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Abstract 
The prostate has a zonal anatomy, with differing susceptibilities to disease (benign 

prostatic hyperplasia originates from the transition zone, prostate cancer largely arises 

in the peripheral zone). The molecular reasons for this are not understood. Previous 

prostate cancer microarray studies have used whole benign, diseased or tissue 

adjacent to the carcinoma as normal controls, for what is an epithelial disease. This 

study provides a gene expression profile of normal, non-diseased prostate, or a 

‘reference prostate gene expression profile’. This has been compared to prostate 

cancer to identify novel biomarkers of disease. This study also investigates zonal 

differences in gene expression between different anatomical zones of the prostate. I 

used normal, human donor prostate tissue, laser capture microdissection (LCM), and 

Affymetrix gene expression arrays to achieve these aims. Eight LCM prostate 

epithelial samples from 3 donor prostates were used. The gene expression data was 

validated by low density real-time PCR and immunohistochemistry on a prostate 

tissue microarray. Major differences in gene expression were discovered between 

whole tissue and LCM epithelium only prostate using homology tables. Novel 

prostate adenocarcinoma genes were identified using a publicly available LCM 

prostate cancer gene expression array dataset. 9318 genes showed significant 

differential expression in normal vs. cancer datasets. Three targets, MCM2, NR1D1 

and ABCA1 were validated at the protein level. Expression of NR1D1 and ABCA1 

were increased in cancer, suggesting they are novel epithelial biomarkers of prostate 

cancer.  

An analysis of zonal differences in gene expression found significant differences 

between zones. Zonal specific markers included TGM4 (central zone), LPL 

(peripheral zone), and COL9A1 (transition zone). 

This study provides: (i) a gene expression profile of the normal prostate epithelium 

(ii) novel, prostate adenocarcinoma specific gene and protein markers and (iii) the 

first gene expression profile of normal epithelium on the basis of zonal anatomy of 

the prostate. 
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Chapter 1 Introduction 

 
The prostate is a male reproductive organ, which has two functions: secretory and 

muscular. It produces about 30% of the volume of seminal fluid, providing nutrients 

for sperm. Contained within its secretions are proteases such as Prostate Specific 

Antigen (PSA) (Bostwick, 1994), which maintain semen fluidity mainly by acting as 

anticoagulants. The prostate contains smooth muscle surrounding the glands and these 

are used to force ejection of the prostatic fluid to mix into the seminal fluid during 

ejaculation. At a cellular level the prostate consists of a complex ductal system of 

epithelial cells embedded in a stromal matrix. The epithelial cells are responsible for 

exocrine and neuroendocrine functions with the stromal compartment consisting of 

smooth muscle cells and fibroblasts, whose secretion of growth factors is important in 

normal and pathological conditions of the prostate. 

 

1.1 Anatomy of the Human Prostate 

The name prostate was originally derived from the Greek word ‘prohistani’, meaning 

‘to stand in front of’, and has been attributed to Herophilus of Alexandria who used 

the term in 335 B.C. to describe the organ located in front of the urinary bladder 

(Dobson, 1925). John Hunter was the first to describe the effects of a pathologically 

enlarged prostate in 1786 (Hunter, 1786). He described the prostatic middle lobe as ‘a 

valve obstructing the passage of urine’. Unlike many other organs in the body 

however, whose basic anatomies and functions have long been known, the anatomy 

and function of the prostate was not resolved until recently, and was the source of 

disagreement throughout the course of the 20th century.  

 

1.1.1 The Prostate: Lowsley’s description 

In 1912 Albert Lowsley published a detailed description of the anatomy of the human 

prostate, which would be widely adopted as the anatomy of the prostate for 40 years 

(Lowsley, 1912). By using serial sections and wax reconstructions of embryonic and 

foetal prostate glands, Lowsley observed the developing ductal system at all ages up 

to the time of birth. The prostate ducts were noted to bud from the urethra in five 

separate clusters, making possible the designation of discrete and separate lobes 

(Figure 1). The lobes were defined according to the site of origin of their buds form 
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the urethra and their subsequent direction of growth. The two lateral lobes were the 

largest, with their ducts arising both sides of the urethra and fanning out laterally to 

the capsule, thus making up the majority of the glandular tissue in contact with the 

prostate surface. The posterior lobe formed a midline strip lying between the lateral 

lobes and its buds arose near the prostatic apex, growing proximally to the bladder 

neck. The middle lobe buds branched directly proximally from the urethra at the 

veromontanum. They coursed between the ejaculatory ducts and the proximal urethra 

to the base of the prostate, where they had their greatest extent. The anterior lobe buds 

developed from the other duct origins and grew into the stroma anterior to the urethra. 

Lowsley noted that in all but a few cases the anterior lobe atrophied and disappeared 

by the time of birth. It is seldom referred to in descriptions of the adult prostate.  

The histological appearance of the acinar and duct epithelium was not discussed by 

Lowsley, since the acinar system is not fully developed at birth, and epithelium 

remains simplified and non-descript until puberty. The type of epithelium in different 

lobes was assumed to be the same, and the prostate was thought to be histologically 

homogeneous. 

Lowsley’s own data dealt solely with foetal glands however he made anecdotal 

comments that carcinoma arose exclusively in the narrow strip of posterior tissue 

which coincided with the posterior lobe. Later authors confirmed the conclusion that 

carcinoma arose only in the posterior lobe, but they often defined the boundaries of 

that lobe differently (Huggins and Webster, 1948). Other investigators subsequently 

disagreed with Lowsley and challenged his findings (Franks, 1953). The point was 

made that no discrete lobe boundaries could be seen in the adult prostate and that 

carcinoma originated over an area much larger than the posterior lobe. 

In 1939 Le Duc (Le Duc, 1939) injected opaque material into the duct system of 

several prostates and then cleared the tissue. He found that all of the ducts in the gland 

extended mainly laterally form the urethra. There was no duct system extending 

proximally in the posterior midline, as required by Lowsley’s definition. It was 

concluded that the posterior lobe did not exist, at least in the adult. This work received 

little recognition.  
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Figure 1 The evolution of knowledge of prostate anatomy (Blacklock, 1991) 

 

1.1.2 The Prostate: Huggins’ Description 

In 1948 Huggins (Huggins and Webster, 1948) proposed the existence of a region that 

he called the posterior lobe but which had different boundaries to Lowsley’s 

description (Fig. 1). It did not extend far enough into the prostate to contact the 

ejaculatory ducts. It could not be identified by any visible landmark: it was identified 

only by the effect of prolonged oestrogen administration to produce more profound 

atrophy here than in the rest of the gland. Like Lowsley, Huggins though that the 

posterior lobe was the selective site of origin of carcinoma, despite the fact that he 

was referring to different tissue than that specified by Lowsley. No further work was 

done on this hypothesis. 

 

1.1.3 The Prostate: Franks’ Description 

In 1954, LM Franks was unable to identify lobe boundaries within the prostate, and 

his observations on cancer led him to conclude that carcinoma could arise anywhere 

in the territory of the posterior, lateral and middle lobes (Franks, 1953). He described 

this as the outer gland. Unlike Lowsley’s description, he included the periurethral 
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glands as part of the prostate, and called this the inner gland. Franks also identified 

the inner gland as the exclusive site of origin of BPH. 

 

1.1.4 The Prostate: Hutch’s Description 

In 1970, Hutch (Hutch, 1972) proposed, on the basis of gross dissections, that the 

middle lobe of Lowsley was part of the periurethral gland group (Figure 1). For many 

years it has been common colloquial usage among urological surgeons to refer to the 

midline and laterally projecting nodules of BPH as the middle and lateral lobes, 

respectively. Hutch’s paper appears to have been an effort to confirm the validity of 

this concept. This formulation acknowledges that the entire area of Franks’ outer 

gland (Lowsley’s four lobes) is susceptible to carcinoma, but it refers to this entire 

area as the ‘posterior lobe’. Thus, the middle and lateral lobes are relegated to the 

periurethral gland area. This interpretation is contrary to Lowsley’s original concept, 

but his name has become attached to it. Furthermore, these ‘lobes’ are not reference 

points of normal anatomy but exist only in glands with BPH. This concept is an 

indiscriminate mixture of Lowsley, Franks, and pathologic anatomy. It represents a 

source of great confusion and can still remain a popular way to regard the anatomy of 

the prostate. 

 

1.1.5 The Prostate: McNeal’s Description  

Until McNeal the prostate had been thought of as histologically homogeneous organ 

with simple anatomic structure. First in 1968 (McNeal, 1968) and then in 1981 

(McNeal, 1981) McNeal published his concept of the prostate having a ‘zonal 

anatomy’. Based on observations from prostatic tissue specimens from over 500 

autopsies, he described an anatomically heterogeneous organ, composed of four 

separate regions, whose relationship to the urethra provided a central anatomic 

reference point (Figure 2, 3). Using serial histological blocks he built up a three-

dimensional model of the anatomy. He found that the glandular tissue immediately 

surrounding the ejaculatory ducts was histologically different from the rest of the 

gland. The ducts of the region entered the urethra closely associated with the 

ejaculatory duct orifices and formed a base of tissue with its base at the base of the 

prostate, and apex at the veromontanum. The ejaculatory ducts ran through its centre 

and in young adults it made up approximately 25% of the prostate. He termed this 

region the ‘central’ zone. 
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Figure 2 Zonal anatomy of the prostate (McNeal, 1981) 

 

The remainder of the prostate was termed the ‘peripheral’ zone and contributed to 

over 70% of the prostate. The acinar tissue of the central zone consisted of large 

spaces of irregular contour, whose walls bore numerous ridges or septa projecting into 

the lumen. The epithelial cells appeared crowded, with nuclei of large size lying at 

different levels in a dark, granular cytoplasm. By contrast, the ‘peripheral zone’, was 

composed of small, round, regular acini with smooth walls.  

McNeal proposed that the central zone might share a common embryological origin 

with the seminal vesicles from the Wolffian duct, given its close proximity and the 

similarity of its epithelium. The rest of the prostate was said to arise from the 

urogenital sinus. He, along with those before him, noted that prostate cancer arose 

much more frequently from the peripheral zone, and this raised the strong possibility 

of a difference in biological function between the zones.  

In his work published in 1981, McNeal described the preprostatic sphincter, a 

sphincter of smooth muscle surrounding the urethra from the upper end of the 

veromontanum proximally to the bladder neck. Functionally this was thought to aid in 

continence, and further study revealed a small duct system that lay external to the 

sphincter, and was best developed along the distal half of its extent. He referred to this 

region as the ‘transition’ zone. It contributed less than 5% of the mass of the glandular 

prostate, with its histology and architecture closely resembling that of the peripheral 
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zone. Anatomically a unique feature of this region was the penetration of its ducts into 

the external layers of the sphincter. Large BPH nodules were seen to develop almost 

invariably in this zone, and thus its significance pathologically. 

Thus greater than 70% of the prostate consisted of the peripheral zone, which formed 

a disc of tissue whose duct radiated laterally from the urethra lateral and distal to the 

veromontanum. Almost all carcinomas arose here. 

The central zone constituted 25% of the prostate. Its lateral border fused with the 

proximal peripheral zone border, completing in continuity with the peripheral zone, a 

full disc of secretory tissue orientated in a coronal plane. Marked histological 

differences between central and peripheral zones suggested important biological 

differences.  

The urethral segment proximal to the veromontanum was kinked anteriorly at a 35-

degree angle to the distal segment. No major ducts arose in the proximal segment, but 

the lateral rows of peripheral zone orifices continued. Duct development was aborted 

there, producing only a small transition zone (5%) and several tinnier periurethral 

ducts. The development of these small ducts was possibly determined and limited by 

their intimate relationship to a periurethral smooth muscle sphincter that exists only 

proximal to the veromontanum. These small ducts were in a restricted area and were 

the exclusive site of nodular hyperplasia (BPH).  

The anterior fibromuscular stroma formed the entire anterior surface of the prostate as 

a thick, nonglandular apron, shielding from view the anterior surface of the three 

glandular regions.  

Evidence in support of this model has been derived from studies of histochemistry, 

protein expression (Colombel et al., 1998, Kobayashi et al., 1991, Krill et al., 2001, 

McNeal et al., 1988a, Reese et al., 1986, Reese et al., 1988, Reese et al., 1992, 

Tsurusaki et al., 2003), and histology (McNeal, 1988) of the prostate, as well as 

clinical observations using CT, MRI, Ultrasound (Hricak et al., 1987, Mirowitz and 

Hammerman, 1992, Sommer et al., 1986, Villers et al., 1990), and histopathology 

(Colombo et al., 2001, Erbersdobler et al., 2002b, Erbersdobler et al., 2002a, McNeal, 

1968, McNeal et al., 1988b).  

 

1.1.6 The Prostate: Tissel’s Description 

In 1975, Tissel (Tisell and Salander, 1975) also reported histological heterogeneity 

within the prostate. Using blunt dissection on gross specimens, he was able to find 
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cleavage planes that separated three regions having microscopically different 

appearances. He designated these as the middle, lateral, and posterior lobes. 

The middle lobe he described did not correspond in location to that of Lowsley. It 

completely surrounded the ejaculatory ducts as a wedge of tissue, with its apex at the 

veromontanum and its base against the base of the prostate. Tissel has since concurred 

that the lobe had boundaries and histological features identical to those described by 

McNeal for the central zone (McNeal, 1981). 

Tissel’s posterior lobe also did not correspond to that of Lowsley. It was a strip of 

tissue lying in a subcapsular location just beneath the entire posterior surface of the 

prostate. It did not extend into the gland far enough to contact the ejaculatory ducts 

and was separated from them by the middle and lateral lobes. Its location 

corresponded to that of the posterior lobe described by Huggins. In this region the 

histology was the same as that for the peripheral zone. 

The lateral lobes described here were also different from those of Lowsley, in that 

there was a bridge of glandular tissue posterior to the ejaculatory ducts that united the 

two lateral glandular masses into a single lobe. In this region the histology resembled 

that of the peripheral zone more than the central zone, but the acinar spaces were of 

larger size. 

It is difficult to understand why the terminology of Lowsley was used since the 

prostate of Tisell seems to be identical to that of McNeal, except for the description of 

a subdivision within the peripheral zone. (This is perhaps explained by the fact that 

Tisell founds this distinction clearer in glands from men aged over 40). Older 

prostates are a questionable reference point for normal anatomy, since deviations 

from the structure of normal young adults are already apparent in men in the fifth 

decade (McNeal, 1968, McNeal et al., 1988b). By contrast, the lobes defined by 

Lowsley are quite different in anatomic boundaries from those of Tisell. These issues 

cannot be easily resolved since none of the work of McNeal was referred to in 

Tissel’s paper. 
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Figure 3 McNeal's zonal anatomy of the prostate (Campbell’s Urology) 

 

Although the gross anatomy of the prostate has been established there is little 

evidence for the molecular basis of these zones, and this is discussed subsequently 

(Chapter 1.10). The clinical significance of zonal anatomy is important in terms of 

development of both BPH and prostate cancer. Nodules of benign prostate tissue 

originate within and then expand the transition zone, distorting and compressing the 

adjacent peripheral zone. Prostate cancer, although it may affect any of the zones, is 

more prevalent (70%) in the peripheral zone (McNeal, 1968). The reasons for this 

geographic difference must lie at the molecular level, but remain undefined. 

 

1.2 Normal function of the prostate 

Sex accessory tissues include the prostate, seminal vesicles, ampullary glands, and 

bulbourethral glands, and they are believed to play a major but unknown role in the 

reproductive process. In the human, the sex accessory tissues produce extremely high 

concentrations of many important and potent biologic substances that appear in the 
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seminal plasma, such as fructose, citric acid, spermine, prostaglandins, zinc, proteins 

that include immunoglobulins, human kallekriens, semenogelins, and so forth, and 

specific enzymes such as proteases, esterases, and phosphatases (Wein et al., 2006). 

At present, there is only limited knowledge of the physiologic function of any of these 

potent secretory products in the seminal plasma, with the exception of specific 

enzyme activities in the clotting and lysing process occurring with seminal plasma 

proteins that have unknown physiologic functions. Although the seminal plasma may 

not contain factors that are absolutely essential for fertilization, the secretions 

nevertheless may optimize conditions for fertilization by providing a buffered effect, 

by increasing sperm motility or survival, or by enhancing sperm transport in both the 

male and female reproductive tracts. The seminal plasma may extend viability of the 

sperm and decrease environmental shock. 

 

1.3 Major prostatic diseases – benign prostatic hyperplasia (BPH) and prostate 

cancer  

1.3.1 BPH 

 BPH develops almost exclusively in the transition zone (McNeal, 1968). It is 

considered to be a stromal disease (Rohr and Bartsch, 1980) although in some cases 

the epithelial component predominates. Prostatic enlargement by hyperplasia results 

in reduced compliance of the prostatic urethra and increasing outflow obstruction to 

urine (Wilson, 1980) that may result in secondary changes in the bladder: hypertrophy 

of the bladder wall, and the formation of trabeculae as well as diverticulae. Upper 

urinary tract dilatation may also result. Symptoms of urethral obstruction are due 

either to bladder filling or voiding problems and may include urine retention, 

nocturia, poor stream, urgency and frequency (Wein et al., 2006). If left untreated, 

BPH can result in more severe symptoms, including urinary retention (acute and 

chronic), urinary tract infections, bladder stones, detrusor instability (sometimes 

resulting in incontinence), and obstructive uropathy. Operative relief can result in a 

reversal in the secondary changes in the bladder, provided they are not too advanced 

and chronic over distension of the detrusor has not developed. Approximately 10% of 

men over 50 will require intervention (surgical or medical) to relieve obstruction and 

90% of men in their 80s have histopathological evidence of BPH (Wein et al., 2006). 

Incidence rates increase from 3 cases per 1000 man-years at age 45-49 years 

(prevalence rate of 2.7%), to 38 cases per 1000 man-years by the age of 75-79 years 
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(prevalence rate of 24%) (Verhamme et al., 2002). The clinical outcome of these 

statistics is ~40,000 resections per year in the UK (Wein et al., 2006). 

 

1.3.2 Prostate cancer 

Prostate cancer is the most common malignancy in men and is the cause of 

considerable morbidity and mortality (Howe et al., 2001). In the year 2010, 217,730 

new cases of prostate cancer were diagnosed in the United States, with 32,050 

American males dying of the disease (Jemal et al., 2010). Early prostate cancer is 

often asymptomatic. It may be discovered during routine screening with the PSA 

blood test or during investigation for lower urinary tract symptoms. It may cause 

lower urinary tract symptoms similar to BPH, including as well, painful micturition 

and haematuria. It may also cause erectile dysfunction or painful ejaculation. 

Advanced prostate cancer may cause local symptoms secondary to invasion of 

adjacent structures such as ureter, bladder, and rectum. Alternately it may cause 

distant disease by metastases. It shows a disposition to spread to the skeleton and may 

cause fractures, hypercalcaemia, and anaemia (Wein et al., 2006). 

To date, the exact triggers for development of prostatic adenocarcinoma have not 

been elucidated, although epidemiological studies have shown links to familial, 

environmental and genetic contributors (Hughes et al., 2005). A variety of growth 

factors and cytokines have been shown to influence the growth rate and development 

of prostatic cancers, and a number of proteins and genes have been identified whose 

regulation and/or function are altered between malignant and benign states (Hughes et 

al., 2005). Several of these proteins and genes have been suggested as potential 

biomarkers and therapeutic targets for prostate cancer (Bradford et al., 2006) but few 

have reached clinical practice. 

Prostate cancer is classified according to the TNM (Tumor Node Metastasis) 

classification (Sobin, 2009) (Figure 4). 
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Figure 4 Tumour Node Metastasis (TNM) classification of prostate cancer (Sobin, 

2009) 

 

The Gleason score is the most commonly used system for grading adenocarcinoma of 

the prostate (Gleason and Mellinger, 1974). This scoring system was invented by 

Donald Gleason, a histopathologist working at the Minneapolis Veterans Association 

medical centre in 1962 (Egevad et al., 2009). He was tasked with constructing a 

standardized scoring system for prostate cancer, that would allow effective 

communication between hospitals. It was twenty years later that this scoring system 

became widely accepted, and persists to this day. The Gleason score can only be 

assessed using biopsy material (core biopsy or operative specimens). Cytological 

preparations cannot be used. The Gleason score is the sum of the two most common 

patterns (grades 1-5) of tumour growth found. The Gleason score ranges between 2 
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and 10, with 2 being the least aggressive and 10 the most aggressive. In needle 

biopsy, it is recommended that the worst grade always should be included, even if it is 

present in < 5% of biopsy material (Amin et al., 2005). 

 

1.4 Genetics and molecular biology of prostate cancer 

Direct genome modification and epigenetic influences are the two well described 

factors that may contribute to the development of prostate cancer. Approximately one 

quarter of all prostate cancer occurs in family clusters, with 9% of hereditary prostate 

cancer following an autosomal susceptibility trait (Carter et al., 1993, Gronberg et al., 

1997). Several genes have subsequently been identified and implicated in hereditary 

prostate cancer including HPC1 (Gronberg et al., 1997), and HPC2 (Rokman et al., 

2001).  

Chromosomal loses, and occasionally gains, are frequently seen in prostate cancer. 

The most common loses occur in 8p and 13q (Bova et al., 1993), with several genes 

in these regions identified as putative tumour suppressor genes. These include 

NKX3.1 and Retinoblastoma (He et al., 1997, Phillips et al., 1994) NKX3.1 is a 

homeobox gene that plays a key role in the regulation of prostate development 

(Bhatia-Gaur et al., 1999). It is prostate specific tumour suppressor gene, with loss of 

a single allele predisposing to prostate carcinogenesis (Bhatia-Gaur et al., 1999). The 

retinoblastoma gene is also a prostate tumour suppressor gene (Bookstein et al., 

1990). Regions of chromosome gain include amplification of the entire 8q and Xq11-

13, which include the loci for MYC gene and the androgen receptor, both putative 

oncogenes (Nupponen et al., 1998, Koivisto et al., 1997). 

 

More recently, epigenetic influences on the genome, defined as heritable changes in 

gene expression that occur without changes in DNA sequence (Wolffe and Matzke, 

1999), have also been implicated in prostate carcinogenesis (Rennie and Nelson, 

1998). The most common forms of epigenetic modification relate to DNA 

methylation. Oxidative damage may be one mechanism by which prostate 

carcinogenesis is initiated. Certain genes that protect against oxidative damage may 

be altered by methylation, for example glutathione-S-transferase P1 (GSTP1) (Florl et 

al., 2004). Hypermethylation of the promoter of GSTP1 is related to its decreased 

expression in many prostate cancers (Lin et al., 2001). 
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Numerous tumour suppressor genes and oncogenes have been implicated in prostate 

carcinogenesis, many of which are involved in varied biological processes, such as 

apoptosis, signal transduction, cell cycle regulation, cell adhesion and cohesion, and 

angiogenesis. These include, p53, Bcl-2, Clusterin, TGF-beta, Androgen Receptor, c-

Myc, p27KIP1, pRb, E-cadherin, kallikreins, VEGF, AMACR and Hepsin (Shand and 

Gelmann, 2006) 

 

1.5 Microarray technology  

The central dogma of molecular biology states that genetic information flows from 

DNA to messenger RNA (mRNA) and from RNA to proteins which perform gene 

functions (Crick, 1970), and this process is called gene expression. Not all genes code 

for proteins, however. Some genes produce RNAs that aren't translated into proteins 

and are therefore called noncoding RNAs. In general the amount of RNA can thus be 

used an indicator of the level of gene expression. A microarray is “an ordered array of 

microscopic elements on a planar substrate that allows the specific binding of genes or 

gene products” (Schena et al., 1995). Microarrays measure gene expression levels on 

a genomic scale simultaneously by monitoring the abundance of the intermediary 

mRNA (Schena et al., 1995, Lockhart et al., 1996). Over the last decade microarrays 

have become an increasingly important tool in biomedical and life sciences research.  

The key idea of microarray technology is binding or hybridisation, which is the 

chemical process where the two complementary strands of DNA or RNA combine to 

form a double strand under certain conditions. The “microscopic elements” are single 

stranded nucleotide sequences, which are called probes, fixed to the surface of 

microarrays. “Genes or gene products” are mRNA or total RNA molecules isolated 

from the biological specimens termed targets. Targets are fluorescently labelled (e.g. 

with cyanaine 3, Cy3, which has a fluorescence emission wavelength of 570 nm 

corresponding to the green part of the light spectrum) and mixed in solution. The 

mixture of targets, known as sample, is then hybridised to the microarray. The RNA 

sequences of the targets bind to their complementary probes (hybridisation). After a 

certain time allowed for hybridisation, the arrays are washed to get rid of the extra 

sample and the arrays are scanned to obtain a two dimensional image. The intensity at 

each probe position indicates the amount of RNA molecules bound to the specific 

probe and provides a quantitative measurement of the expression level of the related 

gene.  
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A typical microarray experiment involves the following four main steps:  

1. Isolate RNA from the tissue of interest and prepare fluorescently labelled targets.  

2. Hybridise the labelled targets to the microarray.  

3. Wash, process and scan the microarray.  

4. Process the resulting image to obtain a quantitative measurement of the intensity   

for each probe.  

Among currently available microarray technologies, there are three widely used 

classes, spotted cDNA microarrays first developed at Stanford (Schena et al., 1995), 

synthetic bead arrays manufactured by Illumina (Kuhn et al., 2004), and synthetic 

oligonucleotide microarrays mainly produced by Affymetrix (Lockhart et al., 1996).  

Spotted Microarrays 

Spotted arrays (cDNA) are prepared robotically by applying precisely measured 

quantities of either PCR products generated from cDNA clones, or gene specific 

oligonucleotides, to glass slide (Brown and Botstein, 1999). Long oligonucleotides 

(40-70 nucleotides) are favoured by many allowing for high specificity and sequence 

identity. Spotted arrays are more flexible than synthetic arrays, however their 

synthesis requires skill in application and quality control. The costs are higher at 

initial outlay, but once fabricated they are cheaper. They provide excellent results at 

reasonable costs but have declined in use as other technology has become cheaper and 

more accessible. 

Synthetic oligonucleotide arrays: Affymetrix microarray system 

Affymetrix is one of the leading manufacturers of microarrays and its GeneChip® 

technology is hugely popular (Lockhart et al., 1996, Auer et al., 2009) 

(www.affymetrix.com/community/publications/index.affx). Using synthetic 

oligonucleotide technology, Affymetrix microarrays are high-density DNA probe 

arrays that contain millions of probe sequences. The expression level of each gene is 

measured by multiple probes on the microarray. In Affymetrix microarray technology, 

probes are oligonucleotides, which are short single-stranded nucleotide sequences 

(DNA or RNA) and usually include 25 nucleotides. According to the available 

sequence information, probes are chemically synthesized from DNA and RNA 

building blocks, nucleotides, at a specific location on the surface of arrays (Lockhart 

et al., 1996). The precise location where each probe is synthesized is called a feature. 
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One single high-density Affymetrix array (HG-U133 Plus 2.0) with typical size 

1.28cm × 1.28cm contains 1,300,000 distinct oligonucleotide features (Figure 5).  

 

	
  
Figure 5 Affymetrix GeneChip® design 

 

Apart from the synthetic oligonucleotides, another speciality of Affymetrix 

microarray technology is the redundancy in the probe design. The concept of 

redundancy is embodied in two aspects. One is that each gene corresponds to multiple 

probes on the array, another is that arrays contain pairs of probes for each of the RNA 

sequences being monitored. For each gene, the reference sequence comes from its 

related spliced mRNA, which contains only exons and flanking RNA. A subset of 

exon-specific probes is specifically chosen in order to detect the spliced mRNA in 

samples. The set of probes related to a particular gene is called a probe-set.  

Two types of hybridisation occur on the array during the binding of targets to probes, 

specific hybridisation and non-specific hybridisation (Lockhart et al., 1996), also 

known as specific binding and non-specific binding respectively. Specific 

hybridisation means that the double-stranded molecule is formed from two perfectly 

complementary strands, one from probe sequences and another from target sequences. 

Non-specific hybridisation, sometimes also called cross-hybridisation in the literature 
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(Casneuf et al., 2007), refers to the hybridisation that occurs between two strands, 

which are not perfectly complementary.  

Each probe on the array that is perfectly paired with its target sequence is called a 

perfect match (PM) probe. In order to identify the non-specific hybridisation, for each 

PM probe on the array there is a mismatch (MM) probe which has the identical 

nucleotide sequence as the PM probe except that the middle nucleotide is changed to 

the complementary one. A set of paired oligonucleotide probes, typically 25-mers, is 

designed for each gene. Each pair contains the canonical sequence, or perfect match 

probe, of the gene and also a deliberate mutation in the 13th position (middle) of the 

gene, or mismatch probe. The mismatch probe measures the degree of cross 

hybridization, or how much lower the detection signals for noise are. For example, A 

is changed to T and C is changed to G, and vice versa. There are 11-20 PM/MM 

probe-pairs contained in each probe-set. By design the MM probe detects the non-

specific hybridisation on its complementary PM partner, since with only one base 

replaced the MM probe has a similar efficiency of binding to the non-specific target 

sequences as the PM counterpart. The MM probes therefore serve as internal controls 

for hybridisation specificity. In order to avoid minor defects in the hybridization 

image, probes are scattered throughout the surface of the arrays. During the 

experiment, fluorescent labeled RNA molecules are fragmented and hybridised to the 

array. The degree of hybridisation is assessed by monitoring fluorescent emission 

using a laser scanner. For each chip, a two dimensional image is created with each 

probe being identified by its coordinates on the array and measured for its fluorescent 

intensity. The measured intensity values represent the expression level of the related 

gene and coordinates on the array are stored in a cell intensity file (*.CEL) as the final 

results of the experiment. Each chip corresponds to a CEL file. For each type of chip 

related to each particular organism, Affymetrix Corp. provides an array layout 

description file (*.CDF). The CDF file describes the design of a chip defining which 

probes belong to which probe-sets. By looking up the CDF file the intensity values for 

each probe-set can be extracted. The relationships between probe-sets and genes are 

also provided by the manufacturer in the documentations.  

Synthetic bead arrays: Illumina 

Illumina has developed a novel bead array technology. A multicore optical ‘imaging’ 

fiber is etched such that a bead can fit into the resulting micron-sized etched wells on 

the tip of the fiber. Different oligonucleotide sequences are attached to each bead, and 
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thousands of beads can be self-assembled on the fiber bundle. A subsequent decoding 

process is carried out to determine which bead occupies which well. Complementary 

oligonucleotides present in the sample bind to the beads, and bound oligonucleotides 

are measured by using a fluorescent label (Oliphant et al., 2002). 

 

1.6 Process of Biological Study Using Microarrays  

A typical microarray experiment is usually motivated by a biological question, like 

“which genes show changes in expression between a healthy tissue and a diseased 

one”, or a more specific biological hypothesis, like “a certain group of genes are 

responsible for the development of a particular disease”.  It follows that an answer to 

the question or the verification of the hypothesis may help with the diagnosis and 

treatment of the particular disease.  

Large amounts of gene expression data are generated from microarray experiments.  

In order to obtain meaningful biological information for the organism being studied, 

multiple levels of analyses are performed on the primary data. The first stage of the 

analysis is probe-level analysis, which summarises the raw signal intensities of the 

individual probe pairs, to obtain a single expression value for each gene. The probe-

level analysis should provide reliable measurements of gene expression levels, which 

can be used in the high level analysis. The next stage of analysis (high level analysis) 

performs various tasks on the measured gene expression resulting from the probe-

level analysis (Quackenbush, 2001, Slonim, 2002). These tasks include detecting 

differential gene expression or identifying patterns of gene expression between two 

conditions (e.g. normal vs. diseased, treated vs. untreated etc), but primarily depend 

upon the biological questions posed for the experiment.. Differential gene expression 

constitutes the most basic aim of a microarray experiment involving two or more 

microarrays and can be achieved by comparing 2 different GeneChips® in an 

Affymetrix experiment. Gene expression patterns can be discovered by 

“unsupervised” approaches and gene functions can be predicted by “supervised” 

approaches (Bassett et al., 1999). The unsupervised approaches include principal 

component analysis and clustering. These methods are applied on data solely and do 

not involve any previous knowledge of experimental parameters such as treatment 

effect with a drug. Clustering could be performed in different ways but in common 

practice genes that have similar functions are organised into the same cluster or stay 
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close together in the visual representation resulting from principal component 

analysis. With known biological information, unknown gene functions can be 

revealed by examining the known classes they fall in by supervised analysis 

approaches (Pan, 2006). Inferring gene regulatory networks is another important goal 

of high level analysis of gene expression data (Segal et al., 2003, Friedman, 2004).  

At the final stage of the discovery process, biological conclusions are drawn based on 

the results obtained from the high level analysis. As a result, either new biological 

knowledge is discovered or the original hypothesis is falsified. Every step in the 

discovery process is vital to subsequent steps. Within a carefully designed and 

performed experiment, analysis of the experimental data plays an important role in 

making sound biological conclusions.  

 

1.7 Use of Microarrays in Cancer Research  

In the past several years, microarray technology has been widely used in cancer 

research and many studies have used this technology to identify candidate gene 

expression signatures to predict the diagnostic category or prognostic stage of a 

cancer patient (Sorlie et al., 2001), 14-32].  

One of the common problems in clinical cancer research is the fact that 

histopathological identification and classification of cancer can be quite challenging. 

Morphologically indistinguishable cancers may belong to clinically distinct classes 

even though they arise from the same origin. The ability to classify unknown samples 

into different categories may offer great potential for more accurate and systematic 

cancer diagnosis.   

Golub et al. (Golub et al., 1999) first demonstrated the use of gene expression 

profiling for cancer diagnosis in a study using DNA microarrays to study the gene 

expression of 6,817 genes in 72 human acute leukaemia tumour samples. In this 

study, using unsupervised learning analysis, leukaemia tumour samples were 

clustered into two clusters of known subtypes of leukemia – acute myeloid leukemia 

(AML) and acute lymphoblastic leukemia (ALL) – based solely on gene expression 

profiling. Using supervised learning analysis, a weighted gene voting classifier, built 

from a subset of informative genes chosen based on their correlation with the class 

distinction between AML and ALL, was successfully used to assign a group of 

unknown samples into the correct category. The accuracy of the classifier was 

assessed by both cross-validation on the initial training data and independent test on 
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an independent set of samples (for explanation see Appendix). This study 

demonstrated the feasibility of cancer classification based solely on gene expression.   

A variety of studies have subsequently used gene expression profiling for cancer 

classification (Welsh et al., 2001b, Bittner et al., 2000, Perou et al., 2000, 

Bhattacharjee et al., 2001, Hedenfalk, 2002, Ramaswamy et al., 2001)(Belbin et al., 

2002, Thomas et al., 2001). Bittner et al. (Bittner et al., 2000) reported the discovery 

of a subset of cutaneous melanomas identified by mathematical analysis of gene 

expression in a series of 31 melanomas samples. Both the hierarchical clustering of 

the 31 melanoma samples and the non-hierarchical cluster affinity search technique 

(CAST) algorithm identified the identical major cluster of 19 melanomas, which had 

very similar gene expression profiles (for explanation see Appendix). In another 

study, Hedenfalk et al. (Hedenfalk, 2002) demonstrated that in hereditary breast 

cancers, the gene expression profiles of tumours with BRCA1 mutations, tumours 

with BRCA2 mutations, and sporadic tumours differed significantly from each other. 

Statistical analyses were used to identify a set of 176 genes, which could accurately 

distinguish tumours with BRCA1 mutations from tumours with BRCA2 mutations on 

the basis of gene expression profiles of these genes.   

Diagnostic cancer classification studies have been performed in a wide range of 

cancers, including breast cancer (Perou et al., 2000), lung cancer (Bhattacharjee et al., 

2001), prostate cancer (Singh et al., 2002, Welsh et al., 2001b, Stuart et al., 2004, 

Lapointe et al., 2004), bladder cancer (Dyrskjot et al., 2003), head and neck cancer 

(Belbin et al., 2002), and ovarian cancer (Welsh et al., 2001b, Ono et al., 2000).   

For classification of multiple categories of human cancers, several recent studies 

explored the potential use of multiclass tumour classifiers built from microarray gene 

expression data to discriminate different kinds of tumour classes based on tissue 

origin (Ramaswamy et al., 2001, Tibshirani et al., 2002, Liu et al., 2005). Many 

publications report on cancer classification problems where the number of classes is 

rather small. For example, the classification problem of Golub et al. comprised only 

two classes (Golub et al., 1999). When many ‘classes’ are being considered (e.g. 

cancer stage and biological behaviour), these tools are referred to as multiclass tumor 

classifiers. In an effort to classify multiple common adult cancers purely by molecular 

classification, Ramaswamy et al. (Ramaswamy et al., 2001) collected gene expression 

profiles of 16,063 genes and expressed sequence tags for 90 normal tissue samples 

and 218 tumour samples spanning 14 tumour types. The accuracy of a multiclass 
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classifier based on a support vector machine algorithm (see Appendix) was evaluated 

by both cross-validation and independent test data. The overall classification accuracy 

was approximately 78%. They also found that poorly differentiated cancers could not 

be accurately classified according to their tissues of origin, indicating that they have a 

very different gene expression patterns compared to their well-differentiated 

counterparts.   

Different classification methods have been proposed for molecular classification of 

cancers based on gene expression profiles. These methods include classification trees 

(Zhang et al., 2001), nearest-neighbor classifiers (Giordano et al., 2001), linear 

discriminant analysis (LDA) (Shen et al., 2006), support vector machines (SVMs) 

(Ramaswamy et al., 2001), and artificial neural networks (ANNs) (Khan et al., 2001). 

 

1.8 Microarrays in Prostate Cancer 

Spotted cDNA and oligonucleotide microarrays have both been used to study gene 

expression profiles in prostate cancer. Numerous potential diagnostic markers for 

prostate cancer and of prostate cancer progression have been identified. There is 

variation between the most over- and under-expressed genes between studies, 

however some genes come up consistently in independent studies using different 

platforms.  

 

1.8.1 Some important genes identified using microarray analysis in prostate cancer 

Multiple studies have identified hepsin (HPN aka TMPRSS1) as overexpressed in 

prostate cancer compared to BPH (Dhanasekaran et al., 2001, Luo et al., 2001, Magee 

et al., 2001, Welsh et al., 2001a). Hepsin encodes a membrane bound serine protease 

which activates the hepatocyte growth factor/c-Met (HGF/c-Met) pathway by 

cleaving HGF (Kirchhofer et al., 2005). This pathway leads to enhanced cell 

migration of prostate cancer cells via the production of matrix metalloproteinases 

(MMPs) and urokinase type plasminogen activator (uPA) (Fujiuchi et al., 2003). The 

role of HPN in disease progression maybe over once dissemination of cancer outside 

the prostate has happened (Vasioukhin, 2004). HPN expression is lower in metastatic 

prostate cancer with forced over-expression of the gene in metastatic prostate cancer 

cell lines weakening the proliferation and colony-forming potential of the cells 

(Srikantan et al., 2002).  



	
   32	
  

Α-methylacyl-CoA racemase (AMACR) has also been identified as an overexpressed 

gene in more than one microarray study (Zheng et al., 2002, Dhanasekaran et al., 

2001, Welsh et al., 2001a, Luo et al., 2001, Luo et al., 2002). These studies 

demonstrated significant over-expression of AMACR not only in prostate cancer 

samples but also in HGPIN, suggesting a potential role in early prostate cancer 

development. AMACR functions in the peroxisomal beta oxidation of branched-chain 

fatty acid molecules and has been implicated in the link between high meat high fat 

diets and the increased incidence of prostate cancer observed by many 

epidemiological studies (Mobley et al., 2003). High levels of protein expression have 

been shown almost exclusively in malignant and pre-malignant cells using tissue 

microarrays (Rubin et al., 2002)(Luo et al., 2002). However normal prostate samples 

located adjacently to prostate cancer have also shown increased expression of 

AMACR, leading to the possibility and hypothesis of a cancer field effect 

(Ananthanarayanan et al., 2005). AMACR is occasionally used clinically to reach a 

definite diagnosis of prostate cancer, when traditional histopathology and 

immunohistochemistry have yielded only an ‘atypical’ diagnosis (Das et al., 2005). 

Epigenetic events implicated in prostate cancer have also been demonstrated in 

normal prostate tissue adjacent to prostate cancer (Mehrotra et al., 2008). This study 

showed methylation of several genes in both histologically normal prostate tissue and 

prostate cancer. 

 

1.8.2 Classification of prostate cancer based upon microarray analysis 

In addition to the identification of individual genes microarray studies have shown 

that it is possible to distinguish prostate cancer from normal prostate tissue, and to 

distinguish organ confined cancer from metastatic disease (Dhanasekaran et al., 2001, 

Luo et al., 2001, Lapointe et al., 2004, Welsh et al., 2001a). Primary prostate cancer 

maybe clustered into subtypes with distinct clinical properties, even when 

pathological determinants, such as Gleason score and tumour stage, are similar (Luo 

et al., 2002, Lapointe et al., 2004). Microarrays have made it possible to identify 

molecular signatures (consisting of small clusters of four to five genes), which can 

predict patients likely to progress within one year of radical prostatectomy (Glinsky et 

al., 2004). This study also identified a set of 70 genes that could be used to predict the 

aggressiveness of cancer with high accuracy (93% sensitivity and 87% specificity).  
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Meta-analysis, whereby the results of several studies are combined and analysed 

using statistical methods, has also been used to compare prostate microarray studies 

and assess the validity and relevance of the original findings. Meta-analysis can be 

useful to identify genes ‘missed’ in individual analyses due to small sample size 

and/or data filtering. Meta-analysis may find completely new sets of significant genes 

as shown by Xu et al. 2005, who identified a pair of genes, HPN and STAT6 (signal 

transducer and activator of transcription 6) by meta-analysis of five microarray 

studies (Xu et al., 2005). These proved robust markers for distinguishing primary 

prostate cancer from benign samples. 

The development of advanced bioinformatics has also led to the creation of online 

resources such as the Oncomine Cancer Microarray Database 

(http://www.oncomine.org) which allow meta-analysis on multiple experiments / 

datasets (Rhodes et al., 2007a, Rhodes et al., 2007b). This has recently led to the 

discovery of a gene fusion of TMPRSS2 and ETS transcription factor genes in 

prostate cancer (Tomlins et al., 2005). 

 

1.9 Field effect theory 

The concept “field effect in cancer” originated in 1953 from the histopathological 

observations of Slaughter et al. (Slaughter et al., 1953) regarding the occurrence of 

multiple primary oral squamous cell carcinomas and their local recurrences. The 

development of modern molecular technologies has extended the field effect concept 

by exploring the molecular abnormalities in tissues that appear histologically normal. 

The possibility of a field effect has been explored and documented in other studies. 

Yu et al., 2004, examined the differences in gene expression between healthy donor 

prostates, prostate cancer, and normal prostate adjacent to prostate cancer (Yu et al., 

2004). They showed that histologically normal prostate tissue from cancer patients 

shares many of the same molecular characteristics of prostate cancer. A similar 

microarray study also showed significant up regulation of proliferation related genes 

including transcription factors, signal transducers and growth regulators, in both 

tumour and adjacent normal tissue, when compared with donor tissue (Chandran et 

al., 2005).  
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1.10 Molecular Differences between the anatomical zones of the prostate 

Several studies have attempted to examine molecular differences between the three 

anatomical zones of the prostate. A major motivation has been to explain the differing 

propensity for diseases.  

Most studies have used the basic over or under-expression to identify differences in 

gene expression. For example, pepsinogen II (Reese et al., 1986), tissue plasminogen 

activator (Reese et al., 1988), lactoferrin (Reese et al., 1992), and lipochrome pigment 

(Leung and Srigley, 1995) have all been to shown at higher levels in the central zone 

than the peripheral or transition zone. 

However to date only a few large scale gene expression analysis of the prostate zones 

using microarray technology have been performed (Stamey et al., 2003, van der Heul-

Nieuwenhuijsen et al., 2006, Noel et al., 2008). Stamey et al. attempted to address 

which zone of prostatic tissue was the best control in a microarray study of peripheral 

zone derived prostate cancer (Stamey et al., 2003). They attempted to answer this 

question in their pioneering study by comparing gene expression in prostate cancers 

with ‘normal’ prostate tissue from areas of BPH, and central and peripheral zone 

prostate using the GeneChip HuGeneFL  (6800 genes – Affymetrix, Santa Clara, CA). 

All tissue was harvested following radical prostatectomy and the tissue from the 3 

zones was separated out after being identified by visual inspection. Substantially 

different gene expression profiles were found depending on which of the three zonal 

tissues was used as a control.  Peripheral zone (PZ) was least able to identify or 

differentiate Gleason score 4/5 prostate cancer from normal tissue implying genetic 

similarity. CZ was considered to be the best at differentiating between normal and 

cancerous tissue, however inter-zonal gene expression analyses were not performed.  

Van der Heul-Nieuwenhuijsen et al. 2006, used custom cDNA microarrays to 

compare the gene expression profiles of peripheral and transition zone normal whole 

prostate taken from 5 radical prostatectomy specimens (van der Heul-Nieuwenhuijsen 

et al., 2006). 346 differentially expressed genes were identified, with 199 more highly 

expressed in the peripheral zone, and 147 more highly expressed in the transition 

zone. They also compared these gene lists with gene lists generated from prostate 

cancer microarray studies (Singh et al., 2002, Dhanasekaran et al., 2001, Lapointe et 

al., 2004). They found a prominent overlap between genes expressed in their ‘normal’ 

prostate PZ and genes over expressed in prostate cancer. 
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Noel et al. 2008, used Affymetrix HGU133 Plus 2 gene chips to compare differential 

gene expression between normal peripheral and transition zone tissues obtained from 

radical prostatectomy specimens for prostate cancer (Noel et al., 2008). They hoped 

to identify genes whose zonal-specific preferential expression might be associated 

with susceptibility or resistance to prostate cancer. Whole tissue specimens were used 

for RNA extraction from 3 prostates. Forty-three genes were identified as 

differentially regulated in the peripheral zone compared with the transition zone, 33 

under expressed and 12 over expressed. Genes associated with neurogenesis, signal 

transduction, embryo implantation and cell adhesion were expressed at a higher level 

in the peripheral zone. Those over expressed in the transition zone were associated 

with neurogenesis development, signal transduction, cell motility and development. 

The authors discussed their findings but were unable to correlate their findings with 

disease predisposition.  

Several proteome analyses of prostate tissue have also been described (Alaiya et al., 

2001, Meehan et al., 2002, Ahram et al., 2002), but did not evaluate the zonal 

differences within the prostate. Lexander et al. 2005, addressed this issue by 

comparing protein expression in the three zones using 2D gel electrophoresis 

(Lexander et al., 2005). Seventeen radical prostatectomy specimens were divided up 

into zones for proteomic analysis using 2 dimensional gels and mass spectrometry. 

Ten proteins with significant zonal expression were identified, 8 under expressed in 

the CZ compared with the PZ and TZ, and 2 proteins were over expressed in the 

central zone. Proteins included: cytokeratin 8, laminin A/C, tropomysin and 

vimentin). Interestingly there were no significant differences in protein expression 

between the transition and peripheral zones. 

 

1.11 Aims and objectives 

There are some major issues with the majority of prostate microarray studies 

performed to date. Although various microarray profiles of the diseased prostate 

exists (Singh et al., 2002, Dhanasekaran et al., 2001, Welsh et al., 2001a), no such 

information is available for the prostate obtained from normal, non-diseased prostate. 

Prostate adenocarcinoma is a disease of the epithelium, however, to date no study has 

performed global gene expression analyses with truly ‘normal’ prostate epithelium. 

Thus we have some idea of which genes may be dysregulated in cancer, but there is 

no benchmark for ‘normal prostate’ against which these studies could be compared. In 
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addition almost all the studies have been performed on RNA isolated from whole 

tissue with extensive contribution of heterogenous cell population, particularly the 

supporting mesenchyme. This may have a dual effect of diluting the expression of 

genes that are inevitably expressed in both the epithelium and the mesenchyme and 

exaggerating the effect of those that may be mesencyhyme specific. In addition the 

concept of a ‘field effect’ has been demonstrated (Yu et al., 2004). Although the 

studies utilizing whole tissues for microarray analysis have made a major contribution 

and advances in our understanding of prostatic diseases, it is essential that a normal 

transcriptome map of the prostate epithelium is available. The establishment of this 

forms the basis of this dissertation, This should then not have the problems of dilution 

of gene expression by other cell types, and will be obtained from non-diseased normal 

human prostate. 

 

The main aim of this dissertation was to provide the first transcriptome map of the 

normal human prostate epithelium by gene expression profiling using Affymetrix 

gene chip arrays. Further aims were to use the normal human prostate transcriptome 

map: 

1.  To compare with whole tissue transcriptome to identify discrepancies that 

could be introduced by using gene expression profiles from a heterogeneous 

cell population 

2. To compare with an epithelial specific prostate cancer transcriptome to 

identify prostate adenocarcinoma specific genes 

3. To delineate putative differences in gene expression between the three 

anatomical zones of the prostate 

 

The specific objectives were: 

1. To obtain normal prostates from organ donors aged between 15 and 35, and 

divide them into respective prostatic zones by visual examination. 

2. To make 6-8µm tissue sections of the prostate samples 

3. To precisely dissect prostate epithelial cells from the surrounding stroma  

using laser capture microdissection.  

4. To isolate RNA from microdissected epithelial cells and perform global gene 

expression analysis using Affymetrix GeneChips.  

5. To validate microarray ‘targets’ using real-time PCR. 
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6. To analyze this data using unsupervised and supervised protocols in pursuance 

of the aims described above.  

7. To investigate potential novel epithelial biomarkers at the protein level using 

immunohistochemistry and low density tissue array 
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Chapter 2 Core techniques 
 

2.1 Introduction 

2.1.1 RNA assessment 

Messenger RNA (mRNA) makes up 1-3% of total RNA, whilst ribosomal RNA 

(rRNA) makes up more than 80% of total RNA (tRNA) (Alberts, 2008). The majority 

of rRNA in humans is composed of 28S and 18S rRNA species. Traditionally mRNA 

quality has been assessed by denaturing gel electrophoresis of tRNA. Mammalian 28S 

and 18S are approximately 5kb and 2kb in size, and their ratio is approximately 2.7:1. 

A ratio of 2:1 is accepted as the standard for intact RNA. The assumption is that the 

quality and quantity of rRNA is reflective of the underling mRNA. Agarose gel 

assessment (Figure 6) is prone to error as a result of variations in electrophoresis 

conditions, amount of RNA loaded, and saturation of ethidium bromide fluorescence 

(Imbeaud et al., 2005). 

	
  
Figure 6 Denaturing gel electrophoresis of total RNA from primary cell cultured 

prostate epithelial cells. Two µg of degraded total RNA and intact total RNA were 

run beside Ambion's RNA Millennium Markers™ (kb) on a 1.5% denaturing agarose 

gel. The 18S and 28S ribosomal RNA bands are clearly visible in the intact RNA 

sample. The degraded RNA appears as a lower molecular weight smear. (Courtesy of 

Ambion) 
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An improvement on gel electrophoresis, and now the industry standard, is the 2100 

Bioanalyzer (Agilent). This uses a combination of microfluidic technology, capillary 

electrophoresis, and fluorescent dyes that bind to nucleic acid to evaluate RNA 

concentration and integrity. It is quick, reproducible, accurate and requires only very 

small amount of sample, thus allowing assessment of RNA quality in limited samples. 

 

The 28S:18S rRNA ratio is calculated by integrating the areas of 18S and 28S rRNA 

peaks and then dividing the area of the 18S rRNA peak into the area of the 28S rRNA 

peak (Figure 7). Whilst a ratio of 2 is optimal, and reflects high quality, it is rare for 

RNA isolated from human samples or small cell numbers. In part this reflects the 

inherent instability of 28S rRNA in relation to 18S rRNA, but also different tissues 

will demonstrate differing ratios and may never achieve the ideal ratio of 2 (Imbeaud 

et al., 2005). When a sample is classified as degraded on 28S rRNA profile, its 

mRNA and 18S rRNA may still be intact (Figure 8).  

 

	
  
 

Figure 7 Intact total RNA with 28S:18S ratio of 2:1. The RNA was isolated from 

whole human prostate (fresh frozen – courtesy of Agilent). The 28S and 18S rRNA 

bands, hallmarks of good-quality total RNA, show distinct peaks in this example, at 

run times of about 52 s and about 44 s, respectively. (The additional peak at a run 

time of 24 s characterizes an alignment marker that is an integral part of the 

BioAnalyzer assay protocol).  
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Figure 8 Partially degraded total RNA with 28S:18S ratio of 1.4:1 . Although the 28S 

and 18S bands are visible there is high baseline implying partial degradation of the 

RNA. This is reflected in the low ratio. The RNA was isolated from whole human 

prostate (fresh frozen – courtesy of Agilent). 

 

The Agilent 2100 bioanalyzer (Agilent Technologies) was used to provide RNA 

assessment for quantification and quality control, with 2 differing chips used 

dependant on expected RNA amounts. The RNA pico chip was used for laser 

microdissected specimens and the RNA nano chip for cell cultured specimens. The 

RNA picochip has a qualitative range of 50-5000 pg/µL for total RNA assay, and the 

RNA nano chip has qualitative range of 25-500 ng/µL for total RNA assay. Both 

chips were used according to manufacturer’s specifications. The RNA integrity 

number (RIN) is a software tool available on the Agilent 2100 bioanalyser designed to 

estimate the integrity of total RNA samples. An integrity number is automatically 

assigned to the total RNA sample. Sample integrity is no longer determined by the 

ratio of the ribosomal bands, but by the entire electrophoretic trace of the RNA 

sample. This includes the presence or absence of degradation products. In this way, 

interpretation of an electropherogram is facilitated, comparison of samples is enabled 

and repeatability of experiments is ensured. The assigned RIN is independent of 

sample concentration, instrument and analyst and is becoming a de facto standard for 

RNA integrity (Imbeaud et al., 2005). 
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2.1.2 RNA from fresh and archival tissue samples 

Quality of RNA is a critical issue for the investigation of gene expression from tissue 

samples and has a major impact upon conclusions derived from such studies 

(Schuchhardt et al., 2000, Group, 2004). Freshly procured human tissue, snap frozen 

in liquid nitrogen, provides the best guarantee of RNA integrity for use in gene 

expression analysis using microarrays (Group, 2004). Archived pathology specimens 

are normally formalin-fixed and paraffin embedded (FFPE) and while useful for 

immuno-histopathological studies they have limited use in gene expression analysis. 

Formalin fixation causes potential fragmentation and chemical modification of RNA 

(linkage to protein and addition of CH2OH groups to amino groups of bases) (Masuda 

et al., 1999) and is therefore an impediment in use of such samples for microarray 

analysis. While Affymetrix do produce the X3P array specifically designed for FFPE 

specimens (www.affymetrix.com), traditional global expression analysis studies have 

used fresh frozen tissue. 

 

2.1.3 Factors involved in RNA degradation from tissue samples 

RNA degradation is an important concern in any gene expression study design. 

Several studies have investigated the use of fixatives on RNA stability (Vincek et al., 

2003, Guo and Catchpoole, 2003, Florell et al., 2001), but few have examined the 

effect of time and handling on tissue specimens after acquisition and before freezing / 

fixation. The gold standard for handling of fresh tissue specimens is immediate 

freezing of tissue specimens in isopenthane / liquid nitrogen and subsequent storage at 

-800C (Srinivasan et al., 2002), however this is not always possible in the clinical 

setting. There are several commercially available fixatives, such as RNALater 

(Ambion), which have been shown to preserve RNA effectively for microarray 

studies (Mutter et al., 2004, Grotzer et al., 2000).  

Micke et al. (Micke et al., 2006) examined the effect of different handling conditions 

on RNA quality in fresh tissue specimens. They tested 4 different conditions and 

measured the effects on RNA quality using the Agilent Bioanalyser and quantitative 

Real-Time PCR. Fresh human tonsil tissue and colon were obtained from the 

operating theatre. Specimens were cut into cubes with the control tissues immediately 

frozen in isopenthane / dry ice and stored at -800C. The remaining samples were 

either stored at room temperature, on ice, in cold 0.9% saline solution, or in 

RNALater. At 0.5, 1, 3, 6, and 16 hours pieces were removed and stored at -800C. 
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Interestingly they found little in the way of RNA degradation at room temperature, 

even up to 16 hours, as evidenced by 28S:18S ribosomal ratios on the Bioanalyser. 

They postulated that this surprising finding was the result of intact cellular structure. 

To address the question of possible gene expression changes they performed Real-

Time PCR on six genes (cfos, HIF1alpha, Bcl2, PCNA, TGFbeta1, and SMAD7) 

known to be responsive to cellular stress. These genes were most stable when stored 

on ice, and least stable when stored in RNALater, and they concluded that storage on 

ice until freezing was the optimum method. 

Dash et al. (Dash et al., 2002) examined the effect of warm ischaemia time on global 

gene expression in radical prostatectomy specimens. Samples were maintained at 

room temperature at 0, 0.5, 1, 3, and 5 hours before processing and hybridisation to 

cDNA microarrays. Less than 0.6% of genes showed statistically significant 

differential expression at 1 hour, and did not include genes previously thought to be 

associated with prostate carcinogenesis, such as Hepsin, AMACR, fatty acid synthase, 

and PTEN. There was little overall increase in the gene expression variability present 

with ischemia time at any of the time points. Of the genes identified showing 

significant differences, several have been previously identified as showing increased 

expression with ischaemic stress. 

RNA expression represents the tissue response to insults such as ischaemia, and is 

sensitive to degradation, and as such these must be considered when performing gene 

expression studies on fresh tissue.  

 

2.1.4 Laser Capture Microdissection 

Laser capture microdissection (LCM) was developed at the National Cancer Institute 

at the National Institutes of Health (Bethesda, MD, USA) and was initially described 

by Emmert-Buck and colleagues, 1996 (Emmert-Buck et al., 1996). Their technique 

involved placing a thin thermoplastic transparent film over a tissue section, 

visualizing the tissue microscopically, and selectively adhering the cells of interest to 

the film with a focused pulse from an infrared laser. The film, with the attached tissue 

was then removed and placed into a buffer for processing. They were subsequently 

able to demonstrate successful polymerase chain reaction amplification of DNA and 

RNA. 

Two different laser capture microdissection techniques are now in common use. The 

first, named laser capture microdissection, is the technique developed by Emmert-
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Buck et al. (Emmert-Buck et al., 1994) and has been commercialized by Arcturus 

Bioscience Inc. – PixCell II (Mountain View, CA, USA). It is widely used (Fend and 

Raffeld, 2000). A tissue section is mounted on a glass slide and stained in accordance 

with the requirements for subsequent downstream applications. The slide is replaced 

on an inverted microscope and a transparent cap with thermoplastic film placed on top 

of the section. A low power infrared laser beam is directed at the cells from above. 

The laser is positioned over the cells of interest and when activated, the thermoplastic 

film is melted above them. When the cap is lifted the selected cells come with it and 

the film can then be placed into buffer for extraction of DNA, RNA, or protein 

(Figure 9). 

	
  
 

Figure 9 Laser capture microdissection (Courtesy of Arcturus) 
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The second technique uses two steps: laser ablation and laser pressure catapulting. 

This technology is made by P.A.L.M. (Positioning and Ablation with Laser 

Microbeams) Microlaser technologies – PALM MicroBeam (Carl Zeiss 

MicroImaging GmbH, Bernreid, Germany) and is known as ‘laser microdissection 

and pressure catapulting’ (LMPC). Tissue is mounted on nuclease free polyethylene 

naphthalate (PEN) membrane slides and stained. A highly focused laser beam (pulsed 

nitrogen laser – wavelength 337nm) ablates the outline of the selected cells precisely. 

Because the tissue is resting on a membrane, the area of interest is detached from the 

rest of the sample. Next a second laser is used to ‘catapult’ the isolated cells, using the 

high photonic pressure force of the laser, into an eppendorf cap placed directly above 

the slide, and filled with buffer. The cells are then spun down and can be used for 

downstream applications.  As there is no contact or heat DNA, RNA, protein, and live 

cells can be recovered intact (Figure 10). 

 

	
  
 

Figure 10 Laser Microdissection and Pressure Catapulting (Courtesy of PALM) 
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Both of these techniques offer accurate, rapid, and ‘no touch’ methods to obtain high 

quality DNA, RNA and protein, from specific cellular compartments. Which system 

is used depends on local availability and expertise. 

Many different types of molecular analyses have been successfully performed on cells 

procured by LCM including RT-PCR amplification (Emmert-Buck et al., 1996), loss 

of heterozygosity (LOH) (Takeshima et al., 2001), microsatellite instability (Lu et al., 

2003), cDNA microarrays (Alevizos et al., 2001), and proteomics (Grubb et al., 

2003).  

 

2.1.5 RNA Amplification and Microarray Analysis 

Expression profiling requires microgram quantities of RNA, e.g. Affymterix gene 

chips require 5µg of RNA (15µg cRNA) for each chip. Human tissue specimens are 

often small (obtained through fine needle aspiration or needle core biopsy) and 

display heterogeneity of cell type. For example, for secretory glands, the proportion of 

epithelia to corresponding mesenchyme could be 5:1 (Bartsch et al., 1979, Bartsch et 

al., 1987). If gene X is expressed at a high level only in the mesenchyme but is not 

expressed in the epithelial cells, it would still be represented as expressed in RNA 

isolated from whole tissue. Gross quantities of specimen do not therefore reflect the 

cell type of interest and may yield distorted expression profiles in microarray analysis. 

Laser capture microdissection can be used to obtain specific cellular samples, even 

single cells, but the amount of RNA extracted is small to use directly for microarray 

studies, with contemporaneous techniques. 

To obtain sufficient quantity of RNA for microarray hybridisation after LCM, an 

amplification method is necessary. Two techniques are available. Polymerase chain 

reaction (PCR) results in exponential amplification and is used to quantitate 

individual genes. Its use for global expression profiling is limited as PCR amplifies 

long, GC rich sequences with less efficiency than short, AT rich sequences. This 

results in skewed amplification levels from gene to gene which is carried on from 

round to round, thus exacerbating the difference (Polz and Cavanaugh, 1998). Van 

Gelder and Eberwine’s (Van Gelder et al., 1990) method uses in vitro transcription 

(IVT) with T7 RNA polymerase resulting in amplified RNA (aRNA). This is known 

as linear amplification. RNA is primed for cDNA synthesis by a polyT 

oligonucleotide containing the 17bp sequence for the T7 RNA polymerase promoter. 

After second stage synthesis to cDNA the template is then transcribed by a highly 
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concentrated T7 polymerase, resulting in an approximate 2000-fold amplification of 

antisense RNA that can be used for hybridisation analysis (Phillips and Eberwine, 

1996). One round of amplification is sufficient for many microarray studies, however, 

when dealing with very small amounts of starting material (<1-100ng) it is often 

necessary to perform a second, and sometimes third, round of amplification. This has 

enabled the transcriptome of a single cell to be analysed (Eberwine et al., 1992, 

Cheetham et al., 1997). Further rounds of amplification require the use of random 

primers in reverse transcribing the output RNA from the preceding round. The polyT-

T7 oligonucleotide is used again to prime second strand synthesis and the resulting 

template is again transcribed by T7 RNA polymerase, creating a second amplification 

of aRNA. The amplification potential is enormous (>106 fold ) (Feldman et al., 2002). 

The potential drawback of more rounds of amplification comes with the use of 

random primers, which result in 30% shortening of the transcript after each round 

(Eberwine et al., 1992). This results in a 3’ bias to the aRNA, although the effect is 

limited as many microarrays are designed using the 3’ sequences of genes (Luzzi et 

al., 2003). The length of amplified RNA ranges from 200 to 6000 nucleotides for the 

first round of amplification and 100 to 3000 nucleotides for the second round when 

random primers are used (Feldman et al., 2002). The fidelity of IVT has been 

extensively tested by gene expression analysis, real time PCR and statistical testing 

comparing estimates of gene expression in amplified versus non-amplified RNA 

(Wang et al., 2000).  

Luo et al. (Luo et al., 1999) were first to demonstrate that it was possible to combine, 

LCM, linear based RNA amplification, and cDNA microarray analysis. They were 

able to compare the expression profiles of different subtypes of neuronal cells on 477-

element cDNA arrays, using only 1000 neurons per sample. Later that year, Sgroi et 

al. (Sgroi et al., 1999) combined LCM and cDNA arrays to profile breast cancer 

samples taken at different stages of disease and run on arrays with more than 8000 

targets. Since then numerous studies have combined LCM and microarrays in 

expression profiling small highly pure, homogenous samples in a variety of different 

tissues (Alevizos et al., 2001, Kitahara et al., 2001, Ma et al., 2003, Khanna et al., 

2004). 

 

2.1.5 Affymetrix microarrays 

Affymetrix Human Genome U133 Plus 2.0 Arrays were used in this study. They 
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contain roughly 54,000 different transcripts representing nearly 38,500 genes and 

expressed sequence tags (EST). These transcripts are made up of synthetic 

oligonucleotide probes and may be full length (well-curated RefSeq and Ensembl 

transcripts as well as Genbank transcripts annotated as "complete CDS" [CDS = 

coding sequence, or the portion of a gene or mRNA which actually codes for a 

protein]), partial (moderately supported RefSeq and Ensembl transcripts and Genbank 

transcripts not annotated as "complete CDS"), EST’s (EST-only supported 

transcripts), or predicted (Computationally predicted transcripts). Hence the 

discrepancy in number of targets and genes seen on Affymetrix GeneChips. The Gene 

Microarray Centre at the Institute of Child Health, University College London, 

performed amplification, labeling, hybridization, washing, and scanning according to 

Affymetrix specifications (www.affymetrix.com).  

 

2.1.6 Nomenclature - GeneSpring analysis 

1. Gene list - A subset of genes. Analysis results are saved as gene lists. 

2. Experiment - A collection of microarray samples that are analyzed together 

3. Sample - Data from one microarray chip 

4. Condition - A grouping of one or more samples (e.g. prostate or zone) 

 

2.2 Materials – Fresh Normal Human Prostate 

Whole prostates were collected from cadaveric organ donors at the time of transplant 

organ harvest. Donors were young men, aged between 15-35, whose relatives had 

agreed to the use of their organs for transplant and the prostate for research purposes. 

This group was selected, with donors post-pubescent but still young, therefore with 

developed prostates likely to be free of clinically silent, undiagnosed diseases. 

Samples were anonymised and therefore no demographic data is available. Ethical 

approval was obtained from the Joint UCL/UCLH Committees on the Ethics of 

Human Research. Six prostates were obtained as shown in Table 1. 
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PROSTATE Date of retrieval 

A 270800 

B 200102 

C 120902 

D 011002 

E 120104 

F 301104 

 

Table 1 shows the prostates that were collected from cadaveric organ donors at the 

time of transplant organ harvest. The date of retrieval is indicated and prostates are 

distinguished alphabetically. These prostates were kindly harvested by the North 

Thames transplant retrieval team. 

 

Immediately after harvest of transplantable organs, the prostate was retrieved intact 

(approximately within 30- 60 min of aortic clamping) and preserved on ice until 

return to our institution (~240 min). Each prostate was cut into approximately 5mm 

slices from apex to base. Small blocks of tissue (about 5mm3) were visually selected 

from each zone and snap-frozen in liquid nitrogen with subsequent storage at –80°C. 

Peripheral zone was isolated from the most peripheral and posterolateral aspect of the 

gland. Transition zone was isolated from the area identified immediately lateral to the 

urethra (peri-urethral). Central zone was isolated from the base of the prostate, in an 

area adjacent to the ejaculatory ducts. Further blocks (5mm3) were set aside for 

primary tissue culture, and the remaining tissue was fixed in formalin for paraffin-

embedding and routine histopathological analysis. Representative slides were 

examined by a histopathologist (Mr Alex Freeman) to rule out prostatic diseases. 

 

2.3 Methods 

2.3.1 Cryosectioning 

Each zone from each prostate was sectioned using a Leica cyrostat at -250C. The 

cryosections were performed by Calum Thomson at the University of Dundee, 

according to the following protocol. 

1. Cryomolds were labeled and set up on crushed dry ice and cooled. 
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2. The cryomolds were filled two thirds with embedding media (OCT – tissue-

tek) allowing the media to become cooled and viscous. 

3. Frozen tissue blocks were placed in the cooled media, centered, pushed flat 

against the bottom of the mold, and allowed to freeze on dry ice.  

4. Further embedding media was then placed in the cryomold to ensure complete 

coverage of tissue, which was then frozen at -800C until sectioning. 

5. The cryostat was cooled to -250C and cleaned with 100% ethanol. RNase 

Zap® (Ambion), a solution that completely removes RNase contamination 

from glass and plastic surfaces, was not used at it solidifies at this temperature. 

(www.ambion.com/catalog/CatNum.php?AM9780) 

6. The frozen OCT-embedded tissue was removed from its cryomold and 

attached to the metal specimen stage with OCT media, and allowed to 

equilibrate for 10 minutes. 

7. A fresh disposable blade was used for each zone and prostate. 

8. 8µm sections were prepared and transferred to RNase free PALM membrane 

slides (at room temperature) ensuring they lay flat on the slide without folding, 

curling or wrinkling (Figure 11). A maximum of 3 sections were placed on 

each slide. 

9. Once the first sections were mounted the slide was kept in the cryostat whilst 

the remaining sections were mounted. 

10. The slides were then stored in a clean slide box and stored on dry ice or in -

800C freezer with silica desiccant. The slides were at no time allowed to thaw. 

11. Sections were processed within 4 weeks of sectioning. 

 

	
  
 

Figure 11 PEN nuclease free membrane slides – PALM 
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2.3.2 Staining 

It is often difficult to recognize histological details after frozen sectioning and 

therefore a staining method is required. RNA integrity and quality is paramount for 

microarray studies and routine Haematoxylin and Eosin (H&E) staining will not 

suffice. A variety of different histological staining methods have been described 

including methyl green pyronin (MGP), Nissel staining (NS), immunoflourescent 

stains, and modified H&E, and numerous commercial kits exist. Some have been 

shown to significantly affect the integrity of cellular RNA with respect to microarray 

studies (Wang et al., 2006).  

We modified an H&E staining technique: (http://www.palm-

microlaser.com/dasat/images/0/100270-md-faerb.pdf), 

(http://dir.nichd.nih.gov/lcm/LCMTAP.htm). Subsequent to H&E staining, the sample 

must be dehydrated to reduce RNA degradation: ethanol and xylene were used for this 

purpose. The advantage of chemical dehydration over vacuum desiccation is that it 

allows immediate microdissection. Fresh solutions were used for each zone of each 

prostate and only RNase free materials were used. Samples were stained immediately 

prior to microdissection (Figure 12). Staining method was as follows: 

 

1. Membrane slide and section placed in 70% ethanol (ice cold 4°C) for 1 min 

2. Slide placed in RNase free water for 15 sec to remove embedding medium  

3. Section stained in Mayer's Hematoxylin for 15s to 1 min, depending on 

staining required  

4. Dipped in RNase free water 10 times (15s) 

5. Dipped in 70% ethanol 20 times (30s) 

6. Dipped in 96% ethanol 20 times (30 s) 

7. Stained in Eosin Y (alcoholic with phyloxine) for 15s 

8. Dipped in 95% ethanol for 15s  

9. Dipped in 95% ethanol for 15s   

10. Dipped in100% ethanol for 30s   

11. Dipped in 100% ethanol for 30s  

12.  Placed in Xylene for 1min (without agitation) 

13. Placed in Xylene for 5min (without agitation) 

 

These last 2 steps were carried out in a fume hood. 
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Figure 12 Prostate D peripheral zone after cryosectioning and modified H&E  

staining. The prostatic acini and stroma are distinguishable at 20x magnification. 

 

Preliminary experiments were performed to investigate whether small amounts of 

RNA could be obtained using this sectioning / staining protocol. To do this, four 

sections from each prostate were stained, scrapped and pooled into RLT buffer for 

RNA extraction. RNA was isolated using the RNeasy® Mini Kit [Qiagen, Basel, 

Switzerland] and eluted into 30µL RNase free water and stored at -800C. Quality and 

quantity was assessed using the Agilent bioanalzer system (Agilent Technologies). 

Results show that good quality and quantity (nanograms) RNA could be isolated 

(Figure 13).  
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Figure 13 Electropherogram of pooled peripheral zone RNA (stromal and epithelial) 

from prostate F.  

 

2.3.3 Laser Capture Microdissection 

The PALM MicroBeam system (Figure 14), based at St Georges Hospital Medical 

School, London, was used to perform LMPC on each zone from the three prostates. 

Following staining the sections were allowed to dry for 5 minutes before being 

mounted on PALM PEN (polyethylene naphthalate) slidesMicroBeam system. PALM 

RoboSoftware version 4.0 was used to draw around individual prostatic acini, 

including basal and luminal cells, with the automated software then used to cut 

around and catapult the sample into a RNase free eppendorf containing 20µl RLT 

buffer (RNeasy® Mini Kit [Qiagen, Basel, Switzerland]) (Figure 15). Microdissection 

times were kept less than 20 minutes, from the start of the H&E staining and 

dehydration protocol to storage of laser captured sample, to minimize RNA 

degradation. Approximately 10 – 20 acini of differing sizes were collected in each 20-

minute session. Each acinus was estimated by manual counting to contain ~ 200 cells 

(up to 4000 cells harvested in each session). After brief centrifugation (1000xg) in a 
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benchtop Eppendorf centrifuge at 4oC, the samples were stored on dry ice until return 

to the laboratory.  

 

	
  
 

Figure 14 PALM MicroBeam based at the Medical Biomics Centre, St Georges 

Hospital Medical School, London 

 

Laser microdissection was carried out successfully for all 3 zones of prostate D and E, 

however the transition zone of prostate F was found to contain no epithelial acini and 

no epithelial sample from this zone could be isolated. 
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Figure 15 Representative images are shown pre and post laser capture microdissection 

and pressure catapulting using the PALM microbeam system. Dissection of 

epithelium and adjacent stroma is shown. 
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2.3.4 RNA Isolation 

RNA isolation was carried out using the RNeasy® Micro Kit [Qiagen, Basel, 

Switzerland]. The final sample was eluted into 12µL of RNase free water and stored 

at -800C. One microlitre was used to assess RNA quality and quantity on Agilent pico 

chips. Representative electropherograms are shown in Figure 16. Table 2 and Figure 

17 demonstrate the quantity and quality of RNA that was isolated. 

 

	
  
 

Figure 16 RNeasy® Micro procedure, that combines the selective binding properties 

of a silica based membrane with guanidine-thiocyanate-containing lysis buffer, to 

promote selective binding of RNA. (www.qiagen.com/hb/RNeasyMicro) 
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Prostate Zone RNA 

concentration 

Total RNA 

amount 

A260/280 

Ratio 

RIN 

Number 

E (120104) CZ 745pg/µL 8.94ng 1.2 6.8 

E (120104) TZ 4162pg/µL 49.94ng 0.7 6.1 

F (301104) PZ 2856pg/µL 34.27ng 1.7 8.3 

F (301104) CZ 2629pg/µL 31.55ng 0.9 7 

E (120104) PZ 147pg/µL 1.76ng 1.1 8 

D (011002) TZ 2008pg/µL 24.1ng 0.8 7.2 

D (011002) CZ 3126pg/µL 37.51ng 0.7 6.8 

D (011002) PZ 710pg/µL 8.52ng 0.7 6.3 

 

Table 2 The Agilent Bioanalyser was used to assess RNA quality and quantity, which 

are shown. Low nanogram quantities were isolated, with RIN numbers (section 3.4) 

sufficient for subsequent microarray analyses (1 degraded – 10 totally intact) 
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Figure 17 RNA quality and quantity was analysed using Agilent RNA 6000 Chips on 

an Agilent 2100 Bioanalyzer. The quality and quantity of RNA is shown in Table 3.1. 

RNA ladder and representative electropherograms are shown demonstrating the 

integrity of RNA. 

 

2.3.5 RNA amplification 

RNA was amplified using MessageAmpTM II aRNA Amplification Kit (Figures 18, 

19) based on the RNA amplification protocol developed in the Eberwine laboratory 

(Van Gelder et al., 1990). Two rounds of amplification were performed and amplified 

RNA was assessed using the Agilent Bioanalyzer (Figures 20, 22). The results 

indicate that RNA could be amplified at least 10-fold to yield sufficient quantities 

(over 15µ g) of amplified RNA for oligoarray and real-time PCR experiments. A 

similar approach has been previously used in other tissues to determine gene 

expression profiles (King et al., 2005, Stanbrough et al., 2006). 
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Figure 18 MessageAmpTM II aRNA Amplification Procedure (1st round). This scheme 

is taken from the MessageAmpTM II Protocol 

(http://www.ambion.com/techlib/prot/fm_1751.pdf) 
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Figure 19 MessageAmpTM II aRNA second round amplification. 

(http://www.ambion.com/techlib/prot/fm_1751.pdf) 

 

 
	
  

Figure 20 Electropherograms are shown demonstrating successful RNA amplification 

after one round with MessageAmpTM II aRNA. The expected aRNA profile should be 

a distribution of sizes 250–5500 nucleotides (nt) with most of the aRNA between 

1000–1500 nt (Figure 21).  
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Figure 21 This electropherogram displays the aRNA size distribution from 1 round of 

amplification of 1 µg of Control RNA using biotin labeled NTPs in a 40 µL IVT 

reaction that was incubated for 14 hr. Using the Agilent bioanalyzer mRNA smear 

assay, 50% of the aRNA is calculated to be larger than 1470 nt. (The vertical grey 

lines mark 65 and 1470 bases. The area outside these lines represents 50% of the area 

under the curve produced by the product of the positive control reaction.) 

(www.ambion.com/techlib/prot/fm_1751.pdf) 

 

	
  
Figure 22 Electropherograms show successful RNA amplification after second round 

with MessageAmpTM II aRNA. Second round amplification products are typically 

shorter than first round amplification products. 

(www.ambion.com/techlib/prot/fm_1751.pdf) 
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2.3.6 Affymetrix microarray hybridisation 

The Gene Microarray Centre at the Institute of Child Health, University College 

London, performed amplification, labeling, hybridization, washing, and scanning 

according to Affymetrix specifications (www.affymetrix.com). Briefly biotinylated 

cRNA (20 µg) was fragmented and added to a hybridization mixture. Affymetrix 

U133 plus 2.0 GeneChip arrays (Affymetrix, Santa Clara, CA) containing ~54000 

known human transcripts and ESTs, were used to create expression profiles. 

Hybridization to these chips was performed overnight at 45oC for 16h using the 

GeneChip Hybridization Oven 640 (Affymetrix). Washing and staining (streptavidin–

phycoerythrin) was done in the GeneChip Fluidics Station 400 (Affymetrix). Images 

were acquired using the Affymetrix probe array scanner. PC, Affymetrix chip 

hybridization. Twenty micrograms of cRNA were fragmented by incubating in a 

buffer containing 200mmol/L Tris-acetate, pH 8.1, 500 mmol/L KOAc, and 150 

mmol/L MgOAc at  95°C for 35 minutes. The fragmented cRNA were then 

hybridized with a pre-equilibrated Affymetrix chip at 45°C for 14 to 16 hours. After 

the hybridization cocktails were removed, the chips were then washed in a fluidic 

station with low-stringency buffer (sodium chloride, sodium phosphate dibasic, and 

EDTA; 0.01% Tween 20; 0.005% antifoam) for 10 cycles (two mixes/cycle), and 

stringent buffer (100 mmol/L MES, 0.1 M NaCl and 0.01% Tween 20) for four cycles 

(15 mixes/cycle), and stained with Strepto-avidin Phycoerythrin (SAPE; Molecular 

Probe, Eugene, OR). This was followed by incubation with biotinylated mouse 

antiavidin antibody, and restained with SAPE. The chips were scanned in a GeneChip 

Scanner 3000 (Affymetrix Inc) to detect hybridization signals. 

 

2.3.7 Quality control and normalisation 

There are many different techniques and steps to perform quality control (Q.C.) when 

running Affymetrix chips. Chip hybridization Q.C. involves 5 steps: 

1. Validate RNA Quality using Agilent Bioanalyser (see 3.2.4, 3.2.5) 

2. Determine quantity of cRNA (performed at Institute of Child Health, UCL). 

Good hybridization signals require approximately 20µg of labeled probe. 

3. Confirm size of fragmented cRNA. Probe fragmentation results in better 

hybridization to oligonucleotide arrays. Assessed on Agilent Bioanalyser 

(Institute of Child Health, UCL). 

4. Confirm hybridization quality using control sequences on test array (optional) 
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5. Confirm hybridization quality using control sequences on species array. 

GeneChip arrays contain sets of PM and MM oligonucleotides complementary 

to the 5’ and 3’ regions of housekeeping genes. Good cRNA probes hybridize 

to both oligo sets from the same gene yielding 3’/5’ signal ratios between 1.0 

and 3.0. They also generate background fluorescence of less than 100 units 

and detect the presence of 100 pM CreX, 25 pM BioD, 5 pM BioC and often 

1.5 pM BioB in the hybridization cocktail (Figure 3.16 (A)). (BioB, bioC, and 

bioD are genes of the biotin synthesis pathway from the bacteria E. coli, and 

cre is the recombinase gene from P1 bacteriophage. A ready-prepared mixture 

of these biotinylated controls at staggered concentrations can be added with 

labeled eukaryotic cRNA samples to hybridize onto GeneChip probe arrays. 

Signal intensities obtained on these genes provide information on how well the 

hybridization, washing, and staining procedures have performed). 

 

Examination of Chip images is also an important step in Q.C. Data Analysis Array 

images (.dat files) were digitized by using MAS version 5 (Affymetrix). DAT images 

generated by Affymetrix probe array scanner were assessed for quality control (Figure 

23). A small spot was seen on the chip for transition zone prostate E, reflecting a 

possible design flaw with the chip. Care was therefore taken when considering the 

downstream analysis of this sample.  
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Figure 23 The raw image data from the Affymetrix probe array scanner (.dat files). 

Note the small defect, seen here as a white spot, on transition zone E chip. This was 

discussed with Affymetrix who felt it represented a design flaw. 

 

RNA is degraded from the 5’ end of a sequence; therefore intensities of probes at the 

3’ end of a probe set are higher than those at the 5’ end. An RNA degradation plot 

shows the mean intensity for each position within probesets. High slopes indicate 

degradation, however more important than the slope is the agreement between arrays. 
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Figure 24 (B) shows equivalence in RNA degradation between arrays. 

Gene expression values were generated from the resulting raw numerical data (.cel 

files) by Affymetrix GCOS publishing software. CEL files were imported into 

GeneSpring 7.2 (Silicon Genetics) and data was normalized using GCRMA (see 

Chapter 2.4.1). An additional normalisation step was taken (per gene: normalize to 

median) ensuring the expression value for each gene across the different conditions 

was centered on 1. This was achieved in GeneSpring by dividing the expression value 

by the median value of the expression values for that gene across the conditions 

(prostates). This ensures that genes that do not change across conditions get a 

normalized expression value of 1, allowing for easy visual detection of differentially 

expressed genes. The resultant Gene List generated (a group of genes with a common 

property) forms the starting point for further downstream analysis, with the formation 

of subsequent lists. After normalization the gene list contained 54,675 genes (total 

number of probes available on HG-U133 Plus 2.0 array). 

Final quality control involved generation of Box and MvA plots (Figures 24 C, 25) 

within GeneSpring, enabling construction of a correlation coefficients table (Table 3). 

The correlation coefficients were calculated for all pair-wise comparisons of the 

samples in the experiment. Samples representing the same experiment condition 

should be more similar to each other than to samples representing a different 

experimental condition 

 

Sample D PZ D CZ D TZ E PZ E CZ E TZ F PZ F CZ 

D PZ 1.00 0.95 0.93 0.92 0.95 0.96 0.93 0.92 

D CZ 0.95 1.00 0.98 0.93 0.96 0.97 0.96 0.93 

D TZ 0.93 0.98 1.00 0.93 0.96 0.95 0.94 0.91 

E PZ 0.92 0.93 0.93 1.00 0.95 0.92 0.01 0.87 

E CZ 0.95 0.96 0.96 0.95 1.00 0.96 0.94 0.92 

E TZ 0.96 0.97 0.95 0.92 0.96 1.00 0.94 0.92 

F PZ 0.93 0.96 0.94 0.91 0.94 0.94 1.00 0.96 

F CZ 0.92 0.93 0.91 0.87 0.92 0.92 0.96 1.00 

 

Table 3 Correlation coefficients table as part of quality control showing good 

concordance between chips.  
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Figure 24 Quality control analysis was performed in GeneSpring 7.2 demonstrating 

A: equal hybridisation controls, B: RNA degradation plots and C: MvA plots. RNA 

degradation plot shows the mean expression from the 5' to the 3' end of the mRNA. 

Every chip is represented with a single line. In an ideal situation the lines would be 

flat, but most important is that the slopes and profiles should be as similar as possible. 

B shows similar curves amongst samples. 



	
   66	
  

	
  
Figure 25 Box whisker plot showing distribution of normalized expression data  

 

2.4 Statistical Analysis – Method 

2.4.1 Normalisation 

All statistical analysis was performed by myself using GeneSpring software. A 

variety of probe summarization algorithms exist (MAS 5.0, perfect match only, RMA, 

GCRMA) which perform three tasks: background correction, normalisation, and 

probe summarization (the conversion of probe level values to probeset expression 

values in a robust manner). These, along with other statistical methods, are discussed 

at length in the Appendix.  The GCRMA method (GeneSpring 7.2 Addendum) was 

used in this study. GCRMA (Robust Multi-chip Average, with GC-content 

background correction) is a method of normalizing and summarizing probe-level 

intensity measurements from Affymetrix GeneChips.  Starting with the probe-level 

data from a set of GeneChips, the perfect match (PM) values are background-

corrected, normalized and finally summarized resulting in a set of expression 
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measures.  The three steps of the process are outlined below (GCRMA Probe 

Summarization).  

(http://www.chem.agilent.com/cag/bsp/products/gsgx/downloads/pdf/GCRMA_Probe

_Summarization.pdf) 

Background Correction: The background correction used in GCRMA is designed to 

account for background noise, as well as non-specific binding.  Probe affinity is 

modeled as a sum of position-dependent base effects, and can thus be calculated for 

each PM and MM value, based on its corresponding sequence information. The 

correction is motivated by the assumptions that observed PM and MM values consist 

of optical noise, non-specific binding noise, and signal.  Optical noise is assumed to 

be normal, and logged non-specific binding noise from PM-MM pairs assumed to be 

bi-variate normal.  Using the data on a single array, the corresponding model 

parameters can be estimated. Each PM value is then adjusted by subtracting a 

shrunken MM value that has been corrected for its affinity.  

Normalization: Normalization is necessary so that multiple chips can be compared to 

each other, and analyzed together.  It is motivated by the assumption that all n chips 

should have approximately the same distribution of PM values.  The normalization 

used in RMA is quantile normalization.  This is a generalisation of the idea behind 

quantile-quantile plots to more than two dimensions.  The quantiles for each PM 

value are plotted in n dimensions, and projected onto the diagonal.  The final result is 

that the PM values on each chip will have the same distribution.  

Summarization: Once the probe-level PM values have been background-corrected 

and normalized, they need to be summarized into expression measures, so that the 

result is a single expression measure per probe-set, per chip.  The summarization used 

is motivated by the assumption that observed log-transformed PM values follow a 

linear additive model containing a probe affinity effect, a gene specific effect (the 

expression level) and an error term.  For RMA, the probe affinity effects are assumed 

to sum to zero, and the gene effect (expression level) is estimated using median 

polishing.  Median polishing is a robust model fitting technique that protects against 

outlier probes.  

 

2.4.2 Filtering  

Filtering of the dataset was performed using fold change as a discriminator, and was 

performed in GeneSpring. Although this is an arbitrary cut off it serves to reduce the 
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dimensionality of the dataset thus making downstream analysis more manageable. 

 

2.4.3 Unsupervised analysis  

Hierarchical clustering was performed using the ‘centroid’ clustering method to 

generate gene and condition trees using GeneSpring (Silicon Genetics – Agilent). In 

this method the distance between 2 clusters is the distance between the averages of 

the data points under one branch and the averages of the data points under another.  

Principal components analysis is a method that reduces data dimensionality by 

performing a covariance analysis between factors. Principal components analysis 

produces a set expression patterns known as principal components. Linear 

combinations of these patterns can be assembled to represent the behavior of all of the 

genes in a given data set. PCA was applied on conditions to explore potential 

correlations between samples. 

 

2.4.4 Supervised analysis 

Welsh t-test with p value cut off of 0.05 was used calculate differential gene 

expression. The Benjamini-Hochberg false discovery rate was applied to the data 

(Benjamini and Hochberg, 1995). 

 

2.4.5 Interpreting biological meaning  

Expression microarray experiments usually result in large gene lists of significance to 

biological conditions. These may range in size from several hundreds to thousands of 

genes. Analysing these large gene lists is important to understand biological meaning, 

however it represents an extremely challenging task. Several publicly available tools 

exist to aid researchers in performing these tasks including GSEA (Subramanian et 

al., 2007, Subramanian et al., 2005), Onto-express (Khatri et al., 2004), GoMiner 

(Zeeberg et al., 2005) and DAVID (Dennis et al., 2003, Hosack et al., 2003). They all 

adopt a common core strategy to systematically map a large number of interesting 

genes in a list to the associated biological annotation (e.g., gene ontology terms), and 

then statistically highlight the most overrepresented (enriched) biological annotation 

out of thousands of linked terms and contents. Each tool has distinct features and 

strengths (Khatri and Draghici, 2005). 

I used a web-based software, DAVID 2008 (Database for Annotation, Visualization 

and Integrated Discovery, http://david.abcc.ncifcrf.gov/ provided by the National 
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Institute of Allergy and Infectious Diseases, National Institutes of Health (Bethesda, 

MD, USA)) to provide functional annotation tools to help understand the biological 

meaning in our differentially expressed genes (Dennis et al., 2003). Based on the 

Fishers Exact test, DAVID sorts the large list of genes generated from typical 

microarray experiments into the categories from dozens of annotation systems such as 

Genbank accession, OMIM, KEGG pathway, GeneOntology, and functional 

annotation clustering etc. DAVID incorporates enrichment analysis, the principle 

foundation of which is that if a biological process is abnormal in a given study, the 

co-functioning genes should have a higher potential (enriched) to be selected as a 

relevant group by the high-throughput screening technologies. Huang et al. 2009, 

provide an excellent review / overview of DAVID, its methodology, statistics, and 

applications (Huang da et al., 2009). 

Two functions of DAVID were used in this study, Functional Annotation Clustering 

and pathway analysis.  

Functional Annotation Clustering: Functional Annotation Clustering groups and 

displays similar annotations / genes together. The grouping algorithm is based on the 

hypothesis that similar annotations should have similar gene members. DAVID uses 

an agglomeration method, which groups related genes or terms into functional groups 

(biological modules) based on the similarity distance measure. A gene or term may 

participate in more than one functional group, unlike other clustering techniques such 

as Hierarchical, K-means, or self-organizing maps. Clusters (functional gene groups) 

are produced which may be viewed as a heatmap and to determine which are more 

significant an ‘enrichment score’ is allocated (Huang da et al., 2007). The enrichment 

score is the geometric mean of the EASE Scores (Fischers exact test) associated with 

each enriched annotation term that belonging to the cluster. The geometric mean is a 

relative score instead of an absolute p value, therefore minus log transformation is 

applied on the geometric mean. The group enrichment scores are intended to order the 

relative importance of the gene groups instead of as absolute decision values. A 

higher score for a group indicates that the group members are involved in more 

important (enriched) roles. However, all gene groups are potentially interesting 

despite lower rankings. An enrichment score of less than 0.05 translates to 1.3 on the 

minus log scale. 

Pathway Analysis: DAVID was also used to input significantly over represented 

genes (Fischer’s test) on to static pathway maps generated by Kyoto Encyclopedia of 
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Genes and Genomes (KEGG). The KEGG PATHWAY database 

(http://www.genome.ad.jp/kegg/pathway.html) is a collection of manually drawn 

pathway maps representing current knowledge on the molecular interaction and 

reaction networks for: metabolism, genetic information processing, environmental 

information processing, cellular processes, human diseases, and drug development.  

 

2.5 Validation - Quantitative Real-Time PCR using novel technology  

2.5.1 Background and principles 

Quantitative reverse transcription polymerase chain reaction with real time 

monitoring (qRT-PCR) is the most sensitive and reproducible method to quantify 

messenger RNA abundance (Canales et al., 2006). mRNA transcripts are reverse 

transcribed into cDNA using oligo(dt), random or gene specific primers, and the 

cDNA’s of interest are then exponentially amplified by PCR using gene specific 

primers. The concentration of amplicon in the reaction is monitored with fluorophore-

conjugated hybridisation probes or DNA-intercalating dyes (reporter dye), which are 

released by the polymerase enzyme.  

Validation of microarray datasets at an RNA, protein and functional level is necessary 

to control for false discovery and to ensure that gene expression translates into tissue 

effects. A number of factors, including array-array variability, statistical analysis of 

microarray data, inherent false positive and negative rates arising from laboratory 

processes, and general limits of fluorescent microarray technology often lead to 

results that fail validation by downstream techniques. qRT-PCR has become a 

bedrock of microarray studies and validation, and is an integral part of the process. 

High throughput profiling / validation of many genes with qRT-PCR is often not 

practical, as it is extremely labour intensive, expensive, requires high technical skill 

and there may be intra / inter-assay variation. Recently Applied Biosystems 

developed a novel qRT-PCR technique using microfluidic technology – the 

TaqMan Low Density Array (https://www2.appliedbiosystems.com/), which 

circumvents these problems. 

The TaqMan LDA is a low to medium throughput microfluidic card (array) that 

allows for 1 – 8 samples to be run in parallel against 12 – 384 TaqMan gene 

expression assay targets, that are pre-loaded into each of the wells on the card. 

Hundreds of user specified real-time PCR reactions can be performed simultaneously. 
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LDA’s require minimal amounts of sample and are simple to load and run on the 

Applied Biosystems 7900HT Fast Real-Time PCR system. In addition they require no 

optimization and are highly reproducible.  

(http://www3.appliedbiosystems.com/cms/groups/mcb_marketing/documents/general

documents/cms_040595.pdf). LDA’s have been used successfully to examine gene 

expression profiles in a variety of tissues (Tenedini et al., 2004, Marionneau et al., 

2005, Abruzzo et al., 2005, Jost-Albrecht and Hofstetter, 2006).  

 

2.5.2 Method  

Fluorescent real-time PCR (TaqMan, Applied Biosystems) was used to confirm 

differences in gene expression.  300ng of amplified RNA (set aside after 

amplification, and before biotinylation – Affymetrix) was reverse transcribed using 

Omniscript Reverse Transcriptase (Qiagen) with 10µM random nonamers 

(Stratagene) and 1µM Oligo-dT primers (Qiagen).  TaqMan probes and primers for 

real-time PCR were purchased as a pre-developed assay system (ABI) and GAPDH 

was used as endogenous control. Supplemental file chapter 2 shows the genes chosen 

with corresponding Applied Biosystems assay ID.  Quantitative PCR was performed 

using ABI Prism 7900 with microfluidic cards (Applied Biosystems) according to 

manufacturer’s protocols, with each reaction containing 6ng of reverse transcribed 

RNA in 2 µl reaction mix.  The following cycling parameters were employed: 48°C 

for 30 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15 sec and 60°C for 

15 sec.  Each sample was tested in quadruplicate and results were analyzed using 

sequence detector software (SDS v2.2 – Applied Biosystems).  Relative quantitation 

was performed using the 2-ΔΔCT method (Lival and Schmittgen 2001). 

 

2.5.3 Relative Quantification using the Comparative CT Method  

Two common methods are used to analyze data from qRT-PCR. The absolute 

quantification method determines the input copy number by relating the PCR signal to 

a standard curve. Relative quantification relates the PCR signal of the target transcript 

in a treatment group to that of another sample such as an untreated group. The 2-ΔΔCT 

method is a way of analyzing the relative changes in gene expression from qRT-PCR 

experiments (Livak and Schmittgen, 2001). This second comparative CT method was 

used in this thesis. This involved comparing the Ct values of the samples of interest 
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against each other. The Ct values of these were then normalized to an appropriate 

endogenous housekeeping gene (GAPDH).   The comparative Ct method is also 

known as the 2–[delta][delta]Ct method, where   [delta][delta]Ct = [delta]Ct,sample - 

[delta]Ct,reference . Here, [delta]CT,sample is the Ct value for any sample normalized to the 

endogenous housekeeping gene and [delta]Ct, reference is the Ct value for the other 

sample of interest, also normalized to the endogenous housekeeping gene. 
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2.6 Summary points 

1. RNA was isolated from precisely from pure epithelial normal human prostate 

using laser capture microdissection and RNA extraction 

2. This RNA was amplified in two rounds to allow hybridization to Affymetrix 

HG-U133 Plus 2.0 arrays 
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Chapter 3. Gene expression profile of laser microdissected normal 

human prostate epithelium: comparison with laser microdissected 

cancer prostate epithelium 
 

3.1 Introduction 

The prostate is a heterogeneous organ consisting of a large stromal compartment with 

a smaller epithelial compartment (5-10%). It has a zonal anatomy with differing 

glandular appearances, putative differences in function between the zones and a likely 

different embryological origin (McNeal, 1981). Prostate cancer, an adenocarcinoma, 

is characterized by basal cell layer disruption, basement membrane disruption, 

progressive loss of secretory differentiation markers (e.g. prostatic acid phosphatase 

and PSA), increasing nuclear and nucleolar abnormalities, increasing proliferative 

potential, and increasing variation in DNA content (aneuploidy). It grows in an 

unrestrained pattern, infiltrating into surrounding normal stroma and epithelium, as 

well as benign prostatic hyperplasia. One of the difficulties therefore in studying 

normal and cancer prostate has been in isolating pure epithelial samples for DNA and 

RNA analysis. The use of primary cell culture, where the prevailing environment may 

promote growth of only epithelial or stromal cells, and cell lines is well established. 

For example LnCaP, a prostate cancer cell line, is derived from the supraclavicular 

lymph node of a man with metastatic prostate cancer (Horoszewicz et al., 1983). 

However the gene expression pattern of cultured cells is unlikely to reflect the true 

environment within the prostate. In addition many of the cancer cell lines are derived 

from metastatic disease, thus missing many of the early changes in gene expression 

and limiting the discovery of new biomarkers and putative therapeutic targets.  

Various studies (Dhanasekaran et al., 2001, Singh et al., 2002, Welsh et al., 2001a, 

Luo et al., 2001, Stuart et al., 2004, Yu et al., 2004) have described global gene 

expression in prostate cancer and compared these with non-diseased prostate tissue, 

obtained from cancer-containing prostates, as ‘normal’ controls to gain insights into 

changes associated with disease. These studies present a complex picture of the gene 

expression profile of human prostate. However, almost all of these studies have been 

performed using whole tissue samples containing a mixture of epithelial and the 

predominant stromal component. It is therefore difficult to ascertain how much 

distortion could be introduced by using heterogenous cell types as starting material 
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for this kind of analysis, particularly in the context of prostate adenocarcinoma. For 

example, to identify genes that are dysregulated in prostate adenocarcinoma it is 

essential to have a knowledge of the expression profile of normal, epithelial, cells 

from the prostate in young men, before the onset of the changes that may occur due to 

age and disease. This is important not only for an understanding of prostate cancer at 

the molecular level, but also for the identification of diagnostic or prognostic markers 

and for the design of effective therapies. 

Normal adjacent tissue to prostate tumours is a commonly used ‘control’ used in 

differential gene expression studies of prostate cancer. This is because it is readily 

available from radical prostatectomy specimens and has been shown to possess 

genetic changes in prostate cancer that have subsequently been validated by other 

techniques (Dhanasekaran et al., 2001). There is however evidence of a cancer ‘field 

effect’ in histological appearing normal tissue around several cancers, including lung 

(Franklin et al., 1997), oesophagus (Prevo et al., 1999), cervix (Chu et al., 1999), and 

urinary tract (Takahashi et al., 1998). Several studies have confirmed a field effect in 

prostate cancer (Ananthanarayanan et al., 2005, Yu et al., 2004, Chandran et al., 

2005). Previous prostate cancer microarray studies are therefore limited in this respect 

and likely to miss important changes in prostate carcinogenesis. The use of benign 

prostate tissue, BPH, as a control is also popular (Stamey et al., 2001), however BPH 

represents a disease process (see above) and is unlikely to truly reflect the molecular 

events in prostate cancer. Prakash et al. 2002 used DNA microarrays to assess 

differential gene expression between normal transition zone and BPH (Prakash et al., 

2002). They defined a profile of 511 genes that differentiated the 2 tissues. Thus the 

use of BPH as a control tissue for prostate cancer molecular profiling is flawed. BPH 

is a proliferative disease of the stroma and use of BPH tissue as a reference sample 

when investigating prostate cancer gene expression profiling will yield a distorted 

picture of differentially expressed genes in cancer. 

Historically several methods have been used to try and overcome this problem, 

including gross dissection to enrich specific cell populations (Radford et al., 1993), 

irradiation of unwanted areas to destroy genetic material (Shibata et al., 1992), and 

manual microdissection (Emmert-Buck et al., 1994). These processes were laborious, 

time consuming, and technically difficult, especially in obtaining high quality genetic 

material for down stream molecular applications, especially for gene expression 
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analysis that requires RNA isolation. Laser capture microdissection has overcome 

these problems (Emmert-Buck et al., 1996). 

 

To date prostate cancer microarray studies have not used disease free, normal 

prostatic tissue or epithelial specific prostatic tissue for comparison with diseased 

samples to identify molecular changes. There is then clearly a need for a reference 

normal epithelial, and mesenchymal, prostatic database to compare the transcriptome 

of prostatic adenocarcinoma with. I therefore hypothesized that to study epithelial 

tumours, it is vital to be able to isolate pure epithelial samples free of contamination 

from the surrounding stroma. 

 

3.1.1 Gene Expression Profiling of the Prostate using LCM and Microarray 

technology 

A disease is a comparative state that can only be defined in relation to the steady or 

‘normal’ state. Gene expression technology provides a great opportunity to define the 

molecular basis of human prostatic diseases. This however requires availability of 

gene expression profile from normal, disease free tissue. As prostate adenocarcinoma 

is manifested in the proliferative overgrowth of prostate epithelium, it is therefore 

important that a transcriptome map of as pure a population of epithelial cells as 

possible is described. 

Several studies have used LCM, linear amplification, and microarrays in the study of 

prostate cancer (Tomlins et al., 2007, Stanbrough et al., 2006, Petrovics et al., 2005, 

Luzzi et al., 2003, Ernst et al., 2002, Chen et al., 2003). A number of putative 

oncogenes / tumour suppressor genes have been identified using these methods 

including: Hepsin (Chen et al., 2003), Mapsin (Chen et al., 2003), AMACR 

(Petrovics et al., 2005, Ernst et al., 2002), MKP1 (Febbo et al., 2006), ERG 

(Petrovics et al., 2005), DD3 (Petrovics et al., 2005), GSTP1 (Petrovics et al., 2005) 

SGP28 (Ernst et al., 2002), and low density lipoprotein-phospholipase (Ernst et al., 

2002). These studies have used either ‘normal adjacent prostate’ or benign prostatic 

hyperplasia as the tissue for comparison. The concept of a field effect has been 

demonstrated (Ananthanarayanan et al., 2005, Yu et al., 2004) and thus neither of 

these tissues represent the true transcriptome of normal human prostate. Tomlins et al. 

(Tomlins et al., 2007) are the only group to have included in their study the epithelial 

compartment of 3 prostates from organ donors presumed free of disease. They were 
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grouped together with benign and normal adjacent prostate and not analysed 

separately, thus clouding their usefulness. 

 

For the reasons described above, but foremost to provide a transcriptome map of the 

normal human prostate epithelium, I decided to investigate the gene expression 

profile of precisely dissected prostate epithelium from normal human prostate using 

Affymetrix GeneChip HG-U133 Plus 2.0 Arrays. Two hypotheses were tested: 

 

1. RNA isolated from whole tissue is not representative of either the stromal or 

epithelial cell gene expression. 

2. Existing prostate cancer microarray studies, comparing compromised normal 

(and invariably whole) tissue with cancer tissue arrays, give a ‘distorted’ 

picture of the gene expression profile changes in prostate cancer compared to 

non-diseased, normal tissue. 

 

A normal gene expression profile of human prostate epithelium has therefore been 

established, and was validated using low-density real time PCR. This transcriptome 

was compared to the expression profiles of ‘normal’ whole prostate tissue used in 

several previous prostate cancer microarray studies using comparative microarray 

analysis.  

Furthermore I have tested my dataset with a laser microdissected prostate cancer 

epithelial dataset (Febbo et al., 2005) to identify potential new gene targets involved 

in prostate carcinogenesis. Three targets (MCM2, NR1D1 and ABCA1) were also 

chosen for further investigation at the protein level using a prostate tissue array in an 

unbiased, semi-automated particle analysis method. 

 

3.2 Materials and Methods 

3.2.1 Data analysis – gene expression patterns in human prostate epithelium 

Affymetrix CEL files were normalised in GeneSpring 7.2 with GCRMA. Subsequent 

normalisation included setting of signal values less than 0.01 to 0.01, total chip 

normalisation to the 50th percentile, and normalisation of each gene to the median. 

These normalizations allowed for the visualization of data based on relative 

abundance at any given time point rather than compared with a specific control value. 

Following this genes with raw expression values less than 50 were filtered out, with 
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further filtering as required performed according to fold change. Differential gene 

expression was calculated using parametric t-test (Welch) p<0.05. Where specified, a 

false discovery rate correction was applied (p<0.01) using the Benjamini and 

Hochberg method (Benjamini and Hochberg, 1995). Hierarchical clustering was 

performed in GeneSpring 7.2. 

 

3.2.2 Validation of oligoarray data and quantitation of selected targets by real-time 

PCR 

Quantitative PCR (Q-PCR) was used to verify differential expression. Custom 

TaqMan low density arrays were designed for the desired genes on Microfluidic cards 

(Applied Biosystems) and PCR performed on Applied Biosystems 7900HT Fast Real-

Time PCR System (section 2.8). Cycle thresholds (Ct) were calculated using SDS 2.2 

software (Applied Biosystems). (In a real time PCR assay a positive reaction is 

detected by accumulation of a fluorescent signal. The Ct (cycle threshold) is defined 

as the number of cycles required for the fluorescent signal to cross the threshold (i.e. 

exceeds background level). Ct levels are inversely proportional to the amount of 

target nucleic acid in the sample (i.e. the lower the Ct level the greater the amount of 

target nucleic acid in the sample)). 

 

3.2.3 Comparative analysis of normal LCM prostate transcriptome 

Comparative microarray analyses were performed with several publicly available 

prostate microarray datasets using the homology table function of GeneSpring 7.2. 

Publicly available datasets were downloaded and imported into GeneSpring.  A brief 

description of each study used for the comparative analysis is given below. 

 

3.2.4 Publicly available human prostate gene expression array datasets for RNA 

isolated from whole tissue  

Yu et al. 2004 performed a comprehensive gene expression analyses on RNA isolated 

from 152 whole tissue human prostate samples, including prostate cancer, prostate 

tissues adjacent to cancer, and donor prostate tissue free of disease (Yu et al., 2004). 

The Affymetrix (Santa Clara, CA) U95av2, U95b and U95c chip sets were used. The 

donor prostate group was used for comparative analyses described here, and included 

23 prostates obtained at the time of organ donation in brain-dead men, with ages 

ranging from 13 to 63 years old. There was no clinical or histological evidence of 
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prostatic or genitourinary disease. Yu et al. (Yu et al., 2004) selected samples from 

the peripheral zones were that contained at least 60% glandular tissue and were 

processed, within 30 minutes after removal. Total RNA was extracted using the 

Qiagen RNeasy kit (Qiagen, San Diego, CA) and sufficient quantities were extracted 

so as not to require additional amplification. CEL files for this study were obtained 

from the Gene Expression Omnibus website (NCBI), (GSE6604 – expression data 

from normal prostate tissue free of any pathological alteration). These were directly 

imported into GeneSpring and normalized using GCRMA as previously described 

(chapter 2).  

Singh et al. 2002 (Singh et al., 2002), analyzed global gene expression in 52 prostate 

cancers and 50 ‘non-tumour’ prostate samples. These were whole tissue. These ‘non-

tumour’ samples were referred to as normal and were taken from histologically 

normal adjacent areas to prostate cancer. U95av2 arrays (Affymetrix, Santa Clara, 

CA) were used to generate gene expression profiles after total RNA extraction using 

the TRIzol® method (TRIzol®, invitrogen), generation of labeled cRNA, 

fragmentation and hybridization according to Affymetrix protocols. CEL files for 

these ‘normal’ prostate samples were obtained from the Broad Institute (http://www-

genome.wi.mit.edu/MPR/prostate). These were imported into GeneSpring and 

normalised using GCRMA (chapter 2). 

Welsh et al. 2001 (Welsh et al., 2001a), analyzed gene expression in 25 prostate 

cancer tissues, 9 non-malignant prostate tissues, and 21 cell line samples. Sharp 

dissection was used to isolate cancerous and normal adjacent prostate tissue, which 

was sharp dissected. This was whole tissue. RNeasy (Qiagen) was used to extract total 

RNA from each sample and sufficient quantities were obtained to generate labeled 

cRNA with hybridisation to Affymetrix U95av2 arrays according to standard 

Affymetrix protocol. Scanned image files were analyzed with Genechip (Affymetrix) 

and scaled to an average hybridization intensity of 200. The dataset was obtained 

from http://public.gnf.org/cancer/prostate/ and was subsequently imported directly 

into GeneSpring. Normalisation was not performed as the dataset was already in 

scaled and normalised format (.txt). 
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3.2.5 Publicly available human prostate cancer gene expression array datasets for 

RNA isolated from for laser capture microdissected tissue 

Febbo et al. 2006 (Febbo et al., 2006), used laser capture microdissection to isolate 

prostate cancer before and after the neoadjuvant administration of imatinib mesylate 

to assess the impact on global gene expression of the drug. These men had 

intermediate or high risk prostate cancer, as based on PSA, Gleason score, and 

clinical staging (Table 4). Thirteen prostates were sampled before treatment using 

prostate biopsy specimens. LCM was performed using the Arcturus PixCell II system 

and RNA extracted using the Absolutely RNA Nanoprep kit (Stratagene). Two rounds 

of subsequent RNA amplification were performed using a modified protocol created 

by adapting several previously published methods. Labelled cRNA was then 

hybridized to U133A microarrays (Affymetrix, Santa Clara, CA). CEL files for the 

pre-treatment group (supplemental data 

http://clincancerres.aacrjournals.org/cgi/content/full/12/1/152/DC1) were imported 

into GeneSpring and normalized with GCRMA (chapter 2). 

 

Patient number PSA Biopsy Gleason score Clinical stage (DRE) 

1 6 4 + 3 = 7 T1c 

2 4 4 + 3 = 7 T2a 

3 10.8 3 + 4 = 7 T1c 

4 5.98 3 + 4 = 7 T1c 

5 8.5 3 + 3 = 6 T2c 

6 6.3 3 + 4 = 7 T2c 

7 4.6 3 + 4 = 7 T2a 

8 7.6 4 + 3 = 7 T1c 

9 7.3 3 + 4 = 7 T2b 

10 7.9 3 + 3 = 6 T1c 

11 8.46 4 + 4 = 8 T1c 

 

Table 4 Patient characteristics Febbo et al. (Febbo et al., 2006) 

 

As these datasets are from different generation Affymetrix chips, with fewer genes in 

different places on the chip, it is critical that they be ‘aligned’ with my chip, for laser 
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capture microdissected normal prostate, to provide a meaningful comparison. To do 

this I used homology tables (GeneSpring) to compare my dataset with other datasets. 

Homology tables in GeneSpring allow the comparison of expression results from one 

array (or genome) to another. A gene list or experiment can be translated, once a 

homology table is created, from one genome to a gene list of the corresponding genes 

in the other genome. In these experiments homology tables were used to translate 

HGU133 Plus 2.0 gene lists to HGU133A and HGU95av2 chips. Raw data were 

simultaneously normalized to standardize different generations of Affymetrix gene 

chips (e.g. HGU95A and HGU133 Plus 2.0). Differential gene expression and 

filtering on fold change could then be calculated as previously described (Chapter 2). 

 

3.2.6 Protein expression in prostate tissue arrays 

Patient selection, disease state and construction details of tissue blocks are given 

elsewhere (Nariculam et al., 2009, Wang et al., 2010). The tissue array was 

constructed by Joesph Nariculam, Prostate Cancer Research Center, UCL (a 

representative picture is shown in Supplemental Figure 3 - Appendix). Briefly, tissue 

blocks were constructed using archival formalin-fixed, paraffin-embedded radical 

prostatectomy specimens from the 82 patients with pathological stage pT3a or b and 

pre-operative PSA stage of >3. A urological pathologist (Mr Alex Freeman) examined 

all radical prostatectomy specimens. 5-6µm sections were cut from the tissue arrays 

onto coated slides and dried overnight at 60°C, prior to performing standard antigen 

retrieval. Immunostaining was performed by Philipa Munson, UCL Diagnositics, 

UCL, using standard 3,3-diaminobenzidine staining protocol and 0.5-2µg/ml of 

NR1D1 (ab56754), ABCA1 (ab53117) and MCM2 (ab53136) primary antibodies 

(Abcam) on an automated Bond maXTM machine (Vision BioSystems) using the 

Bond polymer detection system kit (containing post primary antibodies), according to 

manufacturer’s protocol, at high contrast (DS9173) (Wang et al., 2010). 

Images of each tissue core were digitally acquired at 20x magnification at 

standardised settings. The images (3840 x 3072 pixels) for NR1D1 and ABCA1 

antibodies were acquired individually with a Nikon DXM 1200 digital imaging 

system (image resolution = 3840 x 3072 pixels) attached to a Nikon Diaphot. Images 

for MCM2 staining were acquired using a Olympus FluoView FV 1000 microscope 

equipped with an automated stage (20x objective, image resolution 624 x 600); a grid 

map was created, images acquired in a series and were stitched together using 
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Olympus montaging software (performed by Marta Eillertsen). 

A reproducible, automated method (Wang et al., 2010) was employed to quantify the 

DAB signal on benign and malignant human prostate tissue cores using ImageJ 

software (Rasband, 1997). Macros were written to execute the following sequence of 

events for acquired jpeg images: 1. Open image 2. Convert to 16-bit image 3. Set 

threshold (see Figure 34 for details for each antibody) 4. Analyze particle (Size 0.5- 

Infinity, Circularity 0.00-1.00) 5. Save image 6. Save particle information (count, 

total area, average size and area fraction) into an excel spreadsheet 

(rsb.info.nih.gov/ij/docs/pdfs/examples.pdf). Units are default ImageJ setting (pixels). 

For all 3 proteins tested, expression was observed to be largely epithelial (see results) 

and analysis was also restricted to the epithelial expression; set threshold parameters 

were chosen after manual analysis of random cores for the subsequent quantitation of 

the signal. A contiguous spreadsheet for all the usable cores (between 242 and 289 

cores) for normal vs. cancer comparison, for different antibodies was constructed and 

statistical analysis using ANOVA and Student’s t-test was performed. 

 

3.3 Results 

3.3.1 Basic analysis of gene expression profiling in normal prostate 

Eight LCM epithelium only samples from 3 different prostates were analyzed for 

gene expression analysis. The results of basic, exploratory analysis involving 

principal component analysis (PCA) and identification of genes that were present or 

absent in the normal prostate epithelium is given in Figure 26 and 27 (gene lists 

supplemental files 1A & B). PCA was performed using GeneSpring 7.2 software on 

condition (each prostate LCM sample) and on all genes (54,675 transcripts). PCA on 

conditions show principal components 1 and 2 with 38.1% and 14.6% variance. PCA 

on genes indicates that smaller number of components account for majority of 

variation (Figure 27). Using detection algorithm and significance cut off (p<0.05) we 

identified 11657 genes to be expressed (present) in the 8 epithelial samples and 

21,124 genes were absent. Unsupervised clustering of the 8 epithelial samples did not 

reveal a significantly different gene expression pattern (Figure 28) between these 

samples. This therefore represents the first epithelial transcriptome map of the human 

prostate. This epithelial transcriptome map was used to test the hypothesis described 

in (section 3.1.1) (i) by comparing gene expression profile from my data from LCM 

normal prostate epithelial cells and those from whole tissue studies (see 3.2.4) and (ii) 
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by comparing my data with the Febbo study (Febbo et al., 2006) describing gene 

expression profile of LCM prostate cancer epithelium, to identify novel, differentially 

expressed genes in prostate cancer. 

 

	
  
 

Figure 26 Using detection algorithm and significance cut off (p<0.05) 11657 genes 

were identified to be expressed (A = present) in all the 8 epithelial samples and 

21,124 genes were absent (B).  

 

	
  
 

Figure 27 Principal component analysis on all genes of the expression data from 

normal, LCM prostate epithelium. PCA analysis was performed on all genes of the 

expression datasets from 8 Affymetrix samples from 3 donor prostate using basic 

protocols in GeneSpring GX 7.2 software. 
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Figure 28 Hierarchical clustering on conditions (samples) did not reveal different 

gene expression profiles amongst the samples. This analysis was performed using the 

'centroid' clustering method. In this method, the distance between two clusters is the 

distance between the averages of the data points under one branch and the averages of 

the data points under another. This method is sometimes referred to as the "average-

linkage" method. 

 

3.3.2 Validation of microarray data with real-time PCR 

Randomly selected targets were used on a microfluidic card real-time PCR array for 

verification. 30 genes were randomly selected from the gene list (Table 5, 

Supplemental file 1A). For example, genes KLK3 (also called prostate specific 

antigen), B2M, IDH1 were all found to be present in the human prostate samples 

(supplemental file 1A) using real-time PCR. A complete list with average Ct values ± 

SD is given in Table 5. 
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Gene Ct SD 

B2M 18.5854 1.704342 

IFITM1 22.24602 1.425877 

PAPD4 23.08227 15.84894 

MAF 25.07318 1.522375 

IMMP1L 25.3862 1.524564 

PPAP2A 25.81274 2.92865 

RPL17 26.45161 1.136174 

MT01 27.20571 1.812181 

NDUFA12 27.4901 1.291011 

DARS 27.70086 0.670677 

RARRSE1 27.85288 2.449404 

PIAS2 28.15801 5.563861 

PRPF4B 29.42128 0.739768 

EIF1AY 29.59145 1.513877 

IDH1 29.63436 0.572494 

PLCB1 29.69154 3.045368 

KLK3 30.55266 2.197981 

WDR27 30.56812 3.318825 

SCCPDH 30.62914 1.078141 

RALB 30.80814 0.736271 

PTPRA 30.81518 0.953013 

SNAPC5 30.8319 1.1374 

PPIG 31.61786 1.187032 

STAT1 31.62738 1.125823 

DKFZ 31.66869 1.660908 

GAPDH 32.17615 0.77264 

NBEA 32.39767 2.821052 

COMMD3 32.4684 2.154918 

CTBP2 33.33053 1.253607 

GCOM1 35.15904 0.555935 

 

Table 5 QPCR using Applied Biosystems Low Density arrays. Randomly selected 

targets were used on a microfluidic card real-time PCR array for verification. 30 

genes were randomly selected from the gene list for Figure 27 A (genes present in all 

8 epithelial samples). Each target was measured in quadruplicate on the array and data 

analyzed using SDS 2.2 software (Applied Biosystems). 
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3.3.3 Whole tissue vs. epithelium only microarrays of human prostate 

Most of the available gene expression data utilizes RNA isolated from whole prostate 

tissue (Singh et al., 2002, Welsh et al., 2001a, Yu et al., 2004). A major problem with 

the whole tissue studies is the dilution of epithelial mRNA as stromal tissue mass of 

the prostate is five times greater than the epithelial component. I hypothesized that 

using whole tissue gene expression profile of ‘normal’ prostate (whether obtained 

from disease adjacent or non-malignant prostate) will yield a distorted picture of 

epithelial gene expression. To test this hypothesis, I performed a direct comparison 

between: condition 1: all of my LCM epithelial samples (epithelium only) and 

condition 2: other whole tissue datasets (whole tissue) using homology table function 

in GeneSpring 7.2 software. To assess this, I obtained raw data files for some whole 

tissue prostate Affymetrix microarray studies (Section 3.2.4) and compared the gene 

expression profile of these whole tissue studies with my LCM epithelium only 

microarray data. I used multiple datasets (Welsh et al., 2001a, Singh et al., 2002, Yu 

et al., 2004) from studies (utilizing Affymetrix GeneChip HG-U95Av2) that provided 

a ‘normal’ component, using RNA isolated from whole tissue, for their gene 

expression studies. CEL or .txt files from whole tissue and LCM studies were 

normalized using standard protocols and homology tables were constructed to 

standardize different generations of Affymetrix gene chips (e.g. HGU95A and 

HGU133 Plus 2.0).  

 

Unsupervised and supervised analyses (Appendix) were used, for both types of 

analysis statistical tests and false detection rate (FDR) corrections were applied to 

create starting gene lists (details given in figure legends) for various comparisons. 

Unsupervised analysis confirms the differences in gene expression patterns (Figure 

3.21) between the Singh (Singh et al., 2002) whole normal prostate dataset and LCM 

normal epithelium only.  

 

Gene clusters appear distinct for the whole tissue and LCM epithelial microarray 

datasets and hierarchical tree branches were significantly different (analytical details 

are given in figure 3.21 legend). Condition tree clustering of the initial datasets 

revealed 2 distinct clusters within the Singh normal dataset (Figure 29). Nineteen 

whole normal samples seemed to cluster with the epithelial only samples. Supervised 

clustering of normal samples grouped as LCM (n=8) and ‘normal’ whole tissue 
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samples of samples (n=40, from Welsh dataset), with FDR, shows major and 

significant differences in gene expression in whole tissue compared to LCM 

epithelium only gene expression (Figure 30, and gene list supplemental file 2). A 

similar analysis was performed for whole tissue gene expression dataset of Yu et al., 

(Yu et al., 2004) (Supplemental Figure 1 – Appendix), with similar results as that 

observed for the Welsh study, revealing distinct gene clusters for the whole tissue and 

LCM epithelial microarray and significantly different hierarchical tree branches. 

These results indicate major discrepancies between epithelial and whole tissue human 

prostate transcriptome. 
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Figure 29 Gene expression profile of normal LCM epithelium vs. ‘normal’ whole 

prostate show major differences. Unsupervised hierarchical clustering of samples (all 

genes) group distinctly into LCM and whole prostate (“average-linkage" method). 

Whole prostate data on Affymetrix chip HGU95A from Singh et al. (Singh et al., 

2002). Concurrent normalization of LCM and Singh prostate dataset performed using 

homology tables (GeneSpring) for direct comparative analysis between the two 

datasets.  
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Figure 30 Supervised clustering of normal LCM epithelium vs. ‘normal’ whole 

prostate. Clustering of all samples, grouped as LCM vs. whole prostate (from Welsh 

et al, 2001, on HGU95A), under stringent conditions (FDR and t-test, p <0.01), shows 

major (5498 genes) differences in gene expression (gene list supplemental file 2). 

 

3.3.4 Identification of novel prostate adenocarcinoma specific genes 

I next identified genes that are likely to be dysregulated in prostate adenocarcinoma. 

Numerous studies (Dhanasekaran et al., 2001, Singh et al., 2002, Welsh et al., 2001a, 

Yu et al., 2004) have used whole tissue gene expression profiling to identify targets 

differentially expressed in prostate cancer. In the light of my results comparing LCM 

epithelium only vs. whole tissue profiling I wished to extend the normal vs. cancer 

comparison to human prostate epithelium. Prostate cancer is an adenocarcinoma, and 

a comparison of normal epithelium only vs. cancer epithelium only gene expression 

profile is more likely to yield genes that are dysregulated in prostate cancer. To 

achieve this I used the dataset from a seminal report from the Febbo group (Febbo et 

al., 2006). This paper used the same approach as employed in this study, by isolating 
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epithelium using LCM, but from the cancerous prostate and performing a microarray 

study using Affymetrix HGU 133A gene expression array. However, there was no 

normal LCM control dataset for this study. I obtained the raw data files of the LCM 

prostate cancer dataset (13 samples, as described in section 3.2.5) and by using the 

homology tables protocol in GeneSpring GX 7.2, performed a comparative analysis 

with my normal epithelium LCM dataset to obtain a novel prostate adenocarcinoma 

gene profile. An initial gene list (10168 genes) was constructed by clustering 

statistically significant (p<0.01) expressed genes, grouped by cancer (Febbo et al., 

2006) vs. normal (our dataset) with FDR correction (Benjamini and Hochberg, 1995). 

The normal and cancer epithelium only datasets were then analyzed using filtering on 

fold change. To limit the size of the dataset a 2-fold change was applied to the starting 

gene list of statistically significant genes (10168) of which yielded 9318 gene that 

showed differential expression between the two datasets (Figure 31); of these 7844 

(Supplemental Figure 2A – Appendix, supplemental file 4A) were found to have 

increased expression whereas 1474 (Supplemental Figure 2B – Appendix, 

supplemental file 4B) genes showed decreased expression in cancer epithelium 

compared to normal epithelium. Numerous prostate oncogenes that have been 

previously identified were over-expressed in cancer vs. normal, including PTEN, 

Hepsin, AMACR, KLK3, Caveolin, KLK2, CDKN1B, and ERBB2. An excellent 

review of these prostate oncogenes is provided by Kumar-Sinha et al (Kumar-Sinha 

and Chinnaiyan, 2003). In addition, two known prostate tumour suppressor genes 

(Kumar-Sinha and Chinnaiyan, 2003) TP53 and TGFB2 were down-regulated in the 

prostate cancer dataset. This analysis also identified several genes not previously 

known to be involved in prostate carcinogenesis including YWHAE, GLO1 and 

ZNF143 (section 3.4.2). 

 

Further analysis was performed to establish the validity of normal vs. cancer gene 

expression analysis in the epithelium only and whole tissue studies (Venn diagram - 

Figure 32) using three different microarray studies (Singh et al., 2002, Welsh et al., 

2001a, Yu et al., 2004). Only 308 genes in whole tissue normal vs. cancer match up 

with the prostate adenocarcinoma genes obtained from LCM normal vs. cancer 

epithelium only data set.  

Thus this data indicates that whole tissue prostate cancer microarray studies give a 

distorted picture of the prostate epithelium gene expression profile. Consequently 
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using whole tissue for identification of differentially expressed genes in prostate 

cancer is also invalid because of 1) the mixed cellular contingent (stroma and 

epithelium), and 2) ‘whole normal’ prostate is not truly normal as it may contain field 

effect changes or represent other disease processes such as BPH.  

 

 
 

Figure 31 Prostate adenocarcinoma specific genes. Clustering of statistically 

significant (p<0.01) and differentially expressed genes (up- or down-regulated at 2-

fold), grouped by cancer vs. normal with FDR (Benjamini and Hochberg). Cancer 

prostate data on Affymetrix chip HGU133A from Febbo et al. (Febbo et al., 2006).  

Concurrent normalization of normal and cancer prostate datasets, using homology 

table protocol (GeneSpring) for a direct comparative analysis between the two 

datasets. 
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Figure 32 Venn diagram of gene expression analysis in LCM vs. whole and normal 

vs. cancer samples. Differentially expressed genes in whole tissue compared to LCM 

epithelium (red circle). Using the homology table analysis, necessary for subsequent 

comparison with epithelium only data, 174 genes were identified to be differentially 

expressed (at 5 fold change and FDR of p<0.1) in the Singh study and 1794 in Welsh 

study. 630 genes were significantly differentially expressed between the pure 

epithelial dataset and the whole normal Yu dataset at a 5-fold change. Further analysis 

indicated, e.g. at 5-fold change, that 171 were significantly down-regulated in the 

whole normal sample set with 459 up-regulated.  

 

3.3.5 Identification of epithelium specific protein markers from genes over-expressed 

in prostate cancer  

I selected 3 genes (MCM2, ABCA1 and NR1D1), identified from gene expression 

analysis to be over-expressed in prostate cancer epithelium, for further 

characterization using immunohistochemistry on a prostate tissue array (Wang et al., 

2010). The tissue array was constructed using archived, paraffin embedded, benign or 

adjacent tissue and prostate cancer tissue identified by a histopathologist. Protein 

expression of ABCA1 and NR1D1 has not been investigated in prostate tissue 

previously and hence represented putative novel targets for prostate cancer. MCM2 

has been previously shown to be over-expressed in prostate cancer (Meng et al., 

2001), and was used as a positive control for verification. 

DAB label representing the expression of NR1D1, ABCA1 and MCM2 was increased 

in prostate cancer cores compared to benign or normal cores (Figure 33). The label 

was quantified, in an unbiased manner, using a reproducible, semi-automated particle 
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analysis (Analyze Particles) protocol (Wang et al., 2010) using ImageJ software 

(Rasband, 1997) using grayscale images (Figure 33) from 600 individual prostate 

tissue cores (chapter 3.2.6). Calculated parameters of count, total area, average size 

and area fraction are given in Table 6. Integration of area under the curve revealed a 

22-60% increase in the expression (total area and area fraction (total area /total 

pixels), representing the extent and intensity of staining) of NR1D1, ABCA1 and 

MCM2 in malignant cores compared to benign cores (p<0.0001, Student t-test) 

(Figure 34). These results identify NR1D1 and ABCA1 as novel gene and protein 

markers in prostate cancer. 

 
Figure 33 Protein expression of ABCA1, NR1D1 and MCM2 in non-malignant and 

malignant tissue cores. Representative malignant and non-malignant DAB label 

(converted to 16 bit grayscale) micrographs for ABCA1, NR1D1 and MCM2 used for 

signal quantitation (Figure 34). 
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Figure 34 Quantitation of ABCA1, NR1D1 and MCM2 staining in non-malignant and 

malignant human prostate tissue. DAB signal for ABCA1, NR1D1 and MCM2 was 

quantified from tissue cores (Figure 33) using Analyze Particle protocol in ImageJ 

software to obtain Total Area stained (A,C,E) and Area Fraction (B,D,F, total area 

divided by the total pixels in the image). ABCA1, NR1D1 and MCM2 expression was 

increased in malignant v non-malignant cores (p<0.0001). Each bin is data for an 

individual, malignant (red) or benign (green) n=278, 232 and 242 non-malignant and 

289,275 and 278 malignant, usable tissue cores for ABCA1, NR1D1 and MCM2, 

respectively. 
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Protein Condition Count Total area Average size Area fraction 

Benign 14098 ± 480 627967 ± 47974 41 ± 3 5.3 ± 0.4 NR1D1 

Malignant 17517 ± 443 1024909 ± 60059 54.9 ± 3 8.7 ± 1 

Benign 28953 ± 824 938498 ± 36529 32.6 ± 0.9 7.9 ± 0 ABCA1 

Malignant 37314 ± 1022 1186946 ± 46157 31.0 ± 0.8 10.1 ± 0.4 

Benign 729 ± 40 12523 ± 728 27 ± 7 3.3 ± 0.2 MCM2 

Malignant 944 ± 32 21792 ± 913 30 ± 2 6 ± 0.2 

 

Table 6 Quantitation of protein expression in malignant and non-malignant human 

prostate tissue arrays using ImageJ software. DAB label, representing NR1D1, 

ABCA1 and MCM2 expression was quantified, in an unbiased manner, by using a 

reproducible, semi-automated particle analysis (Analyze Particles) protocol with 

ImageJ software (see methods for details). Over 500 individual prostate tissue cores 

RGB images were converted into 16-bit grayscale (e.g. from images shown in Figure 

3.35). The results are means ± SE for the calculated parameters of count, total area, 

average size and area fraction. 

 

3.4 Discussion 

The combination of LCM and microarrays to investigate differential gene expression 

between normal and cancerous epithelium has been published for most human cancers 

including mesothelioma (Mohr et al., 2004), head and neck squamous cell carcinoma 

(Leethanakul et al., 2000), endometrial carcinoma (Wen-Xin and Xi-Shan, 2007), 

gastric carcinoma (Wu et al., 2005), pancreatic carcinoma (Crnogorac-Jurcevic et al., 

2002), breast carcinoma (Seth et al., 2006) and urothelial carcinoma (Wallard et al., 

2006) to name a few. Whilst platforms and commercial kits may differ (e.g. 

Affymetrix vs. Agilent, Arcturus vs. PALM), the same broad principles apply. Low 

quantities (nanogram) of RNA are isolated after LCM. This requires an additional 

amplification process prior to microarray hybridisation, with the most common being 

T7 linear amplification (as used in all the above studies). After subsequent 

hybridization to a microarray platform, differential gene expression and subsequent 

exploratory analysis are performed using statistical methods and software (e.g. 

GeneSpring). Targets of interest identified are then confirmed at either / both the 

transcript and protein level. This study is no different and uses these well-described, 

validated techniques. As in other cancers it has been possible to discover genes that 

are up / down regulated in normal vs. cancer epithelium and to validate some of these.  
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Knowledge of the expression profile of normal, disease free, epithelial cells from 

human prostate is a prerequisite for the identification of dysregulated genes in 

prostate adenocarcinoma. I used a combination of laser capture microdissection of 

human prostate epithelium, gene expression and tissue microarrays to provide the first 

transcriptome map of normal human prostate epithelium. By comparing my normal 

epithelial data set with an existing cancer epithelium dataset (Febbo et al., 2006), I 

have been able to identify novel, differentially expressed genes in prostate 

adenocarcinoma. Also, by using a tissue microarray and a quantitative analytical 

approach I have identified two new epithelial specific protein targets for prostate 

cancer. 

Furthermore, by analyzing normal epithelium only gene expression profile, I have 

identified several targets that have otherwise not previously been described in prostate 

cancer microarray studies (YWHAE, GLO1, and ZNF143), as well as confirming 

many that have been previously reported (e.g. Hepsin, AMACR, PTEN, CDKN1B). 

These results are discussed below. 

 

3.4.1 Whole tissue vs. LCM epithelium gene expression profiles 

Prostate cancer is a disease of the epithelium with the epithelial cells the most likely 

site of initiation and maintenance of the disease. The majority of prostate cancer 

microarray studies have used whole tissue from normal adjacent or diseased tissue 

(BPH) as reference or control tissue (Dhanasekaran et al., 2001, Singh et al., 2002, 

Welsh et al., 2001a, Yu et al., 2004). RNA isolated from whole tissue contains 

representative genes expressed in different cell type of that tissue. This rational led to 

the development of various cell dissection techniques including laser capture 

microdissection (Emmert-Buck et al., 1996). Thus a major problem with using whole 

prostate tissue is that it contains mixed populations of epithelium and mesenchyme 

and stroma, reflecting several cell types such as glandular epithelial cells and stromal 

cells. Total RNA for a given gene from epithelium will therefore be diluted, if it is 

expressed in other cell types in the tissue. As most microarray studies aim to provide 

an understanding how gene expression changes in prostate cancer, this becomes an 

even more critical issue because prostate cancer is a carcinoma and is un-regulated 

proliferation of the epithelium, predominantly. Analysis of gene expression from 

whole tissue will be clouded by these differing cellular components and in case of 
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gene expression profiling of prostate cancer will mask the true changes that are 

occurring in the epithelium. I reasoned that to assess true gene expression alterations 

in prostate epithelium, pure populations of ‘normal’ and cancer epithelium should be 

compared. By comparing LCM epithelium and representative whole tissue gene 

expression arrays I have demonstrated that, as expected, whole tissue gene expression 

arrays distort the gene expression profile of epithelial cells. 

 

Two studies have previously addressed the question of whether whole tissue affects 

the overall gene profile generated by microarray profiling of cancers, when compared 

with a pure epithelial cancer subset isolated by LCM (Harrell et al., 2008, El-Serag et 

al., 2009). Harrel et al. (Harrell et al., 2008) used expression profiling to define genes 

that contribute to breast cancer spread into and/or growth within draining lymph 

nodes (LN). Whole tumor xenografts and their matched whole LN metastases were 

compared to LCM captured cancer cells from the same tumors and matched LN 

metastases. Whilst similar numbers of differentially expressed genes were identified 

(1930 vs. 1281 genes), less than 1% (30 genes) were common to both methods. Thus 

distinctly different lists of metastasis-promoting genes were generated. This mirrors 

the findings from my study. 

El-Serag et al. (El-Serag et al., 2009) examined whether comparative microarray 

analysis of LCM diseased vs. normal epithelium in Barrett’s oesophagus, showed 

similar changes to that of when whole tissue normal vs. diseased microarray studies 

were performed. They found that the LCM experiment gave a more detailed picture of 

the Barrett’s oesophagus phenotype (3443 differentially expressed genes) than 

obtained from the whole tissue study (1797 differentially expressed genes). In 

addition not only did the LCM samples have a larger number of differentially 

expressed genes, but they showed more genes that had a high magnitude of 

differential expression. They felt that the extent of overlap between LCM and whole 

biopsy samples was high, with 74% of the genes differentially expressed in whole 

tissue being confirmed as differentially expressed in LCM samples.  

 

3.4.2 Identification of novel biomarkers for prostate cancer 

By using an LCM dataset for prostate cancer (Febbo et al., 2006), and homology table 

protocol in GeneSpring software, I have been able to identify novel genes under- and 

over-expressed in prostate cancer (Supplemental Figure 2, genelist supplemental file 
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4A and B). Prostate cancer is a disease with origins in the prostate epithelium. It is 

therefore imperative that a cell type specific gene and protein profiling is available for 

a better understanding of its origin and mechanisms. I believe this report has begun to 

address this issue. In addition to numerous genes already documented as playing a 

role in prostate carcinogenesis (Section 3.3.4), this study has also discovered several 

genes not previously identified by experiment. I believe that these genes may have 

been masked in previous microarray studies by the use of whole tissue, or by the 

nature of normal control tissue used.  

 

The YWHAE gene encodes for the protein 14-3-3e, which binds to phosphoserine-

containing proteins and mediates signal transduction (Roy et al., 1998). 14-3-3 

binding is required for the stabilization of active RAF-152 and CDC25-mediated cell 

cycle control (Roy et al., 1998), whereas its interaction with BAD and BAX prevents 

their pro-apoptotic release to mitochondrial membrane (Won et al., 2003, Nomura et 

al., 2003). Up-regulation of YWHAE in breast cancer is associated with a poorer 

overall survival and worsening disease progression (Cimino et al., 2008). Nothing is 

known about YWHAE in the prostate and it is therefore a novel adenocarcinoma gene 

that was significantly over-expressed in this study. However down-regulation in the 

expression of pro-apoptotic BAX has been associated with reduced responsiveness to 

radiotherapy in prostate cancer (Mackey et al., 1998), and this provides a potential 

pathway / mechanism by which it may act. 

 

Glyoxalase 1 (GLO1) is involved in the glycolytic pathway by detoxifying the 

reactive methylglyoxal (MGO) into D-lactate in a two-step reaction using glutathione 

(GSH) as cofactor (Santel et al., 2008). Inhibitors of glyoxalases are considered as 

anti-inflammatory and anti-carcinogenic agents (Santel et al., 2008). Recently the 

screening of a set of 618 human cancer cell lines using real time qPCR identified 

GLO1 as the most frequently amplified gene, with 8.4% of the informative samples 

having two-fold or greater amplification (Santarius et al., 2010). In addition RNAi 

knockdown of GLO1 had the greatest and most consistent impact on cell 

accumulation and apoptosis. No prostate cancer samples were included however. The 

expression of GLO1 was recently examined in human melanoma tissue at a gene and 

protein level (Bair et al., 2010). Significant up-regulation was seen at both levels, and 

subsequent siRNA interference targeting GLO1 expression, sensitized 2 human 
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metastatic melanoma cell lines towards becoming antiproliferative and apoptogenic. 

In a recent study 27 transcripts were investigated as potential novel markers for 

prostate cancer, including GLO1 (Romanuik et al., 2009). Although not significantly 

differentially expressed between laser microdissected malignant and benign samples 

of human prostate tissue, GLO1 was increased in patients with primary prostate 

cancer compared to those who later had biochemical failure. Expression of GLO1 was 

significantly decreased in metastatic castration-recurrent disease compared with 

androgen-dependent primary prostate cancer (Romanuik et al., 2009). My study 

represents the first time that GLO1 has been shown to be over-expressed in prostate 

cancer epithelium compared with normal prostate epithelium. It is a novel potential 

biomarker that may therefore be useful in the diagnosis / prognosis of prostate cancer.  

 

Staf, originally identified in Xenopus laevis, plays a pivotal role in transcriptional 

activation not only of snRNA and snRNA-type promoters by RNA Pol II and Pol III, 

but also of mRNA promoters (Myslinski et al., 1998). One human equivalent is Zinc 

finger protein 143 (ZNF143) which is 84% equivalent to its Xenopus equivalent, and 

which was significantly down-regulated in the prostate cancer dataset in this study. To 

date, several protein-coding genes have been described as regulated by ZNF143: the 

cytosolic chaperonin containing t-complex polypeptide 1 (TCP1), the interferon 

regulatory factor (IRF3), the neuronal nitric-oxide synthase (NOS1), the transaldolase 

(TALDO1), the aldehyde reductase (AKR1A1), the mitochondrial ribosomal protein 

S11 (MRPS11), the synaptobrevin-like 1 (SYBL1), the human cell cycle regulated 

BUB1B gene (Myslinski et al., 2007), and the mitochondrial transcription factor 

(TFAM) (Gerard et al., 2007). ZNF143 is induced by cisplatin treatment and binds 

preferentially to cisplatin-modified DNA (Ishiguchi et al., 2004), suggesting that it 

plays an important role in cisplatin resistance. More recently it has been shown to 

interact with p73, being involved in cisplatin sensitivity through the regulation of 

DNA repair gene expression (Wakasugi et al., 2007). Thus its levels are increased in 

cancer cells resistant to anticancer drugs such as cisplatin, but aside from this its role 

in carcinogenesis is unknown. It has not been previously described in relation to 

normal or diseased human prostate, and its role as a potential tumour suppressor gene 

requires further evaluation. 
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Thus at least three potential novel biomarkers, described here in detail, have been 

identified; these were not previously shown by global gene expression analyses using 

whole tissue (Dhanasekaran et al., 2001, Luo et al., 2001, Magee et al., 2001, Welsh 

et al., 2001a). It is likely that their discovery has been enabled by the design of this 

experiment, with the use of truly ‘normal’ prostate epithelium free from the 

corruption of diseased ‘normal’ tissue and free from stroma as a control tissue. 

 

3.4.3 Comparison of gene expression results with previously published data 

Thus study has confirmed many targets previously identified by microarray studies 

(Welsh et al., 2001a, Luo et al., 2001, Singh et al., 2002, Yu et al., 2004) to be 

dysregulated in prostate cancer including over-expressed: Hepsin, AMACR, KLK3, 

KLK2, Caveolin, PTEN and CDKN1B, and under-expressed genes: TP53 and TGFB2 

(Gene list supplemental files 4A and B).  

Whilst the previous microarray studies of Welsh (Welsh et al., 2001a), Singh (Singh 

et al., 2002) and Yu (Yu et al., 2004), that were used in this study were designed with 

other objectives than pure differential gene expression discovery, there is concordance 

in this study with some of their findings, as well as discordance with others. Welsh et 

al. (Welsh et al., 2001a) analyzed gene expression in 25 prostate cancer tissues, 9 

non-malignant prostate tissues, and 21 cell line samples. They were able to show a 

precise distinction between normal and tumour samples, with roughly 400 genes that 

were significantly over-expressed in prostate cancer. Of their top 20 over-expressed 

genes in prostate cancer, 15 were also identified in this study as over-expressed in 

prostate cancer including Hepsin, AMACR, LIM, TSPAN-1, CAMKK2, and KLK3. 

Two targets they identified and subsequently validated MIC-1 (RT-PCR) and fatty 

acid synthase (immunohistochemistry), were not significantly differently expressed in 

this study. 

Singh et al. (Singh et al., 2002) analyzed global gene expression in 52 prostate 

cancers and 50 ‘non-tumour’ prostate samples. These were whole tissue samples and 

their analysis indicated that 317 genes had higher expression in the tumor samples 

whereas 139 genes were more highly expressed in normal prostate samples. Of their 

top 50 over-expressed targets in cancer there was concordance with 37 over-expressed 

genes in cancer this study. Interestingly again fatty acid synthase was up regulated in 

the Singh dataset, but not mine. There was however poor concordance with under-

expressed targets in cancer with only 8 of their top 50 targets mirrored in this study.  
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Yu et al. (Yu et al., 2004) performed a comprehensive gene expression analyses on 

RNA isolated from 152 whole tissue human prostate samples, including prostate 

cancer (66), prostate tissues adjacent to cancer (60), and donor prostate tissue free of 

disease (23). They identified a set of 671 genes whose expression levels were 

significantly altered in cancer compared with normal tissues. Interestingly, the 

expression patterns of histological benign prostate tissues (adjacent) were 

significantly overlapped with those of cancer, and were distinctly different than donor 

prostate tissue, suggesting a ‘field effect’. This was validated at the protein level with 

increased expression of AMACR both in cancer and normal adjacent tissue. A full 

gene list is not provided in the paper, however in a table they provide 20 known 

prostate cancer related genes that were over-expressed in their paper. Of these 50% 

were over expressed in my study including again AMACR, HEPSIN, PSMA, p27 

Kip1 and Caveolin. 

 

This study has also revealed new targets not previously identified (YWHAE, GLO1, 

Wnt4, ABCA1 and NR1D1) and there are clearly large differences in differential gene 

expression between this study and those already mentioned (Welsh et al., 2001a, 

Singh et al., 2002, Yu et al., 2004). There are numerous potential explanations for 

these discrepancies including as discussed, that these previous studies are 

disadvantaged by the heterogenous nature of their tissue (stroma included), and by the 

lack of a truly normal control tissue (normal adjacent - field effect, or diseased – 

BPH).  

There are also many additional sources of variation in a microarray experiment, which 

can be attributed to biological and technical causes (Churchill, 2002). Biological 

variation results from tissue heterogeneity, genetic polymorphism, and changes in 

mRNA levels within cells and among individuals due to sex, age, race, genotype-

environment interactions and other factors (Leung and Cavalieri, 2003). This 

variation is what investigators are trying to establish, however, preparation of 

samples, labeling, hybridization, and other steps of a microarray experiment can 

contribute to technical variation, which can significantly impact the quality of array 

data (Bakay et al., 2002). Thus some differences might be explained by technical 

variation alone introduced by the use of different GeneChip generations (HG-

U95AV2 vs. HG-U133 vs. HG-U133 Plus 2.0), differing downstream analytical 

techniques (normalization, filtering, etc) and laboratory practices, tissue handling etc. 
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In addition using the latest Affymetrix GeneChips (HG-U133 Plus 2.0), which were 

produced following completion of the human genome and thus contain many more 

transcripts, allows for the discovery of many more potential targets. 

An alternative approach to the one used in this study, that could be employed, would 

be based on meta-analysis (Rhodes et al., 2002, Rhodes et al., 2004, Rhodes et al., 

2007a). This approach specifically aims to combine independent and heterogeneous 

microarray studies by combining the summary statistics from each individual study, 

where the commonly used summary statistics are significance levels (p values) and 

effect sizes. These summary statistics are combined across different studies to 

estimate the overall summary statistic. When differing microarray platforms are 

analysed together, then this is the only realistic approach. In this study although 

different GeneChip generations were used and analysed together, they were all from a 

single source (Affymetrix) and this allowed cross comparison using the homology 

table function of GeneSpring. This function automates the process of building 

homology tables for different generations of chips, even across species. Within 

GeneSpring experiments or genelists can be translated, and in the case of the former 

these can be normalized together, allowing for statistical analyses to be performed. 

 

3.4.4 Microarray validation 

Not only does this study provide an analysis of differential gene expression (Figure 

31) in normal and cancer prostate epithelium, it has also used some of the genes that 

showed higher expression in cancer and investigated their expression at the protein 

level in an unbiased, image based analysis. This method was developed and used 

previously to quantify the expression of Wnt5A protein in prostate cancer (Wang et 

al., 2010). Unlike the conventional, non-parametric methods that rely on scoring of 

the observed expression in tissue arrays, this approach allows quantitation of the DAB 

signal (a common tool in tissue array studies) to which parametric statistical analysis 

could be applied. This analysis provides a proof of principle that this normal dataset 

could be used to identify novel prostate cancer specific genes. 

 

MCM2 is over-expressed in prostate cancer and was proposed as a marker for 

proliferation in the prostate (Meng et al., 2001). MCM2 was therefore used as a 

positive control for the tissue array experiment. MCM2 is a member of the mini 

chromosome maintenance nuclear protein family, which consists of six major 
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isoforms (MCM2-7) that are essential in the initiation and regulation of DNA 

replication (Tanaka et al., 1997). MCM2 is considered to be a putative marker for 

tumorigenicity in many tissues, such as lung (Ramnath et al., 2001), colon (Giaginis 

et al., 2009, Hanna-Morris et al., 2009) and also as a predictor of recurrence for some 

bladder cancers (Burger et al., 2007). Although MCM2 is thought to be a marker of 

proliferation in the prostate (Meng et al., 2001, Ananthanarayanan et al., 2006) no 

quantitative information exists on its expression in prostate cancer. I analyzed the 

expression of MCM2 in our prostate tissue array and found that expression of MCM2 

was increased by ~2.3 fold in malignant prostate cores compared to non-malignant 

cores (p<0.001). These result support previous findings of increased MCM2 

expression in prostate cancer. 

 

Nuclear receptor subfamily 1, group D, member 1 (NR1D1 or Rev-erb) (Lazar et al., 

1990) belongs to a superfamily of nuclear receptors (O'Malley and Conneely, 1992) 

and is known to play an integral role in regulating circadian rhythm (Preitner et al., 

2002, Casey et al., 2009). NR1D1 has been also been implicated in lipid metabolism, 

metal ion and heme binding (Yin et al., 2007, Burris, 2008). Very recently, NR1D1 

and peroxisome proliferator activated receptor γ binding protein (PBP) have been 

identified as survival factors for breast cancer cells with ERBB2 signature (an adverse 

prognostic marker for breast cancer) (Kourtidis et al., 2010), where it regulates 

enzymes (malate dehydrogenase 1 and malic enzyme 1) that link glycolysis and lipid 

synthesis. No information exists on its expression or role in prostate cancer. These 

results demonstrate, for the first time, that the gene and protein expression of NR1D1 

is increased in prostate cancer (Figures 33, 34). 

 

ABCA1 is a member of the superfamily of ATP-binding cassette (ABC) transporter 

proteins (Luciani et al., 1994). This superfamily is one of the largest protein families 

conserved through evolution. ABCA1 belongs to the ABC1 subfamily and like many 

proteins belonging to this subfamily is involved in lipid metabolism, particularly high 

density lipid formation (van Meer et al., 2006). To my knowledge, the expression of 

ABCA1 has not been investigated in prostate tissue, previously. However, because 

ABCA1 are a key regulator of lipid homeostasis and androgens regulate the growth of 

prostate tumor (Huggins, 1967) the role of this protein has been investigated in 

prostate cancer cell line LnCaP (Fukuchi et al., 2004, Chuu et al., 2006). Using these 
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model cell lines, it has been postulated that ABCA1 protein may be involved in 

prostate cancer progression (Fukuchi et al., 2004). This study shows, for the first 

time, that the expression of ABCA1, at the gene (Supplemental Figure 2, file 4A) and 

protein level (Figure 33, 34) is increased in prostate cancer. Numerous other members 

of ABC1 transporter family were also up-regulated at the gene expression level in my 

dataset (Supplemental Figure 3A, file 4A), perhaps indicating a key role for ABCA1 

in particular and ABC1 family in general in prostate cancer. 

 

3.4.5 Drawbacks to techniques used in this study 

Tissue procurement and handling: human prostates were retrieved at the time of 

donor organ harvest, and inevitably there was a delay from time of aortic clamping to 

snap freezing in liquid nitrogen prior to storage at -800C. Indeed these patients were 

brain dead prior to this and the effects of this on gene expression in tissues is not 

known. As discussed (section 2.1.3) this delay has not been shown to significantly 

impact on subsequent gene expression analyses but some RNA degradation must 

occur as a result. Huang et al (Huang et al., 2001) demonstrated elegantly that despite 

apparent good quality RNA as shown by 18S / 28S bands on ethidium bromide 

stained gels, warm ischaemia did have a significant effect on human colon cancer 

tissue when characterized by microarray study. They felt that warm ischaemia of 

greater than 20 minutes should be avoided. Ideally tissue in this study would have 

been snap frozen immediately at the time of harvest. 

 

Sample size: the limited number of samples in this study reflects the difficulty in 

obtaining tissue for research purposes from organ donors. Formal sample size and 

power calculations were therefore not performed as it was accepted that tissue 

availability would govern the number of experiments undertaken.  

 

RNA degradation and amplification: the reliability of microarrays to detect 

transcriptional differences representative of original samples is affected by several 

factors such as array production, RNA extraction, probe labeling, hybridization 

conditions and image analysis (Schuchhardt et al., 2000). One of the limiting factors 

for obtaining meaningful gene expression data is the quality of the initial RNA 

preparation. Processing steps of tissue in this study included cryosectioning, staining 

and LCM, prior to RNA isolation. There was a balance that needed to be found 
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between microdissection times, and number of cells isolated. Initially results were 

poor as dissection times were too long, with RNA degradation. With shorter times, 

came better RNA quality, but this was at the expense of smaller quantities of RNA. 

Twenty-minute sessions were eventually settled upon. All these steps provide 

potential for RNA degradation. I used the Agilent Bioanalyser to quantify and qualify 

RNA prior to and following amplification as recommended by the ‘Tumor Analysis 

Best Practices Working Group’ (Group, 2004). They recommend clear 18S and 28S 

ribosomal bands (Figure 17) with ratios of 1.8 – 2.1 (Table 2). As seen there is 

subsequent degradation, however when tested for RIN number (section 2.3.4) 

(Imbeaud et al., 2005), the majority are suitable for microarray analysis.  

The ‘Tumor Analysis Best Practices Working Group’ (Group, 2004) also 

recommends a two-round amplification protocol when RNA amount is limiting, as 

was the case with LCM. They recommend that aRNA should be between 500 – 3,000 

bp. Figures 20 and 22 demonstrate that the amplified RNA in this study was indeed of 

the appropriate size. There is concern that bias maybe introduced during the 

amplification process, resulting in significant changes in gene expression profiles with 

microarray studies. T7 linear amplification (section 2.1.5) using random primers 

results in a 3’ bias to the aRNA. This problem may become even more prominent 

when RNA amplification is applied to clinical samples because of poorer RNA quality 

resulting from reduced mRNA content and losses associated with sample handling and 

processing. Several authors have tried to address this dilemma in prostate and other 

tissues (Luzzi et al., 2003, Kube et al., 2007, Ding et al., 2006, Li et al., 2005, Diboun 

et al., 2006, Stoyanova et al., 2004). An optimal mRNA amplification method should 

provide reproducible results, maintain fidelity of gene expression profile compared 

with non-amplified controls, and retain capacity to discriminate differences in gene 

expression profiles between two different samples. All these studies were able to 

successfully demonstrate two rounds of linear amplification, with successful 

microarray hybridization, and fulfill the above criteria, especially being reproducible. 

The use of Affymetrix 3’ expression arrays in this study helps to eliminate this bias as 

the targets are designed from the 3’ end (Luzzi et al., 2003), unlike their exon arrays 

(designed to match exons). 

Li et al. (Li et al., 2005) sounds a note of caution however about amplification. In 

their study they used four differing protocols for amplification: Baugh’s modified 

protocol, a modified Affymetrix protocol, a standard Affymetrix protocol, and an 
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Arcturus RNA amplification Kit. They all performed differently when applied to the 

amplification of small RNA samples from clinical specimens. Small differences in 

methodology and materials introduced considerable variability in gene expression 

profiling results. They felt that too strong a focus on a very small number of genes 

picked from an array analysis could be influenced by choice of kit and laboratory 

practice.  

Thus both RNA quality at the outset and following amplification is crucial for 

reproducible microarray experiments. In this study RNA quality was adequate but 

given the above it highlights the importance of downstream validation. 

 

Microarray chips: The quality control performed on the microarray data revealed a 

problem with one of the chips – E transition zone (Figure 23). The Dat images 

revealed a defect likely to be a design flaw (admitted by Affymetrix, with another 

offered free of charge). However the aRNA for this sample had already been used 

with no sample left. The effect that this may have had on the overall analysis is 

unclear, and whilst it did not affect any other quality control parameters (Figures 24, 

25), it is certain that some targets will be missing from this chip. 

 

After considering the drawbacks, it is important to iterate one point. Usefulness of any 

disease biomarker is enhanced, if it is differentially regulated at both gene and protein 

level. My results show that despite the drawbacks (e.g. those associated with RNA 

amplification and degradation or tissue handling), these have not resulted in a major 

adverse impact on the overall study. For example, various genes identified in the gene 

expression analysis showed similar levels of change when tested using real time PCR. 

Furthermore, the ultimate validation of a dysregulated gene marker is whether the 

protein expression is altered. At least for 3 proteins, tested on a large-scale prostate 

tissue array, this appears to be the case. Since the conclusion of my work described in 

this thesis, my supervisor’s group has conducted further investigations using the same 

tissue array for 5 other proteins, the genes of which genes were identified in my study. 

These have also shown increased protein expression in cancer compared to non-

malignant tissue. These observations suggest that the results presented using the 

techniques described here may prove useful, despite the drawbacks discussed in this 

section. 
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3.5 Conclusions 

The results described in this chapter provide the first global gene expression profile of 

normal human prostate epithelial cells. Comparative analysis of this normal, prostate 

epithelial only data with previously published whole tissue normal or non-malignant 

prostate datasets, demonstrates major distortions in epithelial specific gene expression 

profile. By further comparative analysis of my normal prostate epithelial dataset with 

an epithelial only prostate cancer dataset, I have been able to identify, numerous, 

prostate adenocarcinoma specific genes. Some of these genes were investigated for 

protein expression using a prostate tissue array using an unbiased, quantitative protein 

expression analysis method. These investigations yield two novel protein markers, 

ABCA1 and NR1D1, of prostate cancer. I believe that this normal prostate epithelial 

gene expression profile could be used as an important comparative tool to identify and 

characterize new gene and protein markers of prostatic diseases particularly 

adenocarcinoma. 
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3.6 Summary points 

1. This analysis provides the first normal epithelial transcriptome of human 

prostate, which was compared with whole normal prostate to reveal 

differences in gene expression  

2. Comparison with a LCM prostate cancer dataset confirms many genes 

previously delineated by microarray studies, but also reveals new targets 

including: YWHAE, GLO1, ZNF143, ABCA1, and NR1D1 

3. Three genes (NR1D1, ABCA1, and MCM2) have been validated on a tissue 

array at the protein level, with quantification performed using a semi-

automated particle analysis (Analyze Particles) protocol with ImageJ software 

4. Validation at mRNA level was performed using a low density real time PCR 

method 
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Chapter 4 Zonal variation in epithelial gene expression in the human 

prostate 
 

4.1 Introduction 

The human prostate is divided into different regions or tightly fused zones (McNeal, 

1981), macroscopically, namely peripheral, central and transition zones (section 1.1). 

This morphology is of clinical usefulness in the development of age-associated 

conditions such as benign prostatic hypertrophy (BPH) and prostate cancer (Wein et 

al., 2006). BPH is a non-malignant overgrowth that appears to arise exclusively 

within the transition zone (McNeal, 1988). Prostate cancer is a multi-focal entity and 

is mainly confined to the peripheral zone (Brossner et al., 2003).  

Approximately 70% of the glandular tissue of the prostate is found in the peripheral 

zone and some 5% in the transition zone; the remaining 25% occurs in a third zone, 

the central zone (McNeal, 1981). Prostate cancer rarely originates in the central zone 

but the reasons for this remain unclear. Approximately 20% of prostate cancers arise 

in the transition zone, and historically these have had a better prognosis (Noguchi et 

al., 2000).  

Prostate cancer is the most common cancer in men in the UK – it accounts for a 

quarter (24%) of all new male cancer diagnoses 

(www.statistics.gov.uk/downloads/theme_health/MB1-38/MB1_No38_2007.pdf.). In 

2007, there were 36,101 new cases of prostate cancer diagnosed in the UK, and the 

lifetime risk of being diagnosed with prostate cancer is 1 in 10 for men in the UK. 

Histologically distinguishable BPH is present in about 8% of men aged 31 to 40 

years, and this prevalence increases markedly with age to about 90% by the ninth 

decade of life (Berry et al., 1984), establishing BPH as a chronic disease that spans 

decades. Not all men with BPH will go on to develop lower urinary tract symptoms 

(LUTS) requiring treatment. Results from the Olmsted County Study (Chute et al., 

1993) showed a progressive increase in the prevalence of moderate-to-severe LUTS, 

rising to nearly 50% by the eighth decade of life. The presence of moderate-to-severe 

LUTS was associated with the development of acute urinary retention as a symptom 

of BPH progression, increasing from an incidence of 6.8 episodes per 1000 patient-

years of follow-up in the overall study population, to a high of 34.7 episodes in 

persons 70 years or older with moderate-to-severe LUTS. Whist BPH is not a life-
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threatening condition, the impact of BPH on quality of life (QOL) can be significant 

and along with prostate cancer represent two of the largest health problems facing 

men in the UK today. 

Three studies to date have examined global gene expression in the human prostate. 

Stamey et al. (Stamey et al., 2003) attempted to address which prostatic zone was the 

best control for gene expression analysis of prostate cancer. Gleason grade 4/5 

prostate cancer was used to make comparisons for over expressed and under 

expressed genes, with peripheral, central, and transition zones. This study was 

prompted by concerns that prior investigations had used BPH, in itself a disease, and 

normal adjacent prostate tissue, often atrophied or dysplastic, as non-cancerous 

control tissue. Affymetrix GeneChip HuGeneFL (Affymetrix, Inc.) arrays (6,800 

genes) were used, with some targets validated by real-time PCR. The authors 

concluded that central zone was the preferred control tissue of choice, with BPH 

second. Peripheral zone was a poor control tissue that appeared too similar genetically 

to cancer to demonstrate much difference in gene expression. No inter-zonal 

comparisons were made however. 

Van der Heul-Nieuwenhuijsen et al. 2006, used custom cDNA microarrays to 

compare the gene expression profiles of peripheral and transition zone normal whole 

prostate taken from 5 radical prostatectomy specimens (van der Heul-Nieuwenhuijsen 

et al., 2006). 346 differentially expressed genes were identified with 199 more highly 

expressed in the peripheral zone and 147 more highly expressed in the transition zone. 

They also compared these gene lists with gene lists generated from prostate cancer 

microarray studies (Singh et al., 2002, Dhanasekaran et al., 2001, Lapointe et al., 

2004). They found a prominent overlap between genes expressed in their ‘normal’ 

prostate PZ and genes over expressed in prostate cancer. In addition they were able to 

extract a list of zonal-specific genes from the study of Stamey et al. (Stamey et al., 

2003). After accounting for differing gene chip design, they identified 18 similar 

zonal specific genes, of which 12 showed similar expression between the 2 studies. 

To try and address whether their differential gene expression reflected differing cell 

type distributions, they report that they quantified the amount of stromal and epithelial 

cells in frozen sections of both prostate zones. These authors (van der Heul-

Nieuwenhuijsen et al., 2006) also suggested that the stromal / epithelial ratio was 

similar for each zone, however no method or results are given in the paper. They also 

used RT-PCR with markers for most common cell types (two stromal markers - 
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fibronectin, myosin, and two epithelial markers - keratin 5, keratin 8) and found no 

differences in the gene expression between the zones. 

Noel et al. 2008, used Affymetrix HG-U133 Plus 2 GeneChips to compare 

differential gene expression between normal peripheral and transition zone tissues 

obtained from radical prostatectomy specimens for prostate cancer (Noel et al., 2008). 

They hoped to identify genes whose zonal-specific preferential expression might be 

associated with susceptibility or resistance to prostate cancer. Whole tissue specimens 

were used for RNA extraction from 3 prostates. Forty-three genes were identified as 

differentially regulated in the peripheral zone compared with the transition zone, 33 

under expressed and 12 over expressed. Genes associated with neurogenesis 

development (e.g. GREM1), signal transduction (e.g. SFRP4), embryo implantation 

and cell adhesion (e.g. CHL1) were expressed at a higher level in the peripheral zone. 

Those over expressed in the transition zone were associated with neurogenesis 

development (e.g. ZFHX1B), signal transduction (e.g. NELL2), cell motility (e.g. the 

S100 calcium-binding protein of S100A4), and development (e.g. BMP5). The 

authors discussed their findings but were unable to correlate their findings with 

disease predisposition.  

There is a need to elucidate the normal zonal epithelial gene expression profile of 

human prostate. Achievement of this aim requires a thorough comparison of normal 

and diseased tissue from respective zones. The rationale for experiments described in 

this chapter was to provide a foundation upon which molecular predisposition of 

diseases to different zones could be investigated. It is hoped that these preliminary 

investigations will lead to insights into the mechanisms of BPH and prostate cancer, 

which may allow design of better biomarkers or elucidation of potential novel 

therapeutic targets, ultimately. This chapter provides the first normal prostatic zonal 

human epithelial transcriptome, and explores some genes that are differentially 

expressed between the zones. In an attempt to elucidate potential functional 

differences between zones, DAVID (Huang da et al., 2007) (section 2.4.5) was used 

to map differences in Gene Ontologies, functional clusters and pathways. 

 

4.2 Materials and methods 

Specimens were obtained, stained, sectioned, and the epithelial compartment laser 

microdissected as previously described (Chapter 2). Samples were hybridized to 

Affymetrix HG-U133 Plus 2.0 microarrays, with subsequent normalization and 
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quality control performed on generated CEL files in GeneSpring 7.2 (Chapter 2). 

Hierarchical clustering was performed, either by condition or by gene, using the 

centroid clustering method (Chapter 2). Differential gene expression was calculated 

between prostatic zones using a parametric Welch t-test, p-value cut-off 0.05 

(GeneSpring 7.2). Benjamini and Hochberg false discovery rate correction was 

applied with cut-off 0.1. Filtering on fold change was applied to reduce the size of 

datasets when required. Gene lists with up and down-regulated targets were produced, 

and analyzed for biological meaning using a web-based software, DAVID 2008 

(Database for Annotation, Visualization and Integrated Discovery) (Dennis et al., 

2003), using Fischer exact test. Validation of the microarray data by real-time PCR 

was described in Chapter 3.3.2. 

 

4.2.1 Immunohistochemistry 

Sections were cut 4-8 um thick on a cryostat and mounted on superfrost plus slides 

and stored at - 80 º C. Before staining, slides were warmed at room temperature for 30 

minutes, and then fixed in ice cold acetone for 5 minutes. They were allowed to dry in 

air dry for 30 minutes before being washed in phosphate buffered saline (PBS). 

Tissue staining was as follows: 

1. Sections were rinsed in washing buffer for 2x2 min. 

2. Serum blocking: sections were incubated in rabbit blocking serum.  

3. Primary Antibody: sections were incubated in TGM4 primary antibody 

(Stratech) at 1:125 dilution in primary antibody dilution buffer for 1 hour at 

room temperature. 

4. Rinsing was performed in washing buffer for 3x2 min.  

5. Secondary Antibody: sections were incubated in biotinylated secondary 

antibody (1:125, goat anti rabbit FITC labeled) in secondary antibody dilution 

buffer for 30 minutes at room temperature.  

6. Rinsing was performed in washing buffer for 3x2 min.  

7. Detection: sections were incubated in FITC-Avidin D (1:500, Vector Labs) in 

PBS for 30 minutes at room temperature. Slides were covered with aluminum 

foil to protect them from light. 

8. Rinsing was performed in washing buffer for 3x2 min.  

9. Counterstaining with DAPI was done for 30 minutes at room temperature. 

10. Slides were rinsed in washing buffer for 3x2 min.  
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11. A coverslip was mounted and sealed with nail polish. 

12.  Slides were stored in the dark at 4 ºC. 

(Blocking solution, primary and secondary antibody dilution buffer, and wash buffer 

constituents can be found in Appendix) 

To view slides they were examined using a Nikon Diaphot 200 microscope (Nikon, 

UK) with epifluorescence filter-set for DAPI and FITC (Omega Optical, USA). To 

record immunofluorescence, the nuclear staining was photographed separately from 

the FITC-staining for the identical field and a composite picture generated using 

Photoshop software (Adobe, USA). FITC-detection for comparative fields were 

photographed with identical parameters (exposure, brightness etc) using a Nikon 

DXM1200 digital camera and ACT1 software (Nikon, UK). Representative pictures 

from 3-5 individual experiments are shown.  

 

4.3 Results 

4.3.1 Exploratory unsupervised analysis 

As a first approach to data analysis, unsupervised learning techniques have been 

widely applied to find groups of either samples or co-regulated genes on microarray 

data. Hierarchical cluster analysis (Appendix) is a statistical method to group samples 

(or genes) unsupervised in different clusters or branches of the hierarchical tree. In 

this way, the relationships between the different groups are shown (Eisen et al., 

1998). It identifies sets of correlated genes or samples, with similar behavior across 

the experiments, but may yield thousands of clusters in a tree-like structure (Eisen et 

al., 1998). Principal components analysis (PCA) is an unsupervised decomposition 

method to reduce multidimensional data into three dimensions. Each dimension 

represents a principal component with a certain percentage of variance. PCA 

recognizes patterns and clusters in data sets in multiple dimensions, such as gene 

expression data, and is therefore a valuable visualisation and summarizing tool 

(Holter et al., 2000).  

The normalised microarray data (section 2.4.1) were initially subjected to a principal 

components analysis. The PCA algorithm in GeneSpring GX 7.2 was applied to all 8 

samples, using the ‘all genes’ (54,675) gene list for the Affymetrix HG U133 Plus 2 

genome. Using three principal components (x, y and z), there were no zonal 

similarities seen, but prostate 301104 did group differently from the others (Figure 

35).  
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Subsequently, hierarchical clustering (all samples) was applied to the data files in 

GeneSpring. The condition tree was displayed as a heat map (Figure 36), based on the 

measured intensities (expression levels) of the probe sets. Hierarchical clustering 

analysis (on samples) also did not show zonal clustering. 

 

 
 

Figure 35 PCA analysis from all 8 samples. Each diamond represents a sample, 

characterized by the gene expression of all probe sets (54,675) on the Affymetrix HG 

U133 Plus 2 array. The first, second and third principal components are displayed on 

the X, Y and Z-axis, respectively. These three components represent the largest 

fraction of the overall variability.  
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Figure 36 Hierarchical clustering by conditions (54,675 probe sets) does not show 

samples clustering according to prostatic zones. The condition tree is displayed as a 

heat map, based on the measured intensities of the probe sets.  

 

4.3.2 Supervised analysis – epithelial zonal gene expression 

As shown in section 4.3.1, samples did not cluster into zones with unsupervised 

techniques, and this can occur with this method especially when sample sizes are 

small, as is the case in this study. In order to find out which genes might be involved 

in classifying the zones, a supervised learning method was employed. Differential 

gene expression between the different zones (assigned) was calculated according to 

the protocol described earlier (Chapter 4.2). It was not possible to perform false 

discovery rate testing with the Benjamini-Hochberg method, as this revealed no 
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significant genes, because of the small sample size. Zonal comparisons were 

performed individually yielding 3 gene lists (PZ vs. CZ, PZ vs. TZ, CZ vs. TZ), 

containing statistically significant differential gene expression (gene lists 

supplemental files 5A, B and C). 

 

4.3.2.1 Peripheral zone versus Central zone 

130 differentially expressed genes were identified in CZ vs. PZ including 89 up 

regulated in the CZ and 41 down-regulated in the CZ (Figure 37, gene list 

supplemental file 5A). The 20 genes showing the greatest differential expression are 

shown in Table 7. Genes preferentially expressed in the PZ included lipoprotein lipase 

(LPL, 12.3 fold difference) and Calmodulin1 (CALM 1, 3.1 fold difference), with 

those preferentially expressed in the CZ including Transglutaminase 4 (TGM4, 172.1 

fold difference) and Angiotensin II receptor, type 1 (AGTR1, 6.5 fold difference).  

 

 
Figure 37 Two-dimensional scatter plot of differential gene expression between 

central zone and peripheral zone of normal prostate epithelium. Red and green show 

up and down-regulated targets respectively, which were statistically differently 

expressed (parametric Welch t-test, p-value cut-off 0.05). The X and Y-axis 

correspond to normalised mean intensity. 
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Gene Name Gene ID Fold change Direction  (CZ vs. PZ) Other ID 

Transglutaminase 4 (prostate) TGM4 172.2 Up (CZ) 206260_at 

Lipoprotein lipase LPL 12.3 Down (CZ) 203549_s_at 

Nipped-B homolog (Drosophila) NIPBL 7.8 Up 242352_at 

Angiotensin II receptor, type 1 AGTR1 6.6 Up 205357_s_at 

Interleukin enhancer binding factor 3, 

90kDa ILF3 6.5 Up 208930_s_at 

Transcribed locus - 6.1 Up 239671_at 

Family with sequence similarity 115, 

member A FAM115A 4.4 Up 212979_s_at 

Tumor necrosis factor receptor superfamily, 

member 1A TNFRSF1A 4.4 Up 207643_s_at 

Alpha thalassemia/mental retardation 

syndrome X-linked (RAD54 homolog, S. 

cerevisiae) ATRX 4.3 Up 208859_s_at 

Zinc finger protein 294 ZNF294 4.2 Up 233819_s_at 

Hypothetical protein LOC9728 KIAA0256 4.1 Up 212451_at 

E1A binding protein p400 EP400 4.1 Up 230629_s_at 

F-box protein 32 FBXO32 4.0 Up 241762_at 

Arginine/serine-rich coiled-coil 1 RSRC1 3.9 Up 219507_at 

Acyl-Coenzyme A binding domain 

containing 5 ACBD5 3.7 Up 1568877_a_at 

Protein phosphatase 1, regulatory (inhibitor) 

subunit 10 PPP1R10 3.7 Up 201702_s_at 

GTF2I repeat domain containing 2 GTF2IRD2 3.6 Up 1557289_s_at 

KIAA0101 KIAA0101 3.6 Down 202503_s_at 

Family with sequence similarity 44, member 

A FAM44A 3.4 Up 235009_at 

Thrombospondin 1 THBS1 3.3 Up 239336_at 

Transcribed locus - 3.3 Up 229150_at 

 

Table 7 The 20 genes showing the greatest differential expression between central and 

peripheral zone normal human prostatic epithelium.  

 

4.3.2.2 Peripheral zone versus Transition zone 

1185 genes were identified as differentially expressed in the TZ compared with the 

PZ, including 261 that were up-regulated and 924 that were down-regulated (Figure 

38, supplemental file 5B). The 20 genes showing the greatest differential expression 

are shown in Table 8. Genes preferentially expressed in the PZ included 

Protocadherin 8 (PCDH8, 73.1 fold difference) and Transferrin (TF, 38.3 fold 

difference) with those preferentially expressed in the TZ including Collagen, type IX, 

alpha 1 (COL9A1, 27.6 fold difference) and Transglutaminase 4 (TGM4, 27.1 fold 

difference).  



	
   118	
  

 
Figure 38 A Two-dimensional scatter plot of differential gene expression between 

transition zone and peripheral zone normal epithelium reveals 1185 differentially 

expressed genes (parametric Welch t-test, p-value cut-off 0.05). B Hierarchical 

clustering of differential gene expression between LCM peripheral and transition zone 

epithelium. 160 genes showed statistically significant differential expression (Welch 

t-test, p 0.05) at 2-fold change. 
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Gene Name Gene ID Fold change Direction (TZ vs. PZ) Other ID 

Protocadherin 8 PCDH8 73.1 Down (TZ) 206935_at 

Olfactomedin OLFM4 59.0 Down 212768_s_at 

Transferrin TF 38.3 Down 203400_s_at 

Collagen, type IX, alpha 1 COL9A1 27.6 Up (TZ) 222008_at 

Transglutaminase 4 (prostate) TGM4 27.1 Up 206260_at 

Cell adhesion molecule with homology 

to L1CAM (close homolog of L1) CHL1 26.3 Down 204591_at 

Transcribed locus, strongly similar to 

XP_936141.1 PREDICTED: 

hypothetical protein XP_936141  - 23.1 Up 228919_at 

Solute carrier family 26, member 4 SLC26A4 18.6 Down 206529_x_at 

Prostaglandin-endoperoxide synthase 2 

(prostaglandin G/H synthase and 

cyclooxygenase) PTGS2 16.7 Down 204748_at 

Transglutaminase 4 (prostate) TGM4 15.3 Up 217566_s_at 

CDNA clone IMAGE:6025865 - 11.7 Down 212444_at 

Nuclear mitotic apparatus protein 1 NUMA1 11.5 Up 214250_at 

Kinesin family member 5C KIF5C 11.2 Up 1557089_at 

Plastin 1 (I isoform) PLS1 10.5 Down 205190_at 

GDP-mannose 4,6-dehydratase GMDS 9.8 Down 204875_s_at 

Odz, odd Oz/ten-m homolog 2 

(Drosophila) ODZ2 9.3 Up 231867_at 

Synaptojanin 2 SYNJ2 8.9 Down 212828_at 

Tumor suppressor candidate 3 TUSC3 8.9 Down 209228_x_at 

Transcribed locus - 8.7 Up 236617_at 

Gastrin-releasing peptide GRP 8.2 Down 206326_at 

Proteasome (prosome, macropain) 

subunit, alpha type, 1 PSMA1 8.1 Down 210759_s_at 

 

Table 8 The 20 genes showing the greatest differential expression between transition 

and peripheral zone normal human prostatic epithelium. 

 

4.3.2.3 Central zone versus Transition zone 

449 genes were identified as differentially expressed in the TZ compared with the CZ, 

including 168 up-regulated and 281 down-regulated genes (Figure 39, gene list 

supplemental file 5C). The 20 genes showing the greatest differential expression are 

shown in Table 9. Genes preferentially expressed in the CZ included Transmembrane 

protein 178 (TMEM178, 31.8 fold difference) and Cytochrome P450, family 1, 

subfamily B, polypeptide 1 (CYP1B1, 21.5 fold difference), with those preferentially 

expressed in the TZ including Homeobox C4 (HOXC4, 28.5 fold difference) and 

Cytochrome P450, family 3, subfamily A, polypeptide 5 (CYP3A5, 6.6 fold 

difference). 
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Figure 39 A Two-dimensional scatter plot of differential gene expression between 

transition zone and central zone normal epithelium reveals 449 differentially 

expressed genes (parametric Welch t-test, p-value cut-off 0.05). B Hierarchical 

clustering of differential gene expression between LCM central and transition zone 

epithelium. 45 genes showed statistically significant differential expression (Welch t-

test, p 0.05) at 2-fold change. 
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Gene Name Gene ID Fold change Direction (TZ vs. CZ) Other ID 

Transmembrane protein 

178 TMEM178 31.8 Down (TZ) 229302_at 

Homeobox C4 HOXC4 28.5 Up (TZ) 206858_s_at 

Cytochrome P450, 

family 1, subfamily B, 

polypeptide 1 CYP1B1 21.5 Down 202437_s_at 

G protein-coupled 

receptor, family C, 

group 5, member A GPRC5A 18.3 Down 203108_at 

Ceruloplasmin 

(ferroxidase) CP 15.7 Down 1558034_s_at 

Solute carrier family 5, 

member 1 SLC5A1 15.1 Down 242773_at 

Transcribed locus LP2209 13.2 Up 239860_at 

Cytochrome P450, 

family 1, subfamily B, 

polypeptide 1 CYP1B1 11.0 Down 202435_s_at 

Cytochrome P450, 

family 1, subfamily B, 

polypeptide 1 CYP1B1 10.3 Down 202436_s_at 

Transcribed locus - 9.8 Up 228919_at 

ESTs - 9.7 Up 239017_at 

CDNA FLJ37098 fis - 9.4 Up 222368_at 

Hexokinase 2 HK2 8.9 Down 202934_at 

Klotho KL 8.6 Down 205978_at 

MRNA full length insert 

cDNA clone 

EUROIMAGE 85905 - 8.1 Up 1559910_at 

V-fos FBJ murine 

osteosarcoma viral 

oncogene homolog FOS 7.9 Down 209189_at 

CDNA: FLJ21228 fis, 

clone COL00739 - 7.9 Up 234723_x_at 

Secretory leukocyte 

peptidase inhibitor SLPI 7.6 Down 203021_at 

Ceruloplasmin 

(ferroxidase) CP 7.0 Down 227253_at 

CDNA FLJ35490 fis FLJ45482 6.8 Up 1565786_x_at 

Cytochrome P450, 

family 3, subfamily A, 

polypeptide 5 CYP3A5 6.6 Up 214235_at 

 

Table 9 The 20 genes showing the greatest differential expression between transition 

and central zone normal human prostatic epithelium. 
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4.3.3 Functional analysis – Gene Ontology and Functional Annotation Clustering 

Gene lists of statistically significantly genes differing in expression between zones 

were uploaded into DAVID 2008 software (Dennis et al., 2003). Affymetrix probe 

ID’s were used and significant gene ontologies represented were identified using the 

EASE score (modified Fischer’s exact test). DAVID adopts the GO vocabulary 

consisting of 5 different levels with level 1 being a general description while level 5 is 

a more detailed description for a given gene. To maximize the outcome of the 

analysis, all the levels of the GO vocabulary were used for the analyses. The default 

parameters for DAVID analyses were used: maximum EASE score / P-Value 0.1, and 

minimum threshold gene count 2 in this study. The threshold of EASE Score 

(modified Fisher Exact P-Value) for gene-enrichment analysis ranges from 0 to 1.  

Fisher Exact P-Value = 0 represents perfect enrichment. The recommended default 

setting in DAVID is 0.1, however P-Value equal or smaller than 0.05 can be 

considered strongly enriched in the annotation categories (Huang da et al., 2009). The 

threshold of minimum gene counts has to be equal or greater than 0. The default is 2, 

i.e. you do not trust the term only having one gene involved. 

Functional Annotation Clustering groups and displays similar annotations / genes 

together. The grouping algorithm is based on the hypothesis that similar annotations 

should have similar gene members. DAVID uses an agglomeration method, which 

groups related genes or terms into functional groups (biological modules) based on 

the similarity distance measure. A gene or term may participate in more than one 

functional group, unlike other clustering techniques such as Hierarchical, K-means, or 

self-organizing maps. Clusters (functional gene groups) are produced which may be 

viewed as a heatmap and to determine which are more significant an ‘enrichment 

score’ is allocated (Huang da et al., 2007). The enrichment score is the geometric 

mean of the EASE Scores (Fischers exact test) associated with each enriched 

annotation term that belonging to the cluster. The geometric mean is a relative score 

instead of an absolute p value; therefore minus log transformation is applied on the 

geometric mean. The group enrichment scores are intended to order the relative 

importance of the gene groups instead of as absolute decision values. A higher score 

for a group indicates that the group members are involved in more important 

(enriched) roles. However, all gene groups are potentially interesting despite lower 

rankings. An enrichment score of less than 0.05 translates to 1.3 on the minus log 

scale. 
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Using the DAVID Functional Annotation Clustering Tool (Chapter 2.4.5) functional 

clusters (biological modules) were identified between the zones. An enrichment score 

of greater than 1.3 was used as the cut off (EASE significance score < 0.05 = 1.3 on 

minus log scale). 

 

4.3.3.1 Peripheral zone versus central zone 

Analysis reveled that 1 GO biological process and 5 GO molecular functions were 

significantly over-represented in peripheral zone (Table 10), but this did not 

correspond to significant clusters of genes or annotations when Functional Annotation 

Clustering was performed in DAVID (Huang da et al., 2007) (section 2.4.5).   

 

Biological process P Value 

DAVID analysis parameter = GO term level:ALL  

GO:0009056~catabolic process 0.06 

Molecular function  

DAVID analysis parameter = GO term level:ALL  

GO:0016881~acid-amino acid ligase activity 0.05 

GO:0008639~small protein conjugating enzyme activity 0.042 

GO:0004842~ubiquitin-protein ligase activity 0.04 

GO:0016879~ligase activity, forming carbon-nitrogen bonds 0.072 

GO:0019787~small conjugating protein ligase activity 0.04 

 

Table 10 Gene ontologies that were significantly over-represented in the peripheral 

zone compared to the central zone (Ease score / P-Value 0.1, minimum threshold gene 

count 2). 

 

Twenty-nine GO biological processes, 6 GO cellular components, and 15 GO 

molecular functions were significantly under-represented in the peripheral zone 

compared with the central zone (Table 11, supplemental file 6) with two annotation 

clusters shown, with enrichment scores greater that 1.3 for the same comparison 

(Figure 40, Table 12). Both the GO ontology and annotation clusters reflect that 

mRNA transcription, along with increased cellular metabolic processes, were over-

represented in the central zone (under-represented peripheral zone), perhaps 

suggesting towards differing functions. 
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Biological process P Value 

DAVID analysis parameter = GO term level:ALL  

GO:0045935~positive regulation of nucleobase, nucleoside, 

nucleotide and nucleic acid metabolic process 0.07 

GO:0019219~regulation of nucleobase, nucleoside, nucleotide and 

nucleic acid metabolic process 0.01 

GO:0043170~macromolecule metabolic process 0.01 

GO:0006139~nucleobase, nucleoside, nucleotide and nucleic acid 

metabolic process 5.79E-04 

Cellular component PValue 

DAVID analysis parameter = GO term level:ALL 

GO:0015629~actin cytoskeleton 0.03 

GO:0005622~intracellular 0.07 

Molecular function  

DAVID analysis parameter = GO term level:ALL  

GO:0003779~actin binding 0.04 

GO:0016301~kinase activity 0.10 

GO:0051020~GTPase binding 0.05 

GO:0003677~DNA binding 0.04 

GO:0003676~nucleic acid binding 0.01 

GO:0030528~transcription regulator activity 0.10 

 

Table 11 Examples of gene ontologies that were significantly over-represented in the 

central zone compared to the peripheral zone (Ease score / P-Value 0.1, minimum 

threshold gene count 2). Full table may be found in supplemental file 6. 

 

 

Annotation cluster Representative annotation terms Enrichment score 

1 mRNA transcription (Figure 4.8) 1.82 

2 Regulation of mRNA transcription (Figure 4.9) 1.73 

 

Table 12 Two Functional Annotation Clusters were identified in DAVID as being 

significantly over-represented in human LCM central zone prostate when compared 

with peripheral zone.  
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Figure 40 Functional Annotation Cluster of mRNA transcription significantly over-

represented in the central zone (compared to peripheral zone). (All the related 13 

mRNA transcription genes and their associated annotation terms are displayed in a 2-

D heat map. Green represents the positive association between the gene-term; 

conversely, black represents an unknown relationship. The annotation terms are 

ordered based on their enrichment scores associated with the group) 

 

4.3.3.2 Peripheral zone versus transition zone 

There were numerous significantly over-represented GO ontologies in PZ compared 

to TZ, including 145 biological processes, such as steroid synthesis and signaling 

pathways, 69 cellular components such as protein and proteasome complex, and 67 

molecular functions, such as enzymatic activity related to transcription and translation 

(supplemental file 7). Twenty-nine functional annotation clusters were significantly 

over represented in the peripheral zone and had enrichment scores of greater than 1.3, 

several are shown in Table 13 (supplemental file 8). The clusters and ontologies 

reveal a common theme of increased cellular activity from transcription to translation 

to post translational modification to protein transport and eventual protein breakdown. 

In young men with normal prostates the transition zone is small, and these results 

suggest that, when compared with the peripheral zone, it may be less active.  
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Annotation cluster Representative annotation terms Enrichment score 

1 Intracellular organelle 11.73 

2 Protein transport 8.61 

3 Endoplasmic reticulum 8.27 

4 Golgi vesicle transport / secretion 5.28 

5 Proteolysis 4.02 

6 Golgi apparatus 3.34 

7 mRNA processing / splicing 3.28 

8 Mitochondrial membrane 2.99 

 

Table 13 Examples of Functional Annotation Clusters identified in DAVID as being 

significantly over-represented in human LCM peripheral zone prostate when 

compared with transition zone (supplemental file 8). 

 

Over-represented GO ontologies in TZ compared with PZ included, 36 biological 

processes, such as regulation of progression through the cell cycle and differentiation, 

10 cellular components such as spindle and microtubule, and 18 molecular functions 

such as actin and growth factor binding (supplemental file 9). Four annotation clusters 

were significantly over-represented in the transition zone including actin binding 

(Figure 41) and regulation of cell cycle (Table 14). These clusters and ontologies are 

related to cell development, cell division and cellular activity. Perhaps increased cell 

regulation is present in the transition zone of prostates from young men with altered 

cellular division as a result. 

 

Annotation cluster Representative annotation terms Enrichment score 

1 Actin binding 1.71 

2 Nuclear hormone receptor DNA binding 1.48 

3 Signal transduction 1.45 

4 Regulation of cell cycle - inhibition 1.44 

 

Table 14 Four Functional Annotation Clusters were identified in DAVID as being 

significantly over-represented in human LCM transition zone prostate when compared 

with peripheral zone. 
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Figure 41 Functional Annotation Cluster of Actin binding significantly over-

represented in the transition zone (compared to peripheral zone). 

 

4.3.3.3 Central zone versus transition zone 

Analysis revealed 30 GO biological processes that were significantly over-expressed 

in the CZ including translation and protein transport, 28 GO cellular components 

including peroxisome and Golgi apparatus, and 20 GO molecular functions including 

symporter and translation factor activity (supplemental file 10). Six functional clusters 

were significantly over-represented in the central zone (Table 15). Although less in 

number there seemed to be a similarity in groups under represented in the transition 

zone compared with both the peripheral zone and the central zone. These included 

intracellular organelles, protein transport and proteolysis. Again this suggest that 

normal human transition zone is less ‘biologically active’ than both its counterparts, 

perhaps as it has less of a secretory role than them. 

GO ontologies that were significantly over-represented in the TZ included: 8 

biological processes such as angiogenesis and vasculature development, 1 cellular 

component, the cell surface, and 7 molecular functions including transcription 

repressor activity and enzyme regulator activity (supplemental file 11). No clusters 

were identified in the transition zone containing enrichment scores of greater than 1.3. 
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Annotation cluster Representative annotation terms Enrichment score 

1 Intracellular organelle 2.52 

2 Organelle membrane 2.4 

3 Protein transport 2.37 

4 Fatty acid metabolism (peroxisome) 1.71 

5 Golgi apparatus 1.33 

6 Ubiquitin mediated proteolysis 1.32 

 

Table 15 Six Functional Annotation Clusters were identified in DAVID as being 

significantly over-represented in human LCM central zone prostate when compared 

with transition zone. 

 

4.3.4 Functional analysis – assignment of genes to pathways 

Pathway assignment was carried out in DAVID using KEGG pathways (Dennis et al., 

2003, Kanehisa and Goto, 2000, Kanehisa et al., 2006). Differentially expressed 

genes between zones were uploaded into DAVID for pathway inclusion and 

annotation to known KEGG pathways. Only annotations (genes) that were over-

represented compared with random chance, as identified using EASE analysis 

(significance at the P < 0.1 level), were selected. 

 

4.3.4.1 Peripheral versus central zone 

The TGF-beta signaling pathway was the only pathway significantly differently 

represented between the PZ and the CZ (over-represented CZ), corresponding to 3 

genes (Figure 42). 
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Figure 42 The TGF-beta signaling pathway was significantly over-represented in the 

central zone compared with the peripheral zone (figure generated by DAVID 

software). The three genes are highlighted with red stars, and are Activin A receptor, 

Type IIA, Thrombospondin 1, and SMAD specific E3 ubiquitin protein 2.  

 

4.3.4.2 Peripheral versus transition zone 

Thirteen pathways were significantly over-represented in the peripheral zone 

compared with the transition zone, and 8 were statistically over represented in the 

transition zone (Table 16). 
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Over-represented in PZ 

KEGG Pathway Count  % P-Value 

hsa03060: Protein export 4 0.48% 0.02 

hsa04910: Insulin signaling pathway 13 1.55% 0.06 

hsa03050: Proteasome 7 0.84% 8.98E-04 

hsa00512: O-Glycan biosynthesis 7 0.84% 0.01 

hsa00020: Citrate cycle (TCA cycle) 5 0.60% 0.06 

hsa05120: Epithelial cell signaling in Helicobacter 

pylori infection 9 1.07% 0.03 

hsa05110: Cholera - Infection 6 0.72% 0.07 

hsa01030: Glycan structures - biosynthesis 1 12 1.43% 0.05 

hsa04120: Ubiquitin mediated proteolysis 13 1.55% 0.05 

hsa00190: Oxidative phosphorylation 12 1.43% 0.07 

hsa05010: Alzheimer's disease 7 0.84% 0.01 

hsa00361: gamma-Hexachlorocyclohexane 

degradation 5 0.60% 0.03 

hsa00100: Biosynthesis of steroids 6 0.72% 0.01 

Over-represented in TZ 

hsa04510: Focal adhesion 8 3.65% 0.01 

hsa04010: MAPK signaling pathway 8 3.65% 0.03 

hsa04730: Long-term depression 4 1.83% 0.04 

hsa04670: Leukocyte transendothelial migration 5 2.28% 0.04 

hsa04520: Adherens junction 4 1.83% 0.06 

hsa04360: Axon guidance 5 2.28% 0.06 

hsa04120: Ubiquitin mediated proteolysis 5 2.28% 0.07 

hsa04960: Aldosterone-regulated sodium 

reabsorption 3 1.37% 0.08 

 

Table 16 Thirteen pathways were significantly over-represented in the peripheral 

zone, with 8 over-represented in the transition zone. It is surprising that an infectious 

pathway, Cholera, was over-represented in the peripheral zone. 

 

4.3.4.3 Central zone versus transition zone 

Four pathways were over-represented in the central zone compared with the transition 

zone (Table 17), whilst no pathways were over represented in the transition zone. 
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KEGG Pathway Count  % P-Value 

hsa05212: Pancreatic cancer 5 1.89% 0.01 

hsa05222: Small cell lung cancer 5 1.88% 0.02 

hsa04120: Ubiquitin mediated proteolysis 6 2.26% 0.03 

hsa05200: Pathways in cancer 9 3.38% 0.06 

 

Table 17 Four pathways were over-represented in the central zone compared with the 

transition zone 

 

4.3.5 Validation at a protein level 

The expression level of one gene, TGM4, was examined at the protein level using 

immunohistochemistry (Figure 43). TGM4 was seen to be expressed at a higher level 

in prostate central zone compared with peripheral zone, and this mirrors the gene 

expression analysis. Differential protein expression between peripheral and transition 

zone was not obviously seen however, despite the significant differences seen at gene 

level (up transition zone 27-fold).  
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Figure 43 Immunoflourescence with anti-TGM4 antibody (green) reveals higher 

staining in prostate central zone than peripheral zone (DAPI – blue, FITC – green). 

No obvious difference was seen between peripheral and transition zone. 

 

4.4 Discussion 

Several studies have attempted to delineate global gene expression profiles of 

individual zones of the human prostate (Stamey et al., 2003, van der Heul-

Nieuwenhuijsen et al., 2006, Noel et al., 2008). These studies have been limited as 

they have used (1) whole tissue containing both epithelial and mesenchymal cell 

lineages and (2) prostate tissue from donors at the time of radical prostatectomy. On 

this second point, this tissue is unlikely to be normal, either as it reflects BPH or as a 

result of field effect changes in ‘normal adjacent’ prostate (Chandran et al., 2005, 

Ananthanarayanan et al., 2005, Ananthanarayanan et al., 2006, Mehrotra et al., 2008). 
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This is the first investigation combining laser capture microdissection on normal 

prostates from young men before the advent of disease with global gene expression 

analysis with Affymetrix microarrays to provide a zonal transcriptome map of normal 

human prostate. 

Laser capture microdissection was used to successfully capture a pure population of 

epithelial cells from each of the three zones of the prostates. It was not possible to 

obtain any epithelium from the transition zone of prostate F (301104) as it did not 

contain any acini, despite sectioning of the whole sample. Pure populations of 

mesenchymal cells were also microdissected, with RNA subsequently extracted and 

stored at -80 C. Epithelial RNA was of sufficient quality to allow downstream 

analysis. As Affymetrix chips require large quantities of RNA two rounds of 

amplification were performed successfully with the resultant product hybridized to 

chips. Amplification issues are discussed in Chapter 2. 

When performing unsupervised learning analysis on both the prostates and the zones, 

it was apparent both with principal component analysis and hierarchical clustering 

that the zones did not cluster together. If anything prostates clustered tighter reflecting 

the inherent biological variability. This lack of differences between the three zones 

can be explained by several factors. Firstly there may be more differences between 

individuals than between zones, and unsupervised techniques will merely show this. 

Secondly the zones were dissected out macroscopically by visual inspection from 

areas that correspond to known zonal anatomy. This is potentially an imprecise 

methodology, however there is not currently a better technique. Indeed it corresponds 

to techniques used by others when trying to assess zonal differences (Stamey et al., 

2003, van der Heul-Nieuwenhuijsen et al., 2006, Noel et al., 2008). Potentially mixed 

zonal tissues types could be analysed together thus skewing the results. Thirdly the 

exact functions of the zones are unknown, and it maybe that there are in reality few 

differences between the zones both functionally and genetically. Lastly unsupervised 

techniques are less powerful with small sample size. 

To overcome this a supervised learning analysis was applied, with assignment of 

samples to zones, showing it is possible with differential gene expression to detect 

zonal differences. Differential gene expression was calculated using a parametric 

Welch t-test (p<0.05), accompanied with a false discovery testing with the Benjamini-

Hochberg FDR (Benjamini and Hochberg, 1995). The significance analysis of micro-

arrays (SAM) was also applied (Tusher et al., 2001), however no significant 
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difference in gene expression was observed with either false discovery method 

(results not shown). Microarrays present a special challenge statistically, when genes 

are compared across two conditions. Given the large number of genes tested, more 

than 50,000 in this study, with conventional p values of for example of less than 0.05, 

one can expect 5% to appear significant by chance alone. This equates to over 2000 

genes. False discovery testing is a way to control for this and is discussed in the 

Appendix. Unfortunately the design of this study, with a small sample size and 

number of replicates precludes false discovery testing. This reinforces the need for 

downstream work and validation of targets. This was performed for one gene TGM4 

at a protein level with immunohistochemistry, but more work is needed if the 

microarray findings are to be confirmed.  

Zonal comparisons were performed individually revealing more similarity between 

the peripheral and central zones. There were more differential gene expression 

differences when analyzing these zones with the transition zone. Unfortunately it was 

not possible to isolate RNA from one of the transition zones, as no epithelial 

component was seen despite sectioning of the entire sample. This may have impacted 

on the increased differences seen between transition and other zones. The differential 

gene expression reported above represents the first epithelial zonal transcriptome of 

normal human prostate. This is unique, as unlike other studies, it has used prostates 

free form disease and field effect changes, as well as having isolated pure epithelial 

populations.  

In an attempt to mine meaningful biological information from the gene lists generated 

for zonal differences, GENE Ontology, functional cluster and pathway analysis were 

performed using a free web based software, DAVID (Dennis et al., 2003, Huang da et 

al., 2007). This method has been extensively used by researchers with more than 2000 

current DAVID citations (Google Scholar – Jan 2010). Whist the exact significance of 

many these is unclear they provide a potential reference or avenues for future work. 

Several of these are now discussed along with individual genes that differed 

significance between prostatic zones. 

 

4.4.1 Differences between peripheral and central zone normal prostate epithelium 

TGM4 was significantly under expressed at the gene level in the peripheral zone 

compared with the central zone and to a lesser extent the transition zone (fold change 

172.16 / 27.13). Furthermore TGM4 was expressed less at protein level in peripheral 
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zone than central zone, mirroring the microarray findings. TGM4 is a member of a 

family of enzymes that all have the ability to catalyze cross-linking of glutamine 

residues with lysine is all primary amines (Dubbink et al., 1998). Transglutaminases 

all have specific tissue distribution patterns, with TGM4 found mainly in the prostate. 

Little is known about the function of this enzyme with most of the work having been 

performed on mouse and rat prostates. Some work has shown region specific 

expression of TGM4 both in the human and mouse prostate (Thielen et al., 2007). 

That TGM4 is found mainly in prostate was confirmed using ONCOMINE™ (Rhodes 

et al., 2004), showing statistically higher expression (p = 1.6E-9) in human prostate 

compared with other tissues in 3 separate microarray studies (Figure 44) 

(Shyamsundar et al., 2005). ONCOMINE™ is a cancer microarray database and web-

based data-mining platform aimed at facilitating discovery from genome-wide 

expression analyses. Differential expression analyses comparing most major types of 

cancer with respective normal tissues as well as a variety of cancer subtypes and 

clinical-based and pathology-based analyses are available for exploration. Data can be 

queried and visualized for a selected gene across all analyses or for multiple genes in 

a selected analysis.  

Dubbink et al. showed that TGM4 was expressed in the epithelial cells of a subset of 

human prostatic ducts (Dubbink et al., 1998). They did not however comment on 

whether these regions corresponded to particular prostatic zones. In situ hybridisation 

has revealed region specific expression of TGM4 in radical prostatectomy specimens 

from humans, but zones were not commented on. A positive finding was that TGM4 

was never expressed in prostate cancer.  
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Figure 44 Representative normal human tissues (bone marrow, brain, heart, kidney, 

liver, lung, pancreas, prostate, skeletal muscle, spinal cord, spleen, and thymus), each 

pooled from 10-25 individuals, were analyzed on 5 Affymetrix Gene Chips (U95A-E) 

in ONCOMINE™. Column 2 represents prostate with column 1 the remaining tissues. 

TGM4 is significantly higher expressed in the prostate than in other human tissues. 

 

Thelium et al. (Thielen et al., 2007) revealed expression of TGM4 in the mouse 

anterior prostate, and in some areas of the mouse dorsolateral prostate, with no 

expression in the ventral prostate, using computer serial reconstruction and in-situ 

hybridization. TGM4 did not correspond identically however to the mouse lobes, but 

did show region specific epithelial identity. The rodent prostate is composed of four 

head loads situated circumferentially around the base of the bladder: the anterior 

prostate (AP), ventral prostate (VP), dorsal prostate (DP) and lateral prostate (LP). 

Each lobe has a distinct histology and secretory protein production (Hayward et al., 

1996). The AP is sometimes referred to as the coagulating gland, as it produces 

transglutaminases that assist in the formation of the copulatory plug (Hayward et al., 

1996). The dorsolateral prostate of the mouse has been reported as being most similar 
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to the peripheral zone of the human prostate based on descriptive studies (Price, 

1963). More recently, inter species comparisons based on the mRNA expression 

signatures of the human peripheral zone and mouse anterior, dorsolateral, and ventral 

lobes have supported the view that the mouse dorsolateral lobe has greater similarity 

to the human peripheral zone than the other mouse prostatic lobes (Berquin et al., 

2005). Based on similar descriptive studies the mouse anterior prostate lobes 

(coagulating gland), which run alongside the seminal vesicles, have been postulated to 

be equivalent to the human central zone (Price, 1963). The high expression of TGM4 

in the central zone in this study may mirror the fact that although TGM4 did not 

appear to match the exact anatomic boundaries of the lobes of the mouse (Thielen et 

al., 2007), it did show a higher affinity for the anterior prostate.  One might 

extrapolate from this that this provides further evidence of a similarity between the 

anterior prostate of the mouse and the central zone of the human, both in terms of 

function and origin. 

When TGM4 is analysed in ONCOMINE™ there are significant differences in 

expression between benign prostate, prostate carcinoma, and hormone refractory 

metastatic prostate cancer in a study by Varambally looking at signatures of 

metastatic progression (Varambally et al., 2005) (Figure 45). In a cDNA microarray 

study by Fujita et al. (Fujita et al., 2008), TGM4 was in the top seven most 

discriminative genes, distinguishing between normal and tumoral conditions of 

prostate cancer. Stamey et al also found that TGM4 was in their gene list of highly 

significant genes that were down-regulated in Gleason 4/5 prostate cancer (Stamey et 

al., 2003). Whether low levels of TGM4 seen in the peripheral zone in this study 

correspond to any disease processes is unknown, but it is a potentially novel area to 

be researched.  
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Figure 45 ONCOMINE™ data from Varambally et al. (Varambally et al., 2005) show 

significant changes in expression (p = 1.6E-9) of TGM4 between benign prostatic 

tissue (1), primary prostate adenocarcinoma (2), and castrate-resistant metastatic 

prostate cancer (3).  

 

Lipoprotein lipase (LPL) has a central role in lipid metabolism and transport, as well 

as having other additional non-catalytic functions (Mead et al., 2002). LPL 

determines how dietary lipids are partitioned towards storage or utilization and 

therefore plays a central role in obesity and weight loss (Mead et al., 2002). 

Abnormalities in LPL function are associated with a number of pathophysiological 

conditions including atherosclerosis, obesity, insulin resistance and metabolic 

syndrome (Mead et al., 2002). High fat intake may contribute to the development and 

progression of prostate cancer, although this is controversial (Narita et al., 2004). 

Metabolic syndrome (Figure 46) has been suggested as a risk factor in the 

development of prostate cancer, with epidemiological evidence to support this 

(Laukkanen et al., 2004).  Polymorphisms of the LPL have in addition been 

associated with the onset and possible progression of prostate cancer (Narita et al., 

2004). The LPL loci is situated on chromosome 8p22, loss of which is a frequently 

known chromosomal alteration seen in prostate cancer (Bova et al., 1993).  
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Figure 46 Definition of metabolic syndrome 

 

LPL was significantly over expressed in this study in the peripheral zone of normal 

human prostate (fold change 12.3). Loss, mutation or epigenetic inactivation of LPL 

may play a role in human prostate cancer. Kim et al. (Kim et al., 2009) found that the 

LPL gene is commonly methylated in prostate tumors, and that biallelic inactivation 

of LPL by chromosomal deletion and promoter hypermethylation may play a role in 

human prostate cancer. This may be one potential mechanism by which loss of LPL 

occurs in the normal human peripheral zone, which could be a contributory factor in 

carcinogenesis. 

The TGF-beta pathway was significantly over-represented in the central zone in this 

study. TGF-beta is a potent inhibitor of cell proliferation, and in cancer cells, 

mutations in the TGF-beta pathway have been described that confer resistance to 

growth inhibition, thus allowing uncontrolled proliferation of cells (Blobe et al., 

2000). Thus TGF-beta pathway acts in a tumour suppressor like fashion, which may 

be significant in terms of risk of prostate carcinogenesis. Whether this is a potential 

avenue for research to explain why the central zone has a lower risk than the 

peripheral zone for developing prostate cancer remains to be seen. 

 

4.4.2 Differences between peripheral and transition zone normal prostate epithelium 

Olfactomedin 4 (OLFM4GW112/hGC-1) is a glycoprotein originally described as human 

granulocyte colony stimulating factor-stimulated clone-1 (hGC-1) (Zhang et al., 

2002). It was subsequently identified as the novel anti-apoptotic molecule GW112 by 
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Zhang et al. in 2004 (Zhang et al., 2004). In the most recent NCBI database, these 

molecules were classified as OLFM4 (GenBank accession no. NM-006418), as they 

possess an olfactomedin domain. OLFM4 is localized in the nucleus and 

mitochondria, and inhibits activation of the caspase cascade at the level of 

cytochrome c release (Zhang et al., 2004). This protein also binds to GRIM-19, a 

potent mediator of apoptosis, (Zhang et al., 2003) to inhibit its function. Thus, 

OLFM4 can prevent apoptosis. However, the role of constitutively expressed OLFM4 

in cancer cells is still unknown. OLFM4 is expressed at higher levels in colon, breast, 

and lung cancers, and has been suggested as a diagnostic marker for these cancers 

(Koshida et al., 2007). In addition OLFM4 has been shown to promote proliferation 

of a human pancreatic cancer cell line (PANC-1) by favoring transition from the S to 

G2/M phase. When analysed in ONCOMINE™ loss of OLFM4 expression is 

associated with metastatic prostate cancer (Figure 47). There was a significant 

difference in the expression of OLFM4 in this study favoring peripheral zone 

epithelium, suggesting it may act as a marker of region specific identity.  

 

 
 

Figure 47 OLFM4 expression in Oncomine shows significant down-regulation in 

metastatic prostate cancer (3), compared with prostate cancer (2), and matched normal 

prostate (1) (p = 1.6E-9). 
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Other genes showing significant differences in expression between the peripheral and 

transition zone were Protocadherin 8 (PCDH8), Transferrin (TF), Transglutaminase 4 

(TGM4), and cell adhesion molecule with homology to L1CAM (CHL1). Little is 

known about PCDH8, especially in the prostate, but a recent paper demonstrated that 

PCDH8 is mutated and epigenetically silenced in a large proportion of breast tumors, 

and that PCDH8 functions to suppress breast epithelial migration and proliferation 

(Yu et al., 2008). There are significant differences in PCDH8 expression seen 

between the TZ and PZ, although how this translates to differing functions is unclear. 

Transferrin (TF) is a potent mitogen for prostate cancer (Kaighn et al., 1981, Rossi 

and Zetter, 1992), where its levels are four times higher than in patients with benign 

prostatic hyperplasia and six times higher than in men with clinically normal prostates 

(Grayhack et al., 1980). Up-regulated levels of transferrin often correlate with 

increased adhesion, invasion and metastasis (Bhatti et al., 1997). Herman et al. 

(Herman and Meadows, 2007) examined in vitro, invasion and adhesion of stably 

semaphorin (sema) 3E-transfected PC-3 prostate cancer cells, in the presence and 

absence of TF. TF was able to reverse the decreased invasion and adhesion seen in 

cells transfected with sema3E, when compared to untransfected cells. TF was over-

expressed in the peripheral zone is this study, although whether this contributes to 

disease susceptibility needs further work.  

CHL1 located on human chromosome 3p26.1, is expressed in neurons and glia of 

both the central and peripheral nervous system, and promotes neurite outgrowth and 

neuronal survival; its role may be in integrin-dependent cell migration (Buhusi et al., 

2003). Whilst nothing is know about its function in the prostate, it was one of the 

genes that was significantly differentially expressed in the global zonal gene 

expression analysis described in Chapter 4.1 (Noel et al., 2008). This expression of 

this target was validated by Noel et al. with RT-PCR and the differences are similar to 

my study, showing greater expression in the peripheral zone that the transition zone. 

The significance of this is unknown. 

Several functional clusters and pathways were significantly differently represented 

between these zones, many to do with protein modification, transport, and breakdown, 

in particular involving intracellular organelles (Table 13, 14). In this study functional 

cluster analysis (Ubiquitin-mediated proteolysis) and pathway analysis (proteasome) 

showed significant differences between in protein regulatory mechanisms between the 

peripheral and transition zone (Table 16). Figure 48 demonstrates genes that were up-
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regulated in the peripheral zone in the proteasome pathway. To identify potential 

genes modified in this fashion requires elucidation but as an example the androgen 

receptor has previously been shown to be modified in this way (Lee and Chang, 

2003). The androgen receptor (AR) plays a central role in the development, 

progression, and treatment of prostate cancer (Richter et al., 2007). Degradation of 

the AR plays an integral role in the regulation of AR function and is regulated by 

systemic protein degradation pathways, specifically the MDM2–ubiquitin–

proteosome pathway (Lee and Chang, 2003).  

 

 
 

Figure 48 The KEGG Proteasome pathway (image from DAVID). This was 

significantly over-represented in the peripheral zone compared with the transition 

zone. Genes involved are marked with a red star. 

 

Noel et al. (Noel et al., 2008) used Gene Ontology analysis in their comparison of 

gene expression between peripheral and transition zone. None of their peripheral zone 

ontologies overlap with my findings, however there was significant correlation 

between transition zone findings. They found genes preferentially expressed in the 
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transition zone related to neurogenesis, signal transduction and development, which 

mirror my gene ontology and functional cluster analyses. Their study of course did 

not use pure cellular populations and is therefore contaminated by stroma. A recent 

microarray study assessed global gene differences between ‘normal’ and ‘reactive’ 

(histologically abnormal adjacent to prostate cancer) stroma using LCM and 

Affymetrix microarrays (Dakhova et al., 2009). A total of 544 genes were 

significantly higher in the reactive stroma and 606 genes were lower. They also 

performed Gene ontology analysis, which revealed significant alterations in a number 

of processes including amongst others neurogenesis and signal transduction pathways. 

Why these mesenchymal processes should be over-represented in transition zone 

epithelium, as shown by my study, is unclear. 

 

4.4.3 Differences between central and transition zone normal prostate epithelium 

Cytochrome P450s are a multi-gene family of constitutively expressed and inducible 

enzymes involved in the oxidative metabolic activation and deactivation of 

carcinogens and cancer therapeutics (McFadyen et al., 2001, Murray et al., 2001). 

Cytochrome P450 1B1 (CYP1B1) is a member of the CYP1 gene family and one of 

the major enzymes involved in the hydroxylation of estrogens and activation of 

potential carcinogens. Differences in the capacity to metabolically activate 

endogenous / exogenous agents may underlie the in situ occurrence of chromosomal 

damage, eventually resulting in disease. The metabolites of CYP1B1 are known to 

induce prostate cancer in an experimental animal model (Williams et al., 2000, 

Cavalieri et al., 2002). One or more genetic variants of this gene have also been 

shown to be associated with an increased risk of prostate cancer (Chang et al., 2003). 

Stamey et al. however found CYP1B1 to be significantly down-regulated in prostate 

cancer in a microarray study (Stamey et al., 2003). CYP1B1 has been observed at 2 to 

6-fold higher levels in human peripheral zone as compared to transition zone 

(Ragavan et al., 2004, John et al., 2009). In this study CYP1B1 was differentially 

expressed between the transition and central zone in this study, with higher levels in 

the central zone compared to the transition zone. The finding of low expression in the 

transition zone is mirrored by that of Van der Heul-Nieuwenhuijsen et al. (van der 

Heul-Nieuwenhuijsen et al., 2006), who found low levels of CYP1B1 in the transition 

zone but when compared with the peripheral zone. Whether low levels of CYP1B1 in 
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the transition zone are significant in terms of function or disease predisposition 

remains to be elucidated. 

In humans, HOX genes comprise the largest of several families of genes containing a 

sequence motif termed the homeobox. The homeobox was first identified as a motif 

shared among the Drosophila homeotic genes. HOX genes represent their human 

counterpart. Very little has been published on HOX gene expression in human 

prostate. One homebox gene, NKX3.1, is expressed in normal human prostate and has 

been implicated as a tumor suppressor gene (Dong, 2001). HOXC4 has been shown to 

be over-expressed in prostate cancer malignant cell lines, lymph node metastases, and 

laser microdissected prostate cancer epithelial cells (Miller et al., 2003). The 

significance of up-regulation of this gene in the central zone in this study is unclear, 

but provides more information about the true epithelial transcriptome of human 

prostatic epithelium. 

 

4.5 Conclusions 

This analysis provides first zonal map of gene expression in normal human prostate 

epithelium. Several genes have been identified, including TGM4 (CZ), LPL (PZ), and 

CYP1B1 (TZ), as showing potential zonal region specific identity. TGM4 has also 

been shown to demonstrate region specific identity in mouse anterior prostate, which 

corresponds to human central zone. In addition some of these genes were identified 

by other zonal microarray studies as being region specific. This analysis also provides 

information about potential differing biological functions, using Gene Ontology, and 

pathways (KEGG) between the zones. It is however provisional work that needs 

further investigation and clarification, before any firm conclusions can be made. This 

will form the part of future work. 
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4.6 Summary points 

1. Epithelium was isolated from prostatic zones (peripheral, central and 

transition) using techniques described in Chapter 2, including laser capture 

microdissection  

2. Affymetrix microarrays were performed on RNA isolated from these as 

described in Chapter 2. 

3. Unsupervised learning analysis did not show zonal specific clustering 

4. Supervised analysis revealed potential zonal specific genes.  

5. Further analysis identified potential differing functions using Gene Ontology, 

Functional Annotation Clusters, and pathway analysis. 

6. TGM4 showed increased expression in the central zone at the gene and protein 

level 
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Chapter 5 Conclusions 

 
This study provides the first normal gene expression profile of human prostatic 

epithelium free from contamination with stroma and potential prostatic disease. This 

has been established using a combination of laser capture microdissection and 

Affymetrix microarrays. Knowledge of this normal, disease free, expression profile is 

essential if dysregulated genes are to be identified in prostate cancer. Although 

numerous prostate cancer microarray studies exist describing global gene expression 

profiles (Dhanasekaran et al., 2001, Singh et al., 2002, Welsh et al., 2001a, Luo et al., 

2001, Stuart et al., 2004, Yu et al., 2004), they have all used ‘normal’ tissue obtained 

from the same cancerous prostates, as control tissue. This may have a dual effect of 

diluting the expression of genes that are inevitably expressed in both the epithelium 

and the mesenchyme and exaggerating the effect of those that may be mesencyhyme 

specific. In addition whilst macroscopically this tissue may appear free from disease, 

several studies have clearly demonstrated field effect changes in normal prostate 

(Ananthanarayanan et al., 2005, Yu et al., 2004, Chandran et al., 2005), as well as 

other tissues (Franklin et al., 1997, Prevo et al., 1999, Chu et al., 1999, Takahashi et 

al., 1998).  

 

This study has demonstrated, using comparative microarray analysis with whole 

‘normal’ prostate tissue transcriptomes (Singh et al., 2002, Welsh et al., 2001a, Yu et 

al., 2004), major discrepancies between epithelial and whole tissue human prostate 

transcriptomes. As most microarray studies aim to provide an understanding of how 

gene expression changes in prostate cancer, this becomes a critical issue because 

prostate cancer is a carcinoma, predominantly. 

 

In an attempt to identify some of the genetic changes in prostate cancer I compared 

my dataset with a prostate cancer epithelium dataset from Febbo et al (Febbo et al., 

2006). This was obtained using similar techniques to mine: laser capture 

microdissection on fresh frozen tissue, RNA amplification and Affymetrix microarray 

GeneChip hybridization, but without a reference, normal epithelial transcriptome for 

comparison. Many genes previously identified as dysregulated in prostate cancer, 

were confirmed using this approach (e.g. Hepsin, AMACR, PTEN, CDKN1B), as 
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well as several novel genes (YWHAE, GLO1, and ZNF143), some of which were 

subsequently confirmed at the protein level (NR1D1, ABCA1).  

I also attempted to provide the first molecular map of normal epithelium based upon 

the macroscopic, anatomical description of McNeal (McNeal, 1981) that divides the 

prostate into 3 zones. Prostatic tissue was initially harvested, by visual discrimination, 

corresponding to the anatomical location of individual zones. Unsupervised learning 

techniques were used to see whether these zones grouped together. No zonal 

clustering was seen, rather that individual prostates tended to cluster together. 

Potential reasons for this include inherent biological variability between subjects, 

small sample number, lack of large differences in zones both at a gene and functional 

level, or perhaps problems with the visual technique used to ascribe zonal locality. 

Using supervised learning techniques, differential gene expression with zones could 

ascribed, gene lists were generated demonstrating potential zonal specific genes. The 

numbers of genes involved were small, and a false discovery rate analysis was not 

possible due to small sample size. In an attempt to discover biological meaning from 

the zones, further analysis was performed in DAVID software (Dennis et al., 2003, 

Huang da et al., 2007) using Gene Ontology, Functional Cluster Analysis, and 

pathway analysis. These are discussed further in Chapter 4, and it is currently unclear 

whether they relate to zonal predisposition to disease. 

 

To achieve the aims of this thesis a number of technical challenges had to be 

overcome. Laser capture microdissection formed an integral part of obtaining pure 

epithelial populations free from surrounding mesenchyme. A key part of this involved 

sectioning and staining of prostatic tissue, ensuring that RNA degradation was kept to 

a minimum. Microarray studies rely on the quality of RNA at the outset, and as 

amplification (with potential bias) was subsequently used to generate sufficient 

quantities of starting material for chip hybridization, these steps were critical at the 

outset. Numerous cryosectioning and staining techniques were tested on both animal 

and human tissue, with subsequent RNA extraction and assessment, before suitable 

methods were settled upon. The LCM technique was also challenging as it was 

performed ‘off site’ requiring the transportation of frozen tissue across London. 

Unlike the Arcturus method (Chapter 2.1.4), the PALM microbeam laser catapults 

tissue into an upended eppendorf cap. Initial results were poor due to RNA 

degradation, until an appropriate collection medium (RLT buffer - RNeasy® Mini Kit 
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[Qiagen, Basel, Switzerland]) was found. As discussed in Chapter 2.3.3, a 

compromise also had to be made between microdissection times and the amount of 

tissue obtained.   

 

There are several issues that could have been improved with this study in retrospect. 

Most revolve around the RNA quality and quantity. Firstly there were long delays 

from organ harvesting to tissue freezing at appropriate levels to prevent RNA 

degradation. The pitfalls with this are discussed further in Chapter 2.1.3. Secondly, 

some RNA degradation was apparent when samples were analysed on an Agilent 

bioanalyser (Chapter 2.3.4). It is likely that some gene expression has been lost / 

altered as a result with microarray analysis. RNA amplification is a well-established 

method of generating large enough quantities of starting material for microarray 

hybridisation, but it is also likely to generate a degree of bias, which must be 

considered (discussed in Chapter 2.1.5). Thirdly the comparative analyses performed 

in this study are likely to in themselves be subject to bias, owing to the differing chips 

used, differing laboratories and methods employed, all of which are known to 

generate potential bias. This highlights the need for further validation at both gene 

and protein level, something that this study has begun to address, but which needs 

further work. 

 

Although not forming the original aims of this thesis, I also conducted two subsidiary 

projects that do not form part of the present discussion, but are provided here 

(attached CD), as adjunct information with regards to future work, directly arising 

from the work I discussed in this thesis. 

Gene expression profiling of primary cell cultures derived from prostatic zones: when 

this project initially started, primary cell cultures were grown from individual 

prostatic zones from 4 patients. RNA was subsequently extracted of sufficient quality 

and quantity (without amplification), with Affymetrix microarrays performed. This 

data has not been included in this thesis, as the results demonstrated few genetic 

differences between zones, when analyzed using unsupervised or supervised analysis. 

The reasons for this are likely to be that primary cell cultures do not reflect fresh 

frozen tissue. By subjecting cells to certain growth factors to encourage growth, it is 

likely that the underlying transcriptome is altered as a result, with any subsequent 

underlying differences either lost or masked. The microarray data files (CEL files) are 
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included with this project but due to constraints of space this data is not presented. 

The data however appears useful in informing the limitations of use of model systems 

such as cultured cells. 

Gene expression profiling of laser microdissected normal human prostate stroma: as 

well as normal prostatic epithelium, stroma was also microdissected from the three 

prostates and three zones used in this study. RNA was isolated and amplified at the 

same time as epithelium, and has been stored prior to any further work. This work has 

not been included in this thesis but will form the basis for future microarray analysis 

in the same vain as this project, with subsequent comparison with a stromal prostate 

cancer microarray dataset (Dakhova et al., 2009). Currently work is ongoing with St 

Georges hospital in developing a more comprehensive tissue array (as the one used in 

this study is exhausted), using the normal prostatic tissue obtained from this project 

with prostate cancer (at various stages of carcinogenesis), so meaningful prognostic 

and diagnostic markers for prostate cancer genes can be identified.  

 

I believe the description of gene expression of normal prostate epithelium provided 

here, might facilitate the process by which prostate cancer can both be diagnosed and 

tackled. 
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 Appendix 

 

 
 

Supplemental Gene expression profile of normal LCM epithelium vs. ‘normal’ whole 

prostate show major differences (1742 genes) with dataset from Yu et al (Yu et al., 

2004). Genes from all genes with statistically significant differences when grouped by 

'type'; parametric test, variances not assumed equal (Welch t-test). p-value cut-off 

0.05, multiple testing correction: Benjamini and Hochberg False Discovery Rate, >5-

fold change). This restriction tested 12,651 genes; 1,493 genes had insufficient data 

for a comparison.  
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Supplemental Figure 2 Genes filtered on fold change (>2-fold). The figures show 

genes selected from condition, normal vs. cancer, that have normalized Data values 

that are greater or less than those in condition(s) by a factor of 2-fold. A total of 7844 

genes showed increased expression (A) and 1474 genes showed decreased expression 

(B) in prostate cancer epithelium compared to normal epithelium. Gene lists can be 

found in supplemental files 4A and B. 

 

 
 

Supplemental Figure 3 Prostate tissue microarray. A representative 6µm section is 

shown, cut onto coated slides and dried overnight at 60°C. (Tissue blocks were 

constructed using archival formalin-fixed, paraffin-embedded radical prostatectomy 

specimens from the 82 patients with pathological stage pT3a or b and pre-operative 

PSA stage of >3) 
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Section 4.2.1 Immunohistochemistry solutions 

 

Normal Rabbit Serum Blocking Solution:  

• 2% Rabbit serum (blocking) 

• 1%BSA (stabilizer) 

• 0.1% cold fish skin gelatin (blocking) 

• 0.1% Triton X-100 (penetration enhancer) 

• 0.05% Tween 20 (detergent and surface tension reducer) 

• 0.05% sodium azide (preservative) 

• 0.01M PBS, pH 7.2  

 

Primary Antibody Dilution Buffer: 

• 1%BSA (stabilizer and blocking)   

• 0.1% cold fish skin gelatin (blocking) 

• 0.05% sodium azide (preservative) 

• 0.01M PBS pH7.2  

 

Secondary Antibody Dilution Buffer: 

• 0.01M PBS, pH 7.2 

• 0.05% sodium azide (preservative)   

 

Wash buffer 

• 10X PBS-Tween 20 (0.1M PBS, 0.5% Tween 20, pH 7.2): 

• Na2HPO4 (anhydrous) 10.9 g 

• NaH2PO4 (anhydrous) 3.2 g 

• NaCl 90 g 

• Distilled water 1000 ml 

• Mix to dissolve and adjust pH to 7.2 and then add 5 ml of Tween 20 

• Diluted 1:10 with distilled water before use and pH adjusted as necessary. 
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Statistical Analysis – Overview 

Background 

After preprocessing, Affymetrix HGU133 Plus 2.0 GeneChips yield data about the 

transcriptional activity of approximately 47,000 transcripts, including 38,500 well-

characterized human genes. This is comprised of more than 54,000 probe sets and 

1,3000,000 distinct oligonucleotide features. These gene expression measurements are 

subject to random variation, largely because of the following 4 sources: 

Undesired biological variability: When comparing the gene expression between two 

conditions e.g. tumours and normal tissue, the expression profile could be different if 

another patient had been analysed, or even if another portion of tissue from the same 

patient had been used. 

Microarray manufacturing: This is truer for spotted cDNA arrays than Affymetrix 

arrays, where differences in cDNA clones as well as artifacts in their placement can 

cause discrepancies 

mRNA preparation: Variation is caused by the extraction of the mRNA, its 

subsequent amplification and purification. Additionally the fluorescent dye binds to 

the genes with different efficiency 

Hybridisation: An important error source is cross hybridization – mRNA that 

wrongly binds to non-corresponding probes on the array. Temperature, exposure time 

and characteristics of the mRNA solution can affect binding ability. 

As a result each individual gene or target cannot be regarded as an exactly measured 

quantity, and data analysis has to rely on statistical methods.  

 

Data analysis and interpretation 

Sample Size: The probability of successfully identifying a differentially expressed 

gene (statistical power) for a fixed confidence level depends on three factors: (i) the 

magnitude of the true differential expression, (ii) the magnitude of random 

fluctuations (random noise) in the experimental system, and (iii) the number of times 

the experiment is replicated. The statistical power generally increases with the 

increase of the magnitude of the true differential expression and with the increase in 

the number of experimental replicates. Sample size calculations are complex in 

microarray analysis. To precisely determine the number of replicates needed, an 

estimate of total variability in the system is needed. Ideally a pilot experiment, 



	
   154	
  

consisting of 2 replicates from 2 independent samples, should be performed. This 

allows estimation of variability in the experiment and allows sample size calculations 

to be performed. When there is homogeneous variability, there is a substantial benefit 

in using 3 rather than 2 microarrays, but not much benefit can be seen in increasing 

the sample size from 3 to 10 microarrays (Lee et al., 2000). A minimum of three 

experimental replicates is therefore accepted (Lee et al., 2000). When the variability 

is not homogenous however, a substantial improvement can be seen in each additional 

experimental replicate (Lee et al., 2000). Ultimately, real world factors, such as 

availability of human samples and cost of GeneChips, may also determine the number 

of replicates used.  

Quality control: The starting points with any microarray data analysis are quality 

control, normalization and filtering. The aim is to eliminate unreliable or 

uninformative data, and render the remainder comparable (Quackenbush, 2001). 

Quality is assessed at the level of RNA and chip data, with quality of RNA, efficiency 

of cDNA synthesis, signal to noise ratio, and hybridisation efficiency all being 

monitored, with cut offs enforced to exclude poorly performing chips (Hubank, 

2004). 

 

Normalisation: Since microarrays are subject to variation both at a biological, 

manufacturing and hybridisation level they require normalisation to reduce this 

variation.  There are multiple differing strategies for normalisation depending on the 

array platform and the particular question being addressed (Bolstad et al., 2003). 

Among the most commonly used methods for Affymetrix oligoarrays are the 

Affymetrix Microarray suite 5 method (MAS 5.0) (Affymetrix, 2002), the perfect 

match only model of Li and Wong (Li and Wong, 2001), and the Robust Multi-array 

average with (GCRMA) and without (RMA) correction for GC content of the oligo 

(Wu et al., 2003, Irizarry et al., 2003b).  No gold standard exists, and this field is the 

area of great debate (Lim et al., 2007). Some studies have concluded that the 

GCRMA / RMA method is superior in terms of sensitivity and specificity to MAS 5.0 

and the method of Li and Wong (Irizarry et al., 2003a). Other studies have found the 

Li-Wong method better at identifying networks of co-expressed genes (if large 

numbers of chips are used), with the GCRMA / RMA method better at detecting 

differentially expressed genes (Harr and Schlotterer, 2006). Ultimately normalisation 

is user defined but care should be taken at the outset when analyzing data. 



	
   155	
  

 

Filtering: The Affymetrix HG U133 Plus 2.0 Array contains about 54,000 probe sets, 

however not all these genes will be expressed at a biological meaningful level. This 

large number of genes expressed at a low level adds noise to the analysis and will 

reduce the sensitivity of detecting differentially expressed genes. Eliminating these 

genes in advance is called filtering. There are a number of techniques for filtering 

Affymetrix data including: filtering on call (present / absent), filtering on expression 

levels, filtering on confidence, and filtering on variance. Once filtered this leaves a 

smaller set of genes for analysis greatly improving the sensitivity and reducing the 

false discovery rate (FDR) (see unsupervised statistical analysis).  

 

Unsupervised Statistical Analysis: Microarrays produce an enormous amount of data, 

which is difficult to conceptualize. Human brains are not capable of processing 

numbers efficiently, and the purpose of unsupervised statistical analysis is therefore to 

structure the data into a form that is readable by the human eye. Using this rationale, 

Eisen et al. (Eisen et al., 1998) introduced the concept of heatmaps in 1998 for 

displaying the results of large scale gene expression analysis. In a heatmap, each row 

corresponds to a gene and each column to an array (or vice versa). The representative 

expression value is depicted as a coloured rectangle. The colour range is traditionally 

depicted from green for under expressed genes, over black to red, indicating genes 

with higher expression (although in advance analysis software, such as GeneSpring, 

these are user selected), although this is not universally accepted. Both the genes and 

samples are often rearranged in a way that facilitates the detection of structures. It is 

important to remember that the heatmap is mainly for illustrative purposes. 

Clustering: Clustering algorithms organize objects into a small number of groups, 

where the objects are more alike within one group than the objects across. With 

microarray data, these objects can either be genes or samples. Clustering techniques 

have become a frequently used standard in the genomic literature and represent an 

explorative form of data analysis (Slonim, 2002). They should be viewed as the start, 

rather than the end of a microarray study. The scope of clustering is the visualization 

of relationship and distance among the objects. Clustering relies on the principle that 

objects with unknown characteristics are assumed to share the properties of known 

objects that they are grouped with. 

Hierarchical clustering: Clustering techniques can be divided into hierarchical and 



	
   156	
  

non-hierarchical ones. The hierarchical clustering algorithm (Eisen et al., 1998) is 

started bottom-up, with all objects as individual clusters, which are then merged. In 

each step, the algorithm joins the two closest clusters according to a distance matrix 

and a linkage method. This produces a series of clusters, which is visualized by a 

dendrogram. The branch length between two objects represents their degree of 

similarity. 

K-means (non-hierarchical) clustering: The most widely used non-hierarchical 

clustering techniques for microarray data are k-means clustering (Hartigan and Wong, 

1979), and self-organising maps (Kohonen, 1982). Both require the number of 

clusters to be pre-specified by the user. The k-means algorithm tries to achieve 

maximum purity within and minimal similarity across its clusters. It is started by 

assigning the samples to random clusters and iteratively moving them around until the 

ratio of across cluster variation to within cluster variance can no longer be improved.  

Self-organising maps: Self-organising maps are a technique based upon neural 

networks. They usually begin with a dimension reduction step and detect similarities 

among objects by iteratively mapping similar input to similar regions of the output 

space. 

Dimension reduction: Dimension reduction tools try to summarise the massive 

amount of data from thousands of genes into a few representative variables. While 

this often greatly improves the overview and handling of the data, it usually still 

retains most of the information. The most widely used tool is principal components 

analysis (PCA) (Yeung and Ruzzo, 2001). Its goal is to find a sequence of linear 

combinations that are uncorrelated and capture as much of the variability in the full 

dataset as possible. While PCA can be successful in excluding redundant information, 

the biological interpretation of linear combinations obtained from thousands of genes 

is often difficult. 

 

Supervised Statistical Analysis: Supervised methods rely on a known, preliminary 

grouping of the sample, which guides through the statistical learning process. The two 

most important tasks are the identification of differentially expressed genes between 

the two conditions or phenotypes, as well as class prediction, i.e. the assignment of 

samples based on their gene expression patterns into known categories. 

Many microarray studies are interested in the identification of genes that change their 

expression in different populations, under different conditions or for different 
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phenotypes. The purpose of these studies is usually to identify targets for further 

experimentation, with the hope of discovering biomarkers or therapeutic targets. 

When genes are compared across two conditions then there are already well-

developed statistical machinery for this task, most commonly Student’s or Welsh’s t-

test, and its non-parametric companion, the Wilcoxon test (Forrester and Ury, 1969). 

However microarrays present a special challenge since as thousands of tests are 

performed simultaneously, the non-adjusted p values are too low, the so-called 

multiplicity problem. For example if 50000 targets are differentially tested, using a p-

value of less than 0.05, then 2500 targets will be identified as significant by chance 

alone. There are ‘ways out’, including the concept of the false discovery rate 

(Benjamini and Hochberg, 1995). It is an estimate of the fraction of truly altered 

genes among a set that is declared as significantly differential. Significance Analysis 

of Microarrays (SAM) (Tusher et al., 2001), is one of many other methods of 

controlling for false positives and negatives, the scope of which lies outside of this 

thesis. 

Class prediction: Class prediction is an important application of microarray 

technology. Classifiers may be built that can reliably indicate say tumour subtype, 

invasiveness potential, expected progression, and best treatment. Groups are defined 

on the basis of expression profiles or clinical distinction (or both) and then profiled 

using a learning algorithm such as Support Vector Machine or Nearest Neighbour 

analysis. This identifies the smallest set of genes that can reliably differentiate 

between the categories (Slonim, 2002). This type of analysis has not been undertaken 

in this study. 

 

Data Mining: Finally biological meaning has to be gained from the dataset for the 

study to have relevance. Whilst this might be at the single gene level, diseases are 

often the result in imbalance in pathways and functions.  

 

Comparative studies: Comparative studies across microarray platforms have inherent 

problems. Attempts to combine results across platforms assume that spot intensities or 

signal values for a given gene can be directly compared even though they represent 

different segments of the gene. That is, a spot for a given gene on a cDNA array 

represents the entire gene, while each spot for the same gene on an Affymetrix array 

represents a specific small section of the gene. Thus, combining results across 
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technologies using only spot intensities is problematic from a biological perspective 

because the measurements represent different physical quantities. Even if the average 

spot intensity on an Affymetrix array is used, it is not certain that this average spot 

intensity value is at all comparable to the spot intensity value of the gene on a cDNA 

array. It is not therefore recommended to directly compare different platforms, but 

they can be compared using a statistical approach, as employed by ONCOMINE™ 

(Rhodes et al., 2004). ONCOMINE™ is a web-based database aimed at collecting, 

standardizing, analyzing, and delivering cancer transcriptome data to the biomedical 

research community. Raw data is imported into the software, and after analysis by 

grouping (e.g. cancer vs. normal), each gene is analyzed for differential expression 

with either Student’s t-test (2 class analyses), or Pearson’s correlation (multiclass). To 

account for multiple hypothesis testing, Q values (estimated false discovery rates) are 

calculated. Further analyses possible include co expression analysis, and molecular 

concepts analysis.  

When the same chip type is analyzed between differing laboratories / experiments, 

then comparative analysis become easier, but it is important to have the raw data 

available so that previous downstream modification of the data (filtering, 

normalization etc) does not skew the results. This technique has been used by others 

to perform meta-analysis with publicly available microarray data from the Gene 

Expression Omnibus (GEO – a database repository of gene expression data and 

hybridization arrays) (Park and Stegall, 2007, Greco et al., 2008). CEL files from 

different experiments are imported directly into analysis software (e.g. GeneSpring) 

allowing subsequent analysis. The CEL file stores the results of the intensity 

calculations on the pixel values of the DAT file from the Affymetrix GeneChip. A 

single representative intensity value is stored per cell (feature) of the image. 
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