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Abstract
Interfacial nanobubbles (NBs) and nanodroplets (NDs) have been attracting increasing attention due to their potential for numerous

applications. As a result, the automated segmentation and morphological characterization of NBs and NDs in atomic force micro-

scope (AFM) images is highly awaited. The current segmentation methods suffer from the uneven background in AFM images due

to thermal drift and hysteresis of AFM scanners. In this study, a two-step approach was proposed to segment NBs and NDs in AFM

images in an automated manner. The spherical Hough transform (SHT) and a boundary optimization operation were combined to

achieve robust segmentation. The SHT was first used to preliminarily detect NBs and NDs. After that, the so-called contour expan-

sion operation was applied to achieve optimized boundaries. The principle and the detailed procedure of the proposed method were

presented, followed by the demonstration of the automated segmentation and morphological characterization. The result shows that

the proposed method gives an improved segmentation result compared with the thresholding and circle Hough transform method.

Moreover, the proposed method shows strong robustness of segmentation in AFM images with an uneven background.
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Introduction
In the past two decades, interfacial nanobubbles (NBs) [1-3]

and nanodroplets (NDs) [4-6] have been attracting more and

more attention because of their enormous potential in numer-

ous applications. It is reported that NBs can ameliorate oxygen

mass transfer to living microorganisms [7], reduce drag force at

solid–liquid interfaces in micro/nanofluidics [2,8,9], and en-

hance ultrasonic tumor imaging contrast [10]. Regarding NDs,

they can be applied to fabricate nanolenses on solid surfaces to

modify them for antireflection and light harvesting [11], adsorb

onto nanocrystal and microcrystal surfaces for direct heterogen-

eous engineering [12], and help functional oil deposition from

emulsions [13]. NBs and NDs can also act as templates for
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Figure 1: Segmentation of nanobubble AFM images using the thresholding method. (a) In a raw AFM image with a rough background, only part of the
nanobubbles can be detected. (b) After flattening, nearly all nanobubbles are detected when a proper threshold value is selected (left). However, the
segmentation is sensitive to the threshold value. A relatively higher threshold value could cause under-segmentation (right). The scale bar is 500 nm.

nanomaterial engineering, such as assembling nanoparticles into

nanorings [14], generating nanostructures on polymer [15] and

highly oriented pyrolytic graphite (HOPG) surfaces [16].

In general, NBs and NDs are 100–800 nm in width and

10–100 nm in height. They are generally studied by atomic

force microscopes (AFM) due to their high spatial measure-

ment resolution. The morphological characterization of NBs

and NDs, such as contact angle, size, density, and volume, is

generally required in their studies. For example, in the study of

wettability properties of NDs, contact angle is generally applied

[17,18]. In the study of influence factors for NB/ND formation,

such as temperature [19-21] and gas type [22,23], their size and

density are statistically analyzed.

Segmentation of NBs and NDs is a primary operation to charac-

terize them in AFM images. Normally there are several tens or

even hundreds of them in one AFM image. The manual

segmentation is tedious and time consuming. As a result, the

automated segmentation methods become necessary. Techni-

cally speaking, NB/ND segmentation includes two aspects,

NB/ND localization and boundary detection. The NB/ND local-

ization is a process of determining their location in AFM

images, while boundary detection is a process of extracting

contours which are as close as possible to their actual bound-

aries. Through segmentation, their size, density, contact angle

and even volume can be extracted.

The major difficulty in automated NB/ND segmentation is the

uneven background of AFM images, either because of the ther-

mal drift and hysteresis of AFM scanners, noise [24,25] or the

actual topography of the sample surfaces (e.g., HOPG). In

general, it is difficult to establish one source of the uneven

background from the others in AFM images. Practically,

researchers use a plane fitting method to aggressively flatten

AFM images to improve the contrast for smaller objects by

assuming sample surfaces are actually flat, which is not always

true. Figure 1a is a raw AFM image of NBs on a polystyrene

(PS) surface. One can see that the image height of the back-

ground increases along the y direction. This is mostly due to

thermal drift of the AFM scanner. By applying image flattening,

an AFM image with improved contrast can be obtained, as

shown in Figure 1b.

Today, the most widely applied segmentation method is the

thresholding method [19,26] in which the choice of threshold

value is a matter of great concern due to the uneven back-

ground of AFM images. A too small threshold value will cause

over-segmentation, while a too large one will cause under-

segmentation and thus the under-estimation of the NB/ND

height and volume. For the image shown in Figure 1a, the

segmentation result using the thresholding method is unsatisfac-

tory. Only NBs in the higher region are detected, while the rest

are all ignored. For these kind of images, they must be flattened

to get improved segmentation result in the thresholding method

(Figure 1b). For the flattened images, if proper threshold values

are applied, they can be correctly detected, as shown in the left

figure in Figure 1b. However, the thresholding method is sensi-

tive to the selection of a threshold value. As shown in the right

figure in Figure 1b, a relatively larger value causes under-

segmentation. Moreover, even for the segmentation result

shown in the left figure of Figure 1b, the detected contours for

individual NBs are not converged to their actual boundaries, as

we previously reported [27].

In addition to the over- or under-segmentation, another chal-

lenge in NB/ND segmentation is the boundary detection. In the

thresholding method, a threshold value is selected and only the

portion higher than the value can be taken as NBs and NDs.

Due to the existence of thermal drift, noise and hysteresis of
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Figure 2: AFM height images of nanobubbles and nanodroplets. (a) and (d) are the polystyrene and HOPG surfaces in air. (b) and (e) are the raw
AFM height images of nanobubbles and nanodroplets in DI water. (c) and (f) are flattened AFM height images of nanobubbles and nanodroplets in DI
water. The scale bar is 500 nm.

AFM scanners [25], their vertical position in an AFM image

may vary greatly. It is a difficult challenge to determine the

threshold value in the thresholding method, since they do not

share the same footprint height, even for the adaptive thresh-

olding method. To solve the problem, we have proposed a

contour expansion method [27]. In this method, AFM images

were first preliminarily detected using the thresholding method.

The active contour method is then applied to the boundaries of

the preliminarily detected NBs to achieve the optimized bound-

ary detection.

Interfacial NBs and NDs are all spherical-cap-shaped objects in

AFM images. Based on this, some efforts have been have been

focused on shape-based image segmentation. Tan et al. applied

the circle Hough transform (CHT) to implement segmentation

of micro-spheres in optical images [28]. Since the CHT method

only utilizes boundary information, it can achieve a good

segmentation for micrometer-sized spheres with enough data

points. Regarding NBs and NDs, we find that it is difficult to

get an optimized segmentation result with this method because

of the limited number of data points and noisy images.

In this study, we proposed a two-step method for NB/ND

segmentation in AFM images. In the first step, we applied a

spherical Hough transform (SHT) to locate them in AFM

images. Based on the SHT result, the initial contours of NBs

and NDs were extracted. Then, the contour expansion method

[27] was applied to the initial contours to get the optimized

boundary detection based on the active contour model [29], fol-

lowed by the morphological characterization.

Experimental
Imaging of nanobubbles and nanodroplets
In this study, NBs were produced on a PS surface, which was

spin-coated as a thin film on a silicon (100) substrate at a speed

of 500 rpm. The silicon substrate was cleaned in a sonic bath of

piranha, acetone and then water for 30 mins before spin coating.

PS particles (molecular weight 350,000, Sigma-Aldrich) were

dissolved in toluene (Mallinckrodt Chemical) to obtain the solu-

tion for spin coating. Upon the immersion of the PS film in de-

ionized (DI) water, NBs are spontaneously generated on the PS

surface.

NDs were obtained on a freshly cleaved HOPG surface. To

form the NDs, 10 µL of poly(dimethyl siloxane) (PDMS) solu-

tion was dissolved in 20 mL of chloroform solution. The ob-

tained solution was then deposited on the surface to generate a

thin liquid film. After the volatilization of the solution, the sur-

face was immersed in DI water. The PDMS NDs were then ob-

tained on the surface.
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Figure 4: Illustration of the proposed two-step nanobubble/nanodroplet (NB/ND) segmentation based on the spherical Hough transform combined
with the contour expansion operation. (a) Sketch of a simulated AFM image. (b) The spherical Hough transform is applied to preliminarily detect the
NBs/NDs, where the sphere represents the highest possibility which NB/ND caps belongs to. (c) The contour of the preliminarily detected NB/ND is
extracted and taken as the initial contour for the NB/ND. (d) Detection of the optimized boundary with the contour expansion method.

Figure 3: Sketch of the morphological characterization and AFM tip
correction for nanobubbles and nanodroplets. The solid line indicates
the real cross section, while the dotted line indicates the measured
cross section.

In this study, the PS and HOPG surfaces were scanned in both

air and DI water using a commercial AFM (Resolve, Bruker) in

tapping mode with 96% setpoint value. Silicon cantilevers

(NSC36/ALBS, MikroMasch) with a quoted stiffness of

0.6 N/m and tip radius of 8 nm were used for scanning. The

measured resonance frequencies of the cantilever were 55 kHz

and 16 kHz in air and in DI water, respectively. The scanning

frequency was 2 Hz and the scanning angle was 0°.

Figure 2a and Figure 2d are the AFM height images in air for

the PS and HOPG surfaces, respectively. After both samples

were immersed in DI water, the NBs and NDs were obtained on

the surfaces. The raw AFM images for the NBs and NDs are

shown in Figure 2b and Figure 2d, respectively. One can see

that both images have an uneven background, which is believed

to be due to the thermal drift. The flattened images are shown in

Figure 2c and Figure 2f, respectively.

Characterization of nanobubbles and
nanodroplets
Both NBs and NDs have a spherical-cap shape. To facilitate the

morphological characterization, some parameters are intro-

duced in this paper, as shown in Figure 3. In the figure, H refers

to the height of a NB or ND, D and θ are the width and contact

angle, respectively. After segmentation, H and D can be directly

obtained and the contact angle can then be calculated.

It is known that the topography image obtained from an AFM

image is the convolution of the AFM tip and substrate morphol-

ogies [30-32]. In the case of the spherical-cap-shaped NBs and

NDs, the influence of the AFM tip on the contact angle mea-

surement is illustrated in Figure 3. From the figure, one can see

that the tip radius results in the overestimation of the width D.

The deconvolution of the AFM tip gives a corrected expression

of radius Rc′, width D′ and contact angle θ′, as

(1)

(2)

(3)

where Rtip is the radius of AFM tip.

Algorithms of nanobubble and nanodroplet
image segmentation
The principle of the proposed two-step segmentation method is

illustrated in Figure 4. A simulated NB/ND image shown in

Figure 4a is first converted into a 3D point cloud. The SHT is

then applied to the point cloud to preliminarily determine the

position and size of the NBs/NDs (Figure 4b), based on which

the initial contour of the NBs/NDs can be extracted (Figure 4c).

To get the optimized boundary, the contour expansion method

[27] will be applied to the initial contour. Driven by the field of

gradient of the AFM image, the initial contour will be
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Figure 5: Schematic diagram showing the principle of the spherical Hough transform. (a) Calculation of gradient vectors for all data points in a 3D
image. The center of the sphere is detected by searching for a point which is crossed by most gradient vectors. (b) The sum of the dot product is used
to determine the radius of the sphere. For a point with the distance r to the sphere center, the dot product of the kernel vector (red arrow) and the
gradient vector of the point (green arrow) is first calculated. The sum of all these dot products is defined as f(r). (c) The value r corresponding to the
maximum value f(r) is taken as the radius R of the sphere.

converged towards the NB/ND boundary and the final contour

can then be obtained (Figure 4d).

The spherical Hough transform
The SHT is generally used to detect objects with spherical

shapes in 3D images or point clouds [33,34]. In the SHT, a pa-

rameter space has the same dimension as AFM images. The

principle of the method is shown in Figure 5. In Figure 5a,

gradient vectors for data points in an input image are first calcu-

lated. A point in parameter space gets a vote when the point at

the same position in the image space is crossed by a vector line.

According to the fact that all gradient vectors point to the

center, a local maximum will be obtained around the center area

in the parameter space.

After the sphere centers are detected, the next step is to deter-

mine the sphere radii. A sum of the dot product f(r) at a given

distance r to the detected sphere center is proposed as [35,36]:

(4)

where

(5)

(6)

(7)

For each point with a given distance r to a detected sphere

center, the dot product of the kernel vector (Equation 7, and

red arrow in Figure 5b) and gradient vector of the point (Equa-

tion 6, and green arrow in Figure 5b) indicates how possible the

point belongs to the sphere. By summing up the dot product for

all the data points with the same distance r to the center, f(r)

will be obtained. For r in a specific detection range, the corre-

sponding f(r) can then be obtained (Figure 5c). f(r) achieves its

maximum value when r equals to the radius of the sphere.

In this study, the SHT is used to detect NBs and NDs. In

Figure 6a, a raw NB height image is first converted to a point

cloud. The gradient vectors can then be calculated. The gradient

vectors along a cross section are shown in Figure 6b. One can

see that the gradient vectors of the data points go across a small

region, which is the region where the NB center is. For each

unit cell in the parameter space, the frequency of being crossed

by the gradient vectors will be obtained after all the radius

vectors are calculated, as shown in Figure 6c. In the figure, the

central red region has the highest density and corresponds to the

region of the sphere center. After the center is detected, f(r) can

then be obtained, as shown in Figure 6d. In the figure, R is the

detected radius.

Optimized boundary detection
To obtain the optimized NB/ND boundaries, the contour expan-

sion operation [27] was applied to the initial contours detected

by the SHT using an active contour model. The process is

demonstrated in Figure 7. For a NB image shown in Figure 7a,

the SHT was first applied. As mentioned earlier, a sphere will

be detected for each NB/ND. A circle which has the same x, y

coordinates with that of the detected sphere was taken as the

initial contour (blue circle in Figure 7b).

In the contour expansion operation, the initial contours of NBs

and NDs are expressed as parameterized curves v(s) = (x(s),

y(s)) and their energy function is defined as [29]:
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Figure 6: Demonstration of the spherical Hough transform detection of an nanobubble. (a) Gradient vector calculation over a nanobubble surface.
(b) Gradient vectors along a cross section indicated in (a). Most of the gradient vectors appear in a small region. (c) Accumulation in the parameter
space indicating the frequency of each cell being passed by gradient vectors. The region marked by a red cross is considered as the sphere center of
the nanobubble. (d) The change of the sum of the dot product f(r) along the radial direction from the detected sphere center. It reaches its maximum
value at the distance R, which is the detected nanobubble radius. After the above operation, the center and radius of the detected sphere can be de-
termined.

Figure 7: Demonstration of contour expansion operation to obtain the optimized boundary detection for a nanobubble. (a) The raw AFM image of a
nanobubble. (b) Extraction of the initial contour after the spherical Hough transform detection of the nanobubble. A circle determined by the detected
sphere through the spherical Hough transform is taken as the initial contour for contour expansion. (c) Evolving contours converge towards the bubble
boundary driven by the field of gradient in the image. (d, e) The comparison of the initial and converged contours in 2D (d) and 3D (e) mesh plots of
the nanobubble. The result shows that the proposed method can achieve a good estimation of the NB/ND boundaries.

(8)

where vs and vss are the first and second order partial deriva-

tives of the contour curves, respectively, α and β are two scalar

coefficients. The first two items of the energy function repre-

sent the internal energy of the contours, which only dependend

on the curve geometry. The third item represents the external

energy (this is the height value of the AFM images) along the

contours. The internal energy enforces the smoothness and

continuity of the evolving contours, while the external energy

makes contours converge to the region with a lower height

value to minimize the total energy.

In practice, the Euler–Lagrange function is usually used to find

the minimum of the energy function [29]:

(9)

where vssss is the fourth order partial derivative of the contours.

For an initial contour shown in Figure 7b, the Euler–Lagrange

function can be iteratively solved. Under the impact of both

internal and external energy, the contour gradually converges
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Figure 8: Comparison of nanobubble detection in a raw AFM image with the (a) thresholding method, (b) circle Hough transform, and (c) spherical
Hough transform. The thresholding method is sensitive to the uneven background and can only partially detect the bubbles in the region with larger
height. The circle Hough transform can only detect larger nanobubbles, while the spherical Hough transform can detect all the nanobubbles in the
image. The scale bar is 500 nm.

and eventually stops at the NB’s boundary, where the minimum

total energy is achieved (green contours in Figure 7c). The

converged contour is shown in Figure 7d. Figure 7e shows the

mesh plot of the selected NB with both initial and final contours

obtained by the contour expansion operation. It is obvious that

the final contour gives a good estimation of the boundary.

Results and Discussion
In this section, a comparison of NB/ND segmentation with three

different methods was first conducted. The robustness of the

proposed method in processing the raw and flatten images is

then verified, followed by the morphological characterization.

Comparison of three methods
To validate the SHT in the preliminary segmentation of NBs

and NDs, a comparison of segmentation methods for a raw

AFM image (without flattening) was conducted with thresh-

olding, CHT and SHT methods, as shown in Figure 8. As

mentioned earlier, the raw AFM image has an uneven back-

ground. Figure 8a shows the result obtained with the thresh-

olding method. Since the thresholding method is sensitive to the

uneven background, only NBs in the higher region can be seg-

mented.

In Figure 8b, the CHT was applied, which works with the simi-

lar principle as the SHT. However, due to the scanning error

and noise, the boundaries of NBs and NDs in AFM images are

not standard circles in shape. Moreover, for each nanobubble,

only dozens of points on the boundaries are used to determine

centers. As a result, the CHT could only detect the those with

relatively large size and good circular shape, but fails to detect

small, unsharp ones. Figure 8c shows the result with the SHT.

The SHT utilizes all data points on NB/ND surfaces, which is

much more than in the CHT. As a result, the SHT provides a

much better detection result, where all NBs in the image can be

detected, while only about 60% of the NBs are detected by the

CHT.

Robustness of the proposed method
By principle, the proposed method is supposed to be robust for

NB/ND detection, regardless of whether the AFM images are

flattened or not. To verify this, a comparison was conducted

with both the raw and flattened AFM images. The SHT and

contour expansion steps were sequentially applied to both

images by applying the same parameters during segmentation.

The segmentation result is shown in Figure 9a and Figure 9b for

the raw and flattened AFM images, respectively. In both

images, the green contours correspond to detected boundaries.

One can see that no matter how the background changes, the

proposed method was able to achieve a similar result for both

images.

The robustness of the proposed method is further confirmed

through a comparison of coverage areas for all detected NBs in

the two images, as shown in Figure 9c. In the figure, they are

labeled by the ascending order of the areas. The green curve

shows the NB coverage areas in the raw AFM image, while the

blue curve shows this in the flattened image. It is obvious that

the proposed method gives very close results for both images.

The average coverage areas for the raw and flattened AFM

images are 7.71 × 103 nm2 and 7.37 × 103 nm2, respectively,

which corresponds to a 4.4% difference.

The difference is mostly because the flattening process unavoid-

ably changes the height distribution of NBs. The converged

contours change accordingly, leading to the changed coverage

areas between the two images. Considering this influence and

the small difference, one can conclude that the proposed method
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Figure 9: Robustness of the proposed method in nanobubble image segmentation with uneven background. Nanobubble image segmentation in the
raw nanobubble image with an uneven background (a) and the flattened image (b) using the proposed method. (c) Comparison of nanobubble cover-
age areas detected in the raw image and the flattened image using the proposed method. The two results are close to each other, which implies that
the proposed method is robust to the uneven background. The scale bar is 500 nm.

Figure 10: Segmentation result for a NB (a) and ND (b) in AFM images using the proposed method. The scale bar is 500 nm.

is robust to a typical AFM image background. This is espe-

cially important for some AFM images whose actual back-

grounds are not flattened.

Morphological characterization of
nanobubbles and nanodroplets
NBs and NDs are both spherical-cap-shaped objects. Once they

are segmented, the morphological characterization can be auto-

matically conducted for AFM images. Figure 10a and

Figure 10b show the segmentation results for a NB and ND in

the AFM image, respectively.

After segmentation, the morphological characterization of NBs

and NDs can be implemented using three approaches, as shown

in Figure 11. Here they are referred to as direct measurement,

circle fitting, and sphere fitting methods. The direct measure-

ment method is applied to cross sections of NBs and NDs, as

shown in Figure 11a. After cross sections are extracted, the

height H and width D can be directly measured. The radius of

curvature R and contact angle θ can then be obtained with H

and D.

The circle fitting method also applies to cross sections. In the

method, the data points on NBs and NDs are fitted as circles

using the least squares method, as shown in Figure 11b. From

the fitted parameters, the parameters (including radius of curva-

ture) of the circle can be obtained. The width D and height H

can be obtained with the determined base line height from

segmentation. The sphere fitting method fits all data points on

the segmented NB/ND surfaces as spheres (Figure 11c). After

fitting, the parameters of the spheres (including radius of curva-

ture) can be directly obtained. Then the height, H, and width, D,

can be obtained with the determined base line height around

NB/ND boundaries

In the automated morphological characterization of NBs and

NDs, their centers and base line heights need to be automati-

cally detected. In this study, the centers were extracted with the
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Figure 11: Comparison of three different automated morphological characterization methods for nanobubbles. (a), (b) and (c) are the demonstration
of the direct measurement, circle fitting, and sphere fitting methods, respectively. (d) and (e) are the comparison of the height and contact angle of
nanobubbles obtained with the three methods for the AFM image shown in Figure 10a.

centroid method within the segmented areas [27]. The average

height value of the detected boundaries is taken as the height of

base lines and used to extract data points on NB/ND surfaces

and determine their H and D.

Here we take height and contact angle of NBs as examples for

the comparison of the three methods. Figure 11d and Figure 11e

show the measurement result of the height and the contact angle

from the direct measurement, circle fitting, and sphere fitting

methods, respectively. Statistically, the three methods give

close measurement results, especially for the direct measure-

ment and circle fitting methods. The sphere fitting method gives

a more convergent distribution of the contact angle. This is

because the sphere fitting measurement uses more data points

compared with the other two methods.

As mentioned earlier, due to the finite size of AFM tips, the

AFM images are actually the convolution of AFM tips with the

real topography of samples. Here NB/ND characterization was

implemented after tip correction (see Equations 1–3).

Figure 12a and Figure 12b show the result of the automated

measurement of the height and contact angle as a function of

the width for NBs and NDs shown in Figure 10, respectively.

One can see that the NB/ND height increases with increasing

width. However, the contact angle decreases with increasing

width from 170° to 150°. This result is consistent with those

previously reported [17,23,32]. Our study also reveals that the

contact angle of NDs is slightly higher than that of NBs, which

is consistent with the results presented elsewhere [37,38]. The

influence of the limited tip radius on the contact angle is also

studied, as shown in Figure 12c and Figure 12d. One can see

that the cantilever tip radius causes an overestimation of the

NB/ND width and contact angle. The width error introduced by

the applied tip radius is about 3%, while the contact angle error

is near 0.4%.

Conclusion
Current automated NB/ND segmentation methods suffer from

the uneven background in AFM images and inaccurate bound-

ary detection. In this study, we have developed a two-step ap-

proach to segment NBs and NDs in AFM images to obtain

robust and optimized segmentation results. The spherical Hough

transform was first used to preliminarily detect NBs and NDs.

The contour expansion operation was then applied to obtain the

optimized boundary detection. The result shows the proposed

method can achieve an improved performance compared to the

thresholding and CHT methods. All NBs were correctly

detected in AFM images. Moreover, by comparing the NB



Beilstein J. Nanotechnol. 2017, 8, 2572–2582.

2581

Figure 12: Automated morphological characterization of nanobubbles (NBs) and nanodroplets (NDs). (a) The height as a function of width for NBs
and NDs after tip correction in AFM images shown in Figure 10. (b) The contact angle as a function of width for the NBs and NDs. The contact angle
decreases with increasing NB/ND width. Comparison of the contact angle and width of NBs (c) and NDs (d) before and after tip correction. One can
see that the limited tip radius causes an overestimation of the NB/ND width and contact angle.

segmentation result for AFM images with/without flattening,

the proposed method shows strong robustness in processing

AFM images with an uneven background. Following the suc-

cessful segmentation, the morphological characterization of

NBs and NDs was implemented. Three methods (direct mea-

surement, circle fitting, and sphere fitting) were applied to auto-

matically extract their height, width, and contact angle. The

results show that the three methods statistically provide a close

estimation of their morphological properties. We believe the

proposed method provides a valid, useful tool in NB/ND related

studies. Additionally, it is useful for the general segmentation of

images containing spherical objects and those requiring accu-

rate boundary detection in many other applications.
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