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In recent years, theories in which the Einstein-Hilbert Lagrangian is replaced by a function f (R) of the Ricci Scalar have been
extensively studied in four-dimensional spacetime. In this paper we carry out an analysis of such theories in two-dimensional
spacetime with focus on cosmological implications. Solutions to the cosmological field equations are obtained and their properties
are analysed. Inflationary solutions are also obtained and discussed. Quantization is then carried out, the Wheeler-DeWitt equation
is set up, and its exact solutions are obtained.

1. Introduction

Attempts to modify the theory of general relativity, by
including higher-order invariants in the action, started not
too long after its inception [1, 2]. Later the nonrenormal-
izability of general relativity gave impetus to the inclusion
of higher-order terms in the action [3, 4]. More recently it
was shown that when quantum corrections are taken into
consideration, higher order curvature invariants need to be
added to the low-energy gravitational action [5, 6]. Such
considerations further increased the interest in constructing
theories in which the Einstein-Hilbert action is extended
by the inclusion of higher-order curvature invariants with
respect to the Ricci Scalar. Our interest here is in the so-called
f (R) theories of gravity. In these theories the Lagrangian in
the Einstein-Hilbert action

I′G= −
1

2κ

∫
d4x

√−gR, (1)

where κ = 8πG, G is the gravitational constant, g is the
determinant of the metric tensor and R is the Ricci scalar (in
units c = � = 1), is generalized to become

I′ = − 1
2κ

∫
d4x

√−g f (R). (2)

In (2) f (R) is a general function of R [7]. Our focus here is
on the cosmological aspects of f (R) theories.

Now in another direction, the quest for quantum theory
of gravity has led to the study of the simpler case of

gravitational theory in two-dimensional spacetime. Such a
spacetime provides an interesting arena in which to explore
some fundamental aspects of both classical and quantum
gravity. The reduction in the degrees of freedom greatly
simplifies the analysis of the field equations. This leads to
appreciable understanding of several problems in gravity
theory. In two-dimensional spacetime, the two-dimensional
gravitational constant G2 is dimensionless and formally the
theory with the bare action

IG = − 1
2gN

∫
d2x

√−gR, (3)

where g N = 8πG2, is power counting renormalizable in
perturbation theory. However the Einstein-Hilbert action
term is purely topological in two dimensions. In fact in two
spactime dimensions, the curvature tensor Rμνλρ has only
one independent component since all nonzero components
may be obtained by symmetry from R0101. Equivalently the
curvature tensor may be written in terms of the curvature
scalar [8]:

Rμνλρ = 1
2
R
(
gμλgνρ − gμρgνλ

)
, (4)

so that R alone completely characterizes the local geometry.
Equation (4) implies that

Rμν = 1
2
gμνR, (5)
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so that the Einstein tensor Gμν = Rμν − (1/2)gμνR, vanishes
identically and the usual Einstein equations are meaningless
in two dimensions. This led to various models for gravity in
two-dimensional spacetime being proposed [9]. Of special
interest are those models that involve a scalar field, the
dilaton, in the action [9–12]. We have previously studied
some aspects of classical and quantum cosmology in two-
dimensional dilaton gravity models [13, 14]. In the present
work we study f (R) theories as an alternative way to
formulate gravitational theory in two-dimensional spactime
and explore some of their cosmological implications.

In Section 2 we set up the f (R) gravity theory in
two-dimensional spacetime and derive the general field
equations. We then specialize to the case of the Friedmann-
Robertson-Walker metric and obtain the field equations
with matter treated as a perfect fluid. Section 3 is devoted
to obtaining solutions to the cosmological field equations
under various conditions of matter or radiation dominance.
Properties of these solutions are discussed in Section 4. In
particular, conditions for ensuring cosmic acceleration and
solving the horizon problem are elucidated. Inflation is
discussed in Section 5 and solutions to the field equations
in the absence of matter or radiation are obtained and
their properties are discussed. In Section 6 we carry out the
quantization. We establish the Wheeler-DeWitt equation and
obtain its solutions. In Section 7 we offer some concluding
remarks.

2. Field Equations

We write the two-dimensional action for f (R) gravity as

I = IG + IM , (6)

where

IG = − 1
2gN

∫
d2x

√−g f (R) (7)

is the gravitational action and IM is the matter action [15].
The field equations can be derived by varying the action with
respect to the metric tensor gμν . Upon noting that the stress-
energy tensor is defined by

δIM = 1
2

∫
d2x

√−gTμνδgμν, (8)

we derive the following field equation:

f ′(R)Rμν − 1
2
gμν f (R)− gμν f ′(R) +∇μ∇μ f

′(R) = −gNTμν .

(9)

In (4) Rμν is the Ricci tensor, the prime denotes the
differentiation with respect to R, and the operator is
defined by

f ′(R) = 1√−g ∂μ
(√−ggμν∂ν f

′(R)
)
. (10)

Using (5) we can write (9) as

1
2
gμν

(
f ′(R)R− f (R)

)− gμν f ′(R) +∇μ∇ν f
′(R)=−gNTμν .

(11)

In the following we will concern with cosmological impli-
cations of (11). For this purpose will adopt the Friedman-
Robertson-Walker (FRW) metric which in two-dimensional
spacetime reads (c = 1)

ds2 = −dt2 +
a2(t)

1− kx2
dx2, (12)

in terms of the comoving coordinates x and t. The quantity
a(t) is the usual time-dependent cosmic scale factor. A
change of variable dx2/(1− kx2) → dx2 leads to

ds2 = −dt2 + a2(t)dx2. (13)

Thus in two dimensions the time evolution of a(t) is not
affected by the value of k = 0, ±1 corresponding to the
three different cosmological models [16]. This is unlike the
four-dimensional case. The values k = 0,−1 still describe
spatially open flat and hyperbolic universe respectively, while
k = 1 describes a closed universe. The stress-energy tensor of
the homogeneous isotropic universe is taken to be that of a
perfect fluid:

Tμν = pgμν +
(
p + ρ

)
UμUν, (14)

where p is the pressure, ρ is the energy density, and Uμ is the
comoving velocity. Using (13) and (14) we obtain from (11)
the following two independent cosmological field equations:

1
2

(
R f ′(R)− f (R)

)
+
ȧ

a
∂t f

′(R) = gNρ,

1
2

(
R f ′(R)− f (R)

)
+ ∂2

t f
′(R) = −gN p,

(15)

where we use the dot as well as ∂t to indicate differentiation
with respect to time. We note that if f (R) is expressed as a
sum of powers Rn of R, then a term linear in R would cancel
out in the bracketed terms in (15) and would not contribute
to the derivative terms either. Hence it has no effect on the
dynamics. The stress-energy tensor obeys the conservation
law:

∇αTαβ = 0, (16)

and this, for a perfect fluid, gives rise to the following two
equations:

Uα∇αρ +
(
p + ρ

)∇αUα = 0, (17)

(
p + ρ

)
Uα∇αUβ +

(
gαβ +UαUβ

)
∇αp = 0. (18)

For the FRW metric of (13) one readily obtains from (17)
that

d

da

(
ρa
) = −p. (19)

Assuming an equation of state of the form p = γρ, where γ is
a constant, (19) immediately leads to

ρ = Ca−γ−1, (20)
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where C is a constant. Equation (18) is seen to be identically
satisfied and does not give rise to anything new. For a
pressureless (dust) pure matter universe (ρm /= 0, ρr =
0, γ = 0) we have

ρm = Cma
−1, (21)

while for a pure radiation universe (ρm = 0, ρr /= 0, γ = 1),
one has

ρr = Cra
−2. (22)

Denoting the present time by t0 and using the usual notation
of a0 ≡ a(t0) and ρ0 ≡ ρ(t0) to denote present-day values
of these quantities, we can write for a matter-dominated
universe

pm = 0, ρm(t) = ρm0

a0

a(t)
, (23)

while for a radiation-dominated universe one has

pr = ρr(t) = ρr0

(
a0

a(t)

)2

. (24)

Finally we wish to note that for the FRW metric the curvature
scalar of this two-dimensional universe is given by

R = − 2ä
a(t)

, (25)

where ä = d2a/dt2.

3. Solutions of the Cosmological
Field Equations

In this section we seek solutions of the cosmological field
equation (15) with the energy density and pressure given
by (23) and (24) for each component of the cosmological
fluid thus obtaining two sets of equations. For the matter
dominated epoch we obtain the following:

1
2

(
R f ′(R)− f (R)

)
+
ȧ

a
∂t f

′(R) = gNρm0
a0

a
,

1
2

(
R f ′(R)− f (R)

)
+ ∂2

t f
′(R) = 0.

(26)

For the radiation dominated epoch the corresponding
equations read

1
2

(
R f ′(R)− f (R)

)
+
ȧ

a
∂t f

′(R) = gNρr0
a2

0

a2
, (27)

1
2

(
R f ′(R)− f (R)

)
+ ∂2

t f
′(R) = −gNρr0 a

2
0

a2
. (28)

To proceed further we need to specify the function f (R).
Similar to the procedure followed in the four-dimensional
case [7] we take for f (R) the following expression:

f (R) = R + αRn, (29)

where the real constants α and n are, at this stage, only
restricted by α /= 0 and n /= 1. Upon substitution of (29) into
(26) we obtain

1
2

(n− 1)αRn + n(n− 1)αRn−2Ṙ
ȧ

a
= gNρm0

a0

a
, (30)

2nRR̈ + 2n(n− 2)Ṙ2 + R3 = 0. (31)

Equations (30) and (31) describe the matter dominated
epoch and we shall attempt to find solutions for them now.
We start with (31) and note that in terms of the function z(R)
defined by

z(R) = Ṙ2, (32)

the equation is transformed into the following form:

dz

dR
+

2(n− 2)
R

z +
R2

n
= 0. (33)

This equation is easily solved and we obtain for n /= 1/2

z(R) = Ṙ2 = − 1
n(2n− 1)

R3 + C1R
4−2n, (34)

where C1 is a constant. Equation (34) then leads to the
parametric solution:

t = ±
∫ [
− R3

n(2n− 1)
+ C1R

4−2n

]−1/2

dR + C2, (35)

where C2 is a constant. For n = 2 and C1 /= 0 one can carry
out the integration using the result [16]

∫
dx

(K − xα+2)1/2 =
x√
K

2F1

(
1
2

,
1

α + 2
,
α + 3
α + 2

;
xα+2

K

)
,

(36)

where α and K are constants and 2F1 is the hypergeometric
function. We obtain

t = ±
(

6
C1

)1/2

R 2F1

(
1
2

,
1
3

,
4
3

;
R3

C1

)
+ C2. (37)

Ideally one should solve (37) to obtain R as a function of
the cosmic time t and plug that into (30) in order to solve for
a(t) in the case of n = 2, but that is a difficult task. Instead
we consider solutions for which C1 = 0 in (34) and a general
n /= 1/2. One can then easily derive that

R = −4n(2n− 1)

(t − tm)2 , (38)

where we have renamed the integration constant C2 as tm. In
fact one can verify directly by substitution that the expression
for R in (38) is a solution of (31).

Next we substitute (38) into (30) and obtain

A2ȧ + A1(t − tm)−1a = Ka0(t − tm)2n−1, (39)
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where

A1 = 1
2

(n− 1)Nn, A2 = −2n(n− 1)Nn−1, (40)

N = 4n(1− 2n), K = gNρm0

α
. (41)

We readily solve (39) and get

a(t) = C(t − tm)1−2n + K(t − tm)2n, (42)

where C is a constant and

K = Ka0

(4n− 1)A2
. (43)

Clearly n must be such that A1 and A2 are real and K is finite.
We will return to this issue later. It is interesting to note that
the t dependence of R is (t − tm)−2 and thus independent of
n, while that of a(t) does depend on n. We also note that
the relation R = −2ä/a is satisfied by the solutions for R
given in (38) and (42), respectively. We further note that the
second term in (42) is a solution of (39) in its own right.
On the other hand the first term in (42) is a solution of the
homogeneous form of (39). Furthermore the constants C
and K must be such that a(t) is positive.

We now turn to the case of radiation. Upon adding (27)
and (28) we obtain

R f ′(R)− f (R) + ∂2
t f
′(R) +

ȧ

a
∂t f

′(R) = 0. (44)

Employing in (44) the expression for f (R) given in (29)
above yields

nRR̈ + n(n− 2)Ṙ2 + R3 + nRṘ
ȧ

a
= 0. (45)

Next we use (29) in (27) and obtain

1
2

(n− 1)αRn + n(n− 1)αRn−2Ṙ
ȧ

a
= gNρr0

a2
0

a2
. (46)

Motivated by the structure of the solutions for the cosmo-
logical equations in the case of pure matter above, we seek
solutions for R(t) and a(t) of (45) and (46) in the form of
powers in t − tr where tr is some reference time. We obtain
the following results:

R(t) = 2n(n− 1)(t − tr)−2, (47)

a(t) = B(t − tr)n, (48)

where the constant B is given by

B =
[

gNρr0

n(n− 1)(1− 3n)[2n(1− n)]n−1α

]1/2

a0. (49)

Note that, as in the case of matter, the t dependence of R(t)
is independent of n, the only such dependence appears in the
overall coefficient. We also note that the relation R = −2ä/a
is satisfied by the solutions for R given in (46) and (48). For
an expanding universe one must have n > 1 and B > 0.
Furthermore the value of n must ensure that the bracketed
term in (49) is finite and real.

4. Properties of the Solutions

We now discuss some properties of the solutions of the
cosmological field equations found in the previous section.
Let us first look at the radiation dominated case and
determine whether our vision of the universe is limited by a
particle horizon. At a given cosmic time ts the proper distance
d(ts) of the emitter is given by

d(ts) = a(ts)
∫ ts
te

dt′

a(t′)
, (50)

where te is the time of emission of the photon. Using (48) we
obtain

d(ts) = (ts − tr)n
1− n

[
(ts − tr)1−n − (te − tr)1−n]. (51)

We can view tr as signifying the onset of the radiation epoch.
We see that as te → tr , d(ts) is finite for 1 − n > 0 and
diverges for 1 − n < 0. Hence no particle horizon problem
will arise if n > 1 which is the same condition required for
an expanding universe. Reality of B also requires n to be
an integer. For n an even integer, the parameter α must be
positive while for n odd, α should be negative. Thus we take
n to be a positive integer greater than one. Next we note that
the cosmic acceleration ä(t) which is given by

ä(t) = n(n− 1)B(t − tr)n−2, (52)

is positive for t > tr since n > 1 and is constant for n = 2. Now
in two-dimensional spacetime the radiation energy density
is ρr ∝ T2 where T is the temperature [16] and it follows
therefore from (24) that

a∝ T−1. (53)

Since we have a → 0 as t → tr , we conclude that this
radiation universe has a hot big bang origin.

Next we turn to the case of the matter dominated
universe described by (38) and (42). First let us consider the
case C = 0 when the scale factor becomes

a(t) = K(t − tm)2n. (54)

As we have stated earlier this is viable because it represents a
solution of (39). The time tm can be taken to signify the onset
of matter dominance. The proper distance d(ts) is now given
by

d(ts) = (ts − tm)2n

1− 2n

[
(ts − tm)1−2n − (te − tm)1−2n

]
. (55)

Hence no particle horizon will arise if 2n > 1. Also as we
stated following (43), the parameter n must be such that the
constants A1 and A2 given by (40) are real. Since for 2n > 1
the number N of (41) is negative, it follows that n has to be a
positive integer. Now the requirement that a(t) > 0 for t > tm
implies that K > 0. For n even we have A2 > 0 and hence α
should be positive to ensure K > 0 while for n odd one has
A2 < 0 and α should be negative. Since we exclude n = 1,
the smallest permissible value is n = 2. For such values of
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n it is evident that the cosmic acceleration ä(t) is positive.
Finally we observe that for the pure matter universe we have
a(t) → 0 as t → tm.

We now consider the case C /= 0. Using (42) the proper
distance is now given by

d(ts) = a(ts)
∫ ts
te

(t − tm)2n−1

C + K(t − tm)4n−1 dt. (56)

It is clear that the integral converges for te → tm and
we do have a particle horizon. Performing the integral we
determine the proper distance to the horizon to be

d(ts) = a(ts)
C

(
K

C

)2n(4n−1)

×
⎧⎨
⎩−

ln(1 + ξs)
4n− 1

− 1
4n− 1

2n−1∑
k=1

cos
[

2nπ(2k − 1)
4n− 1

]

× ln
(

1− 2ξs cos
2k − 1
4n− 1

π + ξ2
s

)

+
2

4n− 1

2n−1∑
k=1

sin
[

2nπ(2k − 1)
4n− 1

]

× arctg
[
ξs − cos((2k − 1)/(4n− 1))π

sin((2k − 1)/(4n− 1))π

]

−(ξs ←→ ξe)

⎫⎬
⎭,

(57)

where

ξj =
(
C

K

)4n−1(
t j − tm

)
, j = s, e. (58)

Let us now study further properties of the solution given in
(42). In the following we consider only values of t such that
t > tm. Now it is evident that, except for values of n in the
interval 0 < n < 1/2, the first term in (42) dominates for
t near tm when n > 1/2 while the second term dominates
for n < 0. Hence to ensure positivity of the scale factor we
require that both C and K be positive. For 0 < n < 1/2, C and
K can have opposite signs but only in such a manner so as
to keep a > 0. We shall for simplicity assume that C > 0 and
K > 0 for all values of n. Next we observe that outside the
interval 0 < n < 1/2, the number N of (41) is negative, and
to ensure the reality of A2 given by (40), the number n has
to be an integer. We readily deduce that for α > 0, n can be a
positive even integer or a negative odd integer. On the other
hand for α < 0, n can be a positive odd integer or a negative
even integer. The cosmic acceleration ä(t) is given by

ä(t) = 2n(2n− 1)(t − tm)−2a(t). (59)

It is seen that ä < 0 for 0 < n < 1/2, ä = 0 for n = 1/2, and
ä > 0 for n < 0 or n > 1/2.

Next we consider the behavior of a(t) as t → tm for the
case C /= 0. We see from (42) that for 0 < n < 1/2, a(t) → 0
as t → tm and accordingly the temperature T → ∞ in this

limit. For n = 1/2, we have a(t) → C as t → tm and T
is finite. However for n outside the interval 0 ≤ n ≤ 1/2
the behavior of a(t) is very different as t → tm. We see
that a(t) → ∞ in this limit and energy density ρm and the
temperature tend to zero. As t increases beyond the value
tm, a(t) decreases to finite values and the density increases.
However a(t) never reaches zero and attains a minimum
value at t = tc given by

tc = tm +

[
(2n− 1)C

2nK

]1/4n−1

. (60)

For t > tc, a(t) starts to increase. We also note from (38)
that the curvature scalar is R → −∞ as t → tm and then
starts increasing through finite negative values as t grows
beyond tm. The singular behavior of the scale factor noted
here should be contrasted with that of the FRW cosmological
models in four-dimensional general relativity where the scale
factor and energy density go to zero and infinity, respectively,
as the initial moment is approached.

5. Inflation

The horizon problem in four-dimensional standard FRW
cosmology is a consequence of deceleration in the expansion
of the universe. The problem can be solved by postulating
a phase of the universe, prior to the decelerating phase, in
which the expansion is accelerating and such a phase is called
a period of inflation. Hence inflation is characterized by the
following property for the scale factor a(t):

ä(t) > 0. (61)

Now as evident from the analysis of Section 4, ä > 0 is readily
achieved in our f (R) theory in two-dimensional spacetime
and the universe is accelerating. The solutions obtained for
the scale factor displayed power dependence on time akin
to that of power-law inflation. It would seem that there is
no need to require an inflationary phase since matter or
radiation dominated epochs yield an accelerating universe.
Here we are not seeking to introduce scalar fields to propel
acceleration as in the usual inflationary cosmology. We recall
that one of the motivations for introducing modified or
f (R) theories of gravity in four-dimensional spacetime is the
desire to explain acceleration of the universe as an alternative
to using scalar fields. For this purpose solutions for the
cosmological field equations are sought in the absence of the
matter fluid [7]. We carry out such an analysis in our case
by considering solutions to (30) and (31) of Section 3 with
the R.H.S set being equal to zero. We have earlier obtained a
general solution for (31) given by (35) of Section 3. However
the parametric nature of that solution makes it difficult to use
in (30) in order to solve for a(t). Putting C1 = 0 enables the
integration in (35) to be performed and leads to the solution
given in (38) which we write as

R = −4n(2n− 1)(
t − t)2 , (62)
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where n /= 1/2, 1 and we have now denoted the integration
constant by t. Using (62) in (30) with the R.H.S. set being
equal to zero yields:

ȧ +
2n− 1
t − t a = 0, (63)

the solution of which reads

a(t) = A
(
t − t)1−2n, (64)

where A > 0 is a constant. We take the solution to hold for
t > t. The cosmic acceleration is given by

ä(t) = 2n(2n− 1)A
(
t − t)−2n−1

. (65)

The Hubble parameter is

H = ȧ

a
= 1− 2n

t − t ,

Ḣ = 2n− 1(
t − t)2 .

(66)

For n < −1 we can identify t with the onset of inflation t = ti.
Equation (64) then describes a universe that expands with
positive acceleration for t > ti. We also have H > 0 and Ḣ < 0
for t > ti which characterizes standard inflation. However
if we make the identification t = ti for n > 1, we will have
a situation in which a(t) → ∞ as t → ti thus obtaining
a universe that starts off already with an infinite size at the
onset of inflation collapsing subsequently for t > ti at an
accelerated rate. Such a scenario can be avoided if t is instead
taken to have a relatively large value so that t < t during the
inflationary epoch. We write a(t) now as

a(t) = A
∣∣t − t∣∣1−2n

. (67)

The universe then starts off with a relatively small non-zero
size at t = ti and expands with positive acceleration as time
progresses. We also have

H = 2n− 1
t − t ,

Ḣ = 1− 2n(
t − t)2 ,

(68)

so that H > 0 and Ḣ < 0 and we again have standard
inflation.

As in four spacetime dimensions we define the so-called
slow-roll parameter ε by [7]

ε = − Ḣ

H2
. (69)

and in terms of which one has

ä

a
= H2 + Ḣ = (1− ε)H2. (70)

Inflation can thus be attained only if ε < 1. In our present
context ε is given by

ε = 1
|2n− 1| . (71)

For both cases of n < −1 and n > 1 we clearly have ε < 1.
The slow-roll approximation corresponding to ε � 1 then
obtain when |2n − 1| � 1. As we have stated previously
the solution for R given in (62) arises as a special case of the
general solution given in (35). As an alternative to solving
(30) and (31) one can derive an equation for the Hubble
parameter [7, 17]. We write (30) with the R.H.S set being
equal to zero:

2nṘȧ + R2a = 0. (72)

Now from (25) of Section 2 we obtain

Ṙ = −2
...
a

a
+

2äȧ
a2

. (73)

Substituting (25) and (73) in (72) one obtains

−naȧ...
a + aä2 + nȧ2ä = 0. (74)

Next in terms ofH , Ḣ , and Ḧ we can express (74), after some
manipulations, as

−nHḦ − 2(n− 1)ḢH2 + Ḣ2 +H4 = 0. (75)

It is customary, in dealing with equations such as this,
to invoke the slow-roll approximation |Ḣ/H2| � 1 and
|Ḧ/HḢ| � 1, [7, 17]. Applying this to (67) we obtain that

−2(n− 1)Ḣ +H2 = 0. (76)

The solution of (76) is

H(t) = −2(n− 1)

t − t′ , (77)

where t′ is a constant. Equation (77) in turn gives

a(t) = A′(
t − t′

)2(n−1) (78)

with A′ being another constant. Equation (78) for a(t) is
similar in structure to (67) and the properties of the solution
are therefore similar to what we discussed before and hence
will not be considered any further.

We shall next seek a general solution to (31) for R(t)
that holds for t close to the instant ti that signifies the onset
of inflation. Specifically we assume that t = ti is a regular
point of (31) and seek a solution for R(t) in the form of a
power series confining ourselves to small values of t − ti. For
simplicity we consider the case n = 2 for which (31) becomes

4R̈ + R2 = 0. (79)

We write

R(t) =
∞∑
m=0

bm(t − ti)m. (80)

Substituting (80) in (79) and solving we obtain

b2 = −1
8
b2

0,

b3 = − 1
12
b0b1,

(81)
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and so forth. This leads to

R(t) = b0 + b1(t − ti)− 1
8
b2

0(t − ti)2

− 1
12
b0b1(t − ti)3 + · · · .

(82)

We remark that if inflation lasts for a short period of time,
then it is sensible to have a representation for R(t) as given in
(82). Moreover for sufficiently small t−ti we can approximate
R(t) by the first two terms and substitute in (72) with n = 2.
Solving the resulting equation we obtain

a(t) ≈ C exp

{
− 1

12b2
1

[b0 + b1(t − ti)]3

}
, (83)

where C > 0 is a constant. We can write (83) as

a(t) ≈ ai exp

{
− 1

12b2
1

(
[b0 + b1(t − ti)]3 − b3

0

)}
, (84)

where

ai = a(ti) = C exp

(
− b3

0

12b2
1

)
. (85)

From (83) we obtain

ȧ(t) = − 1
4b1

[b0 + b1(t − ti)]2a(t),

ä(t) =
{
−1

2
[b0 + b1(t − ti)] +

1
16b2

1
[b0 + b1(t − ti)]4

}
a(t).

(86)

From (84) we see that we must have b1 < 0 to ensure that
ȧ > 0. We must also require a(t) to be increasing for t > ti.
This can be achieved by having b0 > 0 for then b0 + b1(t − ti)
will start off at the value b0 and decreases reaching zero at
t∗ − ti = −b0/b1. During the interval, ti < t < t∗, a(t) will
be increasing. We must also require the cosmic acceleration
ä(t) to be positive during this interval and this leads to the
following condition:

1
8b2

1
[b0 + b1(t − ti)]3 > 1. (87)

This inequality will continue to hold until t = t f < t∗ when
ä(t f ) = 0. This implies that

1
8b2

1

[
b0 + b1

(
t f − ti

)]3 = 1, (88)

which yields

t f = ti + b0|b1|−1 − 2|b1|−1/3. (89)

The time t f then signifies the end of inflation. Since R(ti) =
b0 and Ṙ(ti) = b1, the conditions b0 > 0 and b1 < 0 can be
expressed as

R(ti) > 0,
Ṙ(ti) < 0. (90)

We can also express the duration of inflation as

t f − ti = R(ti)
∣∣Ṙ(ti)

∣∣−1 − 2
∣∣Ṙ(ti)

∣∣−1/3
. (91)

The Hubble parameter is given by

H = − 1
4b1

[b0 + b1(t − t1)]2. (92)

It thus decreases from an initial value Hi given by

Hi = H(ti) = − b2
0

4b1
= R2(ti)

4
∣∣Ṙ(ti)

∣∣ , (93)

to a value Hf at the end of inflation where

Hf = H
(
t f
)
= |b1|1/3 =

∣∣Ṙ(ti)
∣∣1/3

. (94)

We note that

Ḣ = −1
2

[b0 + b1(t − ti)] (95)

is negative during ti < t < t f and we thus have standard
inflation. The slow-roll parameter is given by

ε = 8b2
1[b0 + b1(t − ti)]−3. (96)

We recall that for inflation to proceed one must have ε < 1
and this leads precisely to the condition expressed in (87)
stated earlier.

The number of e-foldings from t = ti to t = t f is defined
by [7, 18]

N =
∫ t f
ti
H dt, (97)

which is evaluated to give

N = 2
3

⎡
⎣
(
Hi

Hf

)3/2

− 1

⎤
⎦. (98)

In four dimensions, the solution of the horizon and flatness
problems of big bang cosmology requires that N ≥ 70,
[7, 19]. If we assume that we can use this value in our two-
dimensional universe, we find that

Hi

Hf
≥ 22, (99)

that is, the Hubble parameter decreases to about 4.5% of its
initial value by the time inflation ends.

6. Quantization

As we stated in the introduction two-dimensional spacetime
models of gravity provide an arena where issues like quan-
tization are studied since in such a setting they prove to be
more tractable than in four-dimensional spacetime. In this
section we thus consider quantization of the f (R) gravity
theory defined by the action of (3). Our objective is to derive
the Wheeler-DeWitt equation for the wave function of the
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universe and obtain its solutions. Since we are considering a
spatially homogeneous and isotropic universe, we drop the
spatial integral and write the action as

IG = − 1
2g N

∫
dta(t) f (R(t)). (100)

We take for f (R) the expression given in (29) and put n = 2.
We use (25) that expresses the scalar curvature in terms of
the scale factor and write

IG = − 1
2gN

∫
dt(aR− 2αäR). (101)

We notice the appearance of the second derivative of a in
(101). The standard approach is to express the wave function
in terms of a and R [20]. Hence integrating by parts in (101),
we obtain

IG =
∫

L
(
a, ȧ, k, k̇

)
dt, (102)

where

L = − 1
2g N

(
aR + 2αȧṘ

)
. (103)

The canonical momenta are defined in the usual way:

Pa = ∂L
∂ȧ

= − α

g N

Ṙ,

PR = ∂L

∂Ṙ
= − α

g N

ȧ.
(104)

The Hamiltonian is then obtained as

H = Paȧ + PRṘ−L = −gN
α
PaPR +

1
2gN

aR. (105)

Replacing Pa and PR by −i(∂/∂a) and −i(∂/∂R), respectively,
in the Hamiltonian, we obtain the Wheeler-DeWitt equation
for the wave function of the universe:(

gN
α

∂2

∂R∂a
+

1
2gN

aR

)
ψ(a,R) = 0. (106)

Instead of a and R we shall work with the variables:

ξ = R + a, η = R− a. (107)

In terms of ξ and η the Wheeler-DeWitt equation becomes
[
g N

α

(
∂2

∂ξ2
− ∂2

∂η2

)
+

1
g N

(
ξ2 − η2)

]
ψ
(
ξ,η

) = 0. (108)

We seek solutions of (108) in factorizable form:

ψ
(
ξ,η

) = X(ξ)Y
(
η
)

(109)

and obtain the following equations for the functions X and
Y :

d2X

dξ2
+

α

8g2
N

ξ2X = Cα

g N

X , (110)

d2Y

dη2
+

α

8g2
N

η2Y = Cα

g N

Y , (111)

where C is the separation constant. The two equations are
identical and hence it is enough to consider one of them. We
first take α > 0 and define

γ2 = α

8g2
N

, (112)

E = − Cα

2g N

. (113)

In terms of γ2 and E, (110) reads

d2X

dξ2
+ γ2ξ2X + 2EX = 0. (114)

It is interesting to note that (114) is identical to that describ-
ing the inverted or reversed oscillator discussed by several
authors in a number of contexts [21–25]. By performing the
change of variable

y =
√

2γξ, (115)

we cast (114) into the following form:

d2X

dy2
+

1
4
y2X + εX = 0, (116)

where ε = E/γ. Equation (116) is one of the standard forms
of the equation for the parabolic cylinder functions. Two
linearly independent solutions are given by the real functions
W(ε, y) and W(ε,−y) [26]. For |y| � 1 and |y| � |ε| these
solutions display the following asymptotic behaviour:

W
(
ε, y −→ ∞) ∼

√
2k
y

cos
(

1
4
y2 + ε ln y +

1
4
π +

1
2
φ
)

,

W
(
ε, y −→ −∞) ∼

√
2

k
∣∣y∣∣ sin

(
1
4
y2 +ε ln

∣∣y∣∣+
1
4
π+

1
2
φ
)

,

(117)

where

k = (1 + e−2πε)1/2 − e−πε,
φ = argΓ

(
1
2
− iε

)
.

(118)

The functions W(ε, y) and W(ε,−y) satisfy the following
normalization conditions [23]:

∫∞
−∞

W
(
ε, y

)
W
(
ε′,−y)dy =

⎧⎪⎨
⎪⎩

0 if ε /= ε′,
πe−πε

(1 + e−2πε)1/2 if ε = ε′,
∫∞
−∞

W
(
ε, y

)
W
(
ε′, y

)
dy = 2π

(
1 + e−2πε)1/2

δ(ε − ε′) .
(119)

The parabolic cylinder functions can be expressed in several
forms [26] and we can use the various relations between
these forms to express W(a, x) in terms of the more familiar
function Dp(x) for some p. In fact one can easily derive that

W
(
ε, y

) =
(
k

2

)1/2[
eiθDiε−1/2

(
ye−(i/4)π

)

+ e−iθD−iε−1/2

(
ye(i/4)π

)]
,

(120)



Physics Research International 9

where

θ = 1
2

(
−1

2
πε +

i

4
π + iφ

)
. (121)

Next we observe that the solutions to (111) are identical to
those of (110) but expressed in terms of the vriable η. Hence
we can write the following for the wavefunction ψ:

ψ
(
ξ,η

) = ψ1(ξ)ψ2
(
η
)
, (122)

where

ψ1(ξ) = C1W

(
E

γ
,
√

2γξ

)
+ C2W

(
E

γ
,−√2γξ

)
,

ψ2(ξ) = C′1W

(
E

γ
,
√

2γη

)
+ C′2W

(
E

γ
,−√2γη

)
.

(123)

We now consider the case in which the parameter α is
negative and write (110) and (111) as

d2X

dξ2
− |α|

8g2
N

ξ2X = −C|α|
g N

X , (124)

d2Y

dη2
− |α|

8g2
N

η2Y = −C|α|
g N

Y. (125)

We define

γ2 = |α|
8g2

N

,

E = −C|α|
2g N

,
(126)

and thus they retain the same forms as in (112) and (113),
respectively. Focussing on (124) we write it as

d2X

dξ2
− γ2ξ2X = 2EX. (127)

In terms of y = √2γξ, (127) becomes

d2X

dy2
+
(
σ +

1
2
− 1

4
y2
)
X = 0, (128)

where

σ +
1
2
= −E

γ
. (129)

Equation (128) has the form of Weber’s equation [27]
and possesses the following solution:

X1
(
y
) = D σ

(
y
) = 2σ/2+1/4y−1/2Wσ/2+1/4,−1/4

(
y2

2

)
. (130)

In the above equation Wμ,ν is the Whittaker function.
Expressing Wμ,ν in terms of the confluent hypergeometric
function, we can write

X1
(
y
) = Γ(1/2)2σ/2

Γ(1/2− σ/2)
e−y

2/4F

(
−σ

2
,

1
2

,
y2

2

)

+
Γ(−1/2)2σ/2−1/2

Γ(−σ/2)
ye−y

2/4F

(
1− σ

2
,

3
2

,
y2

2

)
.

(131)

For the second solution of (128) we note that from (130)
giving the relationship between Dσ and the Whittaker
function, we know that D−σ−1(±iy) are solutions linearly
independent of Dσ(y) as W−(σ/2)−(1/4),−1/4(−y2/2) is linearly
independent of W(σ/2)+(1/4),(−1/4)(y2/2). From the asymptotic
behaviour of the confluent hypergeometric function, we
deduce that as y → ∞,

X1
(
y
) ∼ e−y

2/4yσ , (132)

that is, X1 → 0. For y → −∞ we have

X1
(
y
) ∼ − (2π)1/2

Γ(−σ)
eσπiey

2/4y−σ−1, (133)

that is, X1 → ∞ unless σ is a positive integer or zero in
which case the R.H.S of (133) vanishes. In fact we have the
relationship

Dn
(
y
) = 2−n/2e−y

2/4Hn

(
y√
2

)
, n = 0, 1, 2, . . . (134)

that expresses the parabolic cylinder functionsDn in terms of
the Hermite polynomials Hn. Going back to (126) and (129)
with σ = n, we obtain

Cn = n + 1/2√
2|α|1/2 , (135)

as the value of the separation constant. The functions Xn(ξ)
that solve (127) are then precisely those that describe the one-
dimensional quantum oscillator. We write

Xn(ξ) =
(
γ

π

)1/4 1√
2nn!

Hn

(√
γξ
)
e−(1/2)γξ2

. (136)

The solutions Yn(η) are identical in form and we obtain for
the normalized wave function the following:

ψn
(
ξ,η

) =
(
γ

π

)1/2 1
2nn!

Hn

(√
γξ
)
Hn

(√
γη
)
e−(1/2)γ(ξ2+η2).

(137)

For σ /=n the wavefunctions will not have finite norm and
solutions of (124) and (125) of the type given in (131) would
have to be superposed, just as wave packets are constructed
in quantum mechanics, in order to obtain wave functions
capable of describing physical states.

7. Conclusions

In this work we studied f (R) theories of gravity in two-
dimensional spacetime with focus on applications to cos-
mology. With the metric taken to have to the FRW form
we were able to obtain solutions for the cosmological field
equations in the case of pure matter or radiation-dominated
universe when f (R) = R + αRn. The remarkable feature of
these solutions is that they readily describe an accelerating
universe in contrast to the standard FRW cosmology of
four-dimensional general relativity. The horizon problem
is also readily solved. As we have stated in Section 2, the
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time evolution of the scale factor is not affected by the
value of the curvature constant k. We have also seen that
the solution for the radiation-dominated universe and one
solution for the case of pure matter-domination, describe a
hot big bang. However an interesting solution in a matter
dominated universe, given in (42), describes a universe that
kicks off with an infinite size and zero temperature at the start
of matter dominance. It subsequently collapses to a finite size
and then begins to expand.

Now as we mentioned before, the interest behind the
pursuit of f (R) theories is partially due to the desire to obtain
a description of inflation without the introduction of scalar
fields. This is done by seeking solutions to the cosmological
field equations with the energy-momentum tensor set equal
to zero, [7]. In Section 5 we obtained such solutions that
characterize power law inflation. Furthermore, with inflation
presumed to last for a short period of time, we obtained for
the case n = 2 a solution for t near ti, the instant of onset of
inflation. This solution displayed exponential dependence on
time. For this case we computed the duration of inflation and
the number of e-foldings as well as an estimate for the change
that ensues in the value of the Hubble parameter from the
start to the end of inflation. The basic distinguishing feature
between power law and exponential inflation appears to be
in the behavior of the Ricci scalar. Exponential inflation is
obtained when we assumed that R(t) can be expanded in a
power series about t = ti with finite coefficients. In particular
R(ti) and Ṙ(ti) are finite. On the other hand in the case of
power law inflation these quantities exhibit singular behavior
at t = t. Another characteristic of our inflationary solutions
is that they do not depend on the parameter that appears in
(29) for f (R). This is in contrast to the inflationary solution
in four-dimensional f (R) theories where n = 2 describes the
Starobinsky model [28]. In that case with α being written
as α = 1/6M2, where the constant M has the dimension of
mass, exponential inflation is obtained with a, H , and R all
depending on M, [7].

Interest in two-dimensional theories stems partially from
the desire to investigate the quantum theory in a simple
setting. Hence we carried out quantization of the theory
in the case of n = 2. The Wheeler-DeWitt equation was
derived and its solutions were obtained. We were able to
solve the equation exactly in the entire domain of the
variables, unlike the situation in the four-dimensional case
[17, 20]. Interestingly we found that for α > 0 the equation
for the wave function coincided with that of the inverted
oscillator. For α < 0 the wave function, under certain
conditions, turned out to be a product of two quantum
harmonic oscillator wave functions in the variables ξ =
R + a and η = R − a. In conclusion we have studied
some aspects of classical and quantum cosmology in two-
dimensional f (R) theories. Clearly a lot more issues need to
be investigated and we hope to return to them in the near
future.
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