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We advocate and develop the use of the dreibein (and the metric) as prepotential for three-dimensional SO(3) Yang-Mills theory.
Since the dreibein transforms homogeneously under gauge transformation, the metric is gauge invariant. For a generic gauge
potential, there is a unique dreibein on fixing the boundary condition. Topologically nontrivial monopole configurations are given
by conformally flat metrics, with scalar fields capturing the monopole centres. Our approach also provides an ansatz for the gauge
potential covering the topological aspects.

1. Introduction

In this paper we advocate and develop the use of the dreibein
or triad (the 3D version of the vielbein) as the basic variable
or prepotential for Yang-Mills theory.The first clear proposal
to use the dreibein came from Haagensen and Johnson [1] in
the context of Hamiltonian formalism in 3 + 1 dimensions.
(References [2–8] are some other works on Yang-Mills theory
involving various constructions of the metric.) The defining
equation for the dreibein is the condition for the dreibein to
be torsion-free with respect to a connection one-form. The
authors of [1] claimed that there are zero modes associated
with this equation due to nonuniqueness of the dreibein
𝑒𝑖𝑎 corresponding to a given gauge potential 𝐴𝑎𝑖 but also
gave arguments that the zero modes would not affect their
discussion. Then Haagensen et al. [9] followed it up with a
deformation of the defining equation for the dreibein, remov-
ing the deformation at the end. References [5–8] have used
the original defining equation for the dreibein as in [1] and
not the deformation of it. In this work also, we use the original
defining equation of [1]. We analyse the case of a generic
Yang-Mills potential, satisfying det𝐵𝑎𝑖 ̸= 0 (𝐵𝑎𝑖 being the
nonabelianmagnetic field) and argue that a unique dreibein is
obtained by fixing the boundary condition. Consequently, the
torsion-free dreibein is a useful prepotential. The calculation

of the Jacobian will be affected by the zero modes present for
vanishing nonabelianmagnetic field, but the Jacobianwill not
be needed in the present work.

Our formulation is useful in several ways:

(1) The metric arising out of the dreibein is gauge invari-
ant, and so the topological properties of the field
configurations which we link to it are also gauge
invariant. The Yang-Mills action is like 𝑅2 theory, but
without the diffeomorphism invariance. It should be
noted that our interest in the present work is about
Yang-Mills theory, not gravity.

(2) Our formulation can be useful for a nonperturbative
understanding of Yang-Mills theory. We find that
the topological,monopole configurations (whichmay
drive confinement) correspond to conformally flat
metrics. In our earlier works [5, 10], we showed how
to locate such a configuration to an internal point (the
“centre”) in a gauge invariant way. In this work, the
“centres” are identified as certain points at which the
conformal mode (a scalar field) is extremum.

(3) There has been extensive interest in obtaining an
ansatz for the Yang-Mills potential that exhibits the
topological aspects [11–16]. We propose an ansatz
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which has a scalar and a spin-two part in addition
to a pure gauge. The scalar part comes from the
conformally flat metric which captures the monopole
configurations.

Our techniques can be extended in a straightforward
way to SO(4) Yang-Mills theory in 4-Euclidean dimensions.
Haagensen and Johnson [1] have also addressed general-
ization to other gauge groups. Our approach can also be
applied to the 3 + 1-dimensional Yang-Mills theory in the
Hamiltonian formulation, with the physical states described
as wave functionals of the metric.

Ever since the proposal of nonabelian gauge theory, the
similarity with Einstein gravity has led to extensive work
exploring the relationship between the two. Examples of this
on the gravity side include the Chern-Simons formulation
of 2 + 1 gravity [17], Ashtekar and loop gravity formulation
[18], and the pure connection formulation of general relativity
[19]. We have already cited several works which attack gauge
theory using gravity [1–9]; a recent work is [20]. In spite of all
this, our approach gives a newway to attack the exotic features
of Yang-Mills theory.

Thepaper is arranged as follows. In Section 2, the dreibein
𝑒𝑎𝑖 is defined through the torsion-free condition, and the
gauge invariance of themetric is emphasized. In Section 3, we
analyse the existence and uniqueness of 𝑒𝑎𝑖 for a given gauge
potential 𝐴𝑎𝑖 . Section 4 deals with topological (monopole)
field configurations and Section 5 presents the gauge poten-
tial ansatz. In Section 6, we discuss our results.

2. Dreibein as Prepotential

Consider the set of nine first-order partial differential equa-
tions (see, e.g., [1])

𝜖𝑖𝑗𝑘 (𝜕𝑗𝑒𝑎𝑘 + 𝐴𝑎𝑏𝑗 𝑒𝑏𝑘) = 0, (1)

which constitute the “torsion-free condition” for the dreibein
𝑒𝑎𝑖 (𝑥) (𝑖 = 1, 2, 3 are the space indices and 𝑎 = 1, 2, 3 are the
group indices) with respect to a connection one-form𝐴𝑎𝑏𝑖 (𝑥).
The dreibein 𝑒𝑎𝑖 is viewed as the square root of a metric

𝑔𝑖𝑗 (𝑥) = 𝑒𝑎𝑖 (𝑥) 𝑒𝑎𝑗 (𝑥) . (2)

If det 𝑒𝑎𝑖 (𝑥) ̸= 0, we can expand the LHS of (1) in the 𝑒𝑎𝑖 basis
and write

𝜕𝑗𝑒𝑎𝑘 + 𝐴𝑎𝑏𝑗 𝑒𝑏𝑘 = Γ𝑙𝑗𝑘𝑒𝑎𝑙 . (3)

Imposing the symmetry

Γ𝑙𝑗𝑘 = Γ𝑙𝑘𝑗 (4)

is equivalent to the torsion-free condition (1). Define

D𝑖𝑒𝑎𝑗 = 𝜕𝑖𝑒𝑎𝑗 + 𝐴𝑎𝑏𝑖 𝑒𝑏𝑗 − Γ𝑙𝑖𝑗𝑒𝑎𝑙 . (5)

Then (3) isD𝑗𝑒𝑎𝑘 = 0, and so [D𝑖,D𝑗]𝑒𝑎𝑘 = 0. This gives

𝑅𝑙𝑘𝑖𝑗𝑒𝑎𝑙 − 𝐹𝑎𝑏𝑖𝑗 𝑒𝑏𝑘 = 0, (6)

where 𝑅𝑙𝑘𝑖𝑗 is the Riemann tensor and

𝐹𝑎𝑏𝑖𝑗 = 𝜕𝑖𝐴𝑎𝑏𝑗 − 𝜕𝑗𝐴𝑎𝑏𝑖 + [𝐴 𝑖, 𝐴𝑗]𝑎𝑏 (7)

(see, e.g., [21]). Using the inverse matrix {𝑒𝑏𝑘},
𝑒𝑎𝑘𝑒𝑏𝑘 = 𝛿𝑎𝑏, (8)

we can write

𝐹𝑎𝑏𝑖𝑗 = 𝑅𝑙𝑘𝑖𝑗𝑒𝑎𝑙 𝑒𝑏𝑘. (9)

It may be helpful to link the above with Cartan’s structure
equations of general relativity. Cartan’s first equation,

𝑑𝑒𝑎 + 𝜔𝑎𝑏 ∧ 𝑒𝑏 = 0, (10)

is our equation (1); we have used the symbol 𝐴 in the place
of 𝜔 and and put all group indices as upper indices. (Since
we have SO(3) and not the Lorentz group, there is no need to
distinguish between upper and lower indices.) Cartan’s other
equation

𝑅𝑎𝑏 = 𝑑𝜔𝑎𝑏 + 𝜔𝑎𝑐 ∧ 𝜔𝑐𝑏 (11)

in components is (on using the dreibein to convert the group
indices of 𝑅𝑎𝑏𝑖𝑗 to space indices)

𝑅𝑙𝑘𝑖𝑗𝑒𝑎𝑙 𝑒𝑏𝑘 = 𝜕𝑖𝜔𝑗𝑎𝑏 − 𝜕𝑗𝜔𝑖𝑎𝑏 + [𝜔𝑖, 𝜔𝑗]𝑎𝑏. (12)

Equation (12) is (7) and (9) combined (in our notation).
Equation (1) can be written as

𝜖𝑖𝑗𝑘 (𝐷𝑗𝑒𝑘)𝑎 = 0, (13)

where 𝐷𝑗 is the gauge-covariant derivative:
𝐷𝑎𝑏𝑗 = 𝛿𝑎𝑏𝜕𝑗 + 𝐴𝑎𝑏𝑗 . (14)

Now write

𝐴𝑎𝑏𝑖 = −𝜖𝑎𝑏𝑐𝐴𝑐𝑖, (15)

where𝐴𝑐𝑖 is the Yang-Mills potential.Then (7) gives the Yang-
Mills field strength. 𝐴𝑎𝑖 transforms inhomogeneously under
an SO(3) gauge transformation, but (13) ensures that the
dreibein 𝑒𝑎𝑖 transforms homogeneously:

𝑒𝑎𝑖 (𝑥) = 𝑂𝑎𝑏 (𝑥) 𝑒𝑏𝑖 (𝑥) . (16)

Here 𝑂𝑎𝑏 is an SO(3) matrix.Themetric 𝑔𝑖𝑗(𝑥) as given by (2)
is therefore gauge-invariant. All gauge invariant objects can
be rewritten in terms of 𝑔𝑖𝑗. For instance,

tr (𝐹𝑖
1
𝑗
1

𝐹𝑖
2
𝑗
2

⋅ ⋅ ⋅) = tr (𝑅(𝑖
1
𝑗
1
)𝑔−1𝑅(𝑖

2
𝑗
2
)𝑔−1 ⋅ ⋅ ⋅) , (17)

where𝑅(𝑖𝑗) is thematrix with the elements (𝑅(𝑖𝑗))𝑘𝑙 = 𝑅𝑘𝑙𝑖𝑗 and
𝑔−1 has the elements (𝑔−1)𝑘𝑚 = 𝑔𝑘𝑚. This may be obtained
from 𝐹𝑎𝑏𝑖𝑗 = 𝑅𝑘𝑙𝑖𝑗𝑔𝑘𝑚𝑒𝑎𝑚𝑒𝑏𝑙.
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In 3 space dimensions, the Riemann curvature tensor can
be completely expressed in terms of the Einstein tensor:

𝑅𝑘𝑙𝑖𝑗 = −𝑔𝜖𝑘𝑙𝑚𝜖𝑖𝑗𝑛𝐺𝑚𝑛, (18)

where 𝑔 = det𝑔𝑖𝑗. This allows us to express the Yang-Mills
action in 3D

𝑆 = 1
2𝑔2𝑌𝑀 ∫ 𝑑3𝑥 𝐵𝑎𝑖 𝐵𝑎𝑖 , (19)

(where 𝐵𝑎𝑖 ≡ (1/2)𝜖𝑖𝑗𝑘𝐹𝑎𝑗𝑘) also in terms of the Einstein tensor,
as follows. In (6), we use (18) and also 𝐹𝑎𝑏𝑖𝑗 = −𝜖𝑎𝑏𝑐𝐹𝑐𝑖𝑗. This
gives [1]

𝐵𝑎𝑖 = (det 𝑒) 𝑒𝑎𝑗𝐺𝑖𝑗, (20)

where det 𝑒 = det 𝑒𝑎𝑖 = √𝑔. Then the Yang-Mills action in 3D
is

𝑆 = 1
2𝑔2Y𝑀 ∫ 𝑑3𝑥𝑔𝑔𝑗𝑘𝐺𝑖𝑗𝐺𝑖𝑘. (21)

This is like 𝑅2 gravity, but without the diffeomorphism invari-
ance.

Equation (1) or (13) comprises a set of linear equations for
the variables 𝐴𝑎𝑖 :

𝜖𝑖𝑗𝑘 (𝜕𝑗𝑒𝑎𝑘 + 𝜖𝑎𝑏𝑐𝐴𝑏𝑗𝑒𝑐𝑘) = 0. (22)

Equation (22) has diffeomorphism covariance provided both
𝐴𝑎𝑖 and 𝑒𝑎𝑖 transform as covariant GL(3) vectors (the Christof-
fel symbol does not contribute due to antisymmetry of 𝜖𝑖𝑗𝑘).
Note that 𝜖𝑖𝑗𝑘 in (22) can be replaced by the Levi-Civita tensor
𝜀𝑖𝑗𝑘 since the two differ by just a factor of √𝑔.

When thematrix {𝑒𝑎𝑖 } is nonsingular, (22) can be uniquely
solved for 𝐴𝑎𝑖 . Indeed, multiplying by 𝑒𝑎𝑙 and summing over 𝑎
we get

𝜖𝑖𝑗𝑘𝑒𝑎𝑙 𝜕𝑗𝑒𝑎𝑘 = 𝑎𝑖𝑙 − 𝛿𝑖𝑙𝑎𝑚𝑚, (23)

where 𝑎𝑗𝑚 = (det 𝑒)𝐴𝑏𝑗𝑒𝑏𝑚. Now set 𝑖 = 𝑙 in (23) to get 𝑎𝑚𝑚
and put it back in (23). Therefore [1, 5]

𝐴𝑏𝑙 = 1
det 𝑒𝜖𝑖𝑗𝑘𝑒𝑎𝑙 (𝑒𝑏𝑖 𝜕𝑗𝑒𝑎𝑘 − 1

2𝛿𝑎𝑏𝑒𝑐𝑖𝜕𝑗𝑒𝑐𝑘) . (24)

To sum up, (1) or (13) or (22) defines 𝑒𝑎𝑖 . In our context,
the dreibein does not arise from transformation between
coordinate basis and orthonormal basis. The gauge trans-
formation of 𝐴𝑎𝑖 ensures that 𝑒𝑎𝑖 transforms homogeneously
and so 𝑔𝑖𝑗 as defined by (2) is gauge invariant. Equation
(22) is diffeomorphism covariant. But the action is not
diffeomorphism invariant, since we are dealing with Yang-
Mills theory in flat space and not in curved space.

3. On Existence and Uniqueness of 𝑒𝑎𝑖
for Given 𝐴𝑎𝑖

When 𝐴𝑎𝑖 (𝑥) = 0, (22) implies 𝑒𝑎𝑖 is curl-free for each 𝑎 =
1, 2, 3 and we have a general solution

𝑒𝑎𝑖 (𝑥) = 𝜕𝑖𝜑𝑎 (𝑥) , (25)

where 𝜑𝑎(𝑥) are arbitrary functions. Thus (22) has a large
set of zero modes. In this situation, the curvature 𝐹𝑎𝑏𝑖𝑗 (or
𝑅𝑘𝑙𝑖𝑗) vanishes and we have a flat space. From (2), we see
that (25) corresponds to 𝑔𝑖𝑗(𝑥) = 𝜕𝑖𝜑𝑎𝜕𝑗𝜑𝑎, that is, a set of
curvilinear coordinates 𝜙𝑎(𝑥) of the flat space. Now (22) is
covariant under diffeomorphisms. If we start with 𝐴𝑎𝑖 (𝑥) =
0 and equation (25) and apply the diffeomorphism 𝑥 →
𝑥(𝑥) using the transformation property of covariant vectors,
𝐴𝑎𝑖 stays zero but 𝑒𝑎𝑖 changes to 𝑒𝑎𝑖 (𝑥) = 𝜕𝑖𝜃𝑎(𝑥) (where
𝜃𝑎(𝑥) = 𝜙𝑎(𝑥)); that is, we have a new dreibein for the same
𝐴𝑎𝑖 . Thus we may view the set of zero modes of (22) given by
(25) as accidental to the case of 𝐴𝑎𝑖 = 0 and as a result of
diffeomorphism covariance.

In [1], it is claimed that all pure gauges, and not just
𝐴𝑎𝑖 = 0, give zero modes. But a pure gauge potential 𝐴 𝑖(𝑥) =
𝑂𝑇(𝑥)𝜕𝑖𝑂(𝑥) (where 𝐴𝑎𝑏𝑖 = −𝜖𝑎𝑏𝑐𝐴𝑐𝑖 and 𝑂 is an SO(3)
matrix) changes under both diffeomorphism and gauge
transformation. If𝐴𝑎𝑖 were invariant but the dreibein changed
under a transformation, we would have had nonunique 𝑒𝑎𝑖 for
a given pure gauge𝐴𝑎𝑖 .This does not appear to be the case. So,
while we do not exclude zero modes for nonvanishing pure
gauges, such zero modes do not follow from any symmetry
(either gauge covariance or diffeomorphism covariance) of
(22), unlike the zero modes for vanishing gauge potential.

Now both vanishing gauge potential and pure gauge 𝐴𝑎𝑖
correspond to 𝐵𝑎𝑖 = 0. The point we make in this section is
that, for a generic gauge potential with det𝐵𝑎𝑖 ̸= 0, we do not
have such large set of nonunique 𝑒𝑎𝑖 . This issue was earlier
addressed in Section 2 of [22]. Here we present a simpler and
neater analysis, arriving at the same conclusion.

First we note that operating on (13) by 𝐷𝑖 gives a
consistency condition, as follows. We have 𝜖𝑖𝑗𝑘𝐷𝑐𝑎𝑖 𝐷𝑎𝑏𝑗 𝑒𝑏𝑘 = 0.
Using antisymmetry of 𝜖𝑖𝑗𝑘 and [𝐷𝑖, 𝐷𝑗]𝑐𝑏 = 𝐹𝑐𝑏𝑖𝑗 = −𝜖𝑐𝑏𝑎𝐹𝑎𝑖𝑗,
we arrive at a condition to be satisfied by any solution to (22):

→𝐵 𝑖 (𝑥) × →𝑒 𝑖 (𝑥) = 0. (26)

In the case det𝐵𝑎𝑖 ̸= 0, without any loss of generality, we
may expand →𝑒 𝑖(𝑥) in the basis provided by →𝐵 𝑖 (𝑖 = 1, 2, 3):

𝑒𝑎𝑖 (𝑥) = 𝐵𝑎𝑗𝛼𝑗𝑖. (27)

Putting (27) in the consistency condition (26) gives us

(det𝐵) 𝜖𝑖𝑗𝑘 (𝐵−1)𝑎
𝑘

𝛼𝑗𝑖 = 0. (28)

Multiplying (28) by 𝐵𝑎𝑙 , we get 𝜖𝑖𝑗𝑙𝛼𝑗𝑖 = 0. Therefore 𝛼𝑖𝑗(𝑥) is
a symmetric matrix:

𝛼𝑖𝑗 (𝑥) = 𝛼𝑗𝑖 (𝑥) . (29)

In terms of these variables 𝛼𝑖𝑗, (22) becomes

𝜖𝑖𝑗𝑘 (𝜕𝑗𝛼𝑚𝑘 + 𝛽𝑚𝑗𝑙𝛼𝑙𝑘) = 0 (30)

with 𝑖, 𝑗, 𝑘, 𝑙, 𝑚 = 1, 2, 3. Here
𝛽𝑚𝑗𝑙 = (𝐵−1)𝑎

𝑚
(𝐷𝑗𝐵𝑙)𝑎 . (31)
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Equation (30) gives the following six equations for evolution
of 𝛼𝑖𝑗 in 𝑥3:

𝜕3𝛼11 − 𝜕1𝛼13 + 𝛽13𝑙𝛼𝑙1 − 𝛽11𝑙𝛼𝑙3 = 0, (32)

𝜕3𝛼21 − 𝜕1𝛼23 + 𝛽23𝑙𝛼𝑙1 − 𝛽21𝑙𝛼𝑙3 = 0, (33)

𝜕3𝛼31 − 𝜕1𝛼33 + 𝛽33𝑙𝛼𝑙1 − 𝛽31𝑙𝛼𝑙3 = 0, (34)

𝜕3𝛼12 − 𝜕2𝛼13 + 𝛽13𝑙𝛼𝑙2 − 𝛽12𝑙𝛼𝑙3 = 0, (35)

𝜕3𝛼22 − 𝜕2𝛼23 + 𝛽23𝑙𝛼𝑙2 − 𝛽22𝑙𝛼𝑙3 = 0, (36)

𝜕3𝛼32 − 𝜕2𝛼33 + 𝛽33𝑙𝛼𝑙2 − 𝛽32𝑙𝛼𝑙3 = 0. (37)

Note that there is no evolution equation for the variable 𝛼33.
Also, since there are two evolution equations (33) and (35)
for the same variable 𝛼12 = 𝛼21, we get the consistency
requirement

𝜕3𝛼12 = 𝜕2𝛼13 + 𝛽12𝑙𝛼𝑙3 − 𝛽13𝑙𝛼𝑙2
= 𝜕1𝛼23 + 𝛽21𝑙𝛼𝑙3 − 𝛽23𝑙𝛼𝑙1.

(38)

This has to be satisfied at all 𝑥3. The variable 𝛼33 enters in this
consistency equation. The coefficient of 𝛼33 is 𝛽123 − 𝛽213. If

𝛽123 − 𝛽213 ̸= 0 (39)

we can solve for 𝛼33 in favour of the other five variables
𝛼11, 𝛼12, 𝛼13, 𝛼22, 𝛼23. Substituting this for 𝛼33 in the (five)
independent equations (32)–(37), we get evolution equations
for these five independent variables. The solution is unique
with initial choice on 𝑥3 = 𝑥03 surface. This is ensured by the
Cauchy-Kowalevski theorem (see, e.g., [22], which contains
further reference, for a statement of this theorem). In the
generic case, at least one of (𝛽123 − 𝛽213), (𝛽231 − 𝛽321), and(𝛽312 − 𝛽132) will be nonzero. If 𝛽231 − 𝛽321 ̸= 0 (or 𝛽312 −
𝛽132 ̸= 0), we can consider the evolution equation in𝑥1 (or𝑥2)
instead of𝑥3 and obtain unique solutionwith initial choice on𝑥1 = 𝑥01 (or 𝑥2 = 𝑥02) surface.

We have demonstrated that, on fixing the boundary
condition, a unique torsion-free dreibein 𝑒𝑎𝑖 exists for a
generic Yang-Mills potential 𝐴𝑎𝑖 . So, after taking into account
the zero modes discussed in the first two paragraphs of this
section, it should be possible to calculate the Jacobian of the
transformation. Thus the transformation from 𝐴𝑎𝑖 to 𝑒𝑎𝑖 as
given by (1) is indeed possible. However, the Jacobian will not
be needed in the calculations of this paper. Only the defining
equation of the dreibein will be used.

4. Nonperturbative Monopole Configurations
and Conformal Mode of Metric

It is expected that topological degrees of freedom like
magnetic monopoles are responsible for nonperturbative
properties such as confinement [23]. In the Georgi-Glashow
model, confinement is due to the ’tHooft-Polyakovmonopole
solution [24]. In contrast to this model, there is no scalar
(Higgs) field in the SO(3) Yang-Mills theory in three dimen-
sions. But the gauge field part of the ’t Hooft-Polyakov

monopole with appropriate boundary conditions (see below)
constitutes a finite-action field configuration and contributes
to the functional integral. Moreover, it has strong qualitative
effects on the Wilson loop.

We now summarize the idea of “centres” of topological field
configurations as developed and used in our earlier works
[5, 10, 25]. (This framework is in the spirit of, but different
from, the Abelian projection procedure of ’t Hooft [26].) The
topological properties of the ’t Hooft-Polyakov monopole
can be characterised using only the gauge field and in the
interior (in contrast to the usual characterisation by the triplet
scalar field at infinity). This is therefore useful in pure gauge
theory. This characterisation is done using the eigenvector
fields of the gauge invariant quantity 𝑆𝑖𝑗 ≡ 𝐵𝑎𝑖 𝐵𝑎𝑗 , where 𝐵𝑎𝑖 ≡
(1/2)𝜖𝑖𝑗𝑘𝐹𝑎𝑗𝑘 is the non-Abelian magnetic field.

For the ’t Hooft-Polyakov monopole, 𝑆𝑖𝑗 = 𝛼(𝑟)𝛿𝑖𝑗 +
𝛽(𝑟)𝑥𝑖𝑥𝑗, where 𝛼 and 𝛽 are functions of the distance 𝑟 from
the origin. At 𝑟 = 0, 𝑆𝑖𝑗 ∼ 𝛿𝑖𝑗 and so any direction is
an eigenvector. Thus the eigenvector 𝑥𝑖 with unit winding
number is singular at the origin. In general, the points at
which the eigenvalues of 𝑆𝑖𝑗 become triply degenerate or,
equivalently, the eigenvector fields of 𝑆𝑖𝑗 become singular, are
called the “centres” of the monopoles and other topological
objects in Yang-Mills theory.

Let us then consider the gauge field part of the ’t Hooft-
Polyakov monopole configuration

𝐴𝑎𝑖 (𝑥) = 𝜖𝑎𝑖𝑗𝑥𝑗 1 − 𝐾 (𝑟)
𝑟2 . (40)

Here 𝐾(𝑟) = 1 + 𝑂(𝑟2) for 𝑟 → 0 and 𝐾(𝑟) → 0 for 𝑟 → ∞.
(These conditions ensure the finiteness of the action.) Using

𝑒𝑎𝑖 (𝑥) = 𝛿𝑎𝑖 𝑒−𝑔(𝑟) (41)

in (24), we find that the resulting gauge potential corresponds
to (40) with

𝑑𝑔
𝑑𝑟 = 1 − 𝐾 (𝑟)

𝑟 . (42)

The configurations (40) and (41) possess spherical sym-
metry. We next consider a generalization of (41) with 𝜙(𝑥),
an arbitrary scalar function of 𝑥1, 𝑥2, and 𝑥3, in the place of
𝑔(𝑟):

𝑒𝑎𝑖 (𝑥) = 𝛿𝑎𝑖 𝑒−𝜙(𝑥). (43)

This corresponds to

𝑔𝑖𝑗 = 𝛿𝑖𝑗𝑒−2𝜙, (44)

a conformally flat metric, and we call 𝜙 the conformal mode.
Using (43) in (24) now leads to

𝐴𝑎𝑖 (𝑥) = 𝜖𝑎𝑖𝑗𝜕𝑗𝜙. (45)
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This gives

𝐵𝑎𝑖 = 𝜕𝑖𝜕𝑎𝜙 − 𝛿𝑖𝑎𝜕2𝜙 + 𝜕𝑖𝜙𝜕𝑎𝜙. (46)

Now consider a point at which the following hold:

(1) 𝜕𝑖𝜙 = 0.
(2) 𝜕𝑖𝜕𝑎𝜙 = 0 for 𝑖 ̸= 𝑎.
(3) 𝜕2𝜙/𝜕𝑥21 = 𝜕2𝜙/𝜕𝑥22 = 𝜕2𝜙/𝜕𝑥23.

Note that the first condition says that we have a critical point
and the next two conditions say that the Hessian matrix is
diagonal and its three diagonal elements (eigenvalues) are
equal.These are sufficient conditions for 𝜙 to be an extremum
at the point. (𝜙 attains a maximum or a minimum depending
on whether the eigenvalues are all positive or all negative.)

Now since conditions 2 and 3 are equivalent to 𝜕𝑖𝜕𝑎𝜙 =
(1/3)𝛿𝑖𝑎𝜕2𝜙, it follows from (46) that, at the point under
consideration, 𝐵𝑎𝑖 ∼ 𝛿𝑖𝑎 and so 𝐵𝑎𝑖 𝐵𝑎𝑗 ∼ 𝛿𝑖𝑗. So the matrix
𝑆𝑖𝑗 is triply degenerate at the point, which, as explained at
the beginning of this section, is the criterion for locating the
“centre” of a topological configuration in a gauge-invariant
description. Thus at the topological centre, the field 𝜙 is an
extremum, satisfying the three conditions given above.

For the special, spherical symmetric case given by (40)
and (41), using 𝐾(𝑟) = 1 + 𝑂(𝑟2) for 𝑟 → 0, it can be checked
that the function 𝑔(𝑟) indeed satisfies the above conditions
on 𝜙(𝑥) at the monopole centre 𝑟 = 0. On the other hand,
in the more general form given by (43), the conditions on
𝜙(𝑥1, 𝑥2, 𝑥3) stated above show that 𝜙 needs to be symmetric
only up to the second-order terms in the Taylor expansion
about the centre. Thus, taking the topological centre to be at
𝑟 = 0, the forms𝐴+𝐵𝑟2+𝐶𝑥31+⋅ ⋅ ⋅ and𝐴+𝐵𝑟2+𝐷𝑥21𝑥2+⋅ ⋅ ⋅
(where 𝐴, 𝐵, 𝐶, and 𝐷 are constants) are two examples of
possible Taylor expansion for the function 𝜙 satisfying the
conditions.

It is interesting to apply our formalism to the Wu-Yang
monopole [27]. This is a solution to the Yang-Mills field
equations. However, it is a point-like magnetic monopole.
The gauge potential for it is obtained on putting 𝐾(𝑟) = 0 in
(40). Then (42) gives 𝑔(𝑟) = ln 𝑟 (up to an additive constant,
which sets the scale). So the conformalmode goes to negative
infinity as 𝑟 goes to zero. Such a singularity, instead of a
smooth minimum, in the conformal mode is just what is
expected since theWu-Yangmonopole is point-like.Themet-
ric in this case is 𝑔𝑖𝑗 = 𝛿𝑖𝑗/𝑟2 (up to a multiplicative constant).

5. Ansatz for Gauge Field

We now consider the polar decomposition of the most
general 3 × 3 matrix 𝑒𝑎𝑖 into an orthogonal matrix R and a
symmetric matrixE:

𝑒𝑎𝑖 (𝑥) = R
𝑎
𝑗 (𝑥)E𝑗𝑖 (𝑥) ∀𝑥. (47)

Under a gauge transformation,

R
𝑎
𝑗 (𝑥) → 𝑂𝑎𝑏 (𝑥)R𝑏𝑗 (𝑥) , (48)

while the symmetric matrix E𝑗𝑖 is gauge-invariant and is the
symmetric square-root of the metric 𝑔𝑖𝑗. The decomposition
(47) corresponds to

𝐴𝑑𝑙 (𝑥) = R
𝑑
𝑚 (𝑥) 𝑎𝑚𝑙 (𝑥) + 𝜔𝑑𝑙 (𝑥) , (49)

where

𝑎𝑚𝑙 (𝑥) = 1
detE

𝜖𝑖𝑗𝑘 (E𝑖𝑚E𝑙𝑝 − 1
2E𝑖𝑝E𝑙𝑚) 𝜕𝑗E𝑘𝑝 (50)

and 𝜔𝑑𝑙 is formally a pure gauge:

𝜔𝑑𝑙 (𝑥) = −1
2𝜖𝑏𝑐𝑑R𝑏𝑚 (𝑥) 𝜕𝑙R𝑐𝑚 (𝑥) . (51)

(To obtain (49), one puts (47) in (24). The terms containing
derivative of E immediately give the first term on the RHS
of (49). In the terms containing derivative of R, we put
𝜕𝑗R𝑎𝑝 = −𝜖𝑎𝑏𝑐𝜔𝑏𝑗R𝑐𝑝, which is the same as (51). Then using
𝜖𝑎𝑏𝑐R𝑎𝑛R𝑐𝑝 = 𝜖𝑛𝑞𝑝R𝑏𝑞 (since det𝑅 = 1) and 𝜖𝑖𝑗𝑘E𝑖𝑛E𝑘𝑝 =
𝜖𝑛𝑟𝑝(detE)(E−1)𝑗𝑟, we get the 𝜔𝑑𝑙 term in (49).)

Now the symmetric matrixE can be further decomposed
into a spin-two traceless part and a scalar trace part:

E𝑖𝑗 = Ẽ𝑖𝑗 + 𝛿𝑖𝑗𝑒−𝜙. (52)

(Here Ẽ𝑖𝑗 = E𝑖𝑗 − (1/3)𝛿𝑖𝑗Σ𝑘E𝑘𝑘 and we define (1/3)Σ𝑘E𝑘𝑘 to
be 𝑒−𝜙.) Since 𝛿𝑖𝑗𝑒−𝜙 corresponds to the metric (44), we propose
that the topological configurations are contained in this part,
with 𝜙 satisfying the three conditions given after (46) at isolated
points. At such points, 𝜔𝑑𝑙 is not strictly a pure gauge. For
example, the non-Abelianmagnetic field corresponding to𝜔𝑑𝑙
has a Dirac string contribution whenR is the singular gauge
in which the configuration (40) becomes a Dirac monopole
[10].

Thus (49), (50), (51), and (52) comprise our ansatz for the
gauge potential, which contains the topological aspects in a
natural way. The three gauge degrees of freedom reside inR
and the six gauge-invariant degrees of freedom reside in E.
The conformal mode contained inE captures the topological
configurations.

6. Discussion

In this work, we have used the dreibein and themetric as basic
variables for the SO(3) Yang-Mills theory in three Euclidean
dimensions. The usefulness of this lies in the fact that the
metric is gauge invariant.

By showing that a generic 𝐴𝑎𝑖 corresponds to a unique
torsion-free 𝑒𝑎𝑖 on fixing the boundary condition, we have
provided justification for the change of variables from 𝐴𝑎𝑖 to𝑒𝑎𝑖 .

We have applied this formalism to nonperturbative
aspects of the theory. The conformal mode of the metric
is found to contain the topological aspects of the gauge
potential. We have demonstrated that topological centres
are located at certain points at which this conformal mode,
a scalar field, is an extremum. This criterion is thus an
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alternative to that developed by us in [5, 10] (also applied by us
in [25]), namely, that the points of triple degeneracy of 𝐵𝑎𝑖 𝐵𝑎𝑗
are the centres of topological configurations. Both of these
criteria are gauge invariant. The Yang-Mills theory expressed
in terms of this conformal mode would be a theory of a scalar
field, and lattice simulation of this scalar theory (as opposed
to lattice gauge theory) with monopoles located at extrema of
the scalar field would serve as a model for confinement.

We have also proposed an ansatz for the gauge potential,
which incorporates the topological aspects contained in the
conformal mode after separating the gauge variant and the
gauge invariant degrees of freedom.

When our formalism is applied to the Hamiltonian
formulation of 3 + 1-dimensional Yang-Mills theory, the
canonical variables are the metric and its conjugate variable.
The physical wave functionals are simply functionals of the
metric. However, due to the change of variables, the inner
product of the wave functionals will involve the Jacobian
of the transformation. For 2 + 1-dimensional SU(𝑁) gauge
theory, Nair et al. [28–31] proposed an𝑁×𝑁 complexmatrix
as a prepotential and, as a consequence of the change of
variables, obtained an inner product for physical states which
involves the Wess-Zumino-Witten action. They arrived at a
trial wave functional which exhibits confinement and gives
string tension in striking agreement with lattice gauge theory
simulations. Viewing our proposal of using the dreibein
as prepotential as a generalization to 3 + 1-dimensions, it
will therefore be interesting to calculate the Jacobian of the
transformation in our case.
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