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In dynamic multiobjective optimization problems, the environmental parameters change over time, which makes the true pareto
fronts shifted. So far, most works of research on dynamic multiobjective optimization methods have concentrated on detecting the
changed environment and triggering the population based optimizationmethods so as to track the moving pareto fronts over time.
Yet, inmany real-world applications, it is not necessary to find the optimal nondominant solutions in each dynamic environment. To
solve this weakness, a novel method called robust pareto-optimal solution over time is proposed. It is in fact to replace the optimal
pareto front at each time-varying moment with the series of robust pareto-optimal solutions. This means that each robust solution
can fit for more than one time-varying moment. Two metrics, including the average survival time and average robust generational
distance, are present to measure the robustness of the robust pareto solution set. Another contribution is to construct the algorithm
framework searching for robust pareto-optimal solutions over time based on the survival time. Experimental results indicate that
this definition is a more practical and time-saving method of addressing dynamic multiobjective optimization problems changing
over time.

1. Introduction

Inmany practical fields, such as engineering design, scientific
computing, social economy, and network communication,
there exist a large number of complex optimization problems.
Particularly, many optimization problems contain multiple
objective functions and dynamic parameters that make the
objective functions change over time. Moreover, the number
of objective functions and constraints may also vary from
time to time. We call multiobjective optimization problems
with above uncertain factors as dynamic multiobjective
optimization problems (DMOPs). In this paper, we focus on
the DMOPs with continuously changed dynamic parameters.
Suppose 𝐹(�⃗�, �⃗�

𝑡
) = {𝑓

1
(�⃗�, �⃗�
𝑡
), 𝑓
2
(�⃗�, �⃗�
𝑡
), . . . , 𝑓

𝑀
(�⃗�, �⃗�
𝑡
)} is the

objective vector in DMOPs and �⃗�
𝑡
is the dynamic parameters

depending on 𝑡.The aim of DMOPs is to find the pareto front
(𝑃𝐹𝑡) approximating to the true pareto front of 𝐹(�⃗�, �⃗�

𝑡
) as

soon as possible for all of the dynamic environment.
Aiming at tracking the moving true pareto fronts over

time, dynamic multiobjective evolutionary optimization

algorithms (DMOEA) were proposed [1–12]. The universal
framework of DMOEA is presented in Algorithm 1. First of
all, we need to accurately judge whether the environment
has changed. It is the basic premise of using evolutionary
optimization methods to respond to the environmental
changes. The most common change-detection approach is
to reevaluate the detectors. The detectors can be the current
best solutions, a memory-based subpopulation, or a feasible
subpopulation [5].

Once the various environment parameters happened,
the new evolutionary optimization process was triggered.
Many evolutionary algorithms with good performances on
the static multiobjective optimization problems have been
introduced into theDMOPs one after another, such as genetic
algorithm [6], particle swarm algorithm [7], differential
evolution algorithm [8], quantum immune clonal coevolu-
tionary algorithm [9], and memetic algorithm [10]. As we
know, the goal of the static optimization problems is to make
the population gradually converge to optimal nondominant
solution. The diversity of the population becomes weakened
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Set 𝑡 = 0;
Initialize a population 𝑃

𝑡
;

Repeat
Detect the change of the environment;
if the environment varies then

Set 𝑡 = 0;
Reinitialize the population 𝑃

𝑡
;

end
Excute the evolutionary operations;
𝑡 = 𝑡 + 1;
Until termination criteria met

Algorithm 1: DMOEA (the universal framework).

during the optimization methods. How to improve and
maintain the evolutionary algorithm’s ability to adapt to
the various environment is a major challenge faced in the
dynamic evolutionary computation. In recent years, various
methods have been used to improve the diversity of the
population. Chen et al. [11] extended additional objectives
to deal with the DMOPs. Individual diversity is used as an
additional objective to provide the historical information.
Zhou et al. [12] proposed a population prediction strategy
to improve the DMOEA’s performance when the new envi-
ronment is detected. The reinitial population was formed by
a center point and a manifold. The track of center points
was preserved to train autoregressive model so as to predict
the center point in the new environment. A new coevo-
lutionary paradigm [2] combining competition with cooper-
ation was proposed to track the true pareto front in dynamic
environment.

The conventional methods are mostly to trigger the mul-
tiobjective optimization process after detecting the change
and then finish the evolution process as the following new
environment occurs. Yet, this is impractical in many real-
world optimization problems due to the following reasons.
These methods are not suitable for rapidly changing environ-
ments, in which the environmental parameters vary quickly
or frequently. Moreover, it is difficult to find the satisfied
pareto fronts before detecting the change of fitness landscape
because the methods are extremely time-consuming.

To address the above concern, several methods to find
robust pareto front of multiobjective optimization problems
with noise were presented by [13–17]. The emphasis is to seek
an insensitive robust pareto front instead of the global opti-
mal pareto front.The detailed definition about the robustness
is illustrated in Section 2. For dynamic scalar optimization
problems, robust optimization over time (ROOT) has been
defined clearly by Yu et al. [18]. The task for ROOT is to
find a sequence of robust solutions over time intervals. They
have acceptable qualities and are relatively insensitive to
the dynamic environment. By ROOT, the uncertainties in
the parameter space and their cumulative effect on objec-
tive space are considered simultaneously. Furthermore, Jin
et al. [19] gave a framework of ROOT which consists of
a population-based optimization algorithm, the database, a
fitness approximator, and a fitness predictor. A solution’s

robustness over time is estimated by both its past and its
future performances. Subsequently, Fu et al. [20] provided a
feasible algorithm in order to find robust optimal solutions
over time and gave a detailed definition of the survival time
and the average fitness. The robust solutions are expected to
have longer survival time or larger average fitness. Though
ROOT is easy to be realized and computed, it only fits for
dynamic scalar optimization problems.

For DMOPs, the detailed robust definition over time is
still an open issue. There were seldom relevant literatures
about this area. We will introduce this idea about ROOT into
DMOPs. The main contribution in this paper is to propose a
novel concept on robust pareto-optima over time (RPOOT)
to DMOPs that search for robust pareto-optimal solution set
for all dynamic environments. Subsequently, the population-
based multiobjective evolutionary algorithm is introduced to
find RPOOT in terms of the nondomination solutions’ robust
performance. The robustness is measured by the survival
time derived from the robust index given by Deb and Gupta
[14]. We believe it is a more practical way of addressing
continuously changed DMOPs.

The remainder of the paper is structured as follows.
Section 2 presents a brief introduction to research on exist-
ing robust optimization methods and analyzes the existing
problems in detail. Section 3 presents a class of DMOPs and
describes formally the definition of RPOOT. In Section 4,
the robustness and the performance metrics are defined
for RPOOT. Furthermore, a population-based evolutionary
algorithm to find robust pareto-optimal solutions over time is
presented. Section 5 provides a brief overview of the existing
benchmark functions forDMOPs and the experimental result
for RPOOT. Conclusions and future work are presented in
Section 6.

2. Related Works

In order to solve multiobjective optimization problems with
uncontrollable variations, Li et al. [13] presented a robust
multiobjective genetic algorithm by considering two objec-
tive functions: the fitness value 𝑓V, which measures a solu-
tion’s performance by a combined objective, and the robust-
ness index 𝜂. They investigated the trade-off between the
convergence and robustness of the nondominant solutions.
Furthermore, Li proposed the Outer-Inner optimization
structure. The outer subproblem was to simultaneously min-
imize the fitness value and to maximize the robustness index.
The inner subproblem calculates the radius 𝑅, which repre-
sents a solution’s robustness.

Deb and Gupta [14] extended an existing approach that
finds robust solutions for single-objective optimization prob-
lems to MOPs with dynamic parameters. They defined the
mean effective objective functions instead of the original
objective functions.

Consider a multiobjective optimization problem as fol-
lows:

min F (x) = (𝑓
1
(x) , 𝑓

2
(x) , . . . , 𝑓

𝑀
(x))

subject to x ∈ 𝑆.
(1)
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In order to avoid obtaining the global optimal solutions
which are quite sensitive to such variable perturbation in their
vicinity, the following two approaches are defined for robust
optimization by Deb and Gupta [14].

Definition 1 (multiobjective robust solution of type I
(MORS1)). A solution x∗ is called a multiobjective robust
solution of type I if it is the global feasible pareto-optimal
solution to the following multiobjective minimization prob-
lem (suppose a 𝛿-neighborhood of a solution x is 𝐵

𝛿
(x)):

Minimize Feff (x) = (𝑓eff
1
(x) , 𝑓eff

2
(x) , . . . , 𝑓eff

𝑀
(x))

subject to x ∈ 𝑆,
(2)

where 𝑓eff
𝑗
(x) is defined as follows:

𝑓
eff
𝑗
(x) = 1

𝐵𝛿 (�⃗�)


∫
y∈𝐵𝛿(x)

𝑓
𝑗
(y) 𝑑y. (3)

Definition 2 (multiobjective robust solution of type II
(MORS2)). A solution x∗ is called a multiobjective robust
solution of type II if it is the global feasible pareto-optimal
solution to the following multiobjective minimization prob-
lem:

Minimize F (x) = (𝑓
1
(x) , 𝑓

2
(x) , . . . , 𝑓

𝑀
(x)) ,

subject to

Feff (x) − F (x)
‖F (x)‖

≤ 𝜂,

x ∈ 𝑆.

(4)

MORS1 replaces the original objective function F(x)with
the effective objective function Feff(x). Where feff

𝑖
(x) is the

mean of 𝑖th objective function values in the vicinity of x.
In Definition 2, the original objective functions need to be
optimized. At the same time, the feasible solutions must
satisfy the constraint; that is, the objective function values
among neighboring solutions are limited to a user-defined
threshold 𝜂. Subsequently, the solution’s robustness is judged.
Two kinds of performances can not be analyzed at the
same time. Both definitions for robustness took the variable
perturbation into account. However, this is not DMOPs in
fact.

Furthermore, Barrico and Antunes [15] defined the
degree of robustness based on the solutions’ behavior in their
neighborhood in the decision space.The degree of robustness
was also used to evaluate the solutions’ behavior in the neigh-
borhood of the reference scenario in the space of the objective
functions’ coefficients [16]. The weakness of above definition
about the degree of robust is that the pareto-optimal set has
to be known in advance. To solve this problem, Cromvik
et al. [17] put forward a new definition for robustness index
and introduced the utility function to convert multiobjective
optimization problem into an approximation for a single
decision maker. In this method, the robust index cannot be
used as an objective during the optimization.

In a word, the abovemethods can solve themultiobjective
optimization problems with perturbation in the decision

space or the space of the objective function coefficients. How-
ever, only a robust pareto front meeting all multiobjective
optimization problems with the disturbance is found. In this
paper, we will discuss the robust solution set to a class of
DMOPs with changing parameters.

3. The Definition of RPOOT

In this paper, we focus on the DMOPs, in which the environ-
mental parameters continuously change over time and keep
stationary between two time-varying moments. Obviously,
the true pareto fronts shift from time to time. In other words,
the objective functions depending on 𝑡 are deterministic
during each changing stage. Hence, this kind of DMOPs with
continuous parameters can be discretized into a series of
multiobjective optimization problems (MOPs) at each time-
varying moment. Namely, the pareto fronts at each time-
varying moment are regarded as the basis of optimization.

Without loss of generality, dynamic multiobjective opti-
mization problem is defined as follows:

min 𝐹 (�⃗�, �⃗�
𝑡
) = {𝑓

1
(�⃗�, �⃗�
𝑡
) ,

𝑓
2
(�⃗�, �⃗�
𝑡
) , . . . , 𝑓

𝑀
(�⃗�, �⃗�
𝑡
)}

subject to �⃗� ∈ 𝑆,

(5)

where �⃗� stands for the decision variable vector, 𝑆 ⊂ 𝑅
𝑁

is the decision space, and 𝑅𝑀 is the objective space. 𝐹 :

(𝑆, 𝑡) → 𝑅
𝑀 consists of𝑀 objective functions 𝑓

𝑖
(�⃗�, 𝑡) (𝑖 =

1, 2, . . . ,𝑀). �⃗�
𝑡
is the time-depending parameter vector. 𝑡 ∈

[0, 𝑡end] represents the time. Suppose 1/𝑇 is the frequency for
dynamic environments. There may be𝑁 = ⌊𝑡end/𝑇⌋ different
time steps. DMOPs are divided into 𝑁 MOPs, denoted by
⟨𝐹(�⃗�, �⃗�

1
), 𝐹(�⃗�, �⃗�

2
), . . . , 𝐹(�⃗�, �⃗�

𝑁
)⟩.

Based on the definition of robust solutions’ index given by
Deb and Gupta [14] and the description of ROOT presented
by Yu et al. [18], we propose a novel concept, called robust
pareto-optimal over time (RPOOT) for DMOPs. It consists
of a sequence of robust pareto-optimal sets, denoted by
⟨𝑆
1

𝑃
, 𝑆
2

𝑃
, . . . , 𝑆

𝑙

𝑃
⟩ (1 ≤ 𝑙 ≤ 𝑁). Each robust pareto-optimal

solution 𝑆𝑖
𝑃
, 𝑖 = 1, 2, . . . , 𝑙 may not approximate to the true

pareto front at each period between changes but is relatively
closer to all true pareto fronts during at least two consecutive
time intervals.

Two hypotheses for RPOOT are that the environmen-
tal parameters change over time with stationary periods
𝑇 between changes and that the robust solution fits for
the consecutive changes during 𝑡 ∈ [𝑡

𝑙
, 𝑡
𝑢
] ⊆ [0, 𝑡end]. With

𝑙
𝛼
= ⌈𝑡
𝑙
/𝑇⌉ and 𝑢

𝛼
= ⌈𝑡
𝑢
/𝑇⌉, we obtain the problem

⟨𝐹 (�⃗�, �⃗�
𝑙𝛼
) , 𝐹 (�⃗�, �⃗�

𝑙𝛼+1
) , . . . , 𝐹 (�⃗�, �⃗�

𝑢𝛼
)⟩ , (6)

where �⃗�
𝑖
= �⃗�
𝑖−1
+ Δ�⃗�. The dynamics parameter Δ�⃗� is a

random variable obeying a certain distribution such as a
Gaussian distribution or a Uniform distribution. Let 𝑃(Δ�⃗�)
be the probability density function of Δ�⃗�. The nondominant
solutions’ performances are measured by the following two
definitions.
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Figure 1: The relationship of neighborhoods among robust solutions in objective space (for 2-dimension spaces and all functions to be
minimized).

Definition 3 (the average fitness). Consider

𝐹 (�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) = (𝑓

1
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) ,

𝑓
2
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) , . . . , 𝑓

ave
𝑀
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
)) ,

𝑓
𝑖
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
)

=
1

𝑢
𝛼
− 𝑙
𝛼
+ 1

𝑢𝛼−𝑙𝛼+1

∑

𝑗=1

∫𝑓
𝑖
(�⃗�, �⃗�
𝑙𝛼
+ (𝑗 − 1) Δ�⃗�) 𝑝 (Δ�⃗�) 𝑑Δ�⃗�.

(7)

Definition 4 (the variance of fitness). Consider

𝐷(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) = (𝛿

1
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) ,

𝛿
2
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) , . . . , 𝛿

𝑀
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
)) ,

𝛿
𝑖
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) =

1

𝑢
𝛼
− 𝑙
𝛼
+ 1

⋅

𝑢𝛼−𝑙𝛼+1

∑

𝑗=1

∫(𝑓
𝑖
(�⃗�; �⃗�
𝑙𝛼
+ (𝑗 − 1) Δ�⃗�)

− 𝑓
𝑖
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) )
2

⋅ 𝑝 (Δ�⃗�) 𝑑Δ�⃗�.

(8)

In essence, 𝐹 measures the average performance of each
objective function within the time interval [𝑡

𝑙
, 𝑡
𝑢
]. 𝐷 is the

degree of the performance influenced by changing the time-
varying environment.

Definition 5 (robustness). A solution �⃗�
𝑖
(𝑡) is called a robust

pareto solution if it is nondominant individuals satisfied to
the following DMOPs:

Minimize 𝐹 (�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) = (𝑓

1
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) , 𝑓
2
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
) , . . . ,

𝑓
𝑀
(�⃗�; 𝑙
𝛼
, 𝑢
𝛼
))

subject to max
1≤𝑗≤𝑀

𝛿
𝑗
(�⃗�
𝑖
; 𝑙
𝛼
, 𝑢
𝛼
) < 𝜂.

(9)

f2
S1p

PF2

PF1

PF3

f1

Figure 2: The definition of robust pareto-optimal set in objective
space.

In fact, all solutions composed of robust pareto-optimal
solution sets must be compromise. Subsequently, the non-
dominant relationship is defined based on the expected fit-
ness vector over time. Define �⃗�

𝑖
(𝑡) ≻ �⃗�

𝑗
(𝑡) if∀𝑙,𝑓

𝑙
(�⃗�
𝑖
; 𝑙
𝛼
, 𝑢
𝛼
) ≤

𝑓
𝑙
(�⃗�
𝑗
; 𝑙
𝛼
, 𝑢
𝛼
) and ∃𝑘, 𝑓

𝑘
(�⃗�
𝑖
; 𝑙
𝛼
, 𝑢
𝛼
) < 𝑓
𝑘
(�⃗�
𝑗
; 𝑙
𝛼
, 𝑢
𝛼
) is satisfied.

�⃗�
𝑖
(𝑡) and �⃗�

𝑗
(𝑡) are compromise, if ∃𝑙, 𝑓

𝑙
(�⃗�
𝑖
; 𝑙
𝛼
, 𝑢
𝛼
) > 𝑓

𝑙
(�⃗�
𝑗
;

𝑙
𝛼
, 𝑢
𝛼
) and ∀𝑘 ̸= 𝑙, 𝑓

𝑘
(�⃗�
𝑖
; 𝑙
𝛼
, 𝑢
𝛼
) ≤ 𝑓

𝑘
(�⃗�
𝑗
; 𝑙
𝛼
, 𝑢
𝛼
). Conse-

quently, we define robust pareto-optimal solutions as 𝑆𝑡
𝑃
=

{�⃗�
∗
(𝑡) | ¬∃�⃗�

𝑖
(𝑡) ≻ �⃗�

∗
(𝑡)) and max

1≤𝑗≤𝑀
𝛿
𝑗
(�⃗�
𝑖
; 𝑙
𝛼
, 𝑢
𝛼
) < 𝜂}.

Obviously, RPOOT takes both the approximation and the
robustness into account.

In Figure 1, the parameters vary in different periods,
which map the uncertain area in the objective space. Obvi-
ously, �⃗�

3
(𝑡) ≻ �⃗�

2
(𝑡) and �⃗�

3
(𝑡) ≻ �⃗�

1
(𝑡). �⃗�
1
(𝑡) and �⃗�

2
(𝑡) are

nondominated. However, �⃗�
2
(𝑡) is not robust due to its large

variance. As shown in Figure 2, the true pareto-optimal sets
for three consecutive time-varying periods are 𝑃𝐹

1
, 𝑃𝐹
2
, 𝑃𝐹
3

plotted by the dash lines. 𝑆1
𝑝
plotted by real line in Figure 2 is

the robust pareto-optimal solution. Obviously, 𝑆1
𝑝
is not the

best pareto-optimal set during this period but the satisfied
pareto front over time.
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4. The Robust Solutions’ Performance

In this paper, a robust pareto-optimal solution set needs not
only to approximate to the true pareto front during each
stage to the largest extent but also to satisfy the requirements
of robustness. We would like to make a clear distinction
between the definition of robustness for solutions and the
approximation of each solution.

4.1. The Robustness. For DMOPs, the task of the traditional
optimization methods is to find the pareto-optimal solutions
after detecting the new environment.This is time-consuming.
If the pareto-optimal front can meet the requirements of
more than one kind of environment in a certain accuracy,
the cost for search will be less. Consequently, the robustness
has two means. One is the insensitivity to the fluctuation
parameters. Deb and Gupta [14] has presented a general
definition based on 𝛿-neighborhood perturbation. The other
is the survival time, which reflects how many consecutive
changed environments this solution can fit for. Based on the
above two aspects, corresponding metric called the survival
time is proposed to measure the robustness in DMOPs.

Suppose �⃗�(𝑡) is a nondomination solution at time 𝑡. The
robustness of �⃗�(𝑡) is defined by maximum survival time
𝐿starting from time 𝑡 when all fitness values of �⃗�(𝑡) from 𝑡
to 𝑡 + 𝐿 belong to 𝜂-neighborhood of 𝐹(�⃗�(𝑡), 𝛼

𝑡
).

Define the survival time of solution’s robustness as 𝐿;

𝐿 (𝑆
𝑡

𝑃
, 𝜂) = min

⃗𝑥(𝑡)∈𝑆
𝑡

𝑃

𝐿
𝑠
(�⃗� (𝑡) , 𝜂) , (10)

𝐿
𝑠
(�⃗� (𝑡) , 𝜂)

=max{𝑙



𝐹 (�⃗� (𝑡) , �⃗�

𝑡+𝑖
)−𝐹 (�⃗� (𝑡) , �⃗�

𝑡
)


𝐹 (�⃗� (𝑡) , �⃗�𝑡)


≤𝜂, ∀𝑖, 1 ≤𝑖 ≤𝑙 } .

(11)

𝐿
𝑠
(�⃗�(𝑡), 𝜂) stands for the survival time of any optimal

solution �⃗�(𝑡) in robust pareto-optimal set 𝑆𝑖
𝑃
. 𝜂 is the user-

defined threshold, which is the key parameter having a
direct impact on 𝐿. The larger 𝜂 means the tolerance to
the varieties of the fitness is better. It makes 𝐿 larger. ‖ ⋅
‖ operator is used to measure the distance between the
current fitness values and the future predictive fitness values.
Here, the Euclidean norm is used. But any other suitable
norm can also be adopted. 𝐹(�⃗�, 𝛼

𝑡+𝑖
) is the approximated

fitness instead of the real fitness value by a predictor [18].
Because the time-depending parameters vary randomly, each
nondominated solution’s real fitness values for each time-
varying environment cannot be all evaluated accurately. So
we need a prediction method to approximate the fitness in
the future dynamic environments. As shown in Figure 3, if
the robust pareto-optimal solutions at time 𝑡 are satisfied
during the consecutive time-varying moments from 𝑡 to
𝑡 + 𝐿, the fitnesses 𝐹(�⃗�, �⃗�

𝑡+1
), 𝐹(�⃗�, �⃗�

𝑡+2
), . . . , 𝐹(�⃗�, �⃗�

𝑡+𝐿
) are all

constricted to the 𝜂-neighborhood of 𝐹(�⃗�, �⃗�
𝑡
).

f2

f1

𝜂

F(
→
x , 𝛼t+i)

F(
→
x , 𝛼t+L)

F(
→
x , 𝛼t+2)

F(
→
x , 𝛼t+1)

F(
→
x , 𝛼t)

Figure 3: The definition of robust survival time in the neighbor-
hood.

4.2. The Average Fitness Function. Generally, the integral
part of (7) is not easy to be calculated since there is little
knowledge to get the accurate probability density function. So
we take the following average performance as the robustness
of solution over the considered time interval.

We define 𝑆𝑡
𝑃
as a robust pareto-optimal solution over

time if it is the global feasible pareto-optimal solution to the
following multiobjective optimization problem:

min 𝐹ave (�⃗�, �⃗�
𝑡
) = {𝑓

ave
1
(�⃗�, �⃗�
𝑡
) ,

𝑓
ave
2
(�⃗�, �⃗�
𝑡
) , . . . , 𝑓

ave
𝑀
(�⃗�, �⃗�
𝑡
)}

𝑓
ave
𝑖
(�⃗�, �⃗�
𝑡
) =

1

𝐿 + 1

𝐿

∑

𝑗=0

𝑓
𝑖
(�⃗�, �⃗�
(𝑡+𝑗)
) ,

(12)

where 𝑓ave
𝑖
(�⃗�, �⃗�
𝑡
) stands for the average fitness value of 𝑖th

objective during the consecutive time-varyingmoments from
𝑡 to 𝑡 + 𝐿. Subsequently, 𝐹ave(�⃗�, �⃗�

𝑡
) measures the average

performance of 𝑆𝑡
𝑃
in each objective during the time interval

𝐿. The smaller average fitness value means that 𝑆𝑡
𝑃
is more

approximate to the true pareto fronts of corresponding time-
varying environments.

In aword, the average survival time reflects the robustness
of 𝑆𝑡
𝑃
on the time space; that is, how many time-varying

environments it fits for. The average fitness value measures
how the pareto-optimal fronts approximate to the true pareto
fronts in the objective space during these dynamic stages.
Consequently, a robust pareto-optimal solution must be the
one with the minimum average fitness values.

4.3. The Population-Based Optimization Method. Taking
above metrics as the objectives, a novel framework to solve
RPOOT problems is constructed for DMOPs. In the time-
varyingmoments,manypopulation-based evolutionary algo-
rithms may be adopted to find a set of robust pareto-optimal
fronts over time, denoted by 𝑆1

𝑃
, 𝑆
2

𝑃
, . . . , 𝑆

𝑙

𝑃
.

It is worth noting that we must take into account the
future performance of all objectives during the calculation of
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Set 𝑡 = 1;
Set evolutionary generation 𝑔 = 0;
Initialize a population 𝑃

𝑡
;

Evaluate the fitness value and survival time 𝐿 of every individual in 𝑃
𝑡
;

Caculate the average fitness value 𝐹ave by formula (12);
Repeat
𝑡
0
= 𝑡;

Detect change in the environment landspaces;
if the environment changes then

Set 𝑡 = 𝑡 + 1;
end
if 𝑡 = 𝑡

0
+ 𝐿

Reinitialize the population 𝑃
𝑡
;

Evaluate the fitness value and survival time 𝐿 of every individual in 𝑃
𝑡
;

Caculate the average fitness value 𝐹ave;
Excute evolutionary operations;

else
Optimize the 𝑡

0
th MOP by MOEA/D;

End
𝑔 = 𝑔 + 1;

Until termination criteria met

Algorithm 2: EA for RPOOT (a framework finding RPOOT).

robust survival time and robustness performance.We assume
that future performance can be estimated by a database and
a predictor. The database is used to store historical data,
and the task of the predictor is to estimate a solution’s
future performances [19]. A framework of population-based
optimization algorithm for RPOOT is presented as following
Algorithm 2. By thismethod, the robust pareto solution could
not only approximate to the true pareto front as close as
possible but also fit for more than one dynamic environment.

4.4. TheMeasurement of Algorithm Performance. It is impor-
tant to measure the performance of the RPOOT algorithm.
We should not only consider the robustness of the robust
pareto-optimal solutions but also consider the accuracy of
the solutions to the true pareto front. On the one hand, the
average survival time measures the solutions’ robustness on
the time scale. On the other hand, the average robust metric
measures the approximation to the true pareto front in the
objective space.

4.4.1. The Average Survival Time. In DMOPs, the robustness
of the robust optimal pareto solutions is measured by the
average survival time. Moreover, the algorithms will be
compared across the whole time period 𝑡 = 1, 2, . . . , 𝑁.
Based on the robustness defined in (11), the robustness of the
algorithm performance is defined as follows:

𝐿 =
1

𝑁

𝑁

∑

𝑡=1

𝐿 (𝑆
𝑡

𝑝
, 𝜂) . (13)

𝐿(𝑆
𝑡

𝑝
, 𝜂) is the robustness survival time of the non-

domination solutions obtained from the algorithm during

the timeline. Obviously, the longer the average survival time
is, the better the robustness of solutions is. The robustness of
optimal parato front on the time scale can be reflected by the
average survival time. Moreover, 𝐿 depends on the threshold
𝜂. Therefore, a more exhaustive analysis is necessary for the
robust optimal pareto solutions under different 𝜂.

4.4.2. The Average Robust Generational Distance. Thismetric
reflects the quality of the robust nondominant solution sets.
The general distance (GD) [21] indicates how close the
obtained PFs are to the true pareto front in multiobjective
optimization problems. Furthermore, the inverted genera-
tional distance (IGD) [21] is used to assess the approximation
performance of the algorithms. IGD measures both the
diversity and the convergence of the population. In our
experimental studies, robust generational distance (RGD)
and robust inverted generational distance (RIGD) indicate
the average distance between each robust optimal pareto
front and the true pareto fronts within its survival time.
Suppose 𝑙 is the size of robust nondominant pareto solution
set during the whole time interval. The RGD and RIGD
metrics are defined as follows:

RGDRPOOT
=
1

𝑙

𝑙

∑

𝑖=1

MGD (𝑖) ,

MGD (𝑖) = max
𝑘=𝑡𝑖 ,...,𝑡𝑖+𝐿𝑡𝑖

GD (𝑘) ,

RIGDRPOOT
=
1

𝑙

𝑙

∑

𝑖=1

MIGD (𝑖) ,

(14)

MIGD (𝑖) = max
𝑘=𝑡𝑖 ,...,𝑡𝑖+𝐿𝑡𝑖

IGD (𝑘) , (15)
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where 𝑡
𝑖
stands for the time step of robust nondomi-

nant solution set. 𝐿
𝑡𝑖

is their survival time. GD(𝑘) =

(1/|𝑃
𝑘
|) ∑]∈𝑃𝑘 𝑑(𝑃𝐹

𝑘
, ])) and IGD(𝑘) = (1/|𝑃𝐹𝑘|) ∑]∈𝑃𝐹𝑘 𝑑(],

𝑃
𝑘
). 𝑃𝐹𝑘 is a set of uniformly distributed optimal solutions in

the true 𝑃𝐹 at t; 𝑃𝑡 is the solutions obtained at 𝑡. 𝑑(𝑃𝐹𝑘, ]) =
min
𝑢∈𝑃𝐹

𝑘√∑
𝑚

𝑗=1
(𝑓
(𝑢)

𝑗
− 𝑓
(V)
𝑗
)
2 is the distance between ] and

𝑃𝐹
𝑘. 𝑑(], 𝑃𝑘) = min

𝑢∈𝑃
𝑘√∑
𝑚

𝑗=1
(𝑓
(V)
𝑗
− 𝑓
(𝑢)

𝑗
)
2 is the distance

between ] and 𝑃𝑘. |𝑃𝑘| and |𝑃𝐹𝑘| are the cardinalities of 𝑃𝑘
and 𝑃𝐹𝑘. In our experiments, we select 100 evenly distributed
solutions in 𝑃𝐹𝑠.

5. Analysis of the Experimental Results

In this section, eight dynamic multiobjective benchmark
functions are adopted in the experiments. Simulation results
and further analysis on solutions’ performance are conducted
in Section 5.2.

5.1. Benchmark Functions. Eight dynamic multiobjective
benchmark functions are adopted to test whether or not the
algorithm can find robust pareto-optimal solutions set. The
first five functions are FDA1-FDA5 presented by Farina et al.
[3]. The other three functions are DMOP1, DMOP2, and
DMOP3 [22]. FDA4 and FDA5 contain three objectives, and
the others include two objectives. 𝜏 is the generation counter.
𝜏
𝑡
is the number of iterations under the time window 𝑡. 𝑛

𝑡

is the number of distinct steps under 𝑡, which controls the
distance between two consecutive PSs.

The first type of benchmark are FDA1, FDA4, and
DMOP3. For Type I problem, only the pareto sets (PSs) in
the decision space dynamically change over time. However,
the corresponding pareto fronts (PFs) in the objective space
do not change with time. At any moment, the optimal pareto
fronts are respectively 𝑓

2
= 1 − √𝑓

1
, 𝑓2
1
+ 𝑓
2

2
+ 𝑓
2

3
= 1, and

𝑓
2
= 1−√𝑓

1
. FDA2 andDMOP1 belong to Type III problems,

in which only the PFs in the objective space change while
the PSs in the decision space remain the same. The optimal
pareto front of FDA2 is 𝑓

2
= 1 − 𝑓

(0.75+0.7 sin(0.5𝜋𝑡))−1
1

that
changes from a convex to a nonconvex shape. DMOP1 has
a convex optimal pareto front 𝑓

2
= 1 − 𝑓

(1.25+0.75 sin(0.5𝜋𝑡))
1

.
FDA3, FDA5, and DMOP2 belonging to Type II problems
have changing PSs and PFs: 𝑓

2
= 1 − 𝑓

(0.75+0.7 sin(0.5𝜋𝑡))−1
1

,
𝑓
2

1
+ 𝑓
2

2
+ 𝑓
2

3
= (1 + 𝐺(𝑡))

2, 𝑓
2
= 1 − 𝑓

(1.25+0.75 sin(0.5𝜋𝑡))
1

.
The definitions of these dynamic multiobjective benchmark
functions are summarized in Table 1. Their true PFs when
𝑡 = 5, 10, 20, 23, 26, 34 are shown in Figure 4.

In this paper, we adopt a multiobjective evolutionary
algorithm based on decomposition (MOEA/D) [21] to track
the moving optimal pareto front over time. In MOEA/D,
the penalty-based boundary intersection (PBI) approach is
used as the surrogate model. For the benchmark functions,
the population size is 100. In all experiments, time-varying
moment 𝑡 alters with the evolutionary generation and is
associated with the parameter 𝜏

𝑡
. The larger 𝜏

𝑡
means that

the environmental parameters change more infrequently and

multiobjective optimization algorithms can spendmore suffi-
cient time tracking the newpareto front.Otherwise, the less 𝜏

𝑡

makes multiobjective optimization algorithm triggered after
detecting the new environment, hardly finding the satisfied
pareto solutions closed to the true pareto front during the
limited iterations. Now we discuss the algorithm perfor-
mances under different frequencies. As shown in Figure 5,
when the environment changes every 20 generations, the
algorithm can track dynamic pareto-optimal fronts better.
But within 5 generations, the satisfied PFs for the new
environment are difficultly obtained. As a result, for all
experiments, 𝜏

𝑡
= 20. The corresponding optimal pareto

fronts of each benchmark function gotten by MOEA/D are
shown below in Figure 6.

5.2. Simulation Results and Analysis. In this section, two
groups of experiments have been done. In the first group, the
optimal nondomination solutions starting from the time 𝑡

0

are obtained. If the minimum survival time of this moment
is 𝐿, robust pareto solution fits for the environment from 𝑡

0

to 𝑡
0
+ 𝐿. The process is repeated until the last environment

occurs. The purpose of the second group of experiments is
to obtain each robust optimal pareto front, respectively, for
RPOOT at 100 time-varying moments.

5.2.1. The Effect of Neighborhood Size 𝜂. The neighborhood
size 𝜂 directly influences the evaluation criterion for the
robust optimal pareto fronts. In the first group of exper-
iments, we compare and analyze the performances of the
robust optimal pareto fronts under different thresholds 𝜂.
The numbers of robust pareto fronts (NRPFs) on 100 time-
varying moments are listed in Table 2. The statistical average
results of RGD and RIGD on eight benchmarks over 15 runs
also can be found in Table 3 under different neighborhood
sizes 𝜂.

As shown in Tables 2 and 3, with the increasing of the
neighborhood size 𝜂, less robust pareto fronts are contained
in thewhole period. Itmeans that the robustness of RPOOT is
better. At the same time, their average inverted generational
distances become larger, which means that the convergence
of the RPOOT is worse. For each benchmark function, the
standard errors of NRPF, RGD, and RIGD over 15 runs are
given in Tables 2 and 3.Themeans and standard errors shown
in these tables indicate that the stability of RPOOTs is good
enough. We choose 𝜂 = 0.4 in the following experiments.
The robust optimal pareto fronts obtained fromMOEA/D are
shown in Figure 7.

From Figures 7(a)–7(h) and Table 4, we find that the GD
and IGD of trackingmultiobjective (TMO) algorithm are less
than RGD and RIGD of RPOOT algorithm. But the number
of robust pareto solution sets of RPOOT is far less than 100.

5.2.2.The Average Survival Time. The second group of exper-
iments record each robust pareto front in RPOOT at each
time-varying moment. Independent 15-time run is done
for each benchmark. The results of the second group of
experiments are plotted in Figure 8. It can be seen from
Figure 8 that the average survival time of the robust pareto
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Table 1: The dynamic benchmark functions.

Benchmark function Definition Type

FDA1

𝑓
1
(𝑋I) = 𝑥1

Type I

𝑓
2
= 𝑔 ⋅ ℎ

𝑔 (𝑋II) = 1 + ∑

𝑥𝑖∈𝑋II

(𝑥
𝑖
− 𝐺 (𝑡))

2

ℎ(𝑓
1
, 𝑔) = 1 − √

𝑓
1

𝑔

𝐺(𝑡) = sin(0.5𝜋𝑡), 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where:𝑚 = 10,𝑋I = (𝑥1) ∈ [0, 1]; 𝑋I = (𝑥2, . . . , 𝑥𝑚) ∈ [−1, 1]

FDA2

𝑓
1
(𝑋I) = 𝑥1

Type III

𝑓
2
= 𝑔 ⋅ ℎ

𝑔(𝑋II) = 1 + ∑

𝑥𝑖∈𝑋II

𝑥
2

𝑖

ℎ(𝑓
1
, 𝑔) = 1 − (

𝑓
1

𝑔
)

𝐻(𝑡)
−1

𝐻(𝑡) = 0.75 + 0.7 sin(0.5𝜋𝑡), 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where:𝑋I = (𝑥1) ∈ [0, 1]; 𝑋II ∈ [−1, 1], |𝑋II| = 15

FDA3

𝑓
1
(𝑋I) =

𝑛

∑

𝑥𝑖∈𝑋I

𝑥
𝐹(𝑡)

𝑖

Type II
𝑓
2
= 𝑔 ⋅ ℎ

𝑔(𝑋II) = 1 + 𝐺(𝑡) + ∑

𝑥𝑖∈𝑋II

(𝑥
𝑖
− 𝐺 (𝑡))

2

ℎ(𝑓
1
, 𝑔) = 1 − √

𝑓
1

𝑔

𝐺(𝑡) = |sin (0.5𝜋𝑡)|

𝐹(𝑡) = 10
2 sin(0.5𝜋𝑡), 𝑡 =

1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where: 𝑋I
 = 1,

𝑋II
 = 9, 𝑋I ∈ [0, 1]; 𝑋II ∈ [−1, 1]

FDA4

𝑓
1
(𝑥) = (1 + 𝑔) cos(0.5𝜋𝑥

1
) cos(0.5𝜋𝑥

2
)

Type I

𝑓
2
(𝑥) = (1 + 𝑔) cos (0.5𝜋𝑥

1
) sin(0.5𝜋𝑥

2
)

𝑓
3
(𝑥) = (1 + 𝑔) sin(0.5𝜋𝑥

1
)

𝑔(𝑥) =

𝑛

∑

𝑖=3

(𝑥
𝑖
− 𝐺 (𝑡))

2

𝐺(𝑡) = |sin(0.5𝜋𝑡)|, 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where: 𝑥
𝑖
∈ [0, 1], 𝑛 = 12

FDA5

𝑓
1
(𝑥) = (1 + 𝑔) cos (0.5𝜋𝑦

1
) cos(0.5𝜋𝑦

2
)

Type II

𝑓
2
(𝑥) = (1 + 𝑔) cos (0.5𝜋𝑦

1
) sin(0.5𝜋𝑦

2
)

𝑓
3
(𝑥) = (1 + 𝑔) sin(0.5𝜋𝑦

1
)

𝑔(𝑥) = 𝐺(𝑡) +

𝑛

∑

𝑖=3

(𝑥
𝑖
− 𝐺 (𝑡))

2, 𝑦
𝑖
= 𝑥
𝐹(𝑡)

𝑖

𝐺 (𝑡) = |sin (0.5𝜋𝑡)|, 𝐹(𝑡) = 1 + 100 sin4(0.5𝜋𝑡), 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where: 𝑥
𝑖
∈ [0, 1], 𝑛 = 12

DMOP1

𝑓
1
(𝑥
1
) = 𝑥
1

Type III
𝑓
2
= 𝑔 ⋅ ℎ

𝑔(𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) = 1 + 9

𝑚

∑

𝑖=2

𝑥
2

𝑖

ℎ(𝑓
1
, 𝑔) = 1 − (

𝑓
1

𝑔
)

𝐻(𝑡)

𝐻(𝑡) = 0.75 sin(0.5𝜋𝑡) + 1.25, 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where:𝑚 = 10, 𝑥
𝑖
∈ [0, 1], ∀𝑖 = 1, 2, . . . , 𝑚
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Table 1: Continued.

Benchmark function Definition Type

DMOP2

𝑓
1
(𝑥
1
) = 𝑥
1

Type II

𝑓
2
= 𝑔 ⋅ ℎ

𝑔(𝑥
2
, . . . , 𝑥

𝑚
, 𝑡) = 1 +

𝑚

∑

𝑖=2

(𝑥
𝑖
− 𝐺 (𝑡))

2

ℎ(𝑓
1
, 𝑔) = 1 − (

𝑓
1

𝑔
)

𝐻(𝑡)

𝐻(𝑡) = 0.75 sin(0.5𝜋𝑡) + 1.25, 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where:𝑚 = 10, 𝑥
𝑖
∈ [0, 1], ∀𝑖 = 1, 2, . . . , 𝑚

DMOP3

𝑓
1
(𝑋) = 𝑥

1

Type II

𝑓
2
= 𝑔 ⋅ ℎ

𝑔(𝑋, 𝑡) = 1 + 9

𝑛

∑

𝑖=2

(𝑥
𝑖
− 𝐺(𝑡))

2

ℎ(𝑋, 𝑡) = 1 − √
𝑓
1

𝑔

𝐺(𝑡) = sin(0.5𝜋𝑡), 𝑡 =
1

𝑛
𝑡

⌊
𝜏

𝜏
𝑡

⌋

where:𝑋 ∈ [0, 1] × [−1, 2]𝑛−1,𝑚 = 10

Table 2: Comparison of the number of robust pareto fronts (NRPFs) on 100 time-varying moments under different 𝜂.

Functions Measures 𝜂

𝜂 = 0.1 𝜂 = 0.2 𝜂 = 0.3 𝜂 = 0.4 𝜂 = 0.5 𝜂 = 0.6 𝜂 = 0.7 𝜂 = 0.8

FDA1 NRPFs 𝜇 70.9 61 50 37.4 35.9 30 33.1 30
𝜎 0.3162 0 0 0.5164 0.3162 0 0.7379 0

FDA2 NRPFs 𝜇 40 19 9 9.4 1 1.8 2 1.6
𝜎 0 0 0 1.2649 0 0.4216 0 0.5164

FDA3 NRPFs 𝜇 83.4 69 64 51.2 45.5 35.5 34.7 30.8
𝜎 0.5164 0 0 0.6325 1.5811 0.9718 0.4830 0.6325

FDA4 NRPFs 𝜇 79 69.5 56 42.4 36.1 33.4 28.9 29.9
𝜎 0 1.5811 0 1.2649 1.4491 1.3499 0.3162 0.3162

FDA5 NRPFs 𝜇 90 90 70 58.5 50 61.7 45 35
𝜎 0 0 0 1.0801 0 0.4830 0 0

DMOP1 NRPFs 𝜇 24.8 5.9 6 1 1 1 1 1
𝜎 0.6325 1.4491 0 0 0 0 0 0

DMOP2 NRPFs 𝜇 76.4 68 54.5 39.3 32.3 32.8 29.2 28
𝜎 1.2649 0 0.7071 1.1595 0.9487 0.6325 0.7888 0

DMOP3 NRPFs 𝜇 90 89.6 84.6 78.8 80 80 80 79.8
𝜎 0 0.5164 0.6992 1.0328 0 0 0 0.6325

front at each time-varying moment is far larger than 1. The
results of the average survival time listed in Table 5 are all far
longer than changing time 100.

6. Conclusions

Dynamic multiobjective optimization problems with chang-
ing parameters widely exist in real life. The aim of

the traditional optimization algorithms is to track the optimal
pareto solution set after detecting the environment change
efficiently. These algorithms may not obtain the satisfied
nondominant solutions between two time-varyingmoments.
In this paper, we proposed a new perspective for solving
DMOPs with consecutive time-varying periods. Its goal is to
find the robust pareto solution set over time.Three contribu-
tions are contained in RPOOT. At first, the detailed concept
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Figure 4: The true pareto fronts of benchmark functions.
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Figure 7: The robust optimal pareto fronts of benchmark functions.
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Figure 8: Average survival time of benchmark functions.
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Table 3: Comparison of the robust generation distances of robust optimal pareto fronts under different 𝜂.

Functions Measures 𝜂

𝜂 = 0.1 𝜂 = 0.2 𝜂 = 0.3 𝜂 = 0.4 𝜂 = 0.5 𝜂 = 0.6 𝜂 = 0.7 𝜂 = 0.8

FDA1
RGD 𝜇 0.0064 0.0067 0.0066 0.0054 0.0050 0.0046 0.0050 0.0043

𝜎 0.0014 0.0010 0.0013 6.2714𝑒 − 4 4.1899𝑒 − 4 7.0798𝑒 − 4 2.2421𝑒 − 4 1.2005𝑒 − 4

RIGD 𝜇 0.1258 0.1028 0.1079 0.0095 0.0096 0.0100 0.0094 0.0077
𝜎 0.1012 0.0996 0.0623 0.0021 0.0025 0.0050 0.0022 0.0016

FDA2
RGD 𝜇 0.0493 0.0802 0.2016 0.2044 0.2147 0.2359 0.2510 0.2397

𝜎 0.0082 0.0055 0.0256 0.0186 3.3963𝑒 − 6 0.0128 0.0148 0.0236

RIGD 𝜇 0.0486 0.0822 0.2416 0.2438 0.2613 0.2675 0.2772 0.2762
𝜎 0.0113 0.0049 0.0388 0.0316 8.0722𝑒 − 7 0.0037 0.0148 0.0140

FDA3
RGD 𝜇 0.0438 0.0611 0.0689 0.1205 0.3034 0.3363 0.2115 0.3202

𝜎 0.0183 0.0039 0.0032 0.0084 0.1128 0.1459 0.0240 0.0984

RIGD 𝜇 0.1346 0.1342 0.1308 0.1544 0.3095 0.3452 0.2337 0.3341
𝜎 0.0714 0.0608 0.0742 0.0579 0.1003 0.1544 0.0299 0.1021

FDA4
RGD 𝜇 0.3935 0.3898 0.3886 0.3879 0.3874 0.3877 0.3877 0.3869

𝜎 0.0045 0.0030 7.0914𝑒 − 4 4.6005𝑒 − 4 0.0017 8.8703𝑒 − 4 4.4630𝑒 − 4 5.2637𝑒 − 4

RIGD 𝜇 0.0699 0.0573 0.0520 0.0543 0.0497 0.0476 0.0496 0.0424
𝜎 0.0140 0.0131 0.0021 0.0043 0.0049 0.0033 0.0051 0.0023

FDA5
RGD 𝜇 0.7700 0.7703 0.7698 0.7761 0.7640 0.7650 0.7700 0.7637

𝜎 0.0055 0.0061 0.0059 0.0172 0.0066 0.0060 0.0073 0.0074

RIGD 𝜇 0.0897 0.0879 0.2593 0.3619 0.1659 0.1737 0.1984 0.1973
𝜎 0.0063 0.0044 0.0506 0.1683 0.0020 0.0048 0.0019 0.0018

DMOP1
RGD 𝜇 0.0564 0.0913 0.1195 0.1523 0.1523 0.1523 0.1523 0.1523

𝜎 0.0232 0.0080 0.0093 2.2854𝑒 − 6 3.8348𝑒 − 6 3.1345𝑒 − 6 3.8348𝑒 − 6 3.4498𝑒 − 6

RIGD 𝜇 0.0580 0.0845 0.1240 0.1564 0.1564 0.1564 0.1564 0.1564
𝜎 0.0235 0.0083 0.0084 1.0404𝑒 − 7 1.3379𝑒 − 7 1.2821𝑒 − 7 1.3379𝑒 − 7 1.7569𝑒 − 7

DMOP2
RGD 𝜇 0.0606 0.0611 0.0375 0.1255 0.0509 0.0634 0.0871 0.1198

𝜎 0.0269 0.0193 0.0027 0.0671 0.0033 0.0134 0.0178 0.0594

RIGD 𝜇 0.1779 0.1211 0.0789 0.1335 0.0518 0.0674 0.0866 0.1270
𝜎 0.1300 0.0775 0.0553 0.0743 0.0030 0.0114 0.0218 0.0667

DMOP3
RGD 𝜇 0.0093 0.0098 0.0104 0.0101 0.0129 0.0107 0.0099 0.0107

𝜎 7.9206𝑒 − 004 0.0011 0.0022 0.0025 0.0063 0.0012 0.0013 0.0022

RIGD 𝜇 0.1525 0.1847 0.1824 0.1465 0.1866 0.1517 0.2238 0.1993
𝜎 0.0721 0.0407 0.0711 0.0508 1.1782𝑒 − 6 0.0642 0.1010 0.1035

of the robust pareto-optimal over time is pointed out by the
robustness definition of nondomination solution in the time
scale. Secondly, we developed the new definition survival
time which means how many time-varying environments it
fits for. Thirdly, a framework for finding robust pareto fronts
is proposed, and a MOEA/D is employed as an optimizer.
Lastly, eight dynamic multiobjective benchmark functions
are adopted to indicate the feasibility of the algorithm. From
the simulation results, we receive that the robustness of
RPOOT depends on the parameter 𝜂. Less robust pareto
fronts are contained in the whole period with the increasing
of the neighborhood size 𝜂. It means that the robustness is
better. At the same time, the convergence of the RPOOT is
worse. Moreover, the survival time of the robust pareto front

at each time-varyingmoment is far larger than 1.That is, each
robust pareto front of the robust pareto-optimal solution set
can fit for more than 1 consecutive changed environments.

Due to the fact that the dynamic system is performed
online, we do not obtain the future landscape on the cur-
rent environment. The future fitness values of the solutions
considered in RPOOT should be predicted through the past
fitness values. So, the estimation and prediction task are
inevitable in the future work.
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Table 4: Comparison of the performance between TMO and RPOOT.

Functions TMO RPOOT (𝜂 = 0.4)
GD IGD RGD RIGD

FDA1 𝜇 0.0016 0.0019 0.0054 0.0095
𝜎 6.3501𝑒 − 007 5.9935𝑒 − 008 6.2714𝑒 − 4 0.0021

FDA2 𝜇 0.0016 0.0019 0.2044 0.2438
𝜎 6.3501𝑒 − 007 5.9935𝑒 − 008 0.0186 0.0316

FDA3 𝜇 0.0029 0.0030 0.1205 0.1544
𝜎 5.4816𝑒 − 006 6.6723𝑒 − 005 0.0084 0.0579

FDA4 𝜇 0.0070 0.0067 0.3879 0.0543
𝜎 1.6289𝑒 − 005 1.3751𝑒 − 004 4.6005𝑒 − 4 0.0043

FDA5 𝜇 0.0119 0.0115 0.7761 0.3619
𝜎 1.1204𝑒 − 005 1.3446𝑒 − 004 0.0172 0.1683

DMOP1 𝜇 0.0042 2.6464𝑒 − 005 0.1523 0.1564
𝜎 1.2932𝑒 − 006 1.3513𝑒 − 006 2.2854𝑒 − 6 1.0404𝑒 − 7

DMOP2 𝜇 4.5087𝑒 − 005 5.6999𝑒 − 005 0.1255 0.1335
𝜎 1.5932𝑒 − 005 1.6302𝑒 − 005 0.0671 0.0743

DMOP3 𝜇 3.8105𝑒 − 005 6.7778𝑒 − 005 0.1763 0.1866
𝜎 6.4825𝑒 − 006 8.7792𝑒 − 006 1.4261𝑒 − 5 1.4064𝑒 − 6

Table 5: The overall survival time of robust PFs.

Function FDA1 FDA2 FDA3 FDA4 FDA5 DMOP1 DMOP2 DMOP3
Overall survival time 258 1009 262 273 199 1794 224 135
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