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We present a novel correction method for air-pressure data collected by microelectromechanical pressure sensors embedded in
Android-based smartphones, in order to render them usable as meteorological data. The first step of the proposed correction
method involves removing the mechanically derived outliers existing beyond the physical limits and those existing outside 3𝜎, as
well as a reduction to the mean sea level pressure using the altitude data from digital elevation models. The second correction
step involves classifying data by location and linear-regression analysis utilizing the temperature and humidity sensed by the
smartphone to reduce correction errors by performing the analysis according to personalized settings. Air-pressure data obtained
from smartphones is subject to several influential factors, depending on the users’ external environment. However, once corrected
for spatial location, temperature, and humidity and for individual users after a comprehensive quality control, the corrected air-
pressure data was highly reliable as an auxiliary resource for automatic weather stations.

1. Introduction

In densely populated urban areas, environmental andmeteo-
rological data pertains to accurate decision-making regard-
ing important socioeconomic issues, such as demographic
changes, healthcare, food supply, security, conflict, and nat-
ural disasters. Disastrous weather events, such as localized
torrential rains, gust of wind, extreme temperature, and
rising sea levels, are among the several events that remind
us of the importance of high resolution data regarding
the ambient environment manifest as fine-scale climatic
features [1–3]. However, an automatic weather station (AWS)
operated by a public institution is limited insofar as it can

only provide very short-term (within one hour) weather
forecasting [4–6], owing to the high social costs associated
with installation and maintenance, and it requires large-scale
investments in both time and money. Studies have been
made for high resolution meteorological observations and
forecasting in the United States, Japan, and South Korea
by developing portable meteorological equipment, although
installing portable meteorological equipment over a large
area poses significant regional and economic challenges [7–
9].

Sensors have recently been available in smartphones with
embeddedmicroelectromechanical systems (MEMS) sensors
for air pressure, temperature, and humidity to correct global
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positioning system (GPS) altitude data. Several Android-
based smartphones, in particular, are designed to collect
meteorological data (Appendix A).With the increasing ubiq-
uity of such smartphones, the higher the population in urban
areas, the more densely distributed the meteorological data
available. This study aims to develop a correction method
to minimize the errors in meteorological data collected by
smartphones vis-à-vis reference data stored in the Korea
Meteorological Administration (KMA). To do so, we devel-
oped an app (named Yeowoobi, which means sun shower in
Korean) [10] that is capable of collecting and storing data
observed by various weather sensors embedded in Android-
based smartphones, and we asked participants to use the
app to collect meteorological data in June 2013. To our
knowledge, this is the first study on correcting air-pressure
data collected by smartphones, although guidelines and
studies are available for correcting errors frompublic weather
stations. Earlier studies [11–13] tried ambient temperature
analysis using battery temperatures monitored by smart-
phones [14]. Unlike static weather stations, smartphones
continually move from one place to another, and they are
exposed to heating and cooling devices, the user’s body
temperature, and a changing external environment, including
spaces within automobiles or trains. Because such factors
influence the smartphone’s sensors, the data cannot be used
directly for weather forecasting. However, the data collected
with the existing infrastructure in smartphones can be used
as a low-cost auxiliary resource to provide information
about the atmospheric environment in terms of fine-scale
meteorological phenomena. To make this data more useful,
the data must be adequately corrected. It is suggested to
have a permissible error range of ±0.5 hPa, as specified in
the KMA announcement number 2010-5 about the standard
of automatic weather observation system (AWOS), which
was provided by the KMA in 2011 [15]. This is done by
performing a targeted quality control (QC) using prepro-
cessing, statistical analysis, context awareness, and machine
learning [16]. This study demonstrates the feasibility of such
meteorological data collected by smartphones as an auxiliary
resource for weather stations by analyzing and comparing the
accuracy of the data with stored data from public weather sta-
tions.

The remainder of this paper is organized as follows.
Section 2 describes the data used in this study—namely,
smartphone data, data from public weather stations, and
data from digital elevation models (DEMs). Moreover, the
preprocessing step for the proposed method is explained,
involving the removal of mechanically derived outliers, a
reduction to the mean sea level pressure (MSLP), and the
removal of outliers lying outside 3𝜎. Section 3 explains the
linear-regression analysis and statistical values. Section 4
describes the classification of locations byweather station, the
inclusion or exclusion of temperature and humidity, enabling
and disabling personalization, and the linear-regression anal-
ysis results depending on the user’s mobility. In Section 5, the
results of the study are summarized and discussed. Finally,
Section 6 presents the direction of future research.
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Figure 1: Sample plot of air-pressure data of two smartphones and
AWS observed during a month (August 2014) at Station 108.

2. Meteorological Data

2.1. Data Collected by Smartphones. The following data is col-
lected by a mobile app called Yeowoobi from general public:
time of data acquisition, the user ID (encrypted), temporal
information (year, month, day, hour, and minute), latitude
(degree), longitude (degree), altitude (m), air pressure (hPa),
temperature (∘C), humidity (%), accuracy, speed (m/s), and
mobile terminal information (Appendix B). Yeowoobi is
designed to read and transmit the sensor values with the
default interval, for collecting the air pressure, temperature,
and humidity, which is set to 10 minutes. Users can change
the settings to suit their needs with consideration to battery
consumption, data-transfer costs, and notifications of abrupt
changes to the air pressure.They can do so by choosing one of
the nine observation intervals, ranging between one minute
and three hours. Some screenshots of Yeowoobi app are given
in Appendix C.

2.2. Data Collected by Public Weather Stations. The AWS
run by the KMA has been using the Automated Surface
Observing System (ASOS) data as public meteorological
(PM) data. The PM data is spatially distributed from 692
public weather stations, currently active across the country
as of November 2014. Only 256 stations (37%) of them collect
air-pressure data, since AWS installed after the year 2007
includes air-pressure sensor in addition to conventional sen-
sor arrangement—that of temperature, precipitation, rainfall
occurrence, wind direction, and wind speed. Humidity has
also been available since 2010. Nominal observation interval
for each reading is one minute. The spatial distribution of
the public weather stations is approximately 36 km with the
ASOS and approximately 13.5 km for an AWS [15]. Figure 1
shows a sample plot of air-pressure data of two smartphones
andAWS observed during amonth (August 2014) at a station.

2.3. DEM Data. The following data was used in this study:
(i) smartphone data: specifically the meteorological data
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Figure 2: Locations of the collected smartphone data (a) and public weather stations (b).

collected with smartphones via Yeowoobi between January
1, 2014, and August 31, 2014 (240 days); (ii) PM data: that
is, the meteorological data stored in the KMA (AWS and
ASOS data) from the same period; and (iii) DEMdata: that is,
altitude data at 30m × 30m resolution [17]. When app users
are in building or underground, elevation information is not
correctly collected by GPS in smartphones. Resultantly we
could obtain elevation information asmuch as only 10 percent
of the total collected data. So we used elevation information
of DEM data for getting MSLP values of air-pressure data
observed in smartphones. Excluded from the analysis were
the smartphone and PM data collected from the spatial range
of some public weather stations containing data flagged as
having abnormal values after QC.

2.4. Data Scale. In Figure 1, the locations of the data-
collecting smartphones and public weather stations are plot-
ted on a map. The total number of public weather stations
was 692, as of October 2014, of which 217 stations are found
in the area covered by the smartphone data. 162,387 locations
out of the total number of locations for smartphone data
collection (787,200) were found to be spatially distributed,
as shown in Figure 2(a), when the latitude and longitude
(unit: degree) were recalculated to three decimal places. In
the plotted distribution of smartphones shown in Figure 2,
the number of smartphone data collected across the country
was 2,654,548 (a larger number than the number of loca-
tions, because different data can be collected from the same
location at different times), of which over 50% (1,470,818)
was distributed in Gyeonggi-do (including Seoul). Locations
with high data density other than Gyeonggi-do were big
cities with high population densities, such as Busan, Daejeon,
Daegu, and Gwangju. By contrast, mountainous regions in
Gangwon-do (in the northeast) and the Namhae plain region
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Figure 3: Quantity of smartphones and data collected.

(in the southwest) yielded a smaller volume of smartphone
data.

As for the temporal distribution, the number of smart-
phones and the volume of collected data were extremely low
between January and May 2014. The volume of data from
smartphone increased sharply between mid-June and late
July, and the number of smartphones and the volume of
collected data steadied at a level of 600/day and 47,000/day,
respectively, from August onwards (Figure 3).

Among the approximately 20 models of Android-based
smartphones with embedded meteorological sensors for air
pressure, temperature, humidity, and humidity, 17 models
were used to collect the meteorological data (Appendix B).
Whereas all of them could measure the air pressure, only
a few had embedded sensors for temperature and humidity
(namely, Galaxy 4, Galaxy Note 3, and Galaxy Round),
with a data-acquisition rate as low as 35%. Speed and
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Table 1: Scale and rate of the meteorological data collected by smartphones.

Data scale Pressure Humidity Temperature Altitude Speed
Time range 01/01/2014–31/08/2014 (240 days)
Location range

Latitude 33.20294–38.57546∘ N
Longitude 124.6549–131.8698∘ E

Number of users 3,096 912 929 1,408 1,406
Number of total data 2,654,548 944,604 949,859 272,341 268,651
Rate 100% 35.58% 35.78% 10.26% 10.12%

elevation data accounted for only 10% of the air-pressure
data (Table 1). Smartphones acquire location information by
either the internet or GPS or both. The ones with internet
adopt both the Wi-Fi transfer mode and the locations of
peripheral communication stations as a reference standard.
With GPS, speed and altitude cannot always be calculated. In
fact, speed and altitude can be calculated via GPS-mediated
communication for only 10% of the meteorological data.

During the data collection period, a total of 2,934,718
data items were collected from 3,096 smartphone users. After
removal of the data found to have abnormal values when
checked against the equivalent data from the nearest public
weather station, 2,654,548 (90.5%) of the smartphone data
items were used in the final analysis.

2.5. Preprocessing: Quality Control (QC)

2.5.1. Physical Limit Test. According to the general meteo-
rological standards from the World Meteorological Organi-
zation (WMO) [18], air-pressure values lower than 500 hPa
and higher than 1,080 hPa are specified as abnormal. We
removed these abnormal values from the smartphone data in
accordance with this standard.

2.5.2. Reduction to Mean Sea Level Pressure (MSLP). The
equation used for the reduction to the MSLP in this study is
as follows [19]:

𝑃
0
= 𝑃(1− 0.0065ℎ

(𝑇 + 0.0065ℎ + 273.15)
)

−5.257

= 0.03414× 𝑃ℎ
(273 + 𝑇)

,

(1)

where𝑃
0
is a sea level pressure (hPa),𝑃 is ameasured pressure

(hPa), ℎ is an altitude obtained from 30 × 30 DEM (m), and
𝑇 is a temperature (∘C).

Based on the smartphone’s location information (i.e., the
latitude and longitude), the DEM (30m × 30m) altitude data
(ℎ), and the air temperature (𝑇) at the nearest public weather
station, the data that remained after purging mechanical
errors was reduced to the MSLP.

2.5.3. Removal of Outliers Existing outside 3𝜎. Smartphones
are exposed to a number of factors that cause artificial air-
pressure changes as users move from one place to another
using various means of transport (e.g., by driving along the
highway, on high-speed trains, and in elevators). Figure 4
shows the distribution of air-pressure data of a representative
user and AWS at two representative stations (108 and 410),
during a month (August 2014). It was quite similar to a
normal distribution. Thus, all data whose values were more
than three times the standard deviation (SD; 𝜎) value of
the total smartphone air-pressure data (𝜎 = 5.647) were
considered as abnormal values and consequently removed.
The data that remained after eliminating the outliers with
abnormal values from the 3𝜎 test consisted of 2,636,328 data
items, or 99.31% of the total number (2,654,548) of collected
data before eliminating them (i.e., 18,220 or 0.69%).

3. Linear-Regression Analysis

We compared the MAE (4) and the RMSE (5) using linear-
regression analysis in the WEKA (Waikato Environment
for Knowledge Analysis) suite [20]. For linear-regression
analysis, we used the MSLP from the nearest public weather
station temporally and spatially as the true value. As prepro-
cessing, we used attribute selection using M5’s method (step
through the attributes removing the one with the smallest
standardized coefficient until no improvement is observed in
the estimate of the error given by the Akaike information cri-
terion) and a greedy selection using the Akaike information
metric [21]. We tested our linear-regression method through
10-fold cross-validation.

After calculating the weight from the training data (𝑛 =
number of training data),

𝑥
(𝑖)

= 𝑤0𝑎0
(𝑖)

+𝑤1𝑎1
(𝑖)

+𝑤2𝑎2
(𝑖)

+ ⋅ ⋅ ⋅ +𝑤
𝑘
𝑎
𝑘

(𝑖)

=

𝑘

∑

𝑗=0
𝑤
𝑗
𝑎
𝑗

(𝑖)

,

(2)

and estimating each training data item, as per (2),
𝑛

∑

𝑖=1
(𝑥
(𝑖)

−𝑥
(𝑖)

)

2
, (3)
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Figure 4: Distribution of air-pressure data of a representative user (a) and AWS (b) at two representative stations (108 and 410), during a
month (August 2014).

we obtain the linear-regression equation by selecting the
weight (𝑤

𝑗
𝑠) that minimizes the training data’s error, as per

(3):

MAE = 1
𝑚

𝑚

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
󵄨
𝑦
(𝑖)

−𝑦
(𝑖)
󵄨
󵄨
󵄨
󵄨
󵄨
, (4)

RMSE = √ 1
𝑚

𝑚

∑

𝑖=1
(𝑦
(𝑖)

− 𝑦
(𝑖)

)
2
. (5)

The resultant values from the test data (𝑚 = number of test
data) are obtained by calculating (4) and (5).

4. Analysis of Results

4.1. Removal of Outliers Existing outside 3𝜎. Table 2 shows the
results from the linear-regression analysis throughout South

Korea, comparing the result before outlier removal with that
after outlier removal. As shown in Table 2, the mean absolute
error (MAE) decreased by 0.14, from 1.69 to 1.55, and the root
mean square error (RMSE) decreased by 0.36, from 2.44 to
2.08.

Tables 2 and 3 show similarities between the patterns
of meteorological data from Gyeonggi-do’s sample area and
those from the entire country. We generated a dataset for
linear-regression analysis by corresponding the smartphone
data (i.e., the observation time, latitude, longitude, air pres-
sure, and DEM data) with the PM data (i.e., the observation
time, latitude, longitude, MSLP, altitude, and the SD of the
distance from each smartphone) in the Gyeonggi-do area
(latitude: 36.394–38.283, longitude: 126.379–127.858).

4.2. Classification by Public Weather Stations. We performed
a linear-regression analysis on the PM data’s MSLP from
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Table 2: Results from the linear-regression analysis throughout
South Korea, comparing the result before outlier removal with that
after outlier removal.

Before outlier removal After outlier removal
MAE 1.69 1.55
RMSE 2.44 2.08
TN 2,654,548 2,636,328
MAE: mean absolute error, RMSE: root mean square error, and TN: total
number of instances.

Table 3: Results from the linear-regression analysis in Gyeonggi-do,
comparing the result before outlier removal with that after outlier
removal.

Before outlier removal After outlier removal
MAE 1.65 1.58
RMSE 2.36 2.05
TN 1,470,818 1,463,829
MAE: mean absolute error, RMSE: root mean square error, and TN: total
number of instances.

Table 4: Results of the linear-regression analysis for all collected
data in Gyeonggi-do and the data classified according to the
locations of the public weather stations in the same area.

Gyeonggi-do Mean of public weather stations
MAE 1.58 1.07
RMSE 2.05 1.48
TN 1,463,829 1,463,820
MAE: mean absolute error, RMSE: root mean square error, and TN: total
number of instances.

the dataset described in Section 2.5.3. Table 4 presents the
mean of the results of the linear-regression analysis in the
Gyeonggi-do area and the results of the linear-regression
analysis from the data obtained from all public weather
stations.

The linear-regression analysis for all of the data in the
Gyeonggi-do area yielded MAE and RMSE values of 1.58
and 2.05, respectively. These values decreased by 0.51 and
0.57, respectively (to 1.07 and 1.48), as a result of the linear-
regression analysis after grouping the same data according to
public weather stations.

4.3. Classification Reflecting Temperature and Humidity. The
proportion of data obtained measuring air pressure, tem-
perature, and humidity in the Gyeonggi-do area was only
approximately 35%. Furthermore, we performed a separate
linear-regression analysis for data containing air-pressure
information exclusively, comparing it with data containing
temperature and humidity information as well (Table 5).

There were 930,883 data items measuring air pressure
exclusively (63.29% of the total data) and 532,946 data items

Table 5: Results of the linear-regression analyses for air pressure
exclusively and results that include temperature and humidity, along
with air pressure, at public weather stations.

Results of
analysis

Only air
pressure

Air pressure
plus

temperature
and humidity

Mean of public
weather stations (air

pressure,
temperature, and

humidity)
MAE 1.64 1.41 0.78
RMSE 2.12 1.86 1.57
TN 930,883 532,946 528,740
MAE: mean absolute error, RMSE: root mean square error, and TN: total
number of instances.

Table 6: Comparison of the results from the linear-regression
analysis of the cases exceeding 1,000 data items and of the public
weather Stations A (108) and B (410).

Gyeonggi-do mean Station A (#108) Station B (#410)
MAE 0.52 0.59 0.68
RMSE 0.81 0.91 1.14
TN 1,077,295 207,953 102,584
MAE: mean absolute error, RMSE: root mean square error, and TN: total
number of instances.

that included pressure, temperature, and humidity (36.23% of
the total data). Although data with all three items accounted
for only 57% of the data from air pressure exclusively, the
linear-regression analysis resulted in a decrease to the MAE
and RMSE by 0.23 and 0.26, respectively. Moreover, the
linear-regression analysis for the data containing all three
items—after being classified by public weather stations—
resulted in a considerable decrease to both the MAE and
RMSE.

4.4. Classification by Public Weather Stations and Person-
alization. We performed linear-regression analysis on the
air-pressure data after classifying them by public weather
station and by user. Table 6 presents the linear-regression
analysis results for the mean of the cases exceeding 1,000
data items and the public weather stations, demarcated into
Station A (Seoul, Jongno-gu, Songwol-dong; latitude: 37.571,
longitude: 126.966, #108) and Station B (Seoul, Dongjak-gu,
Sindaebang-dong; latitude: 37.491, longitude: 126.918, #410).

The results of the linear-regression analysis after classi-
fying data by public weather stations and by users in the
Gyeonggi-do area showed only slight differences to the mean
MAE between Station A (108) and Station B (410).That is, the
mean value did not differ significantly between StationsA and
B.The total number of data items (TN) reveals that Stations A
and B are representative areas, accounting for approximately
20% and 10%of the entireGyeonggi-do area, respectively, and
that the MAE values did not differ much in the area around
Gyeonggi-do.
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Figure 5: Distribution plots, indicating the MAE ((a) and (c)) and RMSE ((b) and (d)) according to the SD in distance ((a) and (b)) and
pressure ((c) and (d)) from the public weather stations by smartphone user (limited to the cases in Gyeonggi-do for data items exceeding
1,000).

The correlation analysis for the MAE and RMSE accord-
ing to the distance and pressure differences from the public
weather stations by smartphone users yielded correlation
coefficients of 0.18 for the MAE and 0.17 for the RMSE, with
the MAE and RMSE according to the SD in pressure at 0.32
and 0.33 (see 𝑅 values in Figure 5), respectively. In other
words, the correlation for the MAE and RMSE was greater
with respect to pressure differences than distance differences.

4.5. Comparison of Errors according to UserMobility. Figure 6
illustrates the visualized mobility patterns over time for users
with high mobility compared with those with low mobility at
public weather StationsA andB.Theblue dots represent users
with high mobility (Users 1 and 3), and the red dots represent
those with lower mobility (Users 2 and 4). Table 7 presents
the results from the linear-regression analysis for each user,
wherein the patterns are apparent for the MAE and RMSE
with respect to the air pressure at the public weather sta-
tions.

The high-mobility users resulted in MAE (RMSE) values
of 1.00 (1.42) in Station A and 0.47 (0.89) in Station B. The
MAE (RMSE) value for low-mobility users was 0.22 (0.37)
and 0.09 (0.11) in Stations A and B, respectively. This implies

Table 7: Results from the linear-regression analyses of high-
mobility users (Users 1 and 3) and low-mobility users (Users 2 and
4) among the smartphone users located close to the public weather
Stations A and B.

Station A (#108) Station B (#410)
User 1 User 2 User 3 User 4

MAE 1.00 0.22 0.47 0.09
RMSE 1.42 0.37 0.89 0.11
TN 4,411 7,838 16,469 10,122
MAE: mean absolute error, RMSE: root mean square error, and TN: total
number of instances.

that errors in air-pressure measurements were greater in
proportion to user mobility at the same location.

5. Discussion

Most Android-based smartphones are able to measure air-
pressure data. Unlike temperature and humidity, air pres-
sure is less influenced by the man-made environment
(indoor/outdoor or air-conditioned/heated). The results of
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Figure 6: Time-dependent location distributions of users with highmobility and those with lowmobility at the representative public weather
Stations A (a) and B (b): Station A (range: latitude 37.53–37.71 degrees, longitude 126.95–127.17 degrees) and Station B (range: latitude 37.46–
37.56 degrees, longitude 126.84–126.95 degrees).

this study revealed that errors in the meteorological data
from smartphones tend to decrease under the following
conditions: with concurrent observations of temperature
and humidity and comparing users with similar moving
patterns (presumably because of similar means of transport).
By correcting the errors resulting from these factors, we
could verify the feasibility of using the air-pressure data
collected by smartphones as an auxiliary resource for public
weather stations. As such, the proposed method contributes
to enhancing the forecasting accuracy by providing high
resolution meteorological data in countries or regions with
a low distribution of public weather stations otherwise
difficult to achieve due to high costs in terms of installation
and maintenance. The results show that smartphone-based
meteorological data with minimal correction algorithm have
potential for contribution to improving high resolution
weather forecasting where precise short-termmeteorological
observations are required, such as sporting events.

6. Future Research Directions

In this study, we presented a new method to correct errors in
air-pressure data collected with smartphones, by comparing
the errors in air-pressure data from nearby public weather
stations after classification according to relevant factors, such
as the presence or absence of temperature and humidity
data, personalization, and the mobility of individual users.
In future research, we plan to focus on the following: (i)
comparing between the day-time and night-time mobility of
users, (ii) comparison of errors with different speed using
the location information in smartphones to verify mobility,
(iii) comparing between data with and without altitude data
acquired from smartphones in addition to DEM data, (iv)
comparison with various machine-learning techniques in

addition to linear-regression analysis, (v) direct compari-
son with the smartphone pressure to the WMO-approved
pressure sensor as a reference, and (vi) comparing various
preprocessing steps, such as time-consistency test (step test)
and persistence test, as well as the physical limit test and
3𝜎 test used in this study. There are several problems in
directly applying step test and persistence test used in AWS
to smartphone data. One of the main problems is that the
time interval in collecting smartphone data is not irregular (it
varies from one minute to three hours). In the cases in which
the time interval is too large or it is changed over time, it is not
easy to apply the two QC tests to smartphone data. However,
its successful application to smartphone data is valuable and
necessary to improve the correction quality.

We also intend to explore other comparative method-
ologies and to validate them. Using these methods, we aim
to improve the correction ability of the proposed method
with regard to themeteorological data from smartphones and
to verify the possibilities of using such data as additional
meteorological data for high resolution short-term scale
weather forecasting.

Appendices

A. List of the Smartphone Models Used in
the Study for Data Collection and Their
Respective Meteorological Sensors

See Table 8.

B. Data Collected by Smartphones and
Pertinent Details

See Table 9.
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Table 8: List of the smartphone models used in the study for data collection and their respective meteorological sensors.

Manufacturer Model Data size Pressure Temperature Relative humidity GPS

Samsung

Galaxy S3 359,285 O O
Galaxy S4 611,640 O O O O
Galaxy S5 487,488 O O

Galaxy Note 117,786 O O
Galaxy Note 2 650,232 O O
Galaxy Note 3 473,999 O O O O
Galaxy Round 72 O O O O

Galaxy R 1,877 O O
Galaxy Nexus 7,294 O O

LG

Nexus 4 402 O O
Nexus 5 28,075 O O

G3 123,361 O O
Optimus G 31,787 O O
Optimus Vu2 2,889 O O

Pantech Vega R3 19,234 O O
CASIO G’z-One 17,337 O O O
Sony Xperia Z2 1,761 O O

Table 9: Data collected by smartphones and pertinent details.

Number Collector item Unit Description Data example Value type

1 REQ TIME
YYYY-MM-

DD
hh:mm

Connection
time for transfer 2014-04-16 12:17 Numeric

2 SEQ Serial
Number

Serial number
(assigned by the

server)
73792 Numeric

3 FINGERPRINT Phone
Information

PDA (personal
digital assistant)
Information
(23 models)

samsung/ks01ltektt/ks01ltektt:4.3/JSS15J/
E330KKKUBML1:user/release-keys Character

4 PROVIDER — Transfer method gps (or network) Character

5 ACCURACY — Inversely
proportional 37 Numeric

6 Observation
TIME

UTC
Million
TIME

Observation
time 1397618269000 Numeric

7 LATITUDE Degree Latitude 37.50412752 Numeric
8 LONGITUDE Degree Longitude 126.8757452 Numeric

9 Observation
SPEED m/sec Speed 0 Numeric

10 Observation
ALTITUDE M Altitude 241 Numeric

11 PRESSURE
SENSOR INFO —

Product type of
air pressure

sensor

Barometer
Sensor|STMicroelectronics|1.0|1 Character

12 PRESSURE hPa Air pressure 1014.08936 Numeric

13 HUMIDITY
SENSOR INFO — Product type of

humidity sensor
SHTC1 relative humidity
sensor|Sensirion|0.04|1 Character

14 HUMIDITY % Humidity 55.833256 Numeric

15 TEMPERATURE
SENSOR INFO —

Product type of
temperature

sensor

SHTC1 ambient temperature
sensor|Sensirion|0.01|1 Character

16 TEMPERATURE ∘C Temperature 20.518414 Numeric
17 USER ID — User ID 4d60d5a821c907f0dcf1e20c45aaf108 Character
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(a) (b)

Figure 7: Two screenshots of the developed Yeowoobi app. Informa-
tion is given in Korean: (a) shows temporal weather information and
(b) indicates spatial air-pressure information.

C. Some Screenshots of the Developed
Yeowoobi App

See Figure 7.
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