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Paraxial light rays incident in air on alternate refracting surfaces of a thick lens can yield complementary powers. This paper
aims to test when these powers are invariant as surface refractive powers interchange in the expression. We solve for relevant
surface powers. Potential anticommutators yield the nature of surface principal refractions along obliquely crossing perpendicular
meridians; commutators yield meridians that align with those on the next surface. An invariant power component orients relative
meridians or the nature of the matrix power on each noncylindrical surface demands that the other component varies. Another
component of lens power aligns relative meridian positions for distinct principal powers. Interchanging surface power matrices
affects this component. A symmetric lens power results if perpendicular principal meridians are associated with meridians on an
opposite rotationally symmetric surface. For thin lenses, meridian alignment may be waived. An astigmatic contact lens can be
specified by symmetric power despite having separated surfaces.

1. Introduction

Curved lens surface elements close to an optical axis relative
to the radii of the surfaces receive paraxial rays. Such elements
and the pole of the surface are in sensibly equivalent planes
transverse to the axis. Each refracting surface of a lens
approximates a plane transverse to the axis, and the thickness
of a lens is the separation of these planes, constant everywhere
for rays, and equal to the axial thickness 𝑡 of the lens.
We assume a uniform refractive index 𝑛 in air. Light rays
encounter elements on separated surfaces say 1 and 2, with
rotational symmetry for which meridians chosen for their
distinct powers do not exist. Such a lens has the scalar power
given by

𝐺 = 𝐹
1
+ 𝐹
2
−
𝑡𝐹
1
𝐹
2

𝑛

(1)

known as Gullstrand’s equation [1]. Rays from air may enter
on either face without affecting this lens power. Meridians
(none is preferred) on one surface necessarily align with

those on the other surface. Power 𝐹
1
of surface 1 is conjugate

to power 𝐹
2
of surface 2 and powers are called conjugate

variables since when these scalars interchange, the expression
for𝐺 is left invariant by the transposition. Physical conjugates
are ubiquitous in techniques and principles of optics and eye
care [2].

In the next sections, preferred meridians of lesser sym-
metry introduced to each lens surface moderate rotational
symmetry. Both refracting surfaces may have principal pow-
ers along meridians that may be perpendicular or oblique,
aligning or crossing obliquely. Let light from air be refracted
by a “back” surface of a stationary nonflipped lens. Then
in expressions like (1) transposed powers denote that rays
meet surfaces in a new order. Matrix surface powers that
yield a symmetric or asymmetric invariant power 𝐺 are
found. Previous work considered systems with asymmet-
ric powers [3]. Independent coefficients of lens thickness
measuring the effect of transposition may be commutators
or anticommutators of lens surface powers and are made
explicit in the expression for lens power. We also show that
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principalmeridians on the respective lens surfaces are aligned
as real surface powers commute [4]. Further, if surface powers
anticommute, possible principal powers on lens surfaces
are equal-and-opposite powers that cross obliquely at 45∘.
Matrices in commutators have coincident eigenvectors and
coincident eigenvectors are those of commuting matrices.
Surface principal powers along oblique meridians [5] or
perpendicular meridians that are not aligned are reasons
for lenses to have antisymmetric dioptric power matrices.
Symmetry of matrices serves as a frame of reference and
leads to knowledge about the problem that can be identified
with the eigenvectors often measured by instruments in the
consulting area.

2. Method

Let surface 1 of a lens have matrix power F
1
and let the oppo-

site surface 2 have power F
2
. Suppose principal meridians on

lens surfaces cross obliquely. From surfaces 1 to 2, a power
matrix of the lens may be [6]

G = F
1
+ F
2
−
𝑡F
2
F
1

𝑛

(2)

called the Gullstrand equation, generalized in that it follows
from rays traced through toric surfaces with matrix powers
F
1
and F

2
[4]. A lens is stationary and as surface powers

in expressions are interchanged, this transposition represents
light first incident on a “back” refracting surface. If the first
two components of an asymmetric power G are symmet-
ric, this work shows that the component 𝑡F

2
F
1
/𝑛 may be

asymmetric with the principal powers of the lens generally
along oblique meridians. Explicit answers are available for
when the principal meridians for separate lens surfaces are
aligned and the nature then of the power of the lens. Does
anticommutation of surface powers (see (4)) confirm this?
How are powers F

1
and F

2
related for them to interchange

in components of (2) such that G is invariant or not (the lens
has not been flipped)?

If the thickness of the lens is neglected, simultaneous
equations 𝑡F

2
F
1
/𝑛 = O and

F
1
+ F
2
= G
0 (3)

are satisfied in (2). The square matrices F
1
and F

2
with the

same dimensions are conjugate surface powers that are added
in any order (associative) leaving the expression for powerG

0

of the thin lens invariant. A surface with oblique principal
meridians contributes an antisymmetric component in (3) so
that the matrix G

0
is asymmetric [5] and can be expressed as

four components: sphere, cylinder, axis, and asymmetry [7].
In lens power equation (2) the coefficient of 𝑡/𝑛 benefits

from the decomposition of the lens surface power products
into bracketed terms with noteworthy distinct clinical mean-
ings seen as likely commutators and anticommutators in the
identity

2F
2
F
1
= (F
2
F
1
− F
1
F
2
) + (F

2
F
1
+ F
1
F
2
) (4)

that may each contribute to the symmetry of lens power. If
the lens thickness is neglected, these independentmeaningful

potential symmetry components in (2) and (4) play no role in
the lens power as in (3).

We select the left bracket in (4) to write another indepen-
dent component of lens power G as

G
𝐵
=
𝑡 (F
1
F
2
− F
2
F
1
)

2𝑛
. (5)

The power in (5) becomes −G
𝐵
when F

2
and F

1
interchange

so that surface power F
2
is not conjugate to F

1
. This is the

only power component of the lens with this property. The
reader can confirm that G

𝐵
is the nonzero antisymmetric

component of the power G of a lens whose surfaces are toric
but only if surface meridians are obliquely crossed. In (5)
commuting matrices (F

1
F
2
= F
2
F
1
) imply alignment of prin-

cipal meridians of surfaces. We return to this point after (8).
The remaining simultaneous contrasting matrix compo-

nent of G follows from the term in the right bracket in (4):

G
𝐴
= F
1
+ F
2
−
𝑡 (F
1
F
2
+ F
2
F
1
)

2𝑛
, (6)

where G
0
in (3) is included in G

𝐴
in which surface power

F
2
is seen to be a conjugate of F

1
since G

𝐴
is invariant when

interchanging powers in (6) and it is immaterial whether rays
first encounter the lens on surface 1 or 2. In addition G

𝐴
is

the symmetric matrix component of the power of a thick lens
whose surfaces are toric andG

𝐴
is closest to antisymmetricG

in that the Frobenius norm ‖G−G
𝐴
‖ is a minimum [8]. With

reference to (2), (5), and (6) two components of the matrix
power of the lens are

G = G
𝐴
+ G
𝐵
. (7)

As F
1
and F

2
trade places in (7), G

𝐵
changes sign and power

of the lens becomes [6]
G = G

𝐴
− G
𝐵
. (8)

Powers of surfaces with preferred meridians have been
interchanged formatricesG from (7) to (8). For lens powersG
not to change, surfacematrix powerF

1
becomes the conjugate

matrix power of F
2
and invariantG

𝐴
of (6) is the power for a

thick lens. For this G
𝐵
= O or
F
2
F
1
− F
1
F
2
= O (9)

or the powers of the refracting surfaces commute. Equation
(9) can be shown to be four dependent scalar equations. The
solution for the surface powers F

1
and F

2
of a thick lens

requires arbitrary real constants 𝑝 and 𝑞 and I the 2 × 2
identitymatrix.MatricesF

1
and𝑝F

1
+𝑞I can be shown to each

have distinct eigenvalues. They represent distinct principal
powers that can differ on respective lens surfaces. Different
matrices F

1
and F

2
= 𝑝F

1
+ 𝑞I have a common set of

eigenvectors if and only if matrices commute as in (9) [9].
Eigenvectors represent aligning principalmeridian directions
on respective lens surfaces. Surface powers that commute
have principal values along meridians that align from surface
to surface and conversely. Equation (9) for thick lenses is valid
for the following reason [10]. Pre- and postmultiply F

2
by F
1
:

F
1
F
2
= F
1
𝑝F
1
+ F
1
𝑞I,

F
2
F
1
= 𝑝F
1
F
1
+ 𝑞IF
1

(10)
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Table 1: Aligned meridians and commuting surface power matrices. The reader can match the symmetry on respective lens surfaces of
meridians in the first column with those in the first row. Meridians have been aligned on surfaces where possible. From (9) power matrices
commute for aligned meridians since their power matrices have equal eigenvectors: F

2
= 𝑝F
1
+ 𝑞I. At not-equal signs, the meridians from

opposite lens surfaces cannot physically align.

Rotational symmetry Oblique meridians Toric symmetry
Rotational symmetry F

1
F
2
− F
2
F
1
= O F

1
F
2
− F
2
F
1
= O F

1
F
2
− F
2
F
1
= O

Oblique meridians F
1
F
2
− F
2
F
1
= O F

1
F
2
− F
2
F
1
= O F

1
F
2
̸= F
2
F
1

Toric symmetry F
1
F
2
− F
2
F
1
= O F

1
F
2
̸= F
2
F
1

F
1
F
2
− F
2
F
1
= O

so that these matrices commute as in (9). Thus surface
principal powers along arbitrary aligningmeridians of a thick
lens satisfy F

2
= 𝑝F
1
+ 𝑞I and have a power matrix G

𝐴
that

remains unchanged. A lensometer measures back and front
surface vertex powers andmay not be the general detector for
lens power G

𝐴
. Since F

1
and F

2
= 𝑝F
1
+ 𝑞I have a common

set of linearly independent eigenvectors [9], (9) is valid and
F
1
and F

2
commute. Only one of F

1
and F

2
may represent

the power of a surface without preferred meridians (such
matrices always commute, (1) and Table 1). For a thick lens,
commuting powers F

1
and F

2
in G
𝐴
are conjugates that may

be multiplied in any order in their product in (2) and (6).
Another matrix component can have zero power irre-

spective of lens thickness when

O = F
1
F
2
+ F
2
F
1 (11)

or the matrices F
1
and F

2
anticommute. General surface

principal powers for which this is the case are independent
of those for which (9) holds. Suppose F

1
is invertible. This

excludes pure cylinder-shaped surfaces 1. Then, (11) can be
F
2
= F−1
1
(−F
2
)F
1
which makes F

2
have the same trace as

−F
2
. But, generally, trace (−F

2
) = −trace(F

2
). Thus the

trace of F
2
must be zero so that surface 2 has equal-and-

opposite principal powers. This procedure is equally valid
for F
1
(F
2
is invertible) and each surface is cross-cylinder-

like. Anticommuting matrices F
1
and F

2
in (11) yield equal-

and-opposite powers on the surfaces. This is not sufficient
for (11) to be valid. Further investigation shows that principal
meridians must cross at 45∘ from one surface to the next.
F
1
+F
2
and 𝑡F

1
F
2
/𝑛 are the simultaneous power components

in (2) for a lens where neither surface is a pure cylinder.Then
the equal-and-opposite powers on separate surfaces can have
principal meridians crossing maximally at 45∘. Equation (9)
cannot be valid with (11) and associated conjugate powers
cannot be present on such a thick lens simultaneously.
Information on surface powers disappears if the thickness of
the lens is neglected as (9) and (11) effectively become valid
simultaneously.

Conjecture 1. Energy illuminating the retina should be a
significant fraction of the energy illuminating a similar area
on the correcting lens. Any oblique astigmatism or asymmetry
present in the power of the compensating device makes rays
focus as caustic curves. Stray beams illuminate the eyeball.
Contrast is thus lowered and less energy concentrates at the
fovea. Spectacle or contact lenses manufacturers are trained
to machine surfaces that combine and nullify the asymmetry.
For efficient use of illumination energy, spherocylindrical lenses

have powers that are symmetric, and perpendicular meridians
align. The validity of this seems to be supported by common
practice motivated in part by this work.

General obliquely crossing principal meridians on sur-
faces are progressively aligned in what follows, to finally be
rectangular. Corresponding lens powers are seen to have the
nature that the theory predicts.

Surfaces 1 and 2 of a lens have a commonvertical principal
meridian 𝛽 whose powers 𝐹

𝛽1
and 𝐹

𝛽2
are different and

nonzero in Figure 1. Near-horizontal principal meridians of
plano power on the first surface are not aligned with those on
the second surface. Angles are 𝜋 − 𝛼

1
on the left and 𝜋 − 𝛼

2

on the right and 𝛼
1
and 𝛼

2
in radians are small. Eigenvector

matrix of surface 1 in (12) that follows is ( cos𝛼1 cos𝛽1sin𝛼
1
sin𝛽
1

) ≈

(
−1 0

𝛼
1
1 ) and for surface 2 we have ( cos𝛼2 cos𝛽2sin𝛼

2
sin𝛽
2

) ≈ (
−1 0

𝛼
2
1 )

with corresponding singular eigenvalue matrices ( 0 00 𝐹
𝛽1
) and

(
0 0

0 𝐹
𝛽2
). Surface power matrices F

1
and F

2
are [5]

F
1
= (

−1 0

𝛼
1
1

)(

0 0

0 𝐹
𝛽1

)(

−1 0

𝛼
1
1

) ,

F
2
= (

−1 0

𝛼
2
1

)(

0 0

0 𝐹
𝛽2

)(

−1 0

𝛼
2
1

) .

(12)

Slightly different principal meridians and powers on the
surfaces in Figure 1 are represented in the distinct modal and
spectral matrices in (12) that yield asymmetric powers F

1
and

F
2
.
Meridians of plano power on both refracting surfaces in

Figure 1 are not perpendicular to meridian 𝛽 so that matrices
F
1
+ F
2
and F

1
F
2
are antisymmetric and G in (2) is an

antisymmetric power matrix. Thus surface powers F
1
and F

2

in the powerG of the lens that transmits light from surface to
surface are not conjugates. For F

1
and F

2
to commute (G

𝐵
=

O in (5)), surfaces need to have aligning meridians (equal
eigenvectors) and for this the matrix products identified by
the square brackets in

F
1
F
2

= (

−1 0

𝛼
1
1

)(

0 0

0 𝐹
𝛽1

)[

−1 0

𝛼
1
1

] [

−1 0

𝛼
2
1

](

0 0

0 𝐹
𝛽2

)(

−1 0

𝛼
2
1

) ,

F
2
F
1

= (

−1 0

𝛼
2
1

)(

0 0

0 𝐹
𝛽2

)[

−1 0

𝛼
2
1

] [

−1 0

𝛼
1
1

](

0 0

0 𝐹
𝛽1

)(

−1 0

𝛼
1
1

)

(13)
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F𝛼1 = pl

F𝛽1

F𝛼2 = pl

F𝛽2

Figure 1: Coincident vertical principal meridians whose powers are
different are found on the surfaces of a thick lens. Near-horizontal
noncoincident meridians have plano power.

equal the identity matrix. This, or equally F
2
= 𝑝F

1
+ 𝑞I,

implies that the meridians of plano power must coincide on
the two surfaces, that is, 𝛼

1
= 𝛼
2
while the 𝛽 meridians

coincide. These conditions cause antisymmetric F
1
to be

a conjugate of F
2
or F
1
and F

2
commute as in (9) and

F
1
F
2
is antisymmetric. Equation (2) yields the thick lens of

asymmetric power

G = (𝐹
𝛽1
+ 𝐹
𝛽2
−

𝑡𝐹
𝛽1
𝐹
𝛽2

𝑛
)(

0 0

𝛼
1
1

) (14)

from aligned meridians of surfaces with conjugate matrix
powers. The meridian of plano power will be horizontal
on the respective surfaces when 𝛼

1
= 0 in Figure 1.

Aligned meridians on the surfaces from the remaining G
𝐴

will be perpendicular which yields a thick lens of symmetric
power. Equations (7) and (8) show that surface powers
that interchange produce a different power for lens power
G. Cylindrical surfaces whose principal meridians each are
aligned, vertical and horizontal, form the lens. Power G is
determined with respect to a principal plane of the lens. This
power may be expressed as sphere, cylinder, and axis but we
maynot assume thatG can bemeasuredwith respect to a back
surface of the lens. All modal matrices in (12) have become
(
−1 0

0 1
). The columns (eigenvectors) of this symmetric matrix

are along the horizontal and vertical principal meridians of
a thick lens that are aligned on the respective refracting
surfaces of Figure 1 and whose powers 𝐹

𝛽1
and 𝐹

𝛽2
differ.

3. Discussion

In a general lens, the ray path stipulated appropriate inde-
pendent components of a power matrix. Interchanging sur-
face powers in an expression affected some components.
A demand for invariant lens power made surface powers
conjugate. The resultant matrix commutation was exploited
advantageously to justify the shape and power of surfaces of
spherocylinder lenses. Mostly the lens was treated as thick.

The symmetries of powers along lens surface meridians
in (1) are substituted by principal meridians along surfaces
in the generalized Gullstrand equation (2) in which the
power of a compensating lens depends on the refracting
surface that rays first encounter. The thickness-dependent
second-order term with a generally asymmetric power was
written as autonomous components using (4) to facilitate the

recognition of conjugates. A component of lens power in (6)
is invariant when matrix surface powers, now mutually con-
jugate, change position in the expression. For toric surfaces,
in particular, this is the invariant component of lens power.
Principal powers along oblique meridians may be those of
conjugate surface power components of invariant lens power.
A second power component changed sign when matrix
surface powers change position in the expression for lens
power and controlled how the meridians cross on respective
surfaces. For toric surfaces, in particular, this component of
asymmetric lens power peters out as principal meridians,
represented by eigenvectors of surface matrix powers, align
as in (9). Principal powers are distinct on a surface but differ
among surfaces. We showed why meridians on pairs of toric
refracting surfaces or surfaces with oblique meridians can
align or cross obliquely to determine the natures of thick lens
powers. All pairs of surfaces, one of which may not have pre-
ferredmeridians, have distinctmatrix powers that commuted
in the expression for lens power when surface eigenvectors
aligned as illustrated. For thin lenses, meridian alignment
essential for a symmetric thick lens power component may
be waived. Power component G

𝐴
that is independent of the

order of surface powers in its expression provides a norm
or reference as paraxial rays do in ray tracing. Component
G
𝐵
measures the full deviation of power from containing

conjugate variables and symmetry and contributes zero to
lens power for an appropriate selection of surface variables.
Spherocylindrical lenses need to have thickness to maintain
adequatemechanical strength and safety.We have shown that
lenses with adequate thickness can have toric power allocated
to one surface and spherical power to the other or any of
the other options as shown in Table 1 where the surface
powers commute. Principal planes in rotationally symmetric
lenses are scalar conjugates that may have a matrix analogue
and we believe that conjugate variables open a possibility for
matrices to shape some principal surfaces in spherocylinder
lenses in future.The separation of refracting surfacesmay not
contribute to antisymmetry in the power matrix. Symmetric
or asymmetric lens power can thus be invariant when surface
powers are switched for this thick lens.

First-order image positions and sizes that paraxial optics
predicts in a system provide a convenient reference from
which to measure departures from perfection including
aberrations. Linear paraxial expressions are simpler than
trigonometric equations [11].

Parabolic mirror surfaces that cast telescope images, ret-
inoscopy [12, 13], and automated optometers provide experi-
mental answers or are calibrated based on principles present
in conjugate variables. A common thread in thermodynam-
ics, statistical physics, Hamiltonian mechanics, and other
disciplines is the Legendre transform that contains conjugate
variables. Well-known conjugate variables are present in
the formats for Heisenberg’s uncertainty principle. Standard
methods of linear algebra [14] can be applied to fields
that include medical imaging, engineering, and ophthalmic
literature, where eigenvalues and eigenvectors often represent
observable and measureable quantities.



International Journal of Optics 5

Competing Interests

The authors declare that there is no competing interests
regarding the publication of this paper.

Acknowledgments

The University of the Witwatersrand, Johannesburg is
thanked for hospitality. S. Abelman gratefully acknowledges
support from the University of theWitwatersrand, Johannes-
burg and the National Research Foundation, Pretoria, South
Africa.

References

[1] L. Wang, A. M. Mahmoud, B. L. Anderson, D. D. Koch, and C.
J. Roberts, “Total corneal power estimation: ray tracing method
versus Gaussian optics formula,” Investigative Ophthalmology
and Visual Science, vol. 52, no. 3, pp. 1716–1722, 2011.

[2] A. G. Bennett, “An historical review of optometric principles
and techniques,”Ophthalmic and Physiological Optics, vol. 6, no.
1, pp. 3–21, 1986.

[3] W. F. Harris and R. D. van Gool, “Thin lenses of asymmetric
power,” South African Optometrist, vol. 68, no. 2, pp. 52–60,
2009.

[4] W. F. Harris, “Back- and front-vertex powers of astigmatic
systems,” Optometry and Vision Science, vol. 87, no. 1, pp. 70–
72, 2010.

[5] H. Abelman and S. Abelman, “Paraxial ocular measurements
and entries in spectral and modal matrices: analogy and appli-
cation,” Computational and Mathematical Methods in Medicine,
vol. 2014, Article ID 950290, 8 pages, 2014.

[6] R. Blendowske, “Hans-Heinrich Fick. Early contributions to the
theory of astigmatic systems,” South African Optometrist, vol.
62, no. 3, pp. 105–110, 2003.

[7] W. F. Harris, “Keating’s asymmetric dioptric power matrices
expressed in terms of sphere, cylinder, axis, and asymmetry,”
Optometry and Vision Science, vol. 70, no. 8, pp. 666–667, 1993.

[8] H. Abelman and S. Abelman, “Modification of readings along
oblique principal meridians to fit regular corneal surfaces,”
Journal of Modern Optics, vol. 62, no. 14, pp. 1187–1192, 2015.

[9] K. F. Riley, M. P. Hobson, and S. J. Bence, Mathematical
Methods for Physics and Engineering, Cambridge University
Press, Cambridge, UK, 2006.

[10] C. J. Eliezer, “A note on group commutators of 2 × 2 matrices,”
American Mathematical Monthly, vol. 75, no. 10, pp. 1090–1091,
1968.

[11] W. J. Smith, Modern Optical Engineering, McGraw-Hill, New
York, NY, USA, 2000.

[12] M. Rosenfield, N. Logan, and K. H. Edwards, Optometry:
Science, Techniques and Clinical Management, Butterworth-
Heinemann, Edinburgh, UK, 2009.

[13] M. P. Keating, Geometric, Physical, and Visual Optics,
Butterworth-Heinemann, Boston, Mass, USA, 1988.

[14] H. Anton and C. Rorres, Elementary Linear Algebra: Applica-
tions Version, JohnWiley & Sons, Philadelphia, Pa, USA, 2014.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

High Energy Physics
Advances in

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Fluids
Journal of

 Atomic and  
Molecular Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in  
Condensed Matter Physics

Optics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astronomy
Advances in

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Superconductivity

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Statistical Mechanics
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Gravity
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Astrophysics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Physics 
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Solid State Physics
Journal of

 Computational 
 Methods in Physics

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Soft Matter
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Aerodynamics
Journal of

Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Photonics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Biophysics

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Thermodynamics
Journal of


