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Abstract. A rationale is provided for the emergence of syn-
chronization in a system of coupled oscillators in a stick-slip
motion. The single oscillator has a limit cycle in a region
of the state space for each parameter set beyond the super-
critical Hopf bifurcation. The two-oscillator system that has
similar weakly coupled oscillators exhibits synchronization
in a parameter range. The synchronization has an anti-phase
nature for an identical pair. However, it tends to be more in-
phase for a non-identical pair with a rather weak coupling. A
system of three identical oscillators (1, 2, and 3) coupled in
a line (with two springsk12 = k23) exhibits synchronization
with two of them (1 and 2 or 2 and 3) being nearly in-phase.
These collective behaviours are systematically estimated us-
ing the phase reduction method.

1 Introduction

Synchronization is ubiquitous in nature as there are nu-
merous natural networks of nonlinear dynamical systems
(Pikovsky et al., 2003). Because faults that cause earthquakes
or seismogenic processes can be described as nonlinear dy-
namical systems, synchronization may occur in fault be-
haviour (Scholz, 2010). The standard picture for the occur-
rence of interplate earthquakes is that a fault segment elasti-
cally driven by one plate, under the frictional resistance by
another plate, exhibits a stick-slip motion that causes near-
periodic spikes. A group of such segments can collectively
cause recurring earthquakes with some statistical regularity
(e.g.Scholz, 2002; Kawamura et al., 2012). Although many
factors about the interaction between fault segments are still
unknown, some evidence suggests that they can exhibit syn-
chronization (de Rubeis et al., 2010). For example,Chelidze
et al. (2005) reported that a stick-slip object in a laboratory
setting was entrained by a periodic force.Scholz(2010) sta-

tistically determined that the occurrence of earthquakes in
some regions was clustered. He reported that synchronous
clusters of ruptures of several faults were identified in the
south Iceland seismic zone, the central Nevada seismic belt,
and the eastern California shear zone. Meanwhile,Mitsui and
Hirahara(2004) successfully demonstrated that the numeri-
cally modelled coupled stick-slip oscillators exhibited some
degree of synchronization. They used a simple spring-slider
system composed of several mutually coupled stick-slip os-
cillators to capture the nature of the earthquake generation
cycle along the Nankai trough, which is located in a zone of
high seismicity where multiple segments that constitute the
fault zone have been reported to rupture almost simultane-
ously (Ishibashi, 2004a). It is worth noting that they found
that a pair of coupled oscillators with slightly different pa-
rameter sets synchronized even for weak coupling (Fig. 6 of
Mitsui and Hirahara, 2004), although their emphasis was on
cases with strong coupling between oscillators.

In spite of these observations, there has been little research
that provides a specific description of the conditions for syn-
chronization and how phases behave collectively. In this re-
gard, we focus on the time evolution of the phases to elu-
cidate the synchronization dynamics behind such collective
behaviours and how phases are locked in the synchroniza-
tion.

The occurrences of some earthquakes are nearly periodic
(e.g. Matsuzawa et al., 2002; Ishibashi, 2004b; Sykes and
Menke, 2006); thus, the generation process can be well mod-
elled as a limit-cycle oscillation. The timing of a limit-cycle
oscillation can be described by a single phase variable. If
the limit-cycles are somehow connected, they should inter-
act with each other and exhibit some collective behaviour as
a consequence of the attraction or repulsion between them in
terms of the phase. The phase reduction method (Kuramoto,
1984) enables us to quantify the rate at which the progress of
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an oscillator phase is affected by another oscillator, thereby
offering a powerful analytical tool to approximate the limit-
cycle dynamics as a closed equation for only a single phase
variable.

We shall confine our attention to simple systems of only
a few oscillators that remain close to a common limit-cycle
orbit, rather than the complicated ones that may produce
chaotic motion (e.g.Huang and Turcotte, 1990, 1992; Abe
and Kato, 2012), so that we can extract some regularity from
the collective behaviour of the oscillator system. This set-
ting, of assuming almost homogeneous system of limit cycle
oscillators, looks reasonable in the light of observations. In
fact, there are some seismic zones that consist of fault seg-
ments that have quite similar recurrence periods. The devi-
ation of the earthquake generation periods between differ-
ent segments along the Nankai trough is a few years, much
smaller than the periods themselves,∼1×102 yr (Ishibashi,
2004a). Likewise, Scholz (2010) points out that synchro-
nization occurs within systems of evenly spaced, sub-parallel
faults with very similar slip rates.

In this study, we quantitatively analyse how a single
slider oscillates under the rate- and state-dependent fric-
tion against a plate motion using a bifurcation analysis and
centre-manifold reduction method. Then, we identify when
and how coupled sliders driven by a plate synchronize as a
collective substance using a phase reduction method.

2 The spring-slider-dashpot system

It is well established that a fault segment that can cause
earthquakes is well described by a spring-slider system (e.g.
Perfettini and Avouac, 2004) subjected to a rate- and state-
dependent friction (Dieterich, 1979; Ruina, 1983; Scholz,
1998); this model exhibits a limit cycle oscillation.

Our research interest, therefore, is in spring-coupled sli-
ders (Fig.1) that are driven by a common plate through
spring and dashpot arrangements set for each slider (e.g.
Rice, 1993; Cochard and Madariaga, 1994), against the fric-
tional resistance by another plate. The equations of motion
for theith slider are

mi
d2xi

dt2
= ki

(
Vpt − xi − x

0
i

)
−
G

2c

(
dxi
dt

−Vp

)
− τi

+

∑
j

kij

(
xj − xi − x

0
ij

)
, (1)

dxi
dt

= Vi, (2)

where xi is the position of the slider,x0
i and x0

ij are the
lengths of springs at rest,ki is the spring constant between
the slider and plate,kij is the spring constant between a
pair of sliders,Vi is the velocity,G is the rigidity, c is the
shear wave velocity, andVp is the constant velocity of the
plate. The frictional forceτi has a rate- and state-dependent

Fig. 1. Diagram of the spring-slider-dashpot system. The config-
uration is identical to the Burridge–Knopoff model (Burridge and
Knopoff, 1967), except that it is also equipped with dashpots and
the friction on the bottom of the sliders is rate- and state-dependent.

form that can be represented as (Ruina, 1983; Dieterich and
Kilgore, 1994):

τi = σi

(
µ∗

i + ai log
Vi

V ∗
+ bi log

θi

θ∗

)
, (3)

whereai andbi are frictional parameters,σi is the normal
stress,V ∗ and θ∗ are the arbitrary reference velocity and
state, respectively, andµ∗

i is a reference frictional coefficient.
The state variableθi obeys an aging law proposed byRuina
(1983) andLinker and Dieterich(1992):

dθi
dt

= 1−
Viθi

Li
, (4)

whereLi is the characteristic length. Under a quasi-static
approximation where the inertiamid2xi/dt2 is sufficiently
small (Gu et al., 1984; Perfettini and Avouac, 2004; Perfettini
et al., 2005; Kano et al., 2010, 2013), the governing equation
for Vi can be derived as

dVi
dt

=

ki
(
Vp −Vi

)
−
Bi
θi

(
1−

Viθi
Li

)
Ai
Vi

+ g

+

∑
j

kij
Ai
Vi

+ g

(
Vj −Vi

)
, (5)

whereAi = σiai , Bi = σibi , andg =G/(2c). In accordance
with the typical applications of the model to the seismogenic
process, we assume that the parameters are in the range of

g > 0, Vp > 0, (6)

(∀i) Ai > 0, Li > 0, ki > 0, Bi −Liki > 0, (7)

(∀i 6= j) kij = kji ≥ 0. (8)

We also assume that all of the initial states are placed in the
first quadrant:

(∀i) Vi(0) > 0, θi(0) > 0. (9)

In Sect.3, we investigate the basic properties of a single
oscillator. After introducing the phase reduction method in
Sect.4, we analyse the properties of synchronization, which
occurs in a two-oscillator system, in Sect.5. We mention
some extensions to a three-oscillator system in Sect.6.
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3 The Dieterich–Ruina oscillator

Here, we investigate the basic properties of a single oscillator
using the bifurcation and perturbation analyses.

3.1 Governing equations

Dropping the indexi in Eqs. (4) and (5) for simplicity, we
obtain the following equations describing a single oscillator:

dθ

dt
= 1−

V θ

L
, (10)

dV

dt
=
k
(
Vp −V

)
−
B
θ

(
1−

V θ
L

)
A
V

+ g
. (11)

This is a two-dimensional dynamical system with six para-
meters(k,Vp,g,A,B,L). Hereafter, the dynamical system
described by Eqs. (10) and (11) is called the Dieterich–Ruina
oscillator, and the state vector is denoted asX = (θ,V )T . For
the simplicity of analytical expressions, we use a new para-
meter set(µ,Vp,C,d,q,L) that is defined as

C =
(
A+ gVp

)−1
, d = CgVp, q =

√
CLk, (12)

µ= B −A− gVp −Lk, (13)

whereµ serves as a bifurcation parameter. Here, we investi-
gate how the system behaves asµ changes. This system has
a unique equilibrium point atX0 = (L/Vp,Vp)

T , which is
given by the intersection of the nullclines:

I : V =
L

θ
for

dθ

dt
= 0, (14)

II : V =

(
B

L
− k

)−1(
B

θ
− kVp

)
for

dV

dt
= 0. (15)

One of the important facts concerning the linear structure of
the system around an equilibrium point is that the Jacobi ma-
trix J has a characteristic sign pattern given by

J =

 −
Vp
L

−
1
Vp

V 3
p
(
q2

+1
)

L2
Vp
L

+µ

[
0 0
CV 3

p

L2
CVp
L

]
=

[
− −

+ +

]
, (16)

which represents a substrate-depletion system (Arcuri and
Murray, 1986). The two eigenvalues of the Jacobi matrix at
X0 are

λ1,2 =
CVp

L
µ±

Vp

2L

√
−4q2 +C2µ2 . (17)

3.2 Stable spiral:µ < 0

The equilibrium point is a stable spiral when−2q/C < µ <
0 because the eigenvalues ofJ are a complex conjugate pair,

λ1,2 =
CVp

L
µ± i

Vp

2L

√
4q2 −C2µ2, (18)

and have a common negative real part.

3.3 Hopf bifurcation: µ = 0

At the very instance whenµ= 0, the equilibrium point be-
gins to lose its stability. The system encounters a Hopf bi-
furcation because the Jacobi matrix has a pair of imaginary
eigenvalues

λ1,2 = ±i
Vpq

L
. (19)

The corresponding eigenvectors are

U =

[
L(iq−1)
Vp(q2+1)
Vp

]
, (20)

and its complex conjugate,U . U andU span the plane con-
taining linear solutions. By introducing a complex amplitude,
W(t), the neutral solution of the system is expressed as

X(t)= X0 +
{
UW(t)exp[iω0t ] + c.c.

}
, (21)

ω0 =
Vpq

L
, (22)

where c.c. represents the complex conjugate. The graph con-
taining the solution indicates an elliptic orbital motion, while
the complex amplitude is an arbitrary complex constant at
this stage (µ= 0) if we neglect nonlinear terms.

3.4 Weakly nonlinear: µ & 0

When the bifurcation parameterµ becomes slightly larger
than 0, the equilibrium point becomes an unstable spiral be-
cause the eigenvalues ofJ are a complex conjugate pair with
a common positive real part. Here, we develop an analytical
expression for the asymptotic solutions in a weakly nonlinear
regime, by expanding Eqs. (10) and (11) as a Taylor series in
terms of the deviationu ≡ X−X0 (see AppendixA), and us-
ing U in Eq. (20) and its dual,U∗ (a left eigenvector), which
is given by:

U∗
=

(
−i
Vp
(
q2

+ 1
)

2Lq
, V −1

p

(
1

2
− i

1

2q

))
. (23)

With the expansion and eigenvectors, we can compute the co-
efficients for a small-amplitude equation near the Hopf bifur-
cation following the centre-manifold reduction method de-
scribed inKuramoto(1984). Assuming the solutions are in
the form of Eq. (21), the time evolution of the complex am-
plitude can be described by the Stuart–Landau equation as

dW

dt
= µαW −β |W |

2W, (24)

α = U∗L1U =
CVp

2L
, (25)
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β = −3U∗N
(
U ,U ,U

)
+ 4U∗M

(
U ,L−1

0 M
(
U ,U

))
+ 2U∗M

(
U ,
(
L0 − 2iω0I

)−1
M (U ,U)

)
=
Vp

2L

(
d (1− d)+ i

q2(1+ 2d)(1− d)+ d2

3q

)
. (26)

This system encounters a supercritical bifurcation to a stable
limit cycle, because the supercriticality conditionReβ > 0
is derived from 0< d = gVp/

(
A+ gVp

)
< 1. Note that the

type of the bifurcation may have some dependence on the
laws of friction and assumptions made on the equation of
motion (Gu et al., 1984; Putelat et al., 2010). In the original
vector form, the limit-cycle solution of Eq. (24) is given by

X = X0 +
{
URsexp

[
i (ω0 + ω̃) t

]
+ c.c.

}
, (27)

Rs =

√
µReα

Reβ
=

√
µC

d(1− d)
, (28)

ω̃ = µReα

(
Imα

Reα
−

Imβ

Reβ

)
= −µ

CVp

L

q2(1+ 2d)(1− d)+ d2

6qd(1− d)
, (29)

which graphically describes an elliptic orbital motion. The
modulus,Rs, and frequency shift,̃ω, are scaled withµ1/2

andµ, respectively.
We performed numerical integrations of Eqs. (10) and (11)

to simulate the limit-cycle oscillation near the Hopf bi-
furcation point for three cases withµ= 10−5, 10−4, and
10−3 Nm−2. The time integrations were performed with the
fourth-order Runge–Kutta scheme containing variable time
step-sizes (Press et al., 1992). The rest of the parameters
were set according to a previous study byKano et al.(2010)
for an inter-plate earthquake occurred on 25 September 2003
in Hokkaido, Japan:(Vp,g,A,B,L)= (3.17× 10−9ms−1,
5.00×106Nm−3s, 1.50×105Nm−2, 2.20×105Nm−2, 1.00×
10−2m); these values also serve as the standard set of para-
meter values for this study. In Fig.2, we show the results
with the orbits of the limit cycle compared to those derived
using Eq. (27). The corresponding orbits are in good agree-
ment whenµ is small.

In the context of seismogenic processes, the analytical so-
lution (Eq. 27) in the weakly nonlinear regime may offer
a simplified description of slow earthquakes (e.g.Yoshida
and Kato, 2003; Helmstetter and Shaw, 2009), which can be
viewed as sustaining aseismic oscillations in which the slip
instability is sufficiently weak (Kawamura et al., 2012). In
particular, the frequencies in Eqs. (22) and (29) can be used
to evaluate the recurrence intervals of such earthquakes.

Fig. 2.Periodic orbits of the Dieterich–Ruina oscillator near the bi-
furcation point, graphs of

(
θVp/L,V/Vp

)
. Red and black curves are

for the periodic solutions of the Stuart–Landau and original differ-
ential equations, respectively. The equilibrium point is(1,1). The
values of bifurcation parameterµ are set to 1× 10−5 Nm−2 (solid
curves), 1×10−4 Nm−2 (dashed curves), and 1×10−3 Nm−2 (dot-
ted curves). The values ofk used here are obtained by settingk =

(B−A−gVp−µ)/L and using the corresponding values ofµ. The
rest of parameters are set to(Vp,g,A,B,L)=(3.17× 10−9 ms−1,
5.00× 106 Nm−3s, 1.50× 105 Nm−2, 2.20× 105 Nm−2, 1.00×

10−2 m).

3.5 Limit cycle: µ > 0

When we increaseµ, the system will enter a strongly nonlin-
ear regime. The equilibrium point becomes either an unsta-
ble spiral (when 0< µ< 2q/C) or unstable node (whenµ >
2q/C). Then, the Poincaré–Bendixson theorem (e.g.Stro-
gatz, 2001) ensures the existence of a limit cycle within some
region surrounding the equilibrium point, because we now
have an unstable equilibrium point with a surrounding trap-
ping region,R. AppendixB describes how flows are trapped
into the region. Figure3 shows an example of a limit cycle
orbit derived by numerically integrating Eqs. (10) and (11).
The orbit appears more polygonal than elliptical and extends
over a wide range in the first quadrant.

4 The phase reduction method

Here, we introduce the phase reduction method for general
limit-cycle oscillators, as well as its specific representation
for weakly nonlinear oscillators.
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Fig. 3.A periodic orbit of the Dieterich–Ruina oscillator, a graph of(
θVp/L,V/Vp

)
, in a double logarithmic plane. The parameters are

set to (k,Vp,g,A,B,L)=(1.00× 105 Nm−3, 3.17× 10−9 ms−1,
5.00× 106 Nm−3s, 1.50× 105 Nm−2, 2.20× 105 Nm−2, 1.00×

10−2 m). The equilibrium point is(1,1).

4.1 Limit-cycle oscillators

A system of coupled self-sustained oscillators can be de-
scribed by

dXi

dt
= F (Xi)+ δf i (Xi)+

∑
j 6=i

gij
(
Xi,Xj

)
, (30)

where we assume that the system dX/dt = F (X) behaves by
itself as a limit-cycle oscillator and that the system described
by Eq. (30) has an oscillatory behaviour similar to it, includ-
ing the frequency and orbit. Provided that the oscillators have
similar properties and are weakly coupled, the phase reduc-
tion method (Kuramoto, 1984), shown below, is applicable
to the system. Using the period,T , and the frequency,ω, for
the limit cycle of the system dX/dt = F (X), we can define
the phase,φ, of a state that is determined up to an integral
multiple ofT , which varies from 0 to 2π . The time evolution
of the phase obeys

dφi
dt

= ω+ δωi +
∑
j 6=i

0ij
(
φi −φj

)
, (31)

whereφi is the phase of the oscillatori, δωi is the frequency
deviation of oscillatori from the original limit cycle fre-
quency, and0ij is the phase coupling function (hereafter,
the PCF) between the oscillatorsi andj , which is periodic
with a period of 2π . These terms are defined as the aver-
aged values of the deviation terms in Eq. (30) over a period

of the limit cycle under the action of phase sensitivity,Z(φ),
(a row vector):

δωi =
1

2π

2π∫
0

Z(φ)δf i(φ)dφ, (32)

0ij (ψ)=
1

2π

2π∫
0

Z(φ)gij (φ,φ−ψ) dφ. (33)

Here,Z(φ) coincides with a left Floquet eigenvector, with
eigenvalue 0, for the linearized equation around the limit cy-
cle. Refer toKuramoto(1984) for the details of the phase
reduction method discussed here.

This procedure is applicable to the system containing
Dieterich–Ruina oscillators (Eqs.4and5), provided that both
the parameter differences and coupling intensities of the os-
cillators are small enough to be treated as a perturbation.
Substituting the specific functions in Eq. (5) into Eq. (33),
we obtain the phase description of the system:

dφi
dt

= ω+ δωi +
∑
j 6=i

kij 0̂
(
φi −φj

)
, (34)

0(ψ)= kij 0̂ (ψ)

=
kij

2π

2π∫
0

V ∗(φ)

A/V (φ)+ g
[V (φ−ψ)−V (φ)] dφ, (35)

whereV ∗ is the phase sensitivity forV . Note thatV andV ∗

are defined along a stable orbit of a single oscillator without
coupling, which has a frequencyω.

4.2 Weakly nonlinear oscillators

Suppose we have a system of weakly nonlinear oscillators
that are identical and mutually coupled. Near the Hopf bifur-
cation point, each oscillator can be described by Eq. (24) and
a coupling term, which is supposed to be small:

dWi

dt
= µαWi −β|Wi |

2Wi +

∑
j 6=i

kijγ (Wj −Wi). (36)

Normalising the equations tot ′ = (µReα)t and

W ′
= (µReα/Reβ)−

1
2 W , we get

dW ′

i

dt ′
= (1+ ic0)W

′

i − (1+ ic2) |W
′

i |
2W ′

i

+

∑
j 6=i

k′

ij (1+ ic1)
(
W ′

j −W ′

i

)
, (37)

c0 =
Imα

Reα
, c1 =

Imγ

Reγ
,

c2 =
Imβ

Reβ
, k′

ij =
kijReγ

µReα
. (38)
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By treating each oscillator as a two-dimensional system
with independent variables

(
ReW ′

i , ImW
′

i

)T , we can analyti-
cally derive the PCF for this complex Ginzburg–Landau-type
equation (Kuramoto, 1984):

0ij (ψ)= −k′

ij [(1+c1c2)sinψ+(c2−c1)(cosψ−1)] . (39)

For the case of the weakly nonlinear Dieterich–Ruina os-
cillators, (Eqs.4 and5 near the Hopf bifurcation point), the
coupling coefficient,γ , is defined in the same manner asα in
Eq. (25):

γ = U∗

[
0 0
0 1
A/Vp+g

]
U=

(
1

2
−i

1

2q

)(
1

A/Vp+g

)
. (40)

Substituting Eqs. (25), (26), and (40) into Eq. (38), we get
the coefficients in Eq. (37):

c0 = 0, c1 = −
1

q
, c2 =

q2 (1+ 2d)(1− d)+ d2

3qd(1− d)
,

k′

ij =
kijL

µ
≥ 0. (41)

Thus, the PCF (Eq.39) for the weakly nonlinear Dieterich–
Ruina oscillator is characterised by

1+ c1c2 = −
q2(1− d)2 + d2

3q2d(1− d)
< 0, (42)

c2 − c1 =
q2(1+ 2d)(1− d)+ d(3− 2d)

3qd(1− d)
> 0. (43)

In particular, the inequality (42) indicates that the coupling
has an anti-phase nature (d0/dψ(0) > 0, d0/dψ(π) < 0)).
Figure4 shows the PCF as a function of the phase with the
same parameters as in Fig.2.

5 Two-oscillator system

Here, we explore when and how synchronization occurs in
the system of two mutually coupled Dieterich–Ruina oscil-
lators. We assume the two oscillators are identical except for
a slight difference in the value ofBi . To confirm the appli-
cability of the phase reduction method to the stick-slip oscil-
lator system, we examine the properties of the synchroniza-
tion in two different ways. First, we observe the synchroniza-
tion through numerical integrations of a coupled oscillator
system. Second, we derive the PCF for the phase equations
using the results from the numerical integration of a single
oscillator system and its adjoint. Then, we determine some
quantities from the plot.

5.1 Numerical integrations

We performed numerical integrations of a discrete-time
version of Eqs. (4) and (5), for a pair of coupled os-
cillators: a reference oscillator (oscillator 1) and a sec-
ond oscillator (oscillator 2). Oscillator 1 had the following

Fig. 4. The phase coupling function as a function of phase, nor-
malised byµ/k12 = µ/k21 for a weakly nonlinear oscillator. The
parameters are set to(Vp,g,A,B,L)=(3.17× 10−9 ms−1, 5.00×

106 Nm−3s, 1.50×105 Nm−2, 2.20×105 Nm−2, 1.00×10−2 m).
The blue, green, and red curves are the antisymmetric part defined
by Eq. (49), symmetric part by Eq. (55), and total by Eq. (35), re-
spectively.

parameters:(k,Vp,g,A,B,L)= (1.00× 105Nm−3, 3.17×

10−9ms−1, 5.00× 106Nm−3s, 1.50× 105Nm−2, 2.20×

105Nm−2, 1.00× 10−2m), and the natural frequency was
1.0687876× 10−9 s−1. Two identical oscillators are coupled
for case 0. For cases 1, 2, and 3, we used oscillator 2 that
has the same set of parameters as oscillator 1 except for
B = 2.2025× 105, 2.225× 105, and 2.25× 105 Nm−2, re-
spectively. The natural frequencies of oscillator 2 in cases 1,
2, and 3 were 1.0652082×10−9 s−1, 1.0340304×10−9 s−1,
and 1.00143857×10−9 s−1, respectively. We used a common
coupling strength ofK = k12 = k21 = 3× 103 Nm−3 for all
cases, based on the one used inKano et al.(2010), which was
derived through the inversion of strain rate from the GPS ob-
servation. We also checked that the values ofB andK were
within the range of application of the phase reduction method
(See AppendixC). The time integrations are performed using
the same method described in Sect.3.4. Figure5 shows the
results of case 0, in which the oscillators synchronize at the
phase differenceψ = −3.14 (anti-phase). Figure6 shows the
results of case 1, in which the oscillators synchronize at the
phase differenceψ = −1.18 (out-of-phase). Figure7 shows
the results of case 2, in which the oscillators synchronize at
the phase differenceψ = −7.07× 10−3 (almost in-phase).
Figure8 shows the results of case 3, in which they exhibit no
synchronization. These phase differences and synchronized
oscillator frequencies are listed in Table1.
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Fig. 5. The time evolution ofV/Vp for case 0 in a logarithmic scale. The variation from 5000 to 95 000 yr is not shown. The parameters
areB = 2.20× 105 Nm−2 for both oscillators, andK = 3× 103 Nm−3. The oscillators synchronize at a phase difference ofψ = −3.14
(anti-phase).

10-8
10-4
100
104
108

 0  1000  2000  3000  4000  5000

V
/V

p

time [year]

ΔB=-2.5x102, K=3.0x103

V1/Vp
V2/Vp

10-8
10-4
100
104
108

 95000  96000  97000  98000  99000  100000

V
/V

p

time [year]

Fig. 6. The time evolution ofV/Vp for case 1 in a logarithmic scale. The variation from 5000 to 95 000 yr is not shown. The parameters are
B = 2.20× 105 Nm−2 for oscillator 1,B = 2.2025× 105 Nm−2 for oscillator 2, andK = 3× 103 Nm−3. The oscillators synchronize at a
phase difference ofψ = −1.18.
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Fig. 7. The time evolution ofV/Vp for case 2 in a logarithmic scale. The variation from 5000 to 95 000 yr is not shown. The parameters
areB = 2.20× 105 Nm−2 for oscillator 1,B = 2.225× 105 Nm−2 for oscillator 2, andK = 3× 103 Nm−3. The oscillators synchronize at
a phase difference ofψ = −7.07× 10−3.
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Fig. 8. The time evolution ofV/Vp for case 3 in a logarithmic scale. The variation from 5000 to 95 000 yr is not shown. The parameters are
B = 2.20×105 Nm−2 for oscillator 1,B = 2.25×105 Nm−2 for oscillator 2, andK = 3×103 Nm−3. The oscillators are not synchronized.
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Table 1. The synchronization properties of some pairs of coupled oscillators with different parameter settings. The corresponding values
estimated from the PCF are shown in parentheses.

Case 0 1 2 3

K [Nm−3
] 3.0× 103

1ω [s−1
]

0 3.57× 10−12 3.47× 10−11 6.73× 10−11

(0) (3.59× 10−12) (3.59× 10−11) (7.19× 10−11)

−
1ω
2K [kg−1m2s]

0 −5.96× 10−16
−5.79× 10−15

−1.12× 10−14

(0) (−5.99× 10−16) (−5.99× 10−15) (−1.19× 10−14)

Synchronized?
Yes Yes Yes No
(Yes) (Yes) (Yes) (No)

ψsync
−3.14 −1.18 −7.07× 10−3 –
(−3.14) (−1.23) (−7.53× 10−3) (–)

dϕ
dt

∣∣∣
sync

−ω [s−1
]

3.62× 10−11 3.44× 10−11 1.76× 10−11 –
(3.61× 10−11) (3.44× 10−11) (1.81× 10−11) (–)

5.2 Application of the PCF

In this setting, the evolution of the phases can be described
as

dφ1

dt
= ω+ δω1 +K0̂ (φ1 −φ2) , (44)

dφ2

dt
= ω+ δω2 +K0̂ (φ2 −φ1) , (45)

where the PCF is defined in Eq. (35), and the difference be-
tween the natural frequencies is estimated to be

1ω ≡ δω1 − δω2 (46)

=
B1 −B2

2π

2π∫
0

−V ∗(φ)/θ(φ)

A/V (φ)+ g

(
1−

V (φ)θ(φ)

L

)
dφ. (47)

Taking the difference between Eqs. (44) and (45), we ob-
tain the time evolution of the phase difference,ψ = φ1 −φ2:

dψ

dt
= 2K

[
1ω

2K
+ 0̂a(ψ)

]
, (48)

0̂a(ψ)≡
1

2

(
0̂(ψ)− 0̂(−ψ)

)
. (49)

Using a primitive function on the right-hand side of Eq. (48),
we find that the phase difference obeys a gradient dynamical
system

dψ

dt
= −

dU

dψ
, (50)

U(ψ)≡ −

ψ∫
−π

[
1ω+ 2K0̂a(ζ )

]
dζ . (51)

As t → ∞, the state approaches a stable point at the bot-
tom of the potentialU . The realization of synchronization is

equivalent to the existence of a phase differenceψsync that
satisfies

dU

dψ
= −1ω− 2K0̂a

(
ψsync

)
= 0, (52)

subject to

d2U

dψ2
= −2K0̂′

a

(
ψsync

)
> 0. (53)

Taking the average of Eqs. (44) and (45), we obtain the time
evolution of the phase average,ϕ = (φ1 +φ2)/2:

dϕ

dt
= ω

[
1+

K

ω
0̂s(ψ)

]
, (54)

0̂s(ψ)≡
1

2

(
0̂(ψ)+ 0̂(−ψ)

)
, (55)

where ω = ω+ (δω1 + δω2)/2. When synchronization is
achieved, the frequency is shifted to

dϕ

dt

∣∣∣∣
sync

= ω

[
1+

K

ω
0̂s
(
ψsync

)]
. (56)

We calculated the phase sensitivity,V ∗, with a relax-
ation method (Ermentrout, 1996; Ermentrout and Terman,
2010), using a numerical integration of the adjoint model of
the Dieterich–Ruina oscillator. The integration is also per-
formed using a fourth-order Runge–Kutta scheme with vari-
able time-step sizes (Press et al., 1992). Figure9 shows the
phase sensitivity, or the values ofV ∗, during a time interval.
The value of the sensitivity remains positive for most of the
period except at the moment when a slip event occurs. After
the slip event, the sensitivity starts to increase for a while,
following which it gradually decreases. Using the calculated
values ofV , θ , andV ∗ as functions of phase, we have also
calculated the PCF for the oscillator according to Eq. (35).
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Fig. 9. Phase sensitivity,V ∗, as a function of time in years
(red curve) calculated numerically using the relaxation method.
The parameters are set to(k,Vp,g,A,B,L)=(1.00× 105 Nm−3,
3.17× 10−9 ms−1, 5.00× 106 Nm−3s, 1.50× 105 Nm−2, 2.20×

105 Nm−2, 1.00×10−2 m). The green curve is forV/Vp in a loga-
rithmic scale. Note thatV ∗ becomes negative for some time periods
in whichV/Vp is large.

Figure10a shows the PCF as a function of phase. Figure10b
shows the PCF on negative and positive half-planes of phase
in a logarithmic scale. The PCF is classified as an anti-phase
type as in Fig.4, although the shape does not resemble a sine
curve.

By checking the positional relation between the horizon-
tal line, 0̂ = −1ω/(2K), and antisymmetric part,̂0a, of the
PCF curve in Fig.10, we can determine whether Eq. (52)
subject to inequality (53) has a solution, i.e. we can eval-
uate whether synchronization is achieved. In this setting,
synchronization is expected in the range of−6.5× 10−15<

−1ω/(2K) < 6.5× 10−15 kg−1m2s. If there is an intersec-
tion between the horizontal line and antisymmetric part,
0̂a, of the PCF, in addition tô0a being a decreasing func-
tion of the phase at that point, then the synchronization is
achieved with the difference of phase at which the intersec-
tion is located, as indicated in Fig.10a. The frequency of
synchronized oscillators is also derived using the symmetric
part,0̂s, of the PCF according to Eq. (56).

5.3 Comparison of the results of numerical integration
and phase reduction

In Table 1, important quantities representing the synchro-
nization properties are summarised: the difference of the nat-
ural frequencies1ω, phase differenceψsync, and frequency
dϕ/dt |sync. Data in the parentheses are the estimated val-
ues for the synchronization properties of the oscillator pairs,
which are derived from the intersection of the PCF and a
horizontal line. The estimated values from the PCF are in
reasonable agreement with the corresponding ones by nu-
merical integration. This indicates that the synchronization

Fig. 10.The phase coupling function,0̂, as a function of phase, nor-
malised by the coupling intensityK = k12 = k21, in (a) linear scale
of ψ and (b) logarithmic scales ofψ . The parameters are set to
(k,Vp,g,A,B,L)=(1.00×105 Nm−3, 3.17×10−9 ms−1, 5.00×

106 Nm−3s, 1.50×105 Nm−2, 2.20×105 Nm−2, 1.00×10−2 m).
The blue, green, and red curves are the antisymmetric part0̂a, sym-
metric part0̂s, and total0̂, respectively. For each case in Table1,
the phase differenceψ of synchronized oscillators and the corre-
sponding value of−1ω/(2K) are indicated by a filled circle and
an arrow, respectively.

properties of coupled oscillators can be quantitatively esti-
mated using the phase reduction method when the coupling
is sufficiently weak. The PCF̂0a has a pretty complicated
“micro-structure” near|ψ | ' 0, a flat hill-like structure in
0 . ψ < 10−2 with a sudden jump to the origin, as shown in
Fig. 10b. Thus, we cannot decide the exact phase difference
at which the oscillators are nearly synchronized in-phase.
However, we are sure that the phases never become exactly
in-phase, wherê0′

a violates the inequality (53).
According to the phase reduction method, the range of pa-

rameters in which two oscillators synchronize is estimated to
be

η ≡

∣∣∣∣∣1.6× 10−21
(
A
L

)
K

− 1.1× 10−21
(
B
L

)
K

∣∣∣∣∣< 1, (57)

where1 represents the difference between two oscillators.
This gives|1B|< 2.7× 103 Nm−2 for the parameters used
here, which is consistent with the results of numerical inte-
grations.
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6 Three-oscillator system

Here, we extend the analysis to a system of three identical
mutually coupled Dieterich–Ruina oscillators. Each oscilla-
tor in the system is assumed to be described by Eqs. (4)
and (5) and contain the same parameter set as oscillator 1
in Sect.5. We consider two different coupling topologies:
a periodical coupling in a ring with spring constantsk12 =

k23 = k31 =K and a non-periodical coupling in a line with
k12 = k23 =K, k31 = 0. In terms of phase, the state of the
three-oscillator system can be characterised by the phase
differences between the oscillators,ψ1 = φ1 −φ2 andψ3 =

φ3 −φ2.

6.1 Numerical integrations

We performed numerical integrations of a discrete-time ver-
sion of the original system of differential equations for the
two types of coupling patterns. Figure11 shows the re-
sults for the periodical coupling. After convergence, the three
oscillators share a common phase difference of 2π/3, i.e.
(ψ1,ψ3)' (2

3π,−
2
3π). Figure12 shows the results for the

non-periodical coupling. Although the convergence is rather
slow, the oscillators gradually synchronize at phase differ-
ences near(ψ1,ψ3)' (7.0× 10−3,2.6).

6.2 Application of the PCF

By applying the phase reduction method to the system of
three identical oscillators, the evolution of the phases can be
described as

dφi
dt

= ω+

∑
j 6=i

kij 0̂
(
φi −φj

)
, i = 1,2,3, (58)

where0̂ = 0/K.
Differences between the three equations in (58) give the

time evolution for the phase differences as in Eq. (48). The
time evolution of the system of periodically coupled oscilla-
tors can be written as

dψ1

dt
= 0(ψ1)−0(−ψ1)−0(−ψ3)+0(ψ1 −ψ3), (59)

dψ3

dt
= 0(ψ3)−0(−ψ3)−0(−ψ1)+0(ψ3 −ψ1). (60)

The time evolution of the system of non-periodically coupled
oscillators can be written as

dψ1

dt
= 0(ψ1)−0(−ψ1)−0(−ψ3), (61)

dψ3

dt
= 0(ψ3)−0(−ψ3)−0(−ψ1). (62)

Each three-oscillator system is thereby reduced to a two-
dimensional dynamical system for the phase differences (e.g.
Aihara et al., 2011); this two-dimensional system has a sym-
metry becauseψ1 andψ3 are interchangeable. Similar to

conditions (52) and (53) for a system of two oscillators, the
synchronization of the three-oscillator system is expected to
be realised at the stable equilibrium points of the phase flow
in the (ψ1,ψ3)-plane; these equilibrium points emerge as
intersections of the nullclines for the phase flows (Figs.13
and14). In the upper-right part of Fig.14, the nullclines for
dψ1/dt = 0 and dψ3/dt = 0 nearly overlap because0(ψ1)

is almost equal to0(ψ3) owing to a rather flat region of0
(Fig. 10b) they share in this range.

6.3 Comparison of the results of numerical integration
and phase reduction

The triphase synchronization (e.g.Aihara et al., 2011) in the
periodically coupled system (Fig.11) is achieved because the
phase oscillators exclude each other with an equal intensity
owing to the anti-phase nature of the PCF (Fig.10). It corre-
sponds to a stable spiral in the fourth quadrant of the phase
plane (Fig.13). The synchronization in the non-periodically
coupled system (Fig.12) corresponds to one of the two stable
nodes in the first quadrant of the phase plane (Fig.14). The
reason for the slow convergence for the latter case is that the
orbit of the phase differences should follow a static pathway
along one of nearly overlapped nullclines mentioned above.
In each three-oscillator system, the phase flow has a pair of
stable equilibrium points at a symmetric position in the phase
plane with different basins of attraction. Hence, the conver-
gence of the phase differences is dependent on which basin
the initial condition belongs.

7 Conclusions

The Dieterich–Ruina oscillator can be viewed as a self-
sustained oscillatory system with two degrees of freedom.
This concisely describes the stick-slip motion of a slider
driven by a plate through a spring and dashpot against a rate-
and state-dependent friction.

When the bifurcation parameterµ= σ(b− a)−

GVp/(2c)−Lk passes through zero, it encounters a
supercritical Hopf bifurcation, and an asymptotic analytical
solution (Eqs.22, 27–29) in the weakly nonlinear regime
is available forµ& 0, which may serve as a formula for
evaluating the recurrence intervals of slow earthquakes if the
slip instability is sufficiently weak.

Some collective behaviours are found for a pair of weakly
coupled Dieterich–Ruina oscillators. The two-oscillator sys-
tem that has similar weakly coupled oscillators exhibited
synchronization for some combinations of the coupling
strength and similarity of the oscillators. Synchronization
is expected in the parameter range of inequality (57). Even
though different systems of oscillators should have different
criteria, a simple model for the earthquake generation cy-
cle along the Nankai trough exhibited synchronization in a
similar range ofη < 0.35 (Cases 1, 2, and 3 ofMitsui and
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Fig. 11. The time evolution ofV/Vp for three identical oscillators with a periodic coupling in a logarithmic scale. Red, blue, and green
curves correspond to oscillators 1, 2, and 3, respectively. The variation from 5000 to 65 000 yr is not shown. The parameters areB = 2.20×

105 Nm−2 for all oscillators, andk12 = k23 = k31 = 3× 103 Nm−3 (periodic one-dimensional coupling). The three oscillators synchronize
at the phase differences(ψ1,ψ3)' (2

3π,−
2
3π). This synchronization corresponds to a stable spiral in Fig.13.
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Fig. 12. The time evolution ofV/Vp for three identical oscillators with a non-periodic one-dimensional coupling in a logarithmic scale.
Red, blue, and green curves correspond to oscillators 1, 2, and 3, respectively. The variation from 5000 to 13 825 000 yr is not shown. The
initial states for three oscillators are different from each other. The parameters areB = 2.20×105 Nm−2 for all oscillators, andk12 = k23 =

3×103 Nm−3, k31 = 0 (non-periodic one-dimensional coupling). They synchronize at the phase differences of(ψ1,ψ3)' (7.0×10−3,2.6),
where oscillators 1 and 2 are nearly in-phase. This synchronization corresponds to a stable node in Fig.14.
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Fig. 13. Flow directions and nullclines on the (ψ1, ψ3)-plane for
the phase flow of three identical oscillators that are periodically
coupled. Arrows indicate the flow direction. Green and red curves
represent the nullcline dψ1/dt = 0 and dψ3/dt = 0, respectively.
Stable spirals are located at (±

2
3π , ∓

2
3π ). The origin is an unsta-

ble node, and the three saddles are around (0,−0.3), (−0.3, 0), and
(0.375, 0.375).

Hirahara, 2004), which suggests that synchronization can oc-
cur in seismogenic process.

The synchronization is anti-phase for an identical pair;
however, their phases tend to align for non-identical pairs
with weak coupling. The phase behaviour was quantitatively
estimated using the phase coupling function for the oscillator.
It is interesting that a pair of non-identical oscillators with
weak coupling can nearly cause an in-phase synchronization.
This suggests the possibility of sequential occurrences of ad-
jacent earthquakes.

Distinct phase alignment behaviours were found for three-
oscillator systems. The system of three identical oscillators
equally coupled in a ring exhibits a triphase synchronization,
in which they arrange themselves such that they are out-of-
phase with respect to each other by 2π/3. In contrast, if three
identical oscillators (1, 2, and 3) are equally coupled in a line
with spring constantsk12 = k23, k31 = 0, then oscillators 1
and 2 or oscillators 2 and 3 become nearly in-phase, while the
other remains nearly anti-phase. The synchronization proper-
ties were quantitatively estimated using the phase reduction
method.

These results demonstrate that synchronization should oc-
cur between several coupled oscillators in stick-slip motion,
for which we can systematically use the phase reduction
method as an analytical tool. In the context of seismogenic
processes, the phase reduction method can be applied to
the analysis of observed synchronization in a seismogenic
zone that is presumed to consist of neighbouring groups of

Fig. 14. Flow direction and nullclines on the (ψ1, ψ3)-plane in
a logarithmic scale for the phase flow of three identical oscilla-
tors that are non-periodically coupled. Arrows indicate the flow
direction. Green and red curves represent the nullcline dψ1/dt =
0 and dψ3/dt = 0, respectively. Stable nodes are located around
(8× 10−3, 2.6) and (2.6, 8× 10−3). The origin is an unstable
node, and saddles are around (0.375, 0.375), (2× 10−7, −3), and
(−3,2× 10−7).

faults moving at similar slip rates with mutual stress cou-
pling (Scholz, 2010). Moreover, the method is still applica-
ble even if the inertia is included in the model or another
friction constitutive law is adopted. It may be of interest to
examine how the phase coupling function changes its prop-
erty according to these details of the modelling. In particular,
it will be meaningful to specify the extent to which the inertia
term will affect the timing of slip events.

The phase description (34) has a general form applicable
to a system with an arbitrarily large number of the oscillators
described by Eqs. (4) and (5), as long as the oscillators are
weakly coupled. As a consequence of the anti-phase nature
of the oscillator, which is evident from the inequality (42) or
from the shape of the PCF (Figs.4 or 10), an irregular pat-
tern may emerge even in a homogeneous system with a large
population of diffusively coupled oscillators. This is where
we will be able to find the Benjamin–Feir instability deve-
loping phase turbulence (Kuramoto, 1984).
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Appendix A

The Taylor expansion

The Taylor expansion of Eqs. (10) and (11) in terms of the
deviationu ≡ X − X0 is as follows.

du

dt
= L0u +µL1u + M(u,u)+ N(u,u,u)+ h.o.t. ,(A1)

L0 =

 −
Vp
L

−
1
Vp

V 3
p (q

2
+1)

L2
Vp
L

 , (A2)

L1 =

[
0 0
CV 3

p

L2
CVp
L

]
, (A3)

M (u,u)=

[
−

1
L
uxuy

cxxu
2
x + cxyuxuy + cyyu

2
y

]
, (A4)

N (u,u,u)=

[
0

cxxxu
3
x + cxxyu

2
xuy + cxyyuxu

2
y + cyyyu

3
y

]
, (A5)

u = X − X0 =

[
ux

uy

]
, (A6)

cxx = −
V 4

p (q
2
+ 1)

L3
, (A7)

cxy = −
V 2

p (q
2
+ 1)(d − 1)

L2
, (A8)

cyy = −
d − 1

L
, (A9)

cxxx =
V 5

p (q
2
+ 1)

L4
, (A10)

cxxy =
V 3

p (q
2
+ 1)(d − 1)

L3
, (A11)

cxyy =
Vp(q

2
+ 1)(d − 1)d

L2
, (A12)

cyyy =
(d − 1)d

VpL
, (A13)

where h.o.t. denotes higher order terms.

Appendix B

The trapping region

The region R can be constructed by bounding it
with a hexagon H = ABCDEF in a logθ − logV
plane, where A =(logθ1, logV1), B = (logθ4, logV1),
C =(logθ4, logV3), D = (logθ2, logV2), E =(logθ3, logV2),
and F =(logθ5, logVp). Using small positive valuesεi ,
1 ≤ i ≤ 6, we can define the constants for these positional

coordinates as

V1 = Vp

(
B

Lk
− 1

)−1( 1

1− ε1
− 1

)
, (B1)

V2 =
Vp

ε2
, (B2)

V3 =
Vp

ε2 (1+ ε3)
, (B3)

θ1 =
B

Vpk
(1− ε1), (B4)

θ2 =
L

Vp

[
1

ε2

(
1−

Lk

B

)
+
Lk

B

]−1

, (B5)

θ3 =
L

Vp
ε2ε5, (B6)

θ4 =
L

Vp

1

ε4
, (B7)

θ5 =
L

Vp
(1− ε6)ε5. (B8)

An example of the trapping region is illustrated in Fig.B1.
If we assign appropriate values toεi , then all the trajectories
in R will be confined within it. To be specific, we can set the
diagonal segmentsCD,EF, andFA to be sufficiently steep, or
vertical, such that any flows on them would be trapped. This
is derived as follows. Slopes of the flows on a logθ-logV
plane are defined as

γ ≡

d
dt logV
d
dt logθ

=
θ dV

dt

V dθ
dt

=
Lk

A+ gV

(
Vp

V
− 1

)(
1

1−
V θ
L

− 1

)
−

B

A+ gV
. (B9)

Here, we assess this quantity especially on the diagonal seg-
mentsCD, EF, andFA.

– SegmentCD
Since CD has no intersections with nullcline I, and
is placed on the upper right side of it, the quantity
1/(1−V θ/L)−1 has a finite negative value. Hence, if
we assignV a large value,|γ | can be arbitrarily small.
In other words, if we place the segmentCD in a large
V region, then the flows on it should have sufficiently
gentle, or horizontal, slopes to be trapped in the re-
gion R.

– SegmentEF
On this segment, usingVp ≤ V ≤ V2 and 0< V θ/L≤

ε5 < 1, we find

1

A+ gV2
≤

1

A+ gV
≤

1

A+ gVp
, (B10)

Nonlin. Processes Geophys., 21, 251–267, 2014 www.nonlin-processes-geophys.net/21/251/2014/



N. Sugiura et al.: Synchronized oscillators 265

Fig. B1.A trapping region in the logθ -logV plane. Dotted line rep-
resents nullcline I, dashed curve represents nullcline II, black dot
is the equilibrium pointX0, thick solid line represents a hexagon
H = ABCDEF that bounds the trapping region R, thin solid lines
represent the asymptotes for nullcline II, and arrows represent the
flows.

Vp

V2
− 1 ≤

Vp

V
− 1 ≤ 0, (B11)

0<
1

1−
V θ
L

− 1 ≤
1

1− ε5
− 1. (B12)

From these three inequalities, we get an estimation for
the negative slopeγ :

γ ≥
1

A+ gVp

[
kL

(
Vp

V2
− 1

)(
1

1− ε5
− 1

)
−B

]
≡ ξ1 <−1. (B13)

The rightmost inequality is a consequence ofµ > 0. If
we useξ1 as the slope of the segmentEF, then flows on
it should have sufficiently gentle slopes to be trapped
in the region R.

– SegmentFA
On this segment, usingV1 ≤ V ≤ Vp and 0< V θ/L <
1, we find

0<
1

A+ gV
≤

1

A+ gV1
, (B14)

0 ≤
Vp

V
− 1, (B15)

0<
1

1−
V θ
L

− 1. (B16)

From these three inequalities, we get an estimation:

0> γ ≥ −
B

A+ gV1
≡ ξ2 <−1. (B17)

Using the same method as theEF case, if we useξ2 as
the slope of the segmentFA, then flows on it should
have gentle slopes to be trapped in the region R.

SeeStrogatz(2001) for the construction of trapping regions.

Appendix C

The range of application of the phase reduction method

To investigate the range of application of the phase reduction
method, we quantify here the weakness of heterogeneity and
interaction of the oscillators in terms of the system of mutu-
ally coupled Dieterich–Ruina oscillators. Since the orbit of
oscillator is well captured on a logarithmic scale as in Fig.3,
it is convenient to deal with the logarithm of the variables in
this discussion. The time evolution of(logθ̃i, logṼi) can be
written in a dimensionless form:

d logθ̃i
dτ

=

(
2π

ω

Vp

L

)(
1− Ṽi θ̃i

)
, (C1)

d logṼi
dτ

=

(
2π

ω

kiVp

Ai

)
1

1
Ṽi

+

(
gVp
Ai

)
[
1− Ṽi −

(
Bi

kiLi

)(
1− Ṽi θ̃i

) 1

Ṽi θ̃i

]
+

(
2π

ω

kijVp

Ai

)
1

1
Ṽi

+

(
gVp
Ai

) ( Ṽj
Ṽi

− 1

)
, (C2)

whereθ̃ = θVp/L, Ṽi = Vi/Vp, τ = ωt/(2π).
We can apply the phase reduction method if the pertur-

bations caused by the oscillator difference and the coupling
term are sufficiently smaller than the absolute value of the
Floquet exponent for the amplitude mode of the limit cy-
cle dX/dt = F (X). This condition ensures that the orbits of
coupled oscillators stay in the neighbourhood of the original
limit cycle orbit owing to the restoring effect. The Floquet
exponent for the amplitude mode of oscillator 1 in Sect.5
is estimated to beλ= −8.8× 10−10 s−1, while the averaged
perturbations caused by the oscillator difference and the cou-
pling term are estimated to be

1λh ≡1B
Vp

AL

∣∣∣∣∣∣ 1

2π

∫
−1

1
Ṽ

+
gVp
A

[(
1− Ṽ θ̃

) 1

Ṽ θ̃

]
dφ

∣∣∣∣∣∣
=1B ·

(
8.0× 10−15N−1m2s−1

)
, (C3)

www.nonlin-processes-geophys.net/21/251/2014/ Nonlin. Processes Geophys., 21, 251–267, 2014



266 N. Sugiura et al.: Synchronized oscillators

Fig. C1. A comparison of the orbits, graphs of
(
θVp/L,V/Vp

)
, in

a double logarithmic plane. The red curve, green dots, and blue tri-
angles are the orbits of the original limit cycle, oscillators 1 and 2
in case 3, respectively.

1λc ≡
KVp

A

1

2π

∫
1

1
Ṽ

+
gVp
A

dφ

=K ·

(
3.5× 10−15N−1m3s−1

)
, (C4)

where1B = Bi −Bj ,K = kij , and the integrations are per-
formed along the limit cycle orbit. Substituting these into
1λh,1λc � |λ|, we get the conditions for1B andK:

1B � 1.1× 105Nm−2 , (C5)

K � 2.5× 105Nm−3 . (C6)

Furthermore, we can apply averaging over a period to de-
rive the phase shifts if the averaged perturbation on the phase
does not alter the natural frequency substantially. The natu-
ral frequency of oscillator 1 in Sect.5 isω = 1.0×10−9 s−1,
while the perturbations on the phase caused by the oscil-
lator difference and the coupling term are estimated, using
Eqs. (35) and (47), to be

1ωh ≡1B

∣∣∣∣∣∣ 1

2π

2π∫
0

−V ∗(φ)/θ(φ)

A/V (φ)+ g

(
1−

V (φ)θ(φ)

L

)
dφ

∣∣∣∣∣∣
=1B ·

(
1.4× 10−14N−1m2s−1

)
, (C7)

1ωc ≡K max
ψ

∣∣∣0̂(ψ)∣∣∣
=K ·

(
1.3× 10−14N−1m3s−1

)
. (C8)

Substituting these into1ωh,1ωc � ω, we get the conditions
for 1B andK:

1B � 7.1× 104Nm−2, (C9)

K � 7.6× 104Nm−3. (C10)

Taking into account these criteria, we choose these para-
meters in the range of 0≤1B ≤ 5×103 Nm−2 and 0≤K ≤

3×103 Nm−3. We have also checked directly that each orbit
in the numerical integrations stays in the neighbourhood of
the original limit cycle orbit. FigureC1 shows a comparison
of the orbits.
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