). Note that the elements describing the model354

changes in parts 3 and 6 are mutually exclusive. Moreover, the included attribute of the Comment355

element in part 4 will be activated as a consequence of the solution update. Once everybody agrees on the356

improved solution, it is selected as the final one for the proposal (see the selected reference).357

Now the development team can modify the DSML tooling knowing that the community needs such358

change and agrees on how it must be done. Moreover, the rationale of the change will be tracked by the359

collaboration model (from which an explanation in natural language could be generated, if needed), which360

will allow community members to know why the Conveyor metaclass was changed.361

Metric-based Recommender362

When developing DSMLs, several quality issues regarding the abstract and concrete syntaxes can be363

overlooked during the collaboration. While developers are maybe the main responsibles for checking364

that the language is being developed properly, it is important to note that these issues may arise from365

both developers (e.g., they can forget defining how some concepts are represented in the notation) and366

end-users (e.g., they may miss that the notation is becoming too complicated for them to later being able367

to manage complex models). We propose to help both developers and end-users to develop better DSMLs368

by means of a recommender engine which checks the language under development to spot possible issues369

and improvements.370

The recommender applies a set of metrics on the DSML to check its quality, in particular, to ensure371

that the resulting language is expressive, effective and accurate enough to be well-understood by the372

end-users. Metrics can target both the abstract and concrete syntaxes of a DSML. Concrete syntax metrics373

can in turn target either textual or graphical syntaxes. While several metrics for abstract and textual374

concrete syntaxes have been devised in previous works Cho and Gray (2011); Aguilera et al. (2012);375

Power and Malloy (2004); Crepinšek et al. (2010), the definition and implementation of metrics for376

10/24



graphical concrete syntaxes is still an emerging working area. Thus, in this work, we explore how metrics377

for abstract and concrete syntaxes can be implemented in our approach, but we mainly focus on those378

ones regarding graphical concrete syntaxes.379

Abstract Syntax Metrics380

The abstract syntax of a DSML is defined by a metamodel, as commented before. While the identification381

of proper DSML constructs (i.e., concepts and relationships) usually relies on the domain experts,382

identifying and solving design issues (e.g., creating hierarchies to promote extensibility or identifying383

patterns such as factoring attributes) is normally performed by the developers. Thus, to provide consistent384

solutions for recurring metamodel design issues, some metrics applied to abstract syntax metamodels may385

offer key insights on its quality.386

There are currently several works providing a set of metrics for metamodels as well as for UML class387

diagrams that can be applied in this context (e.g., Cho and Gray (2011); Aguilera et al. (2012)). As a388

proof of concept to evaluate the abstract syntax of DSMLs in our approach, we implemented a couple389

of metrics that validate hierarchical structures in metamodels (inspired by Aguilera et al. (2012)). Thus,390

we consider that such structures are invalid whether either there is only one derived class or whether an391

inheritage is redundant (i.e., already covered by a chain of inheritage). As our approach relies on Ecore,392

other metrics defined for this metamodeling language could be easily plugged in by using the extension393

mechanism provided, as we will show afterwards.394

Concrete Syntax Metrics395

The concrete syntax of a DSML can be textual or graphical (or hybrid). As textual DSMLs are usually396

defined by means of a grammar-based approach, which is also the case for General-Purpose Languages397

(GPLs), existing support for evaluating the quality of GPLs could be applied (e.g., Power and Malloy398

(2004) and Crepinšek et al. (2010)). Apart from this GPL-related support, the current support to assess399

the quality of the concrete syntaxes in the DSML field is pretty limited. Thus, in this paper, we apply a400

unifying approach to check the quality of any DSML concrete syntax (i.e., textual and/or graphical).401

With this purpose, we employ the set of metrics based on the cognitive dimensions framework Green402

(1989), later formalized in Moody (2009), where metrics are presented according to nine principles,403

namely: cognitive integration, cognitive fit, manageable complexity, perceptual discriminality, semiotic404

clarity, dual coding, graphic economy, visual expressiveness and semantic transparency. Several works405

have applied them to specific DSMLs (e.g., Genon et al. (2011b) or Le Pallec and Dupuy-Chessa (2013)).406

Nevertheless, none of them has tried to implement such metrics in a way that can be applied generically to407

any DSML. As Collaboro provides the required infrastructure to represent concrete syntax at a technology-408

agnostic level, we propose to define a set of DSML metrics adapted from Moody’s principles for designing409

cognitively effective notations. In the following, we present how we addressed five of the nine principles410

to be applied to our metamodels, and we justify why the rest of the principles were discarded.411

Semiotic clarity. This principle refers to the need of having a one-to-one correspondence between notation412

symbols and their corresponding concepts, thus maximizing precision and promoting expressiveness. We413

can identify four metrics according to the possible situations that could appear: (1) symbol deficit, when a414

concept is not represented by a notation symbol (sometimes this situation could be evaluated positively as415

to avoid having too many symbols and losing visual expressiveness); (2) symbol excess, when a notation416

symbol does not represent any concept; (3) symbol redundancy, when multiple notation symbols can be417

used to represent a single concept; and (4) symbol overload, when multiple concepts are represented by418

the same notation symbol.419

In Collaboro, these metrics can be computed by analyzing the mapping between the abstract syntax420

elements and the notation model elements of the DSML. On the one hand, the analysis of the abstract421

syntax consists on a kind of flattening process where all the concepts are enriched to include the attributes422

and references inherited from their ancestors. The aim is to identify the DSMLs elements (i.e., concept,423

attribute or reference) for which a concrete syntax element has to be defined. On the other hand, the424

analysis of the concrete syntax focuses on the discovery of symbols. When a symbol uses multiples425

graphical elements to be represented (e.g., using nested Composite elements or SyntaxOf elements),426

they are aggregated. The result of this analysis is stored in a map that links every abstract syntax element427

with the corresponding concrete syntax element, thus facilitating the calculation of the previous metrics.428

This map will be also used in the computation of the remainder metrics.429

11/24



Visual Expressiveness. This principle refers to the number of visual variables used in the notation of a430

DSML. Visual variables define the dimensions that can be used to create notation symbols (e.g., shape,431

size, color, etc.). Thus, to promote its visual expressivenes, a language should use the full range and432

capacities of visual variables.433

To assess this principle, we define a metric which analyzes how visual variables are used in a DSML.434

The metric leverages on the previous map data structure and enriches it to include the main visual variables435

used in each symbol. According to the current support for visual variables of the notation metamodel436

(recall GraphicalElement metaclass attributes), these variables include: size (height and width437

attributes), color (fill and stroke attributes) and shape (subclasses of GraphicalElement meta-438

class). The metric checks the range of visual variables used in the symbols of the DSML and notifies the439

community when the notation should use more visual variables and/or more values of a specific visual440

variable to cover the full range.441

Graphic Economy. This principle states that the number of notation symbols should be cognitively442

manageable. Note that there is not an objective rule to measure the complexity of notation elements (e.g.,443

expert users may cognitively manage more symbols than a novice). There is the six symbol rule Miller444

(1956) which states that there should be no more than six notation symbols if only a single visual variable445

is used. We therefore devised a metric based on this rule to assess the level of graphic economy in a446

DSML.447

Perceptual Discriminality. This principle states that different symbols should be clearly distinguishable448

from each other. Discriminality is primarily determined by the visual distance between symbols, that is,449

the number of visual variables on which they differ and the size of these differences. This principle also450

states that every symbol should have at least one unique value for each visual variable used (e.g., unique451

colors for each symbol). Thus, to assess the perceptual discriminality, we define a metric which also relies452

on the previous map data structure, compares each pair of symbols and calculates the visual distance453

between them according to the supported visual variables (i.e., number of different visual variables per454

pair of symbols). By default, the metric notifies the community when the average distance is lower than455

one, but it can be parameterized.456

Dual Coding. This principle suggests that using text and graphics together conveys the information in a457

more effective way. Textual encoding should be then used in addition of graphical encoding to improve458

understanding. However, textual encoding should not be the only way to distinguish between symbols. We459

defined a metric that checks whether each symbol uses text and graphics elements, thus promoting dual460

coding. To this aim, we leverage on our notation metamodel, which allows to attach textual elements to461

symbols by employing Label elements that contain TextualElement elements. This metric notifies462

the community when more than a half of the symbols are not using both text and graphics.463

The remaining four Moody’s principles were not addressed due to the reasons described below.464

Semiotic Transparency. This principle states that a notation symbol should suggest its meaning. This465

principle is difficult to evaluate as it relies on many parameters such as context and good practices in the466

specific domain. Furthermore, as the meaning of a representation is subjective, an automatic verification467

of this principle would be difficult to reach.468

Complexity Management. This principle refers to the ability of the notation to represent information469

without overloading the human mind (e.g., providing hierarchical notations). Although this could be470

addressed in the notation model by providing mechanisms for modularization and hierarchical structuring,471

we believe that assessing this principle strongly depends on the profile and background of the DSML472

end-users and it is therefore hard to measure.473

Cognitive Integration. This principle states that the visual notation should include explicit mechanisms474

to support integration of information from different diagrams. In this sense, this principle refers to the475

results of composing different DSMLs, which is not an scenario targeted by our approach.476

Cognitive Fit. This principle promotes the fact that different representations of information are suitable477

for different tasks and audiences (e.g., providing different concrete syntaxes for the same abstract syntax).478

Like in the complexity management principle, assessing the cognitive fit of the notations of a DSML is479

12/24



Table 1. Example of Visual Expressiveness and Perceptual Discriminality for the Baggage Claim DSML.

V E : Visual Expressiveness, P D : Perceptual Discriminability

B C V E

Shape Polygon Rectangle Line 3/5

Size
H : 5 H : 5 H : 1

2
W : 9 W : 9 W : 12

Color
Fill : White Fill : Black Fill : White

2/49
Stroke : Black Stroke : Black Stroke : Black

P D

Visual Distance Visual Distance Visual Distance

B : 2 A : 2 A : 2

C : 2 C : 3 B : 3

directly related to the expertise of the different communities using the language, which is hard to measure480

with an automatic evaluation.481

Recommending Changes482

The results of the previously shown metrics provide the community developing a DSML with an important483

feedback to address potential improvements. In Collaboro, the DSML development process incorporates484

a recommender that plays the role of a user in the collaboration process. This “recommender user” can485

check the different versions of the DSML under development according to the previously shown metrics486

and propose new changes identifying the weak points to be discussed in the community. Metrics can487

be deactivated if wished and can be given different relevance values that can also be used to sum up the488

results to calculate a general value assessing the quality of the DSML under development.489

Example490

In this section, we will show an example of the metrics regarding visual expressiveness and perceptual491

discriminatity for the Baggage Claim DSML. For the sake of illustration purposes, we describe these492

metrics on an alternative graphical syntax to the DSML, where the Flight concept is represented as a493

poligon with the shape of an airplane, the Conveyor concept is represented as a black filled-rectangle494

and the claims reference is represented as a line. The computation of these metrics are specially tailored495

to the visual variables supported by our notation metamodel. Table 1 illustrates how these two metrics are496

calculated. As can be seen, visual expressiveness results assess the number of different values used for497

each visual variable. Thus, there are three out of five values for the shape dimension, two different values498

for the size dimension and two different values for the color dimension. On the other hand, the visual499

distance is calculated for each pair of symbols and measures the number of different visual variables500

between them. For instance, the black-filled rectangle differs in two visual variables (i.e., color and shape)501

with the airplane polygon; and all the supported visual variables with regard to the line. These results502

reveal a good visual expressiveness (good values for shape and size visual variables while the color range503

is appropriate for the number of symbols) and perceptual discriminality (visual distance is in average504

more than 2, where the highest value is 3) therefore validating this graphical notation proposal.505

COLLABORATIVE MODELING506

In this section we will show how our approach could be easily adapted to support collaborative modeling.507

This adaptation is depicted in Figure 8. Unlike the Figure 2, where we illustrated the process for the508

collaborative development of DSMLs, in this case the community evaluates and discuss changes about509

the model being developed and not the metamodel. Thus, once there is a first version of the model and a510

set of examples (step 1), the community discusses how to improve the models (step 2). The discussion511

arises changes and improvements, that have to be voted and eventually incorporated in the model (step 3).512

Discussion and decisions are recorded (see Collaboration History), thus keeping track of the modifications513

performed in the model.514

To support this development process, the modifications to perform in the original Collaboro metamodel515

are very small. Figure 9 shows the new metamodel to track the collaboration. As can be seen, the only516

13/24



Collaborations

End-users

Developers

Collaboration

History

evaluates<< <<

ch
an
ge
s

<<

<<

isStored<< <<

Decision

Engine

2 3

Community

Manager

drives<< <<

updates<< <<

1

Model
Model

Instances
instanceOf<< <<

Figure 8. Collaborative modeling.

Proposal

accepted : boolean

Solution Comment

included : boolean

sols
Version

id : String

proposals

Collaboration

id : String

rationale : String

User

id : String

proposedBy

MetaInfo

Priority

value : int

TagBased Tag

value : String

Change referredElement

target

Add Update Delete

Vote

agreement : boolean

votedBy

selected

comment

metaInfo

0..* 0..*
1..1

1..1

1..1

votes

0..*

comments 0..* 0..1

1..1

changes0..*
1..1

1..1

0..*

tags
source

1..1

0..*

1..1 1..1

1..1

1..1

1..1

1..1

1..1

1..1

0..1
0..*

0..*

1..1

collaborations

votes

1..1

VersionHistory

type : HistoryType

0..1

0..1versions

HistoryType

TRUNK
BRANCH

previous

0..10..1

NamedElement
<<from UML package>>

0..*

conflictWith

0..*

Figure 9. Core elements of the adaptedCollaboro metamodel.

changed element is the SyntaxElement, which now has to refer to the main (i.e. root) metaclass of the517

modeling language being used to link the model elements with their metamodel definition. For instance,518

by default, the Figure includes the element NamedElement from UML, thus illustrating how Collaboro519

could be used for the collaborative development of UML models. Other languages could be supported520

following this same approach.521

TOOL SUPPORT522

Since the very first implementation of Collaboro was released, the tool support has evolved to integrate523

the full set of features described in this paper6. The new architecture of the developed tool is illustrated in524

Figure 10. The main functionalities of our approach are implemented by the backend (see Collaboro Back-525

end), which includes specific components for modeling both the DSML elements and the collaborations526

(see Modeling Support), rendering the notation examples (see Notation Renderer) making decisions (see527

Decision Engine), and recommending changes (see Recommender System). As front-end for Collaboro,528

we have developed two alternatives: (1) a web-based front-end, which gives access to the collaboration529

infrastructure from any web browser; and (2) an Eclipse-based front-end, which extends the platform530

with views and editors facilitating the collaboration. Next, we describe in detail each component of this531

architecture.532

6The tool is available at http://som-research.github.io/collaboro

14/24



Backend

Ecore 
metamodel

Notation 
metamodel

Collaboration
metamodel

Modeling Support

EMF

Java

Collaboration Support

Notation
Renderer

Decision
Engine

Recommender
System

Eclipse

Java

Version
view

Collaboration
view

Notation
view

Collaboro Plugin

Eclipse-based front-end

Collaboro Servlets

Java

Collaboro Website

Web-based front-end

Figure 10. Architecture of Collaboro tool support.

Collaboro Backend533

This component provides the basic functionality to develop collaborative DSMLs as explained in this534

paper. Collaboro relies on the EMF framework Steinberg et al. (2008) (the standard de facto modeling535

framework nowadays) to manage the models required during the development process. In the following,536

we describe the main elements of this component.537

Modeling Support538

Collaboro provides support for managing models representing the abstract and concrete syntaxes, and539

the collaboration models. We implemented the metamodels described in previous sections as Ecore540

models (the metamodeling language used in EMF) and provided the required API. To support concurrent541

collaboration the tool can be configured to store the models in a CDO7 model repository.542

Notation Renderer543

The tool incorporates a generator which automatically creates the graphical/textual representation of544

the DSML example models. This component enables the lightweight creation of SVG SVG (2011)545

images from notation models to help users “see” how the notation they are discussing will look like546

when used to define models with that DSML. The generator analyzes each example model element,547

locates its abstract/concrete syntax elements and interprets the concrete syntax definition to render548

its textual/graphical representation. GraphicalElement and TextualElement concrete syntax549

elements indicate the graphical or textual representation to be applied (e.g., a figure or a text field), while550

Composite and SyntaxOf concrete syntax elements are used for layout and composite elements.551

Decision Engine552

This component is responsible for updating the dynamic part of the collaboration models (recall the553

support for votes and decisions). The current support of the tool implements a total agreement strategy to554

infer community agreements from the voting information of the collaboration models.555

Recommender System556

This component provides the required infrastructure to calculate both abstract and concrete syntaxes557

metrics in order to ensure their quality. The recommender is executed on demand by the community558

manager. The current support of the tool implements metrics to evaluate the quality of concrete graphical559

syntax issues.560

New metrics can be plugged in by extending the Java elements presented in Figure 11. The entry point561

is the Metric Factory class, which is created for each DSML and is responsible for providing the list562

of available metrics. Metrics have a name, a description, a dimension (e.g., each Moody’s principle), an563

activation, a priority level and an acceptance ratio. The acceptance ratio allows specifying the maximum564

number of elements of syntaxes that can be wrong (e.g., not conforming to the metric). Every metric565

also includes an execute() method for the recommender to compute them. This function returns a566

list of MetricResults describing the assessment of the metric. Metric results includes a status (i.e.,567

measured in three levels), a reason describing the assessment in natural language and a ratio of fulfillment568

for the metric. Metric results also include a list of ReferredElements pointing to those abstract or569

7http://www.eclipse.org/cdo

15/24



AbstractSyntaxMetric

ConcreteSyntaxMetric

ConcreteSyntaxGraphicalMetric ConcreteSyntaxTextualMetric

MetricResult

status : MetricResultStatus

reason : String

ratio :  Float

ReferredElement

name :  String

reason : ReferredElementReason

AbstractReferredElement

AbstractSyntaxElement : EObject

ConcreteReferredElement

ConcreteSyntaxElement : NotationElement 

0..*

1..11..1

0..*

0..*

1..1

Metric

name : String

dimension : String

execute() : List<MetricResult>

description : String
acceptanceRatio : Integer
isActive : Boolean

priority : MetricPriority

MetricFactory

abstractSyntax : EPackage

concreteSyntax : Definition

getAbstractSyntaxMetrics() 

getConcreteSyntaxMetrics() 

MetricPriority

HIGH

NORMAL
LOW

«Enumeration»

ReferredElementReason

MISSING

WRONG

«Enumeration»

MetricResultStatus

GOOD

MIDDLE
BAD

«Enumeration»

Figure 11. Core elements of the recommender engine.

concrete syntaxes elements not conforming with the metrics being calculated, thus helping developers to570

spot the DSML elements not satisfying each metric (if any).571

Eclipse plugin572

We have developed an Eclipse plugin implementing the Collaboro process and DSML. The plugin573

provides a set of new Eclipse views and editors to facilitate the collaboration, which can be considered a574

kind of concrete syntax of Collaboro itself for non-expert users. Figure 12a includes a snapshot of the575

environment showing the last step of the collaboration described in Section . In particular, the Version576

view lists the collaboration elements (i.e., proposals, solutions and comments) of the current version of the577

collaboration model. The Collaboration View shows the detailed information of the selected collaboration578

element in the Version view and a tree-based editor to indicate the changes to discuss for that element,579

as shown in Figure 12a. Finally, the Notation view uses the notation generator to render a full example580

model of the language. For instance, the Notation view in Figure 12b shows the notation for an example581

model, which allowed detecting the missing attribute regarding the conveyor capacity.582

Web-based front-end583

The developed web support includes two components: (1) the server-side part, which offers a set of584

services to access to the main functionalities of Collaboro; and the client-side part, which allows both585

end-users and developers to take part of the DSML development process from their browsers. The586

server-side component has been developed as a Java web application which uses a set of Servlets587

providing the required services. On the other hand, the client-side component has been developed as an588

AngularJS-enabled website.589

Figure 13 shows a snapshot of the developed website. As can be seen in Figure 13a, the website590

follows an arrangement similar to that one used in the Eclipse plugin. Thus, on top, there are two591

sections showing the current status of (1) the abstract syntax of the DSML on the left and (2) several592

model examples rendered with the concrete syntax definition of the DSML on the right (both sections593

are zoom-enabled). These sections include several pictures that can be navigated by the user (e.g., it is594

possible to evaluate the different example models rendered). At the bottom of the website, there are two595

more sections aimed at managing the collaborations, in particular, (1) a tree including all the collaboration596

elements on the left and (2) a details view on the right which shows the information of a collaboration597

once it is selected in the tree. Furthermore, the tree view also includes buttons to create, edit and delete598

collaborations.599

The website also includes a left menu bar which allows the user to navigate through the different600

versions of the DSML as well as indicate some information about the recommender system status.601

Additionally, the user can quickly see the number of issues detected by the recommender, configure the602

metrics (see Figure 13b) that have to be executed and perform the metric execution to incorporate the603

change proposals into the collaboration.604

16/24



(a)

(b)

Figure 12. (a) Snapshot of the Collaboro Eclipse plugin. (b) Collaboro Eclipse plugin with the Notation

view rendering the concrete syntax for a model.

APPLICATION SCENARIOS605

In this section, we report the use of Collaboro in two types of scenarios: (1) the creation of new DSMLs,606

based on two different case studies; and (2) the extension of existing DSMLs, where we describe our607

experience in one case study. We also mention some lessons learned in the process.608

Developing new DSMLs609

We used Collaboro in the creation of two new DSMLs: (1) a textual DSML to define workflows and (2)610

three metamodels to represent code hosting platforms in the context of a modernization process. We611

explain each case in the following.612

Creating a Textual DSML613

Collaboro was used in the development of a new DSML for MoDisco8, an Eclipse project aimed at614

defining a group of tools for Model-Driven Reverse Engineering (MDRE) processes. The goal of this new615

DSML is to facilitate the development of MDRE workflows that chain several atomic reverse engineering616

8http://eclipse.org/modisco

17/24



(a)

(b)

Figure 13. Snapshots of the (a) Collaboro web client and (b) a subset of supported metrics.

tasks to extract the model/s of a running system. At the moment, the only way to define a MDRE workflow617

is by using an interactive wizard. MoDisco users have been asking for a specific language to do the same618

in a more direct way, i.e., without having to go through the wizard.619

Some years ago an initial attempt to create such language was finally abandoned but, to simplify620

the case study, we reused the metamodel that was proposed at the time to kickstart the process. Five621

researchers of the team followed our collaborative process to complete/improve the abstract syntax of the622

DSML and create from scratch a concrete syntax for it. Two of the members were part of the MoDisco623

development team so they took the role of developers in the process while the other three were only users624

18/24



of MoDisco so they adopted the role of end-users in the process. One of the members was in a different625

country during the collaboration so only asynchronous communication was possible.626

The collaboration took two weeks and resulted in two new versions of the MDRE workflow language627

released. The first version was mainly focused on the polishment of the abstract syntax whereas the second628

one paid more attention to the concrete syntax (this was not enforced by us but it came out naturally).629

The collaboration regarding the abstract syntax involved changes in concepts and reference cardinalities,630

while regarding the concrete syntax, the community chose to go for a textual-based notation and mainly631

discussed around the best keywords or style to be used for that.632

Defining metamodels633

We have also applied Collaboro for defining a set of metamodels used in a model-driven re-engineering634

process (i.e., only the abstract syntax of the DSML was part of the experiment since the models were to635

be automatically created during the reverse engineering process). In particular, the process was intented636

to provide support for migrating Google Code to GitHub projects, thus requiring the corresponding637

PSM metamodels for both platforms, plus a PIM metamodel to represent such projects at high level of638

abstraction (following the typical terminology defined by the Model-Driven Architecture (MDA) approach639

from the OMG Object Management Group (OMG) (2014a)). As the developers were distributed across640

different geographical locations, we decided to use Collaboro to create the PSM and PIM metamodels641

required.642

Six researchers geographically dispersed (i.e., the participants were part of three research groups,643

making three groups composed of 3, 2 and 1 researchers) collaborated in the definition of the metamodels.644

To kickstart the collaboration, one of the teams created a first version of each metamodel. As the645

collaboration was focused on defining only the abstract syntax of the language, there was no need646

for creating a notation model, and therefore the set of examples were rendered following a class-like647

diagram style. The collaboration took three weeks and resulted in two versions for each one of the PSM648

metamodels and only one version for the PIM metamodel since there the agreement was faster.649

Extending an Existing DSML650

More recently, we were contacted by a community member of the Architecture Analysis & Design651

Language (AADL) 9, and one of the lead developers in charge of defining an extension to such language.652

AADL is an architecture description language used in the embedded and real-time systems field. It is653

a textual DSML with large abstract and concrete syntaxes. The abstract syntax contains more than 270654

concepts and the concrete syntax is composed of more that 153 elements (including keywords and tokens).655

The language was being extended to incorporate support for behavior specification. This extension, called656

AADL Behavior Annex (AADL-BA) 10, was being defined as a plugin enriching both the abstract and657

concrete syntaxes.658

At the time, the definition of the extension was taken care by a standarization committee open to new659

contributions. Change proposals were informally managed by in-person voting (i.e., raising hands in a660

meeting) or online ballots. Later, the documentation of the change proposal was spread out in a document,661

presentation or online wiki documentation. As explained to us by this lead developer, this process made662

tracking modifications very hard in the language as well as the corresponding argumentations, and he663

proposed to use Collaboro to manage the development of the extension for AADL. As a first step, we664

created a fake AADL project so that this person could play around with the tool and assess its usefulness665

for the AADL community. The feedback was that the tool would be very useful for the project at hand if666

we were able to deal with some technical challenges linked to the current setting used by the project so667

far. In particular, to be able to use Collaboro for managing the ADDL-BA language definition process we668

needed to import: (1) previous discussions stored in the wiki-based platform and (2) the current concrete669

syntaxes of the AADL and AADL-BA language defined in Xtext and ANTLR respectively (the abstract670

syntax was already defined as an EMF model so it could be directly imported into Collaboro). It was671

also clear that to simplify the use of the tool, we had to provide a web interface since it would be too672

complex for the members of the AADL community to install an Eclipse environment just for the purpose673

of discussing around language issues.674

In the end, time constraints prevented us to test the tool with AADL community at large (the AADL-675

BA committee meets at fixed dates and we did create a web-based interface but could not get a new version676

9http://www.aadl.info
10http://penelope.enst.fr/aadl/wiki/Projects#AADL-BA-FrontEn

19/24



of the tool with all the scripts required to import the legacy data on time), but the private iterations with677

the AADL-BA developer and his validation and positive feedback helped us a lot to improve Collaboro678

and learn more about the challenges of using Collaboro as a part of an ongoing language development679

effort. We are still in contact with this community and we will see if we can complete the test in the future680

or reach out other similar standardization committees.681

Lessons Learned682

The development of the previous case studies provided us with some useful insights on the Collaboro683

process that since then have been integrated in our approach. For instance, in the first and second684

case studies, it turned out that conflicting proposals were frequent and therefore we added a conflicting685

relationship information explicitly in the collaboration metamodel so that once one of them was accepted686

we could automatically shut down the related ones. We also noted an intensive use of comments (easier687

to add) in comparison with proposals and solutions. This fact together with the discussions on what688

should constitute a new version and when to end the discussions (e.g., what if there was unanimity but not689

everybody had voted, should we wait for that person? for how long?) helped us to realize the importance690

of an explicit community manager role in charge of making sure the collaboration is always fluid and691

there are no bottlenecks or deadlocks.692

During the development of the three case studies, concurrent access to the models turned out to be a693

must as well since most of the time collaborations overlapped at some point. The experience gathered694

during the development of the first case study, where the collaboration was performed only in the Eclipse-695

based plugin, and later the requirements of the second and third case studies allowed us to provide a696

second front-end for the approach based on a web-client. Thus, the web-enabled support was crucial to697

allow all the developers to contribute and visualize how the metamodels evolved during the collaboration.698

In all the case studies the notation view allowed the participants to quickly validate the concrete syntax.699

This is specially important since for non-technical users it is easier to discuss at the concrete syntax level700

than at the abstract level.701

The only common complaint we got was regarding the limited support for voting (mainly raised702

in the first case study but also raised in the others), where participants reported that they would have703

preferred more options instead of just a boolean yes/no option. Note that this would have a non negligible704

impact on the decision algorithms that would need to be adapted to consider the new voting options.705

We plan to incorporate extra support to define how to make decisions, in a similar way as proposed in706

Cánovas Izquierdo and Cabot (2015).707

RELATED WORK708

End-user involvement is a core feature of several software development methods (such as agile-based709

ones). The concept of community-driven development of a software product was introduced in Hess710

et al. (2008) and other authors have studied this collaboration as part of the requirement elicitation711

Mylopoulos et al. (1999), ontology development Leenheer (2009); Siorpaes (2007) and modeling phases712

of the software Hildenbrand et al. (2008); Lanubile et al. (2010); Whitehead (2007); Rittgen (2008),713

but neither of them focuses on the DSML language design process nor they present the collaboration714

as a process of discussion, voting and argumentation from the beginning to the end of the language715

development process. End-user participation is also the core of user-centered design Norman and Draper716

(1986), initially focused on the design of user interfaces but lately applied to other domains (e.g., agile717

methodologies Hussain et al. (2009) or web development Troyer and Leune (1998)). Again, none of these718

approaches can be directly applied to the specification of a DSML. Nevertheless, ideas from these papers719

have indeed influenced the Collaboro process.720

Regarding specific approaches around collaboration in DSML development, some works propose to721

derive a first DSML definition by means of user demonstrations Cho et al. (2012); Kuhrmann (2011);722

Sánchez Cuadrado et al. (2012); López-Fernández et al. (2013) or grammar inference techniques Javed723

et al. (2008); Liu et al. (2012), where example models are analyzed to derive the metamodel of the724

language. However, these approaches do not include any discussion phase nor validation of the generated725

metamodel with the end-users. In this sense, our approaches could complement each other, theirs could be726

used to create an initial metamodel from which to trigger the refinement process based on the discussions727

among the different users Cánovas Izquierdo et al. (2013).728

20/24



Subsets of our proposal can also be linked to: i) specific tools for model versioning (e.g., AMOR729

repository11 and Altmanninger et al. (2009)) that have already proposed a taxonomy of metamodel730

changes, ii) online-collaboration (Brosch et al. (2009); Gallardo et al. (2011)) promoting synchronous731

collaboration among developers, iii) metamodel-centric language definition approaches (Scheidgen (2008);732

Prinz et al. (2007)) where the concrete syntax is considered at the same level as the abstract one and733

iv) collaboration protocols Gallardo et al. (2012). In all cases, Collaboro extends the contributions of734

those tools with explicit collaboration and justification constructs, and provides as well the possibility of735

offline collaborations and a more formal representation of the interactions (e.g., voting system, explicit736

argumentation and rationale, traceability). The agreed DSML definition at the end of the Collaboro737

process could be then the input of the complete DSML modeling environment aimed by some of the tools738

mentioned above.739

Regarding the recommender engine and the calculation of metrics for DSMLs, we can identify works740

centered on assessing the quality of both the abstract and concrete syntaxes, and the main features of the741

language (e.g., reusability, integrability or compatibility). There are several works providing metrics to742

check the quality in metamodels Cho and Gray (2011); Aguilera et al. (2012) and in the notation used743

for textual DSMLs Power and Malloy (2004); Crepinšek et al. (2010). With regard to graphical DSMLs,744

Moody’s principles Moody (2009) have emerged as the predominant theoretical paradigm. Originally745

based on the cognitive dimensions framework Blackwell et al. (2001); Green (1989); Green and Petre746

(1996), Moody’s principles address their theoretical and practical limitations. While these principles747

provide a framework to evaluate visual notations, other works have put them into practice by analyzing748

DSMLs Genon et al. (2011b,a); Moody and Hillegersberg (2009); Le Pallec and Dupuy-Chessa (2013)749

or complement the use of Moody’s principles with polls Figl et al. (2010) also, thus allowing end-user750

feedback and involvement during the design process of a visual notation. However, the previous works751

are usually centered to specific DSMLs and do not provide mechanisms to be calculated to any DSML752

as our approach addresses. Other works such as Kahraman and Bilgen (2013) propose an evaluation753

framework focused on language features and therefore not particularly analyzing the quality from an754

end-user perspective. To the best of our knowledge, ours is the first proposal to generically assess the755

cognitive quality of DSMLs under development.756

Finally, the representation of the collaboration rationale is related to the area of requirements negoti-757

ation, argumentation and justification approaches such as Jureta et al. (2008). The decision algorithms758

proposed in those works could be integrated in our decision engine. Other decision engines such as759

CASLO Padrón et al. (2005) or HERMES Karacapilidis and Papadias (2001) could also be used.760

CONCLUSIONS761

We have presented Collaboro, a DSML to enable the participation of all members of a community in762

the specification of a new domain-specific language or in the creation of new models. Collaboro allows763

representing (and tracking) language change proposals, solutions and comments for both the abstract764

and concrete syntaxes of the language. This information can then be used to justify the design decisions765

taken during the definition or use of the modeling language. The approach provides two front-ends (i.e.,766

Eclipse-based and web-based ones) to facilitate its usage and also incorporates a recommender system767

which checks the quality of the DSML under development.768

Once the community reaches an agreement on the language features, our Collaboro model can be769

used as input to language workbenches in order to automatically create the DSL tooling (i.e., editors,770

parsers, palettes, repositories, etc.) needed to start using the language in practice. For instance, this would771

involve automatically creating the configuration files required for XText (for textual languages) or GMF772

(for graphical ones) from our notation and abstract syntax models.773

As further work, we would also like to explore how to support the collaborative definition of the774

well-formed rules (e.g., OCL constraints) for the DSML under development. As these rules are normally775

expressed by using a (semi)formal textual language (like OCL), the challenge is how to discuss them776

in a way that non-technical experts can understand and participate. Finally, we are also exploring how777

to better encourage end-user participation (e.g., by applying gamification techniques) to make sure the778

process is as plural as possible.779

11http://www.modelversioning.org

21/24



REFERENCES780

Aguilera, D., Gómez, C., and Olivé, A. (2012). A Method for the Definition and Treatment of Conceptual781

Schema Quality Issues. In International Conference on Conceptual Modeling, volume 7632, pages782

501–514.783

Altmanninger, K., Seidl, M., and Wimmer, M. (2009). A Survey on Model Versioning Approaches.784

International Journal of Web Information Systems, 5(3):271–304.785

Barišić, A., Amaral, V., Goulão, M., and Barroca, B. (2012). Evaluating the Usability of Domain-Specific786

Languages. In Formal and Practical Aspects of Domain-Specific Languages: Recent Developments,787

pages 386–407.788

Blackwell, A. F., Britton, C., Cox, A. L., Green, T. R. G., Gurr, C. A., Kadoda, G. F., Kutar, M., Loomes,789

M., Nehaniv, C. L., Petre, M., Roast, C., Roe, C., Wong, A., and Young, R. M. (2001). Cognitive790

Dimensions of Notations: Design Tools for Cognitive Technology. In International Conference on791

Cognitive Technology, pages 325–341.792

Brosch, P., Seidl, M., Wieland, K., and Wimmer, M. (2009). We can Work it out: Collaborative Conflict793

Resolution in Model Versioning. In European Conference on Computer Supported Cooperative Work,794

pages 207–214.795

Cabot, J. and Wilson, G. (2009). Tools for Teams: A Survey of Web-Based Software Project Portals. Dr.796

Dobbs.797

Cánovas Izquierdo, J. L. and Cabot, J. (2013). Enabling the Collaborative Definition of DSMLs. In798

International Conference on Advanced Information Systems Engineering, pages 272–287.799

Cánovas Izquierdo, J. L. and Cabot, J. (2015). Enabling the Definition and Enforcement of Governance800

Rules in Open Source Systems. In International Conference on Software Engineering, pages 505–514.801

Cánovas Izquierdo, J. L., Cabot, J., López-Fernández, J. J., Sánchez Cuadrado, J., Guerra, E., and de Lara,802

J. (2013). Engaging End-Users in the Collaborative Development of Domain-Specific Modelling803

Languages. In International Conference on Cooperative Design, Visualization, and Engineering, pages804

101–110.805

Cho, H. and Gray, J. (2011). Design Patterns for Metamodels. In Conference on Systems, Programming,806

and Applications: Software for Humanity - Colocated Workshop, pages 25–32.807

Cho, H., Gray, J., and Syriani, E. (2012). Creating Visual Domain-Specific Modeling Languages from808

End-User Demonstration. In International Workshop on Modeling in Software Engineering, pages809

29–35.810

Crepinšek, M., Kosar, T., Mernik, M., Cervelle, J., Forax, R., and Roussel, G. (2010). On Automata and811

Language Based Grammar Metrics. Computer Science and Information Systems, 7(2):309–329.812

Dullemond, K., van Gameren, B., and van Solingen, R. (2014). Collaboration Spaces for Virtual Software813

Teams. IEEE Software, 31(6):47–53.814

Figl, K., Derntl, M., Rodrı́guez, M. C., and Botturi, L. (2010). Cognitive Effectiveness of Visual815

Instructional Design Languages. Journal of Visual Languages and Computing, 21(6):359–373.816

Gabriel, P., Goulão, M., and Amaral, V. (2010). Do Software Languages Engineers Evaluate their817

Languages? In Congreso Iberoamericano en Software Engineering, pages 149–162.818

Gallardo, J., Bravo, C., and Redondo, M. A. (2011). A Model-Driven Development Method for Collabo-819

rative Modeling Tools. Journal of Network and Computer Applications.820

Gallardo, J., Bravo, C., Redondo, M. A., and de Lara, J. (2012). Modeling Collaboration Protocols821

for Collaborative Modeling Tools: Experiences and Applications. Journal of Visual Languages and822

Computing, pages 1–14.823

Genon, N., Amyot, D., and Heymans, P. (2011a). Analysing the Cognitive Effectiveness of the UCM824

Visual Notation. In International Workshop on System Analysis and Modeling, pages 221–240.825

Genon, N., Heymans, P., and Amyot, D. (2011b). Analysing the Cognitive Effectiveness of the BPMN826

2.0 Visual Notation. In International Conference on Software Language Engineering, pages 377–396.827

Green, T. R. G. (1989). Cognitive Dimensions of Notations. In Sutcliffe, A. and Macaulay, L., editors,828

People and Computers V, pages 443–460.829

Green, T. R. G. and Petre, M. (1996). Usability Analysis of Visual Programming Environments: A830

Cognitive Dimensions Framework. Journal of Visual Languages and Computing, 7(2):131 – 174.831

Grundy, J. C., Hosking, J., Li, K. N., Ali, N. M., Huh, J., and Li, R. L. (2013). Generating Domain-832

Specific Visual Language Tools from Abstract Visual Specifications. IEEE Transactions on Software833

Engineering, 39(4):487–515.834

22/24



Hatton, L. and van Genuchten, M. (2012). Early Design Decisions. IEEE Software, 29(1):87–89.835

Hess, J., Offenberg, S., and Pipek, V. (2008). Community Driven Development as Participation?: Involving836

User Communities in a Software Design Process. In Conference on Participatory Design, pages 31–40.837

Hildenbrand, T., Rothlauf, F., Geisser, M., Heinzl, A., and Kude, T. (2008). Approaches to Collaborative838

Software Development. In Conference on Complex, Intelligent and Software Intensive Systems, pages839

523–528.840

Hussain, Z., Slany, W., and Holzinger, A. (2009). Current State of Agile User-centered Design: A841

Survey. In Symposium of the Workgroup Human-Computer Interaction and Usability Engineering of842

the Austrian Computer Society - HCI and Usability for e-Inclusion, volume 5889, pages 416–427.843

Javed, F., Mernik, M., Gray, J., and Bryant, B. R. (2008). MARS: A metamodel recovery system using844

grammar inference. Information and Software Technology, 50(9-10):948–968.845

Jureta, I., Faulkner, S., and Schobbens, P. (2008). Clear Justification of Modeling Decisions for Goal-846

oriented Requirements Engineering. Requirements Engineering, 13(2):87–115.847

Kahraman, G. and Bilgen, S. (2013). A framework for qualitative assessment of domain-specific languages.848

Software and System Modeling, pages 1–22.849

Karacapilidis, N. I. and Papadias, D. (2001). Computer Supported Argumentation and Collaborative850

Decision Making: The HERMES System. Information Systems, 26(4):259–277.851

Kelly, S. and Pohjonen, R. (2009). Worst practices for domain-specific modeling. IEEE Software, 26(4):22852

–29.853

Kleppe, A. (2008). Software Language Engineering: Creating Domain-Specific Languages Using854

Metamodels. Addison Wesley.855

Kuhrmann, M. (2011). User Assistance during Domain-specific Language Design. In FlexiTools856

workshop.857

Lanubile, F., Ebert, C., Prikladnicki, R., and Vizcaı́no, A. (2010). Collaboration Tools for Global Software858

Engineering. IEEE Software, 27(2):52–55.859

Le Pallec, X. and Dupuy-Chessa, S. (2013). Support for Quality Metrics in Metamodelling. In Workshop860

on Graphical Modeling Language Development, pages 23–31.861

Leenheer, P. D. (2009). On community-based ontology evolution. PhD thesis.862

Liu, Q., Gray, J., Mernik, M., and Bryant, B. R. (2012). Application of Metamodel Inference with863

Large-Scale Metamodels. International Journal of Software and Informatics, 6(2):1–31.864

López-Fernández, J. J., Sánchez Cuadrado, J., Guerra, E., and De Lara, J. (2013). Example-driven865

meta-model development. Softw. Syst. Mod.866

Mernik, M., Heering, J., and Sloane, A. M. (2005). When and How to Develop Domain-specific867

Languages. ACM Computing Surveys, 37(4):316–344.868

Miller, G. A. (1956). The Magical Number Seven, Plus or Minus Two: Some Limits on Our Capacity for869

Processing Information. Psychological Review, 63:81–87.870

Moody, D. L. (2009). The Physics of Notations: Toward a Scientific Basis for Constructing Visual871

Notations in Software Engineering. IEEE Transactions on Software Engineering, 35(6):756–779.872

Moody, D. L. and Hillegersberg, J. v. (2009). Evaluating the Visual Syntax of UML: An Analysis of873

the Cognitive Effectiveness of the UML Family of Diagrams. In Conference on Software Language874

Engineering, pages 16–34.875

Mylopoulos, J., Chung, L., and Yu, E. S. K. (1999). From Object-Oriented to Goal-Oriented Requirements876

Analysis. Communications of the ACM, 42(1):31–37.877

Norman, D. A. and Draper, S. W. (1986). User Centered System Design: New Perspectives on Human-878

computer Interaction. Erlbaum, H.879

Object Management Group (OMG) (2014a). Model-Driven Architecture (MDA) Specification.880

http://www.omg.org/mda/specs.htm (accessed on 06/05/2016).881

Object Management Group (OMG) (2014b). Object Constraint Language (OCL) Specification. Version882

2.4. http://www.omg.org/spec/OCL (accessed on 06/05/2016).883

Object Management Group (OMG) (2015a). Diagram Definition (DD) Specification. Version 1.1.884

http://www.omg.org/spec/DD (accessed on 06/05/2016).885

Object Management Group (OMG) (2015b). Meta Object Facility Core (MOF) Specification. Version 2.5.886

http://www.omg.org/spec/MOF/2.5 (accessed on 06/05/2016).887

Padrón, C. L., Dodero, J. M., and Lanchas, J. (2005). CASLO: Collaborative Annotation Service for888

Learning Objects. Learning Technology Newsletter, 7(2):2–6.889

23/24



Power, J. F. and Malloy, B. A. (2004). A Metrics Suite for Grammar-based Software. Journal of Software890

Maintenance and Evolution: Research and Practice, 16(6):405–426.891

Prinz, A., Scheidgen, M., and Tveit, M. S. (2007). A Model-Based Standard for SDL. In International892

SDL Forum, pages 1–18.893

Rittgen, P. (2008). COMA: A Tool for Collaborative Modeling. In Forum at the International Conference894

on Advanced Information Systems Engineering, pages 61–64.895

Rooksby, J. and Ikeya, N. (2012). Collaboration in Formative Design: Working Together. IEEE Software,896

29(1):56–60.897

Sánchez Cuadrado, J., de Lara, J., and Guerra, E. (2012). Bottom-up Meta-Modelling: an Interactive898

Approach. In Conference on Model Driven Engineering Languages and Systems, pages 1–17.899

Sánchez Cuadrado, J. and Garcı́a Molina, J. (2007). Building Domain-specific Languages for Model-900

driven Development. IEEE software, 24(5):48–55.901

Scheidgen, M. (2008). Textual Modelling Embedded into Graphical Modelling. In European Conference902

on Model Driven Architecture - Foundations and Applications, volume 5095, pages 153–168.903

Siorpaes, K. (2007). Lightweight Community-Driven Ontology Evolution. In International Semantic904

Web Conference, number 4, pages 951–955.905

Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008). EMF: Eclipse Modeling Framework.906

Addison Wesley.907

SVG (2011). Scalable Vector Graphics 1.1. http://www.w3.org/TR/SVG/.908

Tamburri, D. a., Lago, P., and Vliet, H. V. (2013). Organizational social structures for software engineering.909

ACM Computing Surveys, 46(1):1–35.910

Troyer, O. D. and Leune, C. J. (1998). WSDM: a User Centered Design Method for Web Sites. Computer911

Networks, 30(1-7):85–94.912

Völter, M. (2011). MD*/DSL Best Practices. http://voelter.de/data/pub/DSLBestPractices-2011Update.pdf913

(accessed on 06/05/2016).914

Whitehead, J. (2007). Collaboration in Software Engineering: A Roadmap. In Workshop on the Future of915

Software Engineering, pages 214–225.916

24/24


