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ABSTRACT: 

This study aims to analyse the dynamics of land-use and land-cover (LULC) in a selected southern Amazonian area (Brazil), 

monitoring and distinguishing trajectories in NDVI (Normalized Difference Vegetation Index) variations for the last three decades. 

The area, with a total of 17336 km², has been subject to significant LULC changes associated with deforestation progress and use of 

fire. Considering available Landsat time series, it was selected an image per year from 1984 to 2013 (path/row -231/66), at a 

particular period of year, atmospherically corrected using LEDAPS tools. NDVIs values were generated for each selected image. 

Furthermore, the images of 1984 and 2010 still underwent a classification of LULC differentiate five categories: water, forest, 

secondary/degraded forest, savannah/pasture and crop/bare soil. The trajectories in NDVI variation values were analysed by R 

software, considering intersections of classified categories. The pixels identified as forests on the images of 1984 and 2010 displayed 

stable trajectories of NDVI values, with average value 0.824 and coefficient of variation 3.9%. While the pixels of savannah/pasture, 

which was periodically affected by fire, had an average NDVI value 0.585 and coefficient of variation 15,1%. The main regressive 

trajectory was the transition “forest to crop/bare soil", identifying 1999 as the starting point in the drop in NDVI values, associated 

with an increase of the deforested areas. Therefore, the results show distinct trajectories associated with NDVIs and LULC changes 

that assist in better understanding the dynamics of ecological processes and the human impacts operating in the area. 

1. INTRODUCTION

In recent decades, the southern Brazilian Amazon experienced 

increases in the dynamics of land use and land cover (LULC) 

associated with the expansion of crop and pasture areas, road 

and communication network construction, and population 

density growth (Espindola et al., 2012; Morton et al., 2006; 

Nepstad et al., 2001). This dynamics results in pressure on 

forest resources in the area due to the advance of deforestation, 

degradation and intensive use of fire (Aragão et al., 2008; Lima 

et al., 2012; Vasconcelos et al., 2013). 

To monitor and better understand the dynamics of ecological 

processes and human impacts related to these changes in LULC, 

remote sensing data represents an essential source of analysis , 

allowing to generate systematic information in most different 

spatial and temporal scales (Nagendra et al., 2013).  Two of the 

most important initiatives monitoring deforestation and fires in 

the Brazilian Amazon, the Assessment of Deforestation in 

Brazilian Amazonia (PRODES) (INPE, 2014a) and the 

Queimadas project (INPE, 2014b), have fundamental  remote 

sensing data base to scale and generate information on the use 

of fire and deforestation in this area, contributing to the area 

management process. 

Regarding remote sensing techniques, the generation of 

vegetation indexes calculated from the combination of spectral 

bands stands out (Bonham, 2013; Turner et al., 2003). Also, the 

NDVI (Normalized Difference Vegetation Index) is one of the 

most used index. NDVI relates spectral information of the red 

and near infrared generating a variable able to estimate quantity, 

quality and development of vegetation (Pettorelli et al., 2005).  

To calculate this index, it is possible to count on lifting decades 

of satellite sensor information, which highlights the potential of 

the Landsat time series (Devries et al., 2015; Ding et al., 2014; 

Du et al., 2010; Maxwell and Sylvester, 2012; Zheng et al., 

2015). This time series provides free access to an extensive 

gallery of relevant temporal and spatial resolution images, 

widely used and validated in scientific research in remote 

sensing. 

In this context, this study aims to analyze the dynamics 

LULCs in a particular southern Amazonian area in Brazil, 

monitoring and distinguishing trajectories in NDVI 

variations considering the period between 1984 and 2013. 

We explore the continuity of Landsat series data to 

generate vegetation indexes that help to understand the 

spatial dynamics of the selected area. 

1.1 Study area 

The area covers 17336 km² and is located in the southern 

Brazilian Amazon (Figure 1), including cities of 

Amazonas state (Nova Aripuanã, Manicoré and Humaitá), 

Rondônia state (Machadinho d'Oeste, Cujubim and Porto 

Velho) and Mato Grosso state (Colniza). The main river 

that crosses the area is Machado River and belongs to 

Madeira River basin. 
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Figure 1. Study site location (red polygon) in the south of Brazilian Amazon (green polygon in the left map). In the right map, the 

municipal division of the study area on a clip image Landsat ETM+ (path/row-231/66, composition RGB-643) of August 28, 2013. 

The study area currently consists of some regions of agro-

pastoral activities, natural conservation areas (including a part 

of the Campos Amazônicos National Park) and indigenous 

lands. In zones of agro-pastoral activities, pastures with cattle 

creations and grain crops predominate, using fire as the main 

form of management. 

In terms of phytogeographic composition, the study area has a 

savannah vegetation enclave area (Ratter et al., 2003) in a 

predominant Amazon biome area. The savannah area, locally 

identified as cerrado , displays grasses and shrubs (ICMBio, 

2011), while the Amazon area presents tree species from rain 

forests, typical of the Amazon forest. Thus, this savanna-forest 

interface results in an area of high biological diversity. 

The climatic conditions of the region have high annual average 

temperatures, ranging between 24°C and 28°C, and an annual 

rainfall of up to 2000 mm, with the presence of a dry period 

extending from May to October. However, variations of the dry 

season may happen in certain years. For example, remote 

sensing techniques registered, spatially and temporally, the 

effects of regional climate phenomena El Niño, the Pacific 

Decadal Oscillation and the Atlantic Multidecadal Oscillation 

(Marengo et al., 2011, 2008; Phillips et al., 2009). 

During the dry period, hot pixel detections reveled an intensive 

use of fire for the management of agro-pastoral practices 

(Silvestrini et al., 2011). The use of fire tended to increase 

exponentially with the decrease of rainfall related to the dry 

season (Aragão et al., 2008). 

This region has experienced significant LULC changes in the 

last decades associated with deforestation progress and use of 

fire as a main management instrument to the agro-pastoral 

practices. The main reason for these changes is the fact of being 

located in the midst of the agricultural frontier zone in a large 

area known as ‘arc of deforestation’ of Brazilian Amazon. 

2. METHODOLOGY

2.1 Data select and preparation 

Considering available Landsat time series, download at 

<http://glovis.usgs.gov/>, we selected an image per year (Table 1) 

from 1984 to 2013 (path/row - 231/66). All images belong to a 

particular time of year associated with the dry season in the study 

area, between the end of June and the end of August. The 

maximum daily difference of the selected images to the time series 

is 78 days between the images of 10/09 (2009) and 23/06 (1992). 

Regarding our image selection criterion, we considered that the 

better pixel quality (based on the information provided by the 

supplier), the lower percentage cloud cover and the closer to the 

end of the dry season. 

We gave priority to the later images on dry period seeking the 

maximum of the dynamic information in a given year and 

reducing stationary phenological effects of multitemporal 

analysis. This is because the closer images to the early dry 

season record more vigorous vegetation stages most often 

associated with high rainfall rates in the remaining months of 

the year (Kobayashi and Dye, 2005). 

In order to generate a land surface reflectance for all 

selected images we used the software LEDAPS tools 

(Masek et al., 2006), which performs an atmospheric 

correction for the Landsat reflective bands using the 

MODIS/6S radiative transfer approach (Vermote et al., 

1997). The algorithm runs considering an ancillary data of 

NCEP (National Centers for Environmental Prediction) 

water vapor data and TOMS (Total Ozone Mapping 

Spectrometer) data, included in the software distribution, 

with aerosols obtained from the image itself using the 

dark dense vegetation methodology (Kaufman et al., 

1997). 
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Year Sensor/day-month Year Sensor/day-month 

1984 L5-TM/04-08 1999 L7-ETM+/06-08 

1985 L5-TM/07-08 2000 L5-TM/15-07 

1986 L5-TM/10-08 2001 L7-ETM+/11-08 

1987 L5-TM/12-07 2002 L7-ETM+/27-06 

1988 L5-TM/14-07 2003 L5-TM/24-07 

1989 L5-TM/01-07 2004 L7-ETM+/19-08 

1990 L5-TM/04-07 2005 L5-TM/30-08 

1991 L5-TM/07-07 2006 L5-TM/16-07 

1992 L5-TM/23-06 2007 L5-TM/04-08 

1993 L5-TM/26-06 2008 L5-TM/06-08 

1994 L5-TM/15-07 2009 L5-TM/10-09 

1995 L5-TM/03-08 2010 L5-TM/27-07 

1996 L5-TM/05-08 2011 L5-TM/30-07 

1997 L5-TM/23-07 2012 L7-ETM+/09-08 

1998 L5-TM/24-06 2013 L7-ETM+/28-08 

Table 1. Selected Landsat TM/ETM+ images, path/row-231/66. 

For those images that had cloud cover (1987, 1989, 1990, 1991, 

1993, 1996, 1997, 2002, 2005, 2009, 2011) we generated a 

mask from an unsupervised classification to each image held by 

the ERDAS Imagine software. 

We applied 3x3 pixels order filters to the ETM+ selected images 

dated after 2002 and which showed the failure of the SLC (Scan 

Line Corrector). The filters were applied six times to each image and 

filled the gaps using the information of the neighboring pixels. 

2.2 Data process and analysis 

Using ERDAS Imagine we generate NDVIs values for each 

selected image (from 1984 to 2013), relating the bands 3 and 4 

of TM and ETM+ Landsat images considering the radiometric 

equivalence of the two instruments (Teillet et al., 2001).  

We chose images of 1984 and 2010 to classify the LULC for the 

two most extreme dates within the time series, both from the same 

sensor (TM), without cloud cover and good pixel quality. We 

excluded the image from 2011 from the classification because it had 

cloud cover. Classification of images from 2012 and 2013, from the 

ETM + sensor, was hampered by filling the gap of SLC off. 

The selected images underwent a supervised classification of 

LULC using the operator maximum likelihood to differentiate 

five categories: 

* Forest (F) – areas of dense rain forest or open rain forest. The

last one more associated with forest drainage channels galleries 

in the savannah’s enclave area. 

* Secondary/degraded forest (Fs) – regenerated forests or in advanced 

process of regeneration, as well as areas of degraded rainforests. It also 

includes some savanna areas with denser shrub domain. 

* Savannah/pasture (SP) – areas of vegetation grasses and shrubs, 

largely used as areas of creation of extensive cattle on pastures. 

* Crop/bare soil (CB) – includes a ranching and crop farming

areas, with large harvested zones, viewed as bare soil. It also 

includes burned areas to crop/pastures usage. 

* Water (W) –areas of rivers and small water reservoirs located

in certain pastures and agricultural areas. 

This classification was validated by measuring the Cohen kappa 

index to each classified image, comparing with a base of control 

points. The cloud masks were applied to the NDVI images 

associating a nodata value for these cloud pixels.  The 

trajectories in NDVI variation values were analyzed by R 

statistical software, in a sample of random points covering 3% 

of the area, with a total of 792411 points. 

This analysis divides the main intersections of the classified 

categories into two groups: regressive/progressive NDVI 

trajectories and stable NDVI trajectories. Thanks to monitoring 

of the NDVI trajectories for the period between 1984 and 2013, 

we generated average, standard deviation and coefficient of 

variation for each pixel group according to the intersection of 

thematic classes. A break point detection was calculated for the 

progressive/regressive trajectories using a non-parametric 

approach (Pettitt, 1979). 

3. RESULTS AND DISCUSSION

3.1 LULC dynamics between 1984 and 2010 

The result of the classification process (Table 2) (Figure 2) allows a 

spatial configuration of the dynamics of the LULC in recent 

decades. Validation with a Cohen kappa index shows values of 0.84 

and 0.86 to 1984 and 2010 classifications respectively. 

Rain forest is the class that occupies the highest proportion of 

area in relation to others in both classified dates. In 1984 

occupied 79.52% of the total area and 73.02% in 2010. The 

savanna/pasture areas extended 2440 km2 in 1984 and gained 

4.11% of the area, occupying 18.18% of the total area in 2010. 

It is noteworthy that in 1984 we observed higher levels of 

impact of human activities within the savanna enclave area. 

Recently burned area for pasture management might be 

identified in the crop/bare soil class. 

Among the LULC changes, we mainly identify the loss of forest 

areas associated with the advancement of agricultural areas and 

pastures in the southern half of the study area during the 

analyzed period. In quantitative terms, 563 km2 of forest 

became crop/bare soil in 2010, and 471 km2 became 

savannah/pasture. 

The analysis records the loss of 1124 km2 of forest between 

1984 and 2010. This total is compatible with the data recorded 

by Assessment of Deforestation in Brazilian Amazonia 

(PRODES) (INPE, 2014a), which between 2001 and 2010 

records 1069 km2 of deforested areas. 

Furthermore, occupation of secondary and degraded forests 

between 1984 and 2010 increased 1.45%. Currently, they 

occupy 349.34 km2. In 1984, these regions were scattered in the 

northeast and southwest of the study area and were mainly 

associated with degraded zones reflecting the selective logging. 

In 2010, these degraded areas expanded and some areas of 

forest regeneration appeared thanks to the abandonment of 

certain areas and the creation of protected areas. 

LULC classes Area (1984) Area (2010) 

km2 % km2 % 

Forest 13786.85 79.52 12660.47 73.02 

Sec./degraded forest 97.13 0.56 349.34 2.01 

Savannah/pasture 2440.32 14.07 3153.29 18.18 

Crop/bare soil 938.65 5.41 1099.74 6.34 

Water  73.75 0.42 73.86 0.42 

Total 17336.70 km2 

Table 2. LULC dynamics between 1984 and 2010. 
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Figure 2. LULC classification of 1984 (a) and 2010 (b). 

3.2 Monitoring NDVI trajectories (1984-2013) 

In order to monitor the LULC dynamics identified in the 

previous step, we generate NDVI values on a yearly basis over 

the last three decades (1984-2013). For these trajectories, major 

intersections associated with the classification process were 

grouped as follows: NDVI stable trajectories; NDVI regressive 

or progressive trajectories. 

We identify as stable trajectories of NDVI those pixels where 

no LULC was detected: 'Forest to Forest' (FF); 'Sec./degraded 

forest to Sec./degraded forest' (Fs-Fs); 'Savannah/pasture to 

Savannah/pasture' (SP-SP); and 'Crop/bare soil to Crop/bare 

soil' (CB-CB). 

On the other hand regressive or progressive NDVI trajectories were 

associated to the following LULC changes: ‘Forest to 

Savannah/pasture’ (F-SP); ‘Forest to Crop/bare soil’ (F-CB); and 

‘Crop/bare soil to Forest and Sec./degraded forest’ (CB-FFs). 

3.2.1 NDVI stable trajectories: Each trajectory is located in 

specific interval of NDVI values (Figure 3a), according to the 

characteristics of its thematic category. F-F and Fs-Fs displayed 

their trajectory standing close to 0.80 NDVI values, linked to a 

good vegetation development. The average NDVI of SP-SP 

trajectory is slightly higher than the CB-CB, with values of 0.63 

and 0.54, respectively. 

We observe that the trajectories of SP-SP and CB-CB fluctuate 

more intensely than the FF and Fs-Fs values. In part, this 

variability is associated to increased sensitivity of these classes 

to phenological effects, as their most outstanding peaks (1987, 

1994, 1998 and 2002) can also be perceived in F-F trajectory. 

Moreover, CB-CB and SP-SP are periodically affected by the 

intensive use of fire, used as a management tool for agro-

pastoral activities. 

These factors influence the variability in both SP-SP and CB-

CB, making it even higher than F-F’s. These differences are 

explicit when comparing F-F and SP-SP trajectories (Figure 

3b), according to the reported standard deviation. F-F displayed 

the most stable trajectory of NDVI values, with an average 

value of 0.824 and a coefficient of variation of 3.9%. While the 

pixels of SP-SP, which was periodically affected by fire, had an 

average NDVI value 0.585 and coefficient of variation 15.1%. 

3.2.2 NDVI regressive/progressive trajectories: F-CB 

trajectory (Figure 3c) revealed that during the first 13 years 

average NDVI values stand close to those from the F-F 

trajectory (mean values of 0.828). 

After 1997 an increase in standard deviation values is observed, 

suggesting certain level of pressure on forested areas. In 1999, 

identified as break point of the trajectory (Pettitt, 1979), the 

average NDVI values begin to distance themselves from the F-F 

values. This detachment is consolidated in 2003, following 

gradually, provided with increased participation of CB class of 

pixels associated with deforestation. The average NDVI values 

are 0.482 in 2010, associated with the CB class.  

Splitting the years into two periods 1984-2002 and 2003-2013, 

the average of F-CB NDVI values changed respectively from 

0.821 to 0.556. This regressive trajectory is associated with 563 

km2 of forests that became CB in 2010, identified in the 

classification process. 

The F-SP trajectory (Figure 3d) follows the same logic 

established in the F-CB transition, with a steeper decline in the 

second half of the review period. However, it is observed that 

the standard deviation of F-SP is more variable when compared 

to levels of F-F. 
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Figure 3. NDVI stable trajectories (a); Variability of F-F and SP-SP trajectories; (b); F-CB trajectory compared to F-F trajectory (c); F-SP 

trajectory compared to F-F trajectory (d) CB-FFs trajectory compared to CB-CB trajectory (e);  NDVI regressive/progressive trajectories 

(f). The lines represent the average NDVI values. Maximum and minimum limits of the filled areas are the average added and subtracted 

to their respective standard deviations. Break points, according Pettitt (1979), are marked on the regressive/progressive trajectories. 

Many pixels forest included in this theme category are 

associated with areas of forest-savannah interface, which 

contributes to the increased sample variability from the 

beginning of the time series.  The breakpoint identified for this 

regressive trajectory is set in 2002, where the descents gradually 

expand in the following years. This regressive trajectory is 

associated with 471 km2 of forests that became SP in 2010. 

The progressive trajectory identified (Figure 3e) in the time series 

is associated with the combination of categories of CB and a 

grouping of categories of Forest and Sec./degraded forest (FFs). 

In this trajectory, the NDVI values start with an average value of 

0.475, starting to increase gradually in the following years. The 

breakpoint identified is the year 1997, where the average NDVI 

was already performing 0.712. From 1997 until 2013, it is 

observed that this group of pixels keeps the average stable without 

reaching the levels of FF NDVI. This progressive trajectory is a 

minor trend within the area. Is related to the gain of 18 km2 FFs in 

2010, replacing areas classified as CB in 1984. 

All of these regressive/progressive trajectories (Figure 3f) display 

information about the LULC changes operating on the study area. 

4. CONCLUSION

The results show distinct trajectories associated with NDVIs 

and LULC dynamics that assist in better understanding the 

dynamics of ecological processes and the human impacts 

operating in the area.  

In the stables NDVI trajectories, is possible observe different 

temporal behaviours depending on vegetation type. Forests have 

proved to be the most stable community according to its NDVI 

values. On the other hand, we detected high sensitivity in 

savannah-type vegetation (scrubs, grasslands and pastures) to 

disturbances such wildfire or climatic/phonological effects. 

NDVI multitemporal analysis has proved to be a useful tool 

allowing detecting and monitoring LULC changes. In this 

Break 
point 

Break 
point 

Break 
point 
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particular case, combining NDVI monitoring and change point 

detection procedures, made possible to identity an increase in 

the deforestation process, mainly affecting rain forest 

communities, starting 15 years ago and becoming more intense 

over time. 

It is worth to stand out the current potential of Landsat products 

since Landsat 8 satellite, launched in 2013, guarantees their 

continuity. This fact allows enhancing valuable multitemporal 

analysis and monitoring of remote areas.   
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