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We study themomentumdistribution of the electrons in an extended periodic Andersonmodel, where the interaction,𝑈
𝑐𝑓
, between

itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital
interaction, the 𝑓 electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a
certain value of𝑈

𝑐𝑓
the 𝑓 electrons become again localized together with the conduction electrons. In the less than half-filled case,

we observe that 𝑈
𝑐𝑓
causes strong correlations between the 𝑓 electrons in the mixed valence regime.

1. Introduction

Heavy-fermion and mixed valence systems are still active
research fields in spite of the major achievements of the past
few decades [1, 2]. The discovery of a new critical point in
the pressure-temperature phase diagram of CeCu

2
Ge
2
and

CeCu
2
Si
2
has attracted much attention both experimen-

tally [3–8] and theoretically [9–14]. It is believed that the
appearance of the new critical point is due to the critical
valence fluctuations of the Ce ion.The simplest model, which
contains the essential physics of rare-earth compounds, is the
periodic Anderson model:
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(1)

where the notation is standard and 𝑊 = 4𝑡 is taken as the
energy unit. It is known, however, that the mixed valence
regime appears always in this model as a smooth crossover,
and valence fluctuations do not become critical for any choice
of the parameters. A local Coulomb interaction between the

conduction and localized electrons is needed for the appear-
ance of a sharp transition and critical valence fluctuations
[14]. Therefore we consider the following Hamiltonian:

H =HPAM + 𝑈𝑐𝑓∑
𝑗

𝑛
𝑓

𝑗
𝑛
𝑐

𝑗
. (2)

Previous studies revealed how 𝑈
𝑐𝑓
affects the mixed valence

regime and it has been shown that a first-order valence
transition and a quantum critical pointmay appear due to𝑈

𝑐𝑓

[11, 15–17].The effect of𝑈
𝑐𝑓
in theKondo regime has also been

addressed both in infinite [18, 19] and one spatial dimensions
[20]. Namely, in infinite dimensions the symmetric model
for small hybridization (𝑉 ≪ 𝑊) displays antiferromagnetic
order for small 𝑈

𝑐𝑓
which, however, disappears for large 𝑈

𝑐𝑓

and charge order develops. In contrast, there is no such phase
transition in one dimension due to the enhanced quantum
fluctuations; however, for small and large 𝑈

𝑐𝑓
the spin-

spin and density-density correlation function, respectively,
exhibits the slowest decay. Between these two regimes there
is a narrow region, where the local singlet formation is
significantly enhanced. It is worth noting that, besides 𝑈

𝑐𝑓
,

the role of the interaction between conduction electrons has
also been studied [21, 22]; however, this does not lead to a
sharp valence transition.
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Our goal in this paper is to investigate the momen-
tum distribution of the electrons in one dimension. It is
known that in higher dimensions they exhibit a jump at
the Fermi momentum, whose size can be used to extract
the energy dependence of the self-energies, from which the
many-body enhancement factor of the effective mass can
be obtained. Although in one dimension there is no such
jump at the Fermi momentum, just a sharp change, they
provide direct information about the spatial distribution of
the electrons and the content of conduction and 𝑓-electron
states in the quasiparticle bands, while the previous quantum
information analysis [20] gave only an indirect description
of these quantities. We address the question of how they
are modified by switching on 𝑈

𝑐𝑓
both in the integer and

mixed valence regimes. The density-matrix renormalization-
group algorithm (DMRG) [23–27] is applied, which allows
the accurate determination of ground state properties. We
have used the dynamic block-state selection algorithm [28,
29] in which the threshold value of the quantum information
loss, 𝜒, is set a priori. We have taken 𝜒 = 10−5. A maximum
of 2000 block states is needed to achieve this accuracy, and
the largest truncation error was in the order of 10−6. We
investigated chains up to amaximum length𝐿 = 80with open
boundary conditions and performed 8–12 sweeps.

2. Results at Half-Filling

The nondegenerate version of the periodic Anderson model
can hold up to 𝑛max = 4 electrons per lattice site, the average
number of 𝑐 and 𝑓 electrons per site, 𝑛𝑐 and 𝑛𝑓, respectively,
can vary between zero and two. The filling will refer to
the ratio of the total electron density per site (𝑛𝑐 + 𝑛𝑓). In
what follows we consider the symmetric half-filled model,
where 𝑛𝑓 = 1, and calculate the momentum distribution of
conduction and 𝑓 electrons which are defined as
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(3)

Our DMRG calculation was performed in real space; there-
fore these quantities can be obtained by Fourier transforming
of the corresponding single particle density matrices; namely,
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(4)

where 𝑘 = 2𝜋𝑛/𝐿 and 𝑛 = −𝐿/2 − 1, . . . , 𝐿/2. In our case
these are symmetric functions; therefore we consider only the
nonnegative 𝑘 values.

Before going into the details of the numerical results, we
briefly recall the case when 𝑈

𝑓
= 𝑈
𝑐𝑓
= 0 which is easily
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Figure 1: Momentum distribution functions of the conduction and
𝑓 electrons in the noninteracting case (𝑈

𝑓
= 𝑈
𝑐𝑓
= 0, 𝑉/𝑊 = 0.1,

𝜀
𝑓
= 0). The solid and dotted lines are obtained from (6) and (7),

respectively.The symbols (bullet and red square) denote the DMRG
results for 𝐿 = 50.

solvable. Thereby the Hamiltonian can be diagonalized by an
unitary transformation

𝛼
(−)

𝑘
= −V
𝑘
𝑐
𝑘
+ 𝑢
𝑘
𝑓
𝑘
,

𝛼
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𝑐
𝑘
+ V
𝑘
𝑓
𝑘
,

(5)

where 𝛼(−)
𝑘

(𝛼(+)
𝑘

) creates a quasiparticle in the lower (upper)
hybridized band with mixing amplitudes:
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; (7)

in our case 𝜀
𝑘
= −2𝑡 cos 𝑘 and the Fermi momentum is

at the boundary of the Brillouin zone since the lower band
is completely filled. It is easily seen that the momentum
distribution functions provide information about the mixing
amplitudes, namely, the portion of conduction and𝑓 states in
the hybridized band:

𝑛
𝑐

(𝑘) = V2
𝑘
,

𝑛
𝑓

(𝑘) = 𝑢
2

𝑘
.

(8)

The momentum distribution in the noninteracting system
is shown in Figure 1 compared with the DMRG results.
The small discrepancy between the two results is attributed
to the open boundary condition used in DMRG. In the
following we investigate how the interactions modify the
above results, using again the DMRG method with open
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Figure 2: Momentum distribution functions of the conduction (bullet) and 𝑓 (red square) electrons for 𝐿 = 50 and 𝑛 = 2. Panels (a), (b),
(c), and (d) correspond to 𝑈

𝑐𝑓
/𝑊 = 0, 1.5, 1.7, and 3; furthermore 𝑈

𝑓
/𝑊 = 3, 𝑉/𝑊 = 0.1, and 𝜀

𝑓
= −𝑈

𝑓
/2 in all cases. The lines are guides

to the eye.

boundary condition. We checked for short systems that the
momentum distributions of the interacting system calculated
with periodic and open boundary conditions are in good
agreement within our error margin.

It has been pointed out [20, 30] that strong 𝑈
𝑓
leads to

localization of the 𝑓 electrons, since the number of doubly
occupied 𝑓 levels is negligible and the ground state is a
collective singlet. This is what we see in Figure 2(a); namely,
𝑛
𝑓

(𝑘) hardly depends on 𝑘 in the Kondo regime, while the
distribution of conduction electrons is just slightly affected
by 𝑈
𝑓
. The quantum information analysis [20] showed that

as𝑈
𝑐𝑓
is switched on more and more doubly occupied 𝑓 sites

are created, therefore the 𝑓 electrons become less localized in
real space. Finally, when𝑈

𝑐𝑓
is large the 𝑐 and𝑓 electrons tend

to avoid each other and the sites are occupied by two 𝑐 or two
𝑓 electrons in an alternating fashion. Now we examine how
these features are reflected in the momentum distributions.
As 𝑈
𝑐𝑓

is switched on, the wave number dependence of
the conduction electrons becomes weaker and weaker and

therefore less itinerant in real space, while the distribution
of the 𝑓 electrons becomes more and more dispersive as it
can be seen in Figures 2(b) and 2(c). Above 𝑈

𝑐𝑓
≈ 𝑈
𝑓
/2 +

𝑊/4 both distributions hardly depend on the wave number
as it is observed in Figure 2(d). That is, the behavior of the
momentum distributions agrees well with the results of the
entropy analysis.

3. Away from Half-Filling

In the previous section we considered the half-filled case.
Now we discuss what happens when the ground state is
metallic and fix the electron density at 𝑛 = 1.75. It has been
shown [15, 16] that a stable mixed valence regime appears
around 𝑛𝑓 = 2 − 𝑛 in the presence of 𝑈

𝑐𝑓
, and strong enough

𝑈
𝑐𝑓

leads to a first-order transition between the Kondo and
mixed valence states as 𝜀

𝑓
is varied. One can observe, in

Figure 3, that for strong 𝑈
𝑐𝑓

a stable mixed valence regime
appears indeed, and the change of the valence becomes
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Figure 3:The𝑓-level occupancy as a function of 𝜀
𝑓
for𝐿 = 80,𝑈

𝑐𝑓
=

0 (red square) and𝑈
𝑐𝑓
/𝑊 = 4 (bullet); furthermore𝑈

𝑓
/𝑊 = 10 and

𝑉/𝑊 = 0.2. The circled data points are used in the comparison in
Figure 4. The lines are guides to the eye.

sharp. In the following we investigate how the momentum
distribution of the electrons changes due to 𝑈

𝑐𝑓
in the mixed

valence regime.This is shown in Figure 4, where 𝜀
𝑓
, indicated

by the circles around the data points in Figure 3, was chosen
such that the occupancy of the 𝑓 level is nearly the same
in the two cases. One can clearly see that both 𝑛𝑐(𝑘) and
𝑛
𝑓

(𝑘) change drastically around the Fermi momentum when
𝑈
𝑐𝑓
= 0. This is not surprising since our system is a Luttinger

liquid, where a logarithmic singularity is expected to occur at
the Fermimomentum. For a finite𝑈

𝑐𝑓
a significant amount of

the conduction and 𝑓 electrons is scattered above the Fermi
momentum and the 𝑘-dependence of the electron densities is
significantly reduced in both cases, which indicates a strongly
correlated mixed valence state. It is worth noting that the
distribution functions do not tend to zero above the Fermi
momentum for strong𝑈

𝑐𝑓
.These results agree well with what

has been obtained in infinite dimensions using theGutzwiller
wave function [16]; the main difference is the absence of
the discontinuity at the Fermi momentum due to the one-
dimensional property of the model.

4. Conclusions

We have investigated an extended periodic Anderson model
with an additional Coulomb interaction using the DMRG
algorithm to better understand its effect on the momentum
distribution of the electrons. In the half-filled, symmetric
model (in the Kondo regime), switching on 𝑈

𝑐𝑓
results in

the increased itinerancy of the 𝑓 electrons; however, above a
certain value of𝑈

𝑐𝑓
it tends to localize 𝑓 electrons again. The

itinerancy of the conduction electrons is gradually reduced
as 𝑈
𝑐𝑓

is increased. These results agree well with what has
been obtained by quantum information analysis [20]. We
also investigated what happens when the system is less
than half-filled; that is, the ground state is metallic. It has
been revealed that in the mixed valence regime 𝑈

𝑐𝑓
makes
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Figure 4: Momentum distribution functions of the conduction
(bullet) and 𝑓 (red square) electrons for 𝐿 = 80 and 𝑛 = 1.75.
Panels (a) and (b) correspond to 𝑈

𝑐𝑓
/𝑊 = 0, 𝜀

𝑓
/𝑊 = 0.5 and

𝑈
𝑐𝑓
/𝑊 = 4, 𝜀

𝑓
/𝑊 = −0.75, respectively; furthermore 𝑈

𝑓
/𝑊 = 10

and 𝑉/𝑊 = 0.2 in all cases. The lines are guides to the eye.

both the conduction and 𝑓 electrons more correlated. These
findings agree qualitatively well with the properties of the
infinite dimensional model, although, as expected for a one-
dimensional model, there is no sharp Fermi edge. This could
be analyzed further using themomentum space version of the
DMRG method [31–34].
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