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Abstract. A rationale is provided for the emergence of syn- tistically determined that the occurrence of earthquakes in
chronization in a system of coupled oscillators in a stick-slip some regions was clustered. He reported that synchronous
motion. The single oscillator has a limit cycle in a region clusters of ruptures of several faults were identified in the
of the state space for each parameter set beyond the supeseuth Iceland seismic zone, the central Nevada seismic belt,
critical Hopf bifurcation. The two-oscillator system that has and the eastern California shear zone. MeanwMI&sui and
similar weakly coupled oscillators exhibits synchronization Hirahara(2004 successfully demonstrated that the numeri-
in a parameter range. The synchronization has an anti-phasmlly modelled coupled stick-slip oscillators exhibited some
nature for an identical pair. However, it tends to be more in-degree of synchronization. They used a simple spring-slider
phase for a non-identical pair with a rather weak coupling. Asystem composed of several mutually coupled stick-slip os-
system of three identical oscillators (1, 2, and 3) coupled incillators to capture the nature of the earthquake generation
a line (with two springsi2 = k23) exhibits synchronization cycle along the Nankai trough, which is located in a zone of
with two of them (1 and 2 or 2 and 3) being nearly in-phase. high seismicity where multiple segments that constitute the
These collective behaviours are systematically estimated udault zone have been reported to rupture almost simultane-
ing the phase reduction method. ously (shibashj 20043. It is worth noting that they found
that a pair of coupled oscillators with slightly different pa-
rameter sets synchronized even for weak coupling (Fig. 6 of
) Mitsui and Hirahara2004), although their emphasis was on
1 Introduction cases with strong coupling between oscillators.

Svnchronization is ubiaui . h In spite of these observations, there has been little research
yne ron|zat|o:1 IS u |(|1(U|to;|s |n|.natured as t.ercle aré Nuspat provides a specific description of the conditions for syn-
Merous natural networks of nonfinear dynamical SyStems.p,.,ni7ation and how phases behave collectively. In this re-
(Plkoysky et a!,.2003. Because faults that'cause earthquakes ard, we focus on the time evolution of the phases to elu-
or seismogenic processes can be described as nonlinear d idate the synchronization dynamics behind such collective

namlcal systems, synchronization may occur in fault be'behaviours and how phases are locked in the synchroniza-
haviour Scholz 2010. The standard picture for the occur-

rence of interplate earthquakes is that a fault segment elasti- The occurrences of some earthquakes are nearly periodic

cally driven by one plate, under the frictional resistance by(e.g. Matsuzawa et a.2002 Ishibashj 2004h Sykes and

another plate, exhibits a stick-slip motion that causes Neary anke 2008; thus, the generation process can be well mod-
periodic spikes. A group of such segments can collectlvelye"ed as a limit-cycle oscillation. The timing of a limit-cycle

cause recurring earthquakes with some statistical regularity i, -+0n can be described by a single phase variable. If
(e.9.Scholz 2002 _Kawam_ura et a.2012. Although many _the limit-cycles are somehow connected, they should inter-
factors about the interaction between fault segments are still ..\ v o2 ch other and exhibit some collective behaviour as
unknqwn,' some ewde;nce suggests that they can ex,h'b't SYIy consequence of the attraction or repulsion between them in
chronization e Rubeis et al2010. For exampleChelidze terms of the phase. The phase reduction methadsmotq

et al. (2009 reported that a stick-slip object in a laboratory 1984 enables us to quantify the rate at which the progress of
setting was entrained by a periodic for&eholz(2010 sta-

Published by Copernicus Publications on behalf of the European Geosciences Union & the American Geophysical Union.



252 N. Sugiura et al.: Synchronized oscillators

an oscillator phase is affected by another oscillator, thereby
offering a powerful analytical tool to approximate the limit-

cycle dynamics as a closed equation for only a single phase Gl2c Gl2c

variable. o k2 /J\I‘r/
We shall confine our attention to simple systems of only Ko e

a few oscillators that remain close to a common limit-cycle mi —WW— m: ms —A—

orbit, rather than the complicated ones that may produce
chaotic motion (e.gHuang and Turcottel99Q 1992 Abe

and Katq 2012, so that we can extract some regularity from rig 1. piagram of the spring-slider-dashpot system. The config-
the collective behaviour of the oscillator system. This set-yration is identical to the Burridge—Knopoff modd@urridge and
ting, of assuming almost homogeneous system of limit cycleknopoff, 1967), except that it is also equipped with dashpots and
oscillators, looks reasonable in the light of observations. Inthe friction on the bottom of the sliders is rate- and state-dependent.
fact, there are some seismic zones that consist of fault seg-

ments that have quite similar recurrence periods. The devi- D
ation of the earthquake generation periods between differfo.rm that can.be represented #i(na 1983 Dieterich and
ent segments along the Nankai trough is a few years, muc#'lgore’ 1994:

smaller than the periods themselves]x 10? yr (Ishibashj . V; 0;

20043. Likewise, Scholz (2010 points out that synchro- % = i (“i tailog = +bilog ,9_*)’ @)

nization occurs within systems of evenly spaced, sub-parallel - ,
faults with very similar slip rates wherea; andb; are frictional parameters; is the normal

In this study, we quantitatively analyse how a single stress,V* and 6* are the arbitrary reference velocity and

slider oscillates under the rate- and state-dependent fricStete, respectively, and is a reference frictional coefficient.
tion against a plate motion using a bifurcation analysis and! N€ State variablé; obeys an aging law proposed Byina

centre-manifold reduction method. Then, we identify when (1983 andLinker and Dieterict(1992):
and how coupled sliders driven by a plate synchronize as af; V;0;

collective substance using a phase reduction method. o L;’ )

where L; is the characteristic length. Under a quasi-static
2 The spring-slider-dashpot system approximation where the inertia; d%x; /dt? is sufficiently
small Gu et al, 1984 Perfettini and Avoua?004 Perfettini
It is well established that a fault segment that can causeet al, 2005 Kano et al, 2010 2013, the governing equation
earthquakes is well described by a spring-slider system (e.gfor V; can be derived as
Perfettini and Avouac2004 subjected to a rate- and state- B, Vi6:
dependent friction Bieterich 1979 Ruina 1983 Scholz dv, ki (Vo—vi) - b (1_ i_,'>
1998; this model exhibits a limit cycle oscillation. dar Ay g
Our research interest, therefore, is in spring-coupled sli-
ders (Fig.1) that are driven by a common plate through +Z A.kif
spring and dashpot arrangements set for each slider (e.g. T v T8
Rice 1993 Cochard and Madariagd994), against the fric- whereA; = oia;, Bi = oib;, andg = G/(2¢). In accordance

tional resistance by another plate. The equations of motion ith the tvpical licati fth del to th . .
for theith slider are wi e typical applications of the model to the seismogenic

process, we assume that the parameters are in the range of

v,
(Vi =Vi), )

d?x; G (dx;
d ¢ g (Vi) A,’ > 0, L,’ > 0, kl’ > O, Bi —L,’k,’ > O, (7)
0
+ Y kij () —xi =), (D) (Vi#j) ky=kji =0, ®)
J
d; We also assume that all of the initial states are placed in the
5 =V (2)  first quadrant:

. " . Vi (0) >0, 6;(0 0. 9
where x; is the position of the slidery? and xioj are the Vi) Vi@ > 1O > ©)

lengths of springs at rest; is the spring constant between  In Sect.3, we investigate the basic properties of a single
the slider and plateg;; is the spring constant between a oscillator. After introducing the phase reduction method in
pair of sliders,V; is the velocity,G is the rigidity, ¢ is the  Sect.4, we analyse the properties of synchronization, which
shear wave velocity, andly is the constant velocity of the occurs in a two-oscillator system, in Seét. We mention
plate. The frictional force; has a rate- and state-dependent some extensions to a three-oscillator system in $ect.
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3 The Dieterich—Ruina oscillator 3.3 Hopf bifurcation: u =0

Here, we investigate the basic properties of a single oscillatopt the very instance whep = 0, the equilibrium point be-

using the bifurcation and perturbation analyses. gins to lose its stability. The system encounters a Hopf bi-
] ] furcation because the Jacobi matrix has a pair of imaginary

3.1 Governing equations eigenvalues

Dropping the index in Egs. @) and &) for simplicity, we Vog

obtain the following equations describing a single oscillator: A1,2 = ii%- (19)

do Vo

P 1- I (10)  The corresponding eigenvectors are

v _k(B-v)-E(a-Y) ” g

dr Ay U=| W (20)

This is a two-dimensional dynamical system with six para-

meters(k, Vp, g, A, B, L). Hereafter, the dynamical system and its complex conjugat&]. U andU span the plane con-
described by Eqs10) and (1) is called the Dieterich—Ruina taining linear solutions. By introducing a complex amplitude,
oscillator, and the state vector is denotedtas (9, V). For W (1), the neutral solution of the system is expressed as
the simplicity of analytical expressions, we use a new para-

meter setu, Vp, C.d, ¢, L) that is defined as X (1) = Xo+ {UW(r)expliwot] +c.c.}, (21)
_ v

C=(A+gVp) ', d=CgVp, q=/CLE, (12) woz%q, (22)

w=B—A-gVy— Lk, (13)

_ _ ) _where c.c. represents the complex conjugate. The graph con-
wherey serves as a bifurcation parameter. Here, we investiyaining the solution indicates an elliptic orbital motion, while
gate how the system behavesiashanges. This system has e complex amplitude is an arbitrary complex constant at
a unique equilibrium point ako = (L/Vp. Vp)", which is s stage 4 = 0) if we neglect nonlinear terms.
given by the intersection of the nullclines:

L 40 3.4 Weakly nonlinear: u 2 0
l: V= 5 f0r d_ =V, (14)
7lt When the bifurcation parameter becomes slightly larger
nN: v= (E _ k) (E _ kVp> for av =0. (15) thanO, the equilibrium point becomes an unstable spiral be-
L 0 d cause the eigenvalues dfire a complex conjugate pair with

One of the important facts concerning the linear structure of2 COmmon positive real part. Here, we develop an analytical

the system around an equilibrium point is that the Jacobi ma_expression for the asymptotic solutions in a weakly nonlinear

o s charcirc st nty oo Serdrg e and L ol sers

_% _vi 0 0 o ing U in Eqg. 0) and its dualU* (a left eigenvector), which
J= V3(q?+1) Vpp +u |: cvd cv, j| = |: +] , (1) is given by:

12 " L2 L

: : . Vo(g?+1
which represents a substrate-depletion systAneuti and U* = (—iM, Vp‘l (} — |i>) . (23)
Murray, 1986. The two eigenvalues of the Jacobi matrix at 2Lq 2
X are

With the expansion and eigenvectors, we can compute the co-

Ap= CVDM + ﬁ /_4q2 + 022, (17) efficients for a small-amplitude equation near the Hopf bifur-

' L 2L cation following the centre-manifold reduction method de-
3.2 Stable spiral:p <0 scribed inKuramoto(1984). Assuming the solutions are in

the form of Eq. 21), the time evolution of the complex am-
The equilibrium point is a stable spiral wher®g/C < u < plitude can be described by the Stuart-Landau equation as
0 because the eigenvaluesladire a complex conjugate pair,

daw 2
Mo=—puti— 2_C?p2, 18 dt
12=— rEis V4 (18) cv,
_ a=U"L1U=—7=, (25)
and have a common negative real part. 2L
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254 N. Sugiura et al.: Synchronized oscillators

B=-3U*N (U, U,ﬁ) Near Hopf Bifurcation Point
o (red: Stuart-Landau, black: Original)
+4U*M (U, Lg'M (U.T)) —— .
16 LT u:mg_ ]
+2U*M(U, (Lo — 2iwol) "M (U,U)) ho1x103 -----
14 + -t Tagt .
Vo q?(L+2d)(1—d) +d? L %
=—\dA—-d)+i . 26 (N
2L < ( )+ 3q (26) 1.2 ey
This system encounters a supercritical bifurcation to a stable = 4 “:} Q\\‘\g\ “z‘,
limit cycle, because the supercriticality conditi®es > 0 = ‘:‘“ \\5
is derived from O< d = gVp/ (A +¢gVp) < 1. Note that the 0.8 , Bag e 3 1
type of the bifurcation may have some dependence on the ki
laws of friction and assumptions made on the equation of 06 - R S : 1
motion Gu et al, 1984 Putelat et al.2010. In the original
vector form, the limit-cycle solution of Eq24) is given by 04 . . . 7
. - 04 06 08 1 12 14 16
X = Xo+ {URsexp[i (wo+ @) 1] +c.c, (27) oV, L
uRex uC . - . L . . .
Rs= = , (28) Fig. 2. Periodic orbits of the Dieterich—Ruina oscillator near the bi-
Rep d(1-d) furcation point, graphs db Vp/L, V/ Vp). Red and black curves are
~ Ima  Img for the periodic solutions of the Stuart-Landau and original differ-
o = puRex (@ - R_eﬁ> ential equations, respectively. The equilibrium pointisl). The
A ) values of bifurcation parametgrare set to & 10-> Nm~2 (solid
_ W A+2)(A-d)+d (29) curves), Ix 10~4 Nm~2 (dashed curves), and<110~3 Nm~2 (dot-
=K L 6gd(1—d) ’ ted curves). The values @fused here are obtained by setting:

(B—A—gVp—p)/L and using the corresponding values.ofThe
which graphically describes an elliptic orbital motion. The rest of parameters are set(tdy, g, A, B, L) =(3.17x 10 9ms1,
modulus, Rs, and frequency shiftw, are scaled withu? 500 106 Nm~3s, 150% 10° Nm~2, 2.20x 105Nm™2, 1.00
andpu, respectively. 102m).

- . )

We performed numerical integrations of EgE0{and (1)
to simulate the limit-cycle oscillation near the Hopf bi-
furcation point for three cases with = 107>, 104, and
10-3Nm~2. The time integrations were performed with the .
fourth-order Runge—Kutta scheme containing variable time3.5 Limit cycle: u > 0
step-sizes Rress et al.1992. The rest of the parameters ) ) )
were set according to a previous studyKsno et al (2019 ~ Whenwe increasg, the system will enter a strongly nonlin-
for an inter-plate earthquake occurred on 25 September 20082" regime. The equilibrium point becomes either an unsta-
in Hokkaido, Japan(Vy, g, A, B, L) = (3.17 x 10 9ms1, ble spiral (when G< u < 2¢/C) or unstable node (whegn >
5.00% 106 Nm—3s. 150x 10P Nm—2. 2.20x 10° Nm—2. 1.00x 2q/C). Then, the Poincaré—Bendixson theorem (&go-
10-2m); these values also serve as the standard set of par&atz 200 ensures the existence of a limit cycle within some
meter values for this study. In Fig, we show the results €gion surrounding the equilibrium point, because we now
with the orbits of the limit cycle compared to those derived Nave an unstable equilibrium point with a surrounding trap-
using Eq. 27). The corresponding orbits are in good agree- Ping region,R. AppendixB describes how flows are trapped
ment wheru is small. into the region. Figur® shows an example of a limit cycle

In the context of seismogenic processes, the analytical so@"Pit derived by numerically integrating Eqs.Q) and (L1).
lution (Eq. 27) in the weakly nonlinear regime may offer The orb|F appears more p_olygonal than elliptical and extends
a simplified description of slow earthquakes (evgshida ~ ©Ver @ wide range in the first quadrant.
and Katq 2003 Helmstetter and Shaw009, which can be
yiewe(_j_as_susta?n_ing aseismic oscillations in which the slipy 11 phase reduction method
instability is sufficiently weak Kawamura et a).2012. In

particular, the frequencies in Eq22) and @9) can be used  Here, we introduce the phase reduction method for general
to evaluate the recurrence intervals of such earthquakes.  |imit-cycle oscillators, as well as its specific representation
for weakly nonlinear oscillators.
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A periodic orbit of the limit cycle under the action of phase sensitiviyg),

. . . (a row vector):
108 b
\ ) .
6 | J
10 o = 5 / Z($)5 f1() do. (32)
10* | 1 0
21
§ Fij(lﬁ)=2— Z(p)gij (b, — ) do. (33)
JT
100 | , . 0
102 \ Here, Z(¢) coincides with a left Floquet eigenvector, with
N\ eigenvalue 0, for the linearized equation around the limit cy-
10 F . cle. Refer toKuramoto (1984 for the details of the phase
reduction method discussed here.

10° 1(;-3 10° 1(')4 1(')_2 100 402 4g This procedure is applicable to the system containing
oV L Dieterich—Ruina oscillators (Egéand5), provided that both
the parameter differences and coupling intensities of the os-
Fig. 3.A periodic orbit of the Dieterich—-Ruina oscillator, a graph of Cillators are small enough to be treated as a perturbation.
(0Vp/L,V/Vp), in adouble logarithmic plane. The parameters are Substituting the specific functions in Ed)(into Eq. 33),
set to (k, Vp, g, A, B, L) =(1.00x 10°Nm~3, 317x 10 9ms™1, we obtain the phase description of the system:
5.00x 108 Nm~3s, 150x 10° Nm~2, 2.20x 10°Nm—2, 1.00x

_2 e Pop d¢t S
102 m). The equilibrium point i1, 1). 5 = +8w; + ék,-jl“ (6i — ;). (34)
T () = ki; I (V)
2
4.1 Limit-cycle oscillators _kij [ V) [V(p —y)—V(p)] dp, (35)

S 2n) A/Vg)+g
A system of coupled self-sustained oscillators can be de- 0

scribed by whereV* is the phase sensitivity fdr. Note thatV andV*
dX, are defined along a stable orbit of a single oscillator without
d—t’zF(Xi)Jrchi (Xi)+2gij (Xl-,Xj), (30) coupling, which has a frequenay.

J#

4.2 Weakly nonlinear oscillators
where we assume that the systeKydir = F (X) behaves by
itself as a limit-cycle oscillator and that the system describedSuppose we have a system of weakly nonlinear oscillators
by Eqg. 80) has an oscillatory behaviour similar to it, includ- that are identical and mutually coupled. Near the Hopf bifur-
ing the frequency and orbit. Provided that the oscillators havecation point, each oscillator can be described by 24). énd
similar properties and are weakly coupled, the phase reduca coupling term, which is supposed to be small:
tion method Kuramotq 1984), shown below, is applicable
to the system. Using the periof, and the frequency,, fqr = oW — BIWiPW; + ZkijV(Wj —W)). (36)
the limit cycle of the systemX/dr = F(X), we can define dr T
the phase¢, of a state that is determined up to an integral
multiple of T, which varies from 0 to 2. The time evolution ~ Normalising the equations t6= (uRex)t and

of the phase obeys W = (MRea/Re,B)‘% W, we get

do; dw/

d_;=w+8“”'+zrij (¢i—¢j), (32) dt/l = (L+ico) Wi/_(1+iC2)|Wi/|2Wi/
J#

: : . + ) ki (A+ic) (W, —W/), 37
whereg; is the phase of the oscillatorsw; is the frequency ; if cl)( J ’) (37)
deviation of oscillatori from the original limit cycle fre- M Imy
quency, andl’;; is the phase coupling function (hereatfter, =g (A=
the PCF) between the oscillatargnd j, which is periodic & &
with a period of . These terms are defined as the aver- ., M8, _ kijRey (38)
aged values of the deviation terms in EgO)over a period Reg” Y puRex

www.nonlin-processes-geophys.net/21/251/2014/ Nonlin. Processes Geophys., 2128%12014



256 N. Sugiura et al.: Synchronized oscillators

By treating each oscillator as a two-dimensional system  sx10*

with independent variablgReW/, Im Wi’)T, we can analyti-
cally derive the PCF for this complex Ginzburg-Landau-type 4x10* \

>

equation Kuramotq 1984):

2x10*

. s
. ..
0' -
.
-
A
4

Tij(¥) = —ki; [(L+crc2) siny+ (c2—c1) (cosy—1)] . (39)

For the case of the weakly nonlinear Dieterich-Ruina 0s-Z  0x10°
cillators, (Eqs4 and5 near the Hopf bifurcation point), the

n

coupling coefficienty, is defined in the same mannercaim 2x10t T
Eq. 25): o™
0 0 1 1 1 4x10* - el
otal
y=U" 1 U= (——i—) (—) (40) oL
|:O AT Votg ] 2 2q)\A/Vptg 6x 10t b : : : ! :
-3 -2 -1 0 1 2 3
Substituting Egs.45), (26), and @0) into Eq. 38), we get v
the coefficients in Eq.37): Fig. 4. The phase coupling function as a function of phase, nor-
1 qz (1+2d)(L—d)+ d2 malised byu/k12 =/ ko1 for a weakly nonlinear oscillator. The
c0=0, c1=——, 2= 3qd(1—d) , parameters are set {¥p, g, A, B, L) =(3.17 x 10 9ms1,5.00x
. 4 108 Nm—3s, 150 10° Nm™—2, 2.20x 10° Nm~2, 1.00x 102 m).
k. = ij L >0 (41) The blue, green, and red curves are the antisymmetric part defined
Yoooow T by Eq. @9), symmetric part by Eq.56), and total by Eq.35), re-

Thus, the PCF (EcB9) for the weakly nonlinear Dieterich— SPectively.
Ruina oscillator is characterised by

g2l —d)%+d?

2
_q°(1+2d)(1—-d)+d(3—2d)
c2—c1= 3d(1—d) > 0. (43)

In particular, the inequality42) indicates that the coupling parameterstk, Vp, g, A, B, L) = (1.00 x 10°Nm~3, 3.17x

has an anti-phase naturel{@hy (0) > 0, dl'/dy (7) <0)).  109ms !, 5.00x 1°PNm=3s, 1.50x 10°Nm—2, 2.20x
Figure4 shows the PCF as a function of the phase with the10° Nm=2, 1.00x 10~2m), and the natural frequency was
same parameters as in Fgj. 1.0687876x 10-2s~1. Two identical oscillators are coupled
for case 0. For cases 1, 2, and 3, we used oscillator 2 that
has the same set of parameters as oscillator 1 except for
B =2.2025x 10°, 2.225x 10°, and 225x 10° Nm~2, re-

Here, we explore when and how synchronization occurs inspectlvely. The natural frequencies of oscillator 2 in cases 1,

) 9 1
the system of two mutually coupled Dieterich—Ruina oscil- 2 and 3 were D652%82_><110 §~,1.0340304< 107"s™,
lators. We assume the two oscillators are identical except fond 10014385&10”"s™*, respectively. We used a common

; e por — -3
a slight difference in the value &;. To confirm the appli- coupling strengthhoK =kip=ko1= 3>|< 10° Nm h_fﬁr all
cability of the phase reduction method to the stick-slip oscil- ¢aS€S, based on the one uselamo et al(2010, which was

lator system, we examine the properties of the Synchronizaglerlved through the inversion of strain rate from the GPS ob-

tion in two different ways. First, we observe the synchroniza-servat'on‘ We also chepkeq that the valueﬁcindl_( were
tion through numerical integrations of a coupled oscillator W/thin the range of application of the phase reduction method

system. Second, we derive the PCF for the phase equatior{gee AppendiX). The time intggrations are performed using
using the results from the numerical integration of a singletNe Same method described in Se&cd. FigureS shows the

oscillator system and its adjoint. Then, we determine Soméesults of case 0, in which the oscillators synchronize at the
quantities from the plot ' ' phase differenc¢ = —3.14 (anti-phase). Figui@shows the

results of case 1, in which the oscillators synchronize at the
5.1 Numerical integrations phase differencey = —1.18 (out-of-phase). Figuré shows

the results of case 2, in which the oscillators synchronize at
We performed numerical integrations of a discrete-timethe phase differenc¢s = —7.07 x 103 (almost in-phase).
version of Egs. 4§ and §), for a pair of coupled os- Figure8shows the results of case 3, in which they exhibit no
cillators: a reference oscillator (oscillator 1) and a sec-synchronization. These phase differences and synchronized
ond oscillator (oscillator 2). Oscillator 1 had the following oscillator frequencies are listed in Taldle

5 Two-oscillator system

Nonlin. Processes Geophys., 21, 25267, 2014 www.nonlin-processes-geophys.net/21/251/2014/
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Fig. 6. The time evolution of/ V}, for case 1 in a logarithmic scale. The variation from 5000 to 95 000 yr is not shown. The parameters are
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Fig. 7. The time evolution of’/ v}, for case 2 in a logarithmic scale. The variation from 5000 to 95000 yr is not shown. The parameters
are B = 2.20 x 10° Nm~2 for oscillator 1,B = 2.225x 10° Nm~2 for oscillator 2, andk = 3 x 103 Nm~3. The oscillators synchronize at
a phase difference of = —7.07 x 1073,
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Fig. 8. The time evolution ofV/ V, for case 3 in a logarithmic scale. The variation from 5000 to 95 000 yr is not shown. The parameters are
B =2.20x 10° Nm~2 for oscillator 1,B = 2.25x 10° Nm~2 for oscillator 2, andk = 3 x 103 Nm~3. The oscillators are not synchronized.
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Table 1. The synchronization properties of some pairs of coupled oscillators with different parameter settings. The corresponding values
estimated from the PCF are shown in parentheses.

Case 0 1 2 3

K [Nm~3] 3.0x 108

Ao [sY] 0 357x 10712 347x 1011 6.73x 10711
@ (0) (359x 10713 (359x 1071l  (7.19x 1071

o [kg-1m2s -596x10°16  _579x1015 _112x10°14

T2k (0) (-5.99x10716) (—599x 10715 (-1.19x 10714
. Yes Yes Yes No
Synchronized? (Yes) (Yes) (Yes) (No)
—3.14 -1.18 —7.07x 1073
Vsyne (~3.14) 1.23) €753x10°%) ()
362x10°11  344x10712 1.76x 10711

do T -
lgne @ 571 (36110710 (344x10°1  (181x1071) ()

5.2 Application of the PCF equivalent to the existence of a phase differetigg that
satisfies
In this setting, the evolution of the phases can be describe%U
as w =—Aw— ZKf‘a(wsync) == 0, (52)
d .
% =w+ w1+ KT (91— ¢2), (44)  subjectto
d . o?U .
% =w+3w2+ KT (¢2— 1), (45) EvEie —2KT' (¥syng) > 0. (53)
where the PCF is defined in EQY), and the difference be-  Tking the average of Eqs#4) and @5), we obtain the time
tween the natural frequencies is estimated to be evolution of the phase average= (¢1 + ¢2)/2:
Aw=8w1— Sw2 (46) d K ~
o d_f =w |:1+ :Fs(w)i| ) (54)
_ Bi—By [ —V*(¢)/0($) V($)6(9) @
= 1- dp  (47) . 1. .
2r ] AIV@ +g L sy =3 (F+=w). (55)
Taking the difference between Eqd4] and @5), we ob- where @ = w + (w1 + 8w2) /2. When synchronization is
tain the time evolution of the phase differen¢e= ¢1 — ¢2: achieved, the frequency is shifted to
dw _ Aw A d K ~
1 ! lsync w

FaW) =3 (F(I’//) B F(_w)> ' (49) We calculated the phase sensitivity*, with a relax-

Using a primitive function on the right-hand side of Egg, ~ &tion method Ermentrout 1996 Ermentrout and Terman

we find that the phase difference obeys a gradient dynamicaf*19, using a numerical integration of the adjoint model of
the Dieterich—Ruina oscillator. The integration is also per-

system formed using a fourth-order Runge—Kutta scheme with vari-
d_lﬁ _ _d_U (50) able time-step size(ess et a).19929. Figure9 shows the
d — dy’ phase sensitivity, or the values @f, during a time interval.
v The value of the sensitivity remains positive for most of the
UW) =— / [Aa) + 2Kfa(§)] de . (51) period except at the moment when a slip event occurs. After
the slip event, the sensitivity starts to increase for a while,

-7

following which it gradually decreases. Using the calculated
As t — oo, the state approaches a stable point at the botvalues ofV, 6, andV* as functions of phase, we have also
tom of the potential/. The realization of synchronization is calculated the PCF for the oscillator according to E3p)(
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Fig. 9. Phase sensitivityV*, as a function of time in years

(red curve) calculated numerically using the relaxation method .=
The parameters are set b, Vp, g, A, B, L) =(1.00 x 10° Nm~3, ]
317x 10 9ms1, 5.00x 10°Nm~3s, 150x 10°Nm~2, 2.20x

K

4 0x10°

1-5x107°

asym ===«
10°Nm~2, 1.00x 10~2 m). The green curve is fdr/ Vp in a loga- Axr0 ] ot
!rithmi_c scale. Note that* becomes negative for some time periods O 0T 0P 1000 105105107 105105107 108 107 105 105 1% 105 102 107 100
inwhich v/ Vpis large. v v

Fig. 10.The phase coupling functioft, as a function of phase, nor-

malised by the coupling intensi# = k1o = k21, in (a) linear scale

of ¢ and (b) logarithmic scales ofy. The parameters are set to
Figure10a shows the PCF as a function of phase. Figdte (k. Vp.g. A, B, L) =(1.00x 10°Nm~3,3.17x 10-9ms~1, 5.00x
shows the PCF on negative and positive half-planes of phas&® Nm—3s, 150x 10° Nm~2, 2.20x 10°Nm~2, 1. 00>< 102 m).
in a logarithmic scale. The PCF is classified as an anti-phaséhe blue, green, and red curves are the antlsymmet”dhaﬁym-
type as in Fig4, although the shape does not resemble a sindnetric partf’s, and totall", respectively. For each case in Talile
curve. the phase difference¢ of synchronized oscillators and the corre-

By checking the positional relation between the horizon-SPonding value oF-Aw/(2K) are indicated by a filled circle and

tal line, ' = — Aw/(2K), and antisymmetric parf.a, of the o & oW respectively.
PCF curve in Figl10, we can determine whether Ec2j
subject to inequality§3) has a solution, i.e. we can eval-
uate whether synchronization is achieved. In this setting,
synchronization is expected in the range-a.5 x 10~1°
—Aw/(2K) < 6.5 x 107 15kg~1m?s. If there is an intersec-
tion between the horizontal line and antisymmetric part, > . :
f'.. of the PCF, in addition td" being a decreasing func- m|cro -structure” neany| >~ 0, a flat hill-like structure in

tion of the phase at that point, then the synchronization |s ~ ‘/{OE %I'Or; with a suddtegjurgp f[cr)] the orltglnh as sg?fwn In
achieved with the difference of phase at which the intersec- Fig. us, We cannot decide the exact phase difierence

tion is located, as indicated in Fid0Oa. The frequency of at which the oscnlator;shatr?hneagly synchron;)zed in- phasetl
synchronized oscillators is also derived using the symmetné—k)wever we are sure that the pnases never become exactly

!/
t I, of the PCF dina to EB6). in-phase, wheré&, violates the inequality3).
part, s, ot the according to E¢bQ) According to the phase reduction method, the range of pa-

rameters in which two oscillators synchronize is estimated to
be

properties of coupled oscillators can be quantitatively esti-
mated using the phase reduction method when the coupling
is sufficiently weak. The PCIF4 has a pretty complicated

5.3 Comparison of the results of numerical integration
and phase reduction

In Table 1, important quantities representing the synchro- 4 B
nization i ised: i 7 28 (1) 28 (1)

properties are summarised: the difference of the naty = |16 x 102—-L. _11x 10 2L2| -1, (57)
ural frequencies\w, phase differenceésync, and frequency K K
de/dt|syne Data in the parentheses are the estimated val-
ues for the synchronization properties of the oscillator pairs,
which are derived from the intersection of the PCF and awhere A represents the difference between two oscillators.
horizontal line. The estimated values from the PCF are inThis gives|AB| < 2.7 x 10° Nm~2 for the parameters used
reasonable agreement with the corresponding ones by nihkere, which is consistent with the results of numerical inte-
merical integration. This indicates that the synchronizationgrations.
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6 Three-oscillator system conditions b2) and 63) for a system of two oscillators, the
_ . _synchronization of the three-oscillator system is expected to

Here, we extend the analysis to a system of three identicape realised at the stable equilibrium points of the phase flow
mutually coupled Dieterich-Ruina oscillators. Each oscilla-in the (1, y3)-plane; these equilibrium points emerge as
tor in the system is assumed to be described by E&)s. ( intersections of the nullclines for the phase flows (Fi3.
and @) and contain the same parameter set as oscillator lind14). In the upper-right part of Figl4, the nullclines for
in Sect.5. We consider two different coupling topologies: dy /dr = 0 and dy3/dt = 0 nearly overlap because(y1)
a periodical coupling in a ring with spring constaris = is almost equal td"(3) owing to a rather flat region df
k23 = k31 = K and a non-periodical coupling in a line with (Fig. 10b) they share in this range.
k12 =ko3= K, k31 =0. In terms of phase, the state of the
three-oscillator system can be characterised by the phasg.3 Comparison of the results of numerical integration
differences between the oscillatorg, = ¢1 — ¢2 andyz = and phase reduction
¢3— ¢2.

- ) The triphase synchronization (e4hara et al, 2011) in the
6.1 Numerical integrations periodically coupled system (Fig1) is achieved because the
phase oscillators exclude each other with an equal intensity

We performed numerical integrations of a discrete-time ver--""° ; ]
owing to the anti-phase nature of the PCF (Hig). It corre-

sion of the original system of differential equations for the AT
two types of coupling patterns. Figurel shows the re- sponds t.o a stable spiral in the flourt.h guadrant of'the.,- phase
sults for the periodical coupling. After convergence, the threePlane (Fig.13). The_ synchronization in the non-periodically
oscillators share a common phase difference 012 i.e. coupleq system (Fid.2) corresponds to one of the two stable
(Y1, ¥3) ~ (%m _%n). Figure 12 shows the results for the nodes in the first quadrant of the phase plane (Hk);...The
non-periodical coupling. Although the convergence is rather ©aSOn for the slow convergence for the latter case is that the
slow, the oscillators gradually synchronize at phase differ-orbit of the phase differences should follow a static pathway

ences neafy1, 3) ~ (7.0 x 1073, 2.6). along one of nearly overlapped nullclines mentioned above.
' ' In each three-oscillator system, the phase flow has a pair of
6.2 Application of the PCF stable equilibrium points at a symmetric position in the phase

plane with different basins of attraction. Hence, the conver-
By applying the phase reduction method to the system ofgence of the phase differences is dependent on which basin
three identical oscillators, the evolution of the phases can bé¢he initial condition belongs.
described as

a _

O w+zkijf(¢i—¢j), i=123, (58) 7 Conclusions

J#
. The Dieterich—Ruina oscillator can be viewed as a self-
wherel’ =T'/K.. . _ sustained oscillatory system with two degrees of freedom.
Differences between the three equations38) (give the  Thjs concisely describes the stick-slip motion of a slider

time evolution for the phase differences as in E48)(The  griven by a plate through a spring and dashpot against a rate-
time evolution of the system of periodically coupled oscilla- anq state-dependent friction.

tors can be written as When the bifurcation parametery =o (b —a) —
dyy GVp/(2c) — Lk passes through zero, it encounters a
o = LW -T(y)-T(=v¥a)+T(W1—v3). (59  supercritical Hopf bifurcation, and an asymptotic analytical
dyr3 solution (Egs.22, 27-29) in the weakly nonlinear regime

—— =T W3) —T(—y3) —T'(—y)+TWs—y1). (60) s available foru >0, which may serve as a formula for

dr . ) .
evaluating the recurrence intervals of slow earthquakes if the
The time evolution of the system of non-periodically coupled s|ip instability is sufficiently weak.

oscillators can be written as Some collective behaviours are found for a pair of weakly
dyr coupled Dieterit_:thuina oscillators. The tv_vo-oscillato_r sys-
o - Iy —T'(=y1) —T'(=y3), (61)  tem that has similar weakly coupled oscillators exhibited
s synchronization for some combinations of the coupling
o = I'(Y3) —T(=y3) — T'(—yn). (62) strength and similarity of the oscillators. Synchronization

is expected in the parameter range of inequabiy).(Even
Each three-oscillator system is thereby reduced to a twothough different systems of oscillators should have different
dimensional dynamical system for the phase differences (e.gcriteria, a simple model for the earthquake generation cy-
Aihara et al, 2011); this two-dimensional system has a sym- cle along the Nankai trough exhibited synchronization in a
metry because/; and y3 are interchangeable. Similar to similar range ofyp < 0.35 (Cases 1, 2, and 3 ditsui and
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Fig. 11. The time evolution of¥’/V;, for three identical oscillators with a periodic coupling in a logarithmic scale. Red, blue, and green
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3x103Nm=3, k31 = 0 (non-periodic one-dimensional coupling). They synchronize at the phase differeri¢gas®g) ~ (7.0x 1073,2.6),

where oscillators 1 and 2 are nearly in-phase. This synchronization corresponds to a stable nodetin Fig.
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represent the nullclineydy /dt =0 and di3/dr = 0, respectively.
Stable spirals are located ait%n, :F%n). The origin is an unsta-
ble node, and the three saddles are around-(03), (—0.3, 0), and
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Fig. 14. Flow direction and nullclines on the/f, v3)-plane in

a logarithmic scale for the phase flow of three identical oscilla-
tors that are non-periodically coupled. Arrows indicate the flow
direction. Green and red curves represent the nullclipe/dr =

0 and dy3/dr =0, respectively. Stable nodes are located around
(8x 1073, 2.6) and (26, 8x 1073). The origin is an unstable
node, and saddles are around (0.375, 0.375% 1(9_7, —3), and
(-=3,2x1077).

Hirahara 2004, which suggests that synchronization can oc-
cur in seismogenic process.

The synchronization is anti-phase for an identical pair;
however, their phases tend to align for non-identical pairs
with weak coupling. The phase behaviour was quantitatively
estimated using the phase coupling function for the oscillator.

It is interesting that a pair of non-identical oscillators with
weak coupling can nearly cause an in-phase synchronization.
This suggests the possibility of sequential occurrences of ad-
jacent earthquakes.

Distinct phase alignment behaviours were found for three-faults moving at similar slip rates with mutual stress cou-
oscillator systems. The system of three identical oscillatorspling (Scholz 2010. Moreover, the method is still applica-
equally coupled in a ring exhibits a triphase synchronization,ble even if the inertia is included in the model or another
in which they arrange themselves such that they are out-offriction constitutive law is adopted. It may be of interest to
phase with respect to each other by/3. In contrast, if three  examine how the phase coupling function changes its prop-
identical oscillators (1, 2, and 3) are equally coupled in a lineerty according to these details of the modelling. In particular,
with spring constant&io = k23, k31 = 0, then oscillators 1 it will be meaningful to specify the extent to which the inertia
and 2 or oscillators 2 and 3 become nearly in-phase, while théerm will affect the timing of slip events.
other remains nearly anti-phase. The synchronization proper- The phase descriptior34) has a general form applicable
ties were quantitatively estimated using the phase reductiomo a system with an arbitrarily large number of the oscillators
method. described by Egs4j and 6), as long as the oscillators are

These results demonstrate that synchronization should oonveakly coupled. As a consequence of the anti-phase nature
cur between several coupled oscillators in stick-slip motion,of the oscillator, which is evident from the inequali§2j or
for which we can systematically use the phase reductiorfrom the shape of the PCF (Figé.or 10), an irregular pat-
method as an analytical tool. In the context of seismogenidern may emerge even in a homogeneous system with a large
processes, the phase reduction method can be applied fopulation of diffusively coupled oscillators. This is where
the analysis of observed synchronization in a seismogenieve will be able to find the Benjamin—Feir instability deve-
zone that is presumed to consist of neighbouring groups ofoping phase turbulenc&(ramotq 1984).
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Appendix A coordinates as
-1
The Taylor expansion B 1
Vi=Vp|l—-1 -1), B1
=" (Lk 1—e (B1)
The Taylor expansion of Eqsl@) and (1) in terms of the Vo
deviationu = X — X is as follows. Vo= o’ (B2)
Vi
Vg= ——F (B3)
du €2(1+€3)
a:L0u+uL1u+M(u,u)+N(u,u,u)+h.o.t.,(Al) ZB 3
Vo 1 1= ——(1—e1), (B4)
-5 -7 Vpk
Lo L Vo (A2) p
0= 3w+ v, | LT1 Lk\ Lkt
L™ 12 L Opo=—|—|(1——)+—| . (B5)
-0 0o Vo Le2 B B
— L
L= o %} B3 b= ~epes. (B6)
L 12 L Vp
i _1 L1
M@uw=| , (A%)  fa=— (87)
Cxxly + Cxyllxlly + CyyUs p €4
- L
_ 0 5= — (1 —ep)es. (B8)
N, u,u)= |:c”xuff+c”yu§uy—|—cx”uxu§+c_vyyu§:|7 (AS) VP
Uy An example of the trapping region is illustrated in FRiL.
u=X-Xo= uo | (A6) If we assign appropriate valuesdg then all the trajectories
" Y in R will be confined within it. To be specific, we can set the
Y% (g+1) A7 diagonal segmentD, EF, andFA to be sufficiently steep, or
Cox =7 L3 ’ (A7) vertical, such that any flows on them would be trapped. This
sz(q2+ 1)(d —1) is derived as_follows. Slopes of the flows on a delpgV
Cxy = — 2 ) (A8) plane are defined as
d—1
ey =——7— (A9) _ glogv 0%
=d — &
Cxxx = — J > (AlO) _ Lk (& _ 1) ; 1) — B (Bg)
V3(@?+Dd -1 A+gv \V 1-¥8 A+gV’
Cxxy = I3 , (All)
Vp(q2 +1)(d —1)d Here, we assess this quantity especially on the diagonal seg-
Cryy = 2 , (A12) mentsCD, EF, andFA.
ey = LD (A13) — SegmenCD
>y VoL Since CD has no intersections with nullcline I, and

where h.o.t. denotes higher order terms.

Appendix B

The trapping region

The region R can be constructed by bounding
with a hexagon H=ABCDEF in a Ilag—logV
plane, where A=log61,logVi), B=(logbs,logVi),

is placed on the upper right side of it, the quantity
1/(1-Vv#e/L)—1 has afinite negative value. Hence, if

we assigrV a large valuely | can be arbitrarily small.

In other words, if we place the segmenD in a large

V region, then the flows on it should have sufficiently

gentle, or horizontal, slopes to be trapped in the re-
gion R.

— SegmenEF
On this segment, using, <V < Vo, and 0< V@/L <
e5 < 1, we find

1 1 1

C=(logfa,logVs), D=(logtz,logV2), E=(logps, logVz),
and F=(log6s,logVp). Using small positive values;,
1<i <6, we can define the constants for these positional

Nonlin. Processes Geophys., 21, 25367, 2014

(B10)

< < ;
A+gVo 7 A+gV — A+gVWp
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log(V

Fig. B1. A trapping region in the log-log vV plane. Dotted line rep-
resents nullcline 1, dashed curve represents nulicline Il, black do
is the equilibrium pointX, thick solid line represents a hexagon

)

From these three inequalities, we get an estimation:
V=B/(B/L-k)/0

nullcline II 0>y >—

=& < —1. B17
yuT & (B17)

Using the same method as tRE case, if we usé; as
de/dt<o the slope of the segmeR#, then flows on it should
e have gentle slopes to be trapped in the region R.

SeeStrogatz(2001) for the construction of trapping regions.

de/dt>0
dv/dt<0

Appendix C
The range of application of the phase reduction method

To investigate the range of application of the phase reduction

method, we quantify here the weakness of heterogeneity and

I 0 o interaction of the oscillators in terms of the system of mutu-
g(®) o . . . )
8=B/Vp/k  dvid>0 ally coupled Dieterich—Ruina oscillators. Since the orbit of
oscillator is well captured on a logarithmic scale as in Bjg.
jtis convenient to deal with the logarithm of the variables in
this discussion. The time evolution dbgo;,logV;) can be

H=ABCDEF that bounds the trapping region R, thin solid lines Written in a dimensionless form:
represent the asymptotes for nullcline Il, and arrows represent the

flows

www.nonlin-processes-geophys.net/21/251/2014/

dlog#; 21 Vp -
= (2 2) (-va). €y
1% 1% 7. .
PP gy, @®11) dlogVi _ (2T kiVp 1
V2 14 dr w A )1y (g_Vp)
0T 1<t 4 (B12) oA
< ——F — —-1. .
-7 1w 17 () (1- %) 2=
kiLi V,-G,-
From these three inequaliti imati -
_ nequa ities, we get an estimation for 21 kij Vi 1 v,
the negative slope: — = -1, (C2)
w Al 1 _|_ (ng> ‘/l
Vi i
= () (1))
V= v, e - -
AtV V2 1-es whered = 0Vy/L, Vi = Vi/ Vp, T = ot/ (27).
=& < -1, (B13) We can apply the phase reduction method if the pertur-

bations caused by the oscillator difference and the coupling
The rightmost inequality is a consequencewot 0. If  term are sufficiently smaller than the absolute value of the
we uset; as the slope of the segméif, then flows on  Floquet exponent for the amplitude mode of the limit cy-
it should have sufficiently gentle slopes to be trappedcle dx /d: = F(X). This condition ensures that the orbits of
in the region R. coupled oscillators stay in the neighbourhood of the original
limit cycle orbit owing to the restoring effect. The Floquet

gegtwenFA t using: <V < V.and 0< VO /L exponent for the amplitude mode of oscillator 1 in Séct.
1 n ']f sc(jagmen yusingy =V = Vpand0< VO/L < s agtimated to be — —8.8 x 101951, while the averaged
» Wein perturbations caused by the oscillator difference and the cou-
1 1 pling term are estimated to be
(B14)
A+gV — A+g\q
Vo Vo | 1 / -1 [ ~ 1 }
0<-Ff-1, B15 Ain=AB—2|— 1-Vo)— |dp
. 4 (B15) AL|2v ] 14 &% ( ) Vo
O<1— vy L (B16) = AB-(80x 107N tm?s), (C3)
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Comparison of the Orbits Substituting these inthwh, Awe K o, we get the conditions
; ; , : : , for AB andK:
8 | e T e s |
10 \M\, | ; AB < 7.1x 10°Nm2, (C9)
10° b N : —— K < 7.6 x 10°Nm=3. (C10)
‘5 :
3 ‘ \-\ ‘ Taking into account these criteria, we choose these para-
107 NG 1 meters in the range of @ AB <5x 10°Nm~2and 0< K <
) N 3x 108 Nm~—2. We have also checked directly that each orbit
o 104 + p % J . . . . . .
> % in the numerical integrations stays in the neighbourhood of
= 0 the original limit cycle orbit. Figur€1 shows a comparison
107 1 1 of the orbits.
107 Origihél' e N
oscillator 1 in case 3 ’\,{ ‘ ’ AcknowledgementsiVe gratefully acknowledge the helpful
10 L oscillator 2incase 3 - LN o comments and suggestions from Ralf Toenjes and an anonymous
‘ ‘ FoN £ reviewer. We are grateful to M. Toriumi and H. Noda for their
10 ; ; i ; i ‘-\‘4\_ gl helpful discussions. We also thank Y. Hiyoshi for providing the
108 10%  10% 102 10° 102 10% numerical model of the oscillator.
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