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Various theories of quantum gravity predict the existence of a minimum length scale, which leads to the modification of the
standard uncertainty principle to the Generalized Uncertainty Principle (GUP). In this paper, we study two forms of the GUP
and calculate their implications on the energy of the harmonic oscillator and the hydrogen atom more accurately than previous
studies. In addition, we show how the GUP modifies the Lorentz force law and the time-energy uncertainty principle.

1. Introduction

Developing a theory of quantum gravity is currently one
of the main challenges in theoretical physics. Various
approaches predict the existence of a minimum length scale
[1, 2] that leads to the modification of the Heisenberg
Uncertainty Principle

Δ𝑥Δ𝑝 ≥
ℏ

2
, (1)

and to the Generalized Uncertainty Principle (GUP) [3, 4]

Δ𝑥Δ𝑝 ≥
ℏ

2
(1 + 𝛽(Δ𝑝)

2

+ 𝜁) , (2)

where 𝛽 = 𝛽
0
𝑙
2

𝑃
/ℏ
2
, 𝛽
0
is a dimensionless constant usually

assumed to be of order unity, 𝑙
𝑃
≡ √ℏ𝐺/𝑐3 is the Planck

length 𝑙
𝑃
≃ 1.616 × 10

−35m, and 𝜁 may depend on ⟨𝑝⟩ but
not on Δ𝑝. The second term on the RHS above is important
at very high energies/small length scales (i.e., Δ𝑥 ∼ 𝑙

𝑃
).

In this paper, we study two forms of the GUP. The first
(GUP1) [5, 6] is

Δ𝑥
𝑖
Δ𝑝
𝑖
≥
ℏ

2
[1 + 𝛽 ((Δ𝑝)

2

+ ⟨𝑝⟩
2

) + 2𝛽 ((Δ𝑝
𝑖
)
2

+ ⟨𝑝
𝑖
⟩
2

)] ,

(3)

which follows from the modified commutation relation [6]:

[𝑥
𝑖
, 𝑝
𝑗
] = 𝑖ℏ (𝛿

𝑖𝑗
+ 𝛽 (𝑝

2
𝛿
𝑖𝑗
+ 2𝑝
𝑖
𝑝
𝑗
)) . (4)

The second (GUP2) [7, 8] is

Δ𝑥Δ𝑝 ≥
ℏ

2
[1 − 2𝛼 ⟨𝑝⟩ + 4𝛼

2
((Δ𝑝)

2

+ ⟨𝑝⟩
2

)] . (5)

which follows from the proposed modified commutation
relation [7]:

[𝑥
𝑖
, 𝑝
𝑗
] = 𝑖ℏ (𝛿

𝑖𝑗
− 𝛼(𝑝𝛿

𝑖𝑗
+

𝑝
𝑖
𝑝
𝑗

𝑝
) + 𝛼
2
(𝑝
2
𝛿
𝑖𝑗
+ 3𝑝
𝑖
𝑝
𝑗
)) ,

(6)

where 𝛼 = 𝛼
0
𝑙
𝑃
/ℏ = 𝛼

0
/𝑀
𝑃
𝑐 and 𝛼

0
is a constant usually

assumed to be of order unity. In addition to a minimum
measurable length, GUP2 implies a maximum measurable
momentum.
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The commutation relation (4) admits the following rep-
resentation in position space [9, 10]:

𝑥
𝑖
= 𝑥
0𝑖
, 𝑝

𝑖
= 𝑝
0𝑖
(1 + 𝛽𝑝

2

0
) , (7)

where 𝑥
0𝑖
, 𝑝
0𝑖

satisfy the canonical commutation relation
[𝑥
0𝑖
, 𝑝
0𝑗
] = 𝑖ℏ𝛿

𝑖𝑗
. This definition modifies any Hamiltonian

near the Planck scale to [9, 10]

𝐻 =
𝑝
2

0

2𝑚
+ 𝑉 (𝑟) +

𝛽

𝑚
𝑝
4

0
+
𝛽
2

2𝑚
𝑝
6

0
. (8)

Similarly, (6) admits the definition [7, 8]

𝑥
𝑖
= 𝑥
0𝑖
, 𝑝

𝑖
= 𝑝
0𝑖
(1 − 𝛼𝑝

0
+ 2𝛼
2
𝑝
2

0
) , (9)

leading to the perturbed Hamiltonian

𝐻 =
𝑝
2

0

2𝑚
+ 𝑉 (𝑟) −

𝛼

𝑚
𝑝
3

0
+
5𝛼
2

2𝑚
𝑝
4

0
−
2𝛼
3

𝑚
𝑝
5

0
+
2𝛼
4

𝑚
𝑝
6

0
. (10)

The aim of this paper is to study the impact of GUP1 and
GUP2 on the energy of the harmonic oscillator and hydrogen
atom more accurately than previous studies. In addition, we
show how the GUP modifies the Lorentz force law and the
time-energy uncertainty principle.

2. Harmonic Oscillator

Theharmonic oscillator is a goodmodel formany systems, so
it is important to calculate its energy accurately to compare it
with future experiments. Recently a quantum optics experi-
ment was proposed [11] to probe the commutation relation of
a mechanical oscillator with mass close to the Planck mass.

The effect of GUP1 on the eigenvalues of the harmonic
oscillator was calculated exactly in [12]. The effect of GUP2
was considered in [8] to first and second order for the
ground energy only. In this section, we consider first and
second order corrections to all energy levels for both GUPs
to compare them, and we use the ladder operator method,
which is simpler than the other methods.

2.1. GUP1-First Order. The momentum 𝑝
0
can be expressed

using the ladder operators [13, Page 49] as

𝑝
0
= 𝑖√

ℏ𝑚𝜔

2
(𝑎
†
− 𝑎) , (11)

where 𝑎† is the raising operator: 𝑎†|𝑛⟩ = √𝑛 + 1|𝑛 + 1⟩ and 𝑎
is the lowering operator: 𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩. Thus, the change
in energy to first order due to𝐻 = 𝛽𝑝4

0
/𝑚 + 𝛽

2
𝑝
6

0
/2𝑚 is

Δ𝐸
(1)

𝑛(GUP1) = ⟨𝑛| 𝐻

| 𝑛⟩

=
𝛽

𝑚
(
ℏ𝑚𝜔

2
)

2

⟨𝑛| (𝑎
†
− 𝑎)
4

| 𝑛⟩

−
𝛽
2

2𝑚
(
ℏ𝑚𝜔

2
)

3

⟨𝑛| (𝑎
†
− 𝑎)
6

| 𝑛⟩ .

(12)

Applying the raising and lowering operators and simplifying

Δ𝐸
(1)

𝑛(GUP1) =
3𝛽
0
𝑙
2

𝑃

4
𝑚𝜔
2
(2𝑛
2
+ 2𝑛 + 1)

+
5𝛽
2

0
𝑙
4

𝑃
𝑚
2
𝜔
3

16ℏ
(4𝑛
3
+ 6𝑛
2
+ 8𝑛 + 3) .

(13)

Therefore, the relative change in energy is

Δ𝐸
(1)

𝑛(GUP1)

𝐸
𝑛

=
3𝛽
0
𝑙
2

𝑃
𝑚𝜔

4ℏ

(2𝑛
2
+ 2𝑛 + 1)

𝑛 + 1/2

+
5𝛽
2

0
𝑙
4

𝑃
𝑚
2
𝜔
2

16ℏ2

(4𝑛
3
+ 6𝑛
2
+ 8𝑛 + 3)

𝑛 + 1/2
.

(14)

The first term in (13) differs from that derived in [12] by a
factor of three because instead of the commutation relation
(4) they use the relation [𝑥, 𝑝] = 𝑖ℏ(1 + 𝛽𝑝2).

2.2. GUP1-Second Order. The second order correction can be
calculated using second order perturbation theory [13, Page
256]

Δ𝐸
(2)

𝑛(GUP1) = ∑
𝑚 ̸= 𝑛


⟨𝑚| 𝐻


| 𝑛⟩


2

𝐸
(0)

𝑛 − 𝐸
(0)

𝑚

, 𝐻

=
𝛽

𝑚
𝑝
4

0
. (15)

Expanding and neglecting terms with equal number of 𝑎 and
𝑎
†

⟨𝑚| 𝐻

| 𝑛⟩ =

𝛽

𝑚
(
ℏ𝑚𝜔

2
)

2

⟨𝑚|

× (𝑎
†
𝑎
†
𝑎
†
𝑎
†
− 𝑎
†
𝑎
†
𝑎
†
𝑎 − 𝑎
†
𝑎
†
𝑎𝑎
†

− 𝑎
†
𝑎𝑎
†
𝑎
†
− 𝑎
†
𝑎𝑎𝑎 − 𝑎𝑎

†
𝑎
†
𝑎 − 𝑎𝑎

†
𝑎𝑎

−𝑎𝑎𝑎
†
𝑎 − 𝑎𝑎𝑎𝑎

†
+ 𝑎𝑎𝑎𝑎) |𝑛⟩ .

(16)

Applying the raising and lowering operators:

⟨𝑚| 𝐻

| 𝑛⟩ =

𝛽

𝑚
(
ℏ𝑚𝜔

2
)

2

×(

√(𝑛 + 1) (𝑛 + 2) (𝑛 + 3) (𝑛 + 4)𝛿
𝑚,𝑛+4

− (4𝑛 + 6)√(𝑛 + 1) (𝑛 + 2)𝛿
𝑚,𝑛+2

− (4𝑛 − 2)√𝑛 (𝑛 − 1)𝛿
𝑚,𝑛−2

+ √𝑛 (𝑛 − 1) (𝑛 − 2) (𝑛 − 3)𝛿
𝑚,𝑛−4

) .

(17)
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Because of the delta functions and the orthogonality of the
eigenfunctions, squaring the above expression means squar-
ing each term individually. After simplifying and dividing by
𝐸
𝑛

Δ𝐸
(2)

𝑛(GUP1)

𝐸
𝑛

=
−𝑚
2
𝜔
2
𝑙
4

𝑃
𝛽
2

0

8ℏ2

(34𝑛
3
+ 51𝑛

2
+ 59𝑛 + 21)

𝑛 + 1/2
. (18)

2.3. GUP2-First Order. For GUP2, 𝐻 = (−𝛼/𝑚)𝑝
3

0
+

(5𝛼
2
/2𝑚)𝑝

4

0
− (2𝛼

3
/𝑚)𝑝
5

0
+ (2𝛼

4
/𝑚)𝑝
6

0
. The 𝑝3

0
and 𝑝5

0

terms do not contribute to first order because they are odd
functions. The first order correction for the 𝑝4

0
and 𝑝6

0
terms

is the same as (14) with 𝛽 → 5𝛼
2
/2 and 𝛽2 → 4𝛼

4:

Δ𝐸
(1)

𝑛(GUP2)𝑝4
0

𝐸
𝑛

=

15𝑙
2

𝑝
𝛼
2

0
𝑚𝜔

8ℏ

(2𝑛
2
+ 2𝑛 + 1)

𝑛 + 1/2

+
5𝛼
4

0
𝑙
4

𝑃
𝑚
2
𝜔
2

4ℏ2

(4𝑛
3
+ 6𝑛
2
+ 8𝑛 + 3)

𝑛 + 1/2
,

(19)

which agrees with the expression derived in [8] when 𝑛 = 0.

2.4. GUP2-SecondOrder. Thesecond order correction for the
𝑝
3

0
term can be calculated using the same method that led to

(18)

Δ𝐸
(2)

𝑛(GUP2)𝑝3
0

= ∑

𝑚 ̸= 𝑛


⟨𝑚| 𝐻


| 𝑛⟩


2

𝐸
(0)

𝑛 − 𝐸
(0)

𝑚

, 𝐻

=
−𝛼

𝑚
𝑝
3

0
, (20)

⟨𝑚| 𝐻

| 𝑛⟩ =

𝑖𝛼

𝑚
(
ℏ𝑚𝜔

2
)

3/2

× (√(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)𝛿
𝑚,𝑛+3

− 3 (𝑛 + 1)√𝑛 + 1𝛿
𝑚,𝑛+1

+ 3𝑛√𝑛𝛿
𝑚,𝑛−1

−√𝑛 (𝑛 − 1) (𝑛 − 2)𝛿
𝑚,𝑛−3

) .

(21)

Squaring and substituting in (20)

Δ𝐸
(2)

𝑛(GUP2)𝑝3
0

=
𝛼
2

𝑚2
(
ℏ𝑚𝜔

2
)

3

× [
(𝑛 + 1) (𝑛 + 2) (𝑛 + 3)

−3ℏ𝜔
+
9(𝑛 + 1)

3

−ℏ𝜔

+
9𝑛
3

ℏ𝜔
+
𝑛 (𝑛 − 1) (𝑛 − 2)

3ℏ𝜔
] .

(22)

Simplifying and dividing by 𝐸
𝑛

Δ𝐸
(2)

𝑛(GUP2)𝑝3
0

𝐸
𝑛

=
−𝑚𝜔𝑙

2

𝑃
𝛼
2

0

8ℏ

(30𝑛
2
+ 30𝑛 + 11)

𝑛 + 1/2
, (23)

which agrees with the expression derived in [8] when 𝑛 = 0.
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Figure 1: The relative change in energy due to GUP1 and GUP2 as
a function of 𝑛, assuming 𝛽

0
= 𝛼
0
= 1.

The second order correction for the 𝑝4
0
term is the same

as (18) with 𝛽 → 5𝛼
2
/2:

Δ𝐸
(2)

𝑛(GUP2)𝑝4
0

𝐸
𝑛

=
−25𝑚

2
𝜔
2
𝑙
4

𝑃
𝛼
4

0

32ℏ2

(34𝑛
3
+ 51𝑛

2
+ 59𝑛 + 21)

(𝑛 + 1/2)
.

(24)

Adding (14) and (18) we get for GUP1

Δ𝐸
𝑛(GUP1)

𝐸
𝑛

=
3𝛽
0
𝑙
2

𝑃
𝑚𝜔

4ℏ

(2𝑛
2
+ 2𝑛 + 1)

𝑛 + 1/2

−
3𝛽
2

0
𝑙
4

𝑃
𝑚
2
𝜔
2

16ℏ2

(16𝑛
3
+ 24𝑛

2
+ 26𝑛 + 9)

𝑛 + 1/2
.

(25)

Adding (19), (23), and (24) we get for GUP2

Δ𝐸
𝑛(GUP2)

𝐸
𝑛

=
𝑚𝜔𝑙
2

𝑃
𝛼
2

0

2ℏ

1

𝑛 + 1/2

−
15𝑚
2
𝜔
2
𝑙
4

𝑃
𝛼
4

0

32ℏ2

(46𝑛
3
+ 69𝑛

2
+ 77𝑛 + 27)

𝑛 + 1/2
.

(26)

It is interesting to note that to 𝑂(𝛼2), the effect of GUP2 is to
add a constant shift to all energy levels.

To compare (25) and (26) with experiment, consider
an ion in a Penning trap; its motion is effectively a one-
dimensional harmonic oscillator [14]. The accuracy of mass
determination increases linearly with charge, so let us sup-
pose it is possible to use completely ionized lead atoms, which
have an atomic number of 82. Suppose that themagnetic field
in the Penning trap is 𝐵 = 10T. The cyclotron frequency is
𝜔
𝑐
= 𝑞𝐵/𝑚; substituting the value of𝑚𝜔

𝑐
≃ 820𝑒 in (25) and

(26) we get the results shown in Table 1 for different 𝑛.
Figure 1 is a plot of (25) and (26), as a function of 𝑛. It

is clear that the difference between the corrections of GUP1
and GUP2 increases with increasing 𝑛. That difference might
prove useful in future experiments to differentiate between
the two GUPs.
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The best accuracy for mass determination for stable ions
in a penning trap is [14] 𝛿𝑚/𝑚 = 1 × 10

−11, which sets an
upper bound on 𝛽

0
when 𝑛 = 100 of 𝛽

0
< 2.0 × 10

38 and
on 𝛼
0
when 𝑛 = 1 of 𝛼

0
< 1.7 × 10

20. These bounds can be
lowered in future experiments by using Penning traps with
highermass determination accuracy, ions with higher charge,
and stronger magnetic fields.

3. Hydrogen Atom

The effect of GUP1 on the spectrum of the hydrogen atom
was calculated to first order in [15] by doing the integral
to find the expectation value of the perturbed Hamiltonian.
In this section, we use a simpler method, adopted from [13,
Page 269], to get the same result. After that, we calculate the
effect of GUP2 on the spectrum of hydrogen, which, to my
knowledge, was not done before.

TheGUP1-correctedHamiltonian for Hydrogen takes the
form

𝐻 =
𝑝
2

0

2𝑚
−
𝑘

𝑟
+
𝛽

𝑚
𝑝
4

0
, (27)

where 𝑘 ≡ 𝑒2/4𝜋𝜖
0
, the change in energy to first order can be

found as follows:

Δ𝐸
𝑛(GUP1) = ⟨𝜓

 𝐻
 𝜓⟩ =

𝛽

𝑚
⟨𝑝
2

0
𝜓 | 𝑝
2

0
𝜓⟩ , (28)

where we used the hermiticity of 𝑝2
0
= 2𝑚(𝐸

𝑛
+ 𝑘/𝑟). Thus,

Δ𝐸
𝑛(GUP1) = 4𝛽𝑚⟨(𝐸𝑛 +

𝑘

𝑟
)

2

⟩

= 4𝛽𝑚(𝐸
2

𝑛
+ 2𝐸
𝑛
𝑘⟨
1

𝑟
⟩ + 𝑘

2
⟨
1

𝑟2
⟩) .

(29)

Using the relations [13, Page 269]:

⟨
1

𝑟
⟩ =

1

𝑛2𝑎
0

, ⟨
1

𝑟2
⟩ =

1

(𝑙 + 1/2) 𝑛
3𝑎
2

0

, (30)

where 𝑎
0
= 4𝜋𝜖

0
ℏ
2
/𝑚𝑒
2
≈ 5.3 × 10

−11
𝑚 is the Bohr radius,

(29) becomes

Δ𝐸
𝑛(GUP1) = 4𝛽𝑚𝐸

2

𝑛
(1 +

2𝑘

𝐸
𝑛

1

𝑛2𝑎
0

+
𝑘
2

𝐸2
𝑛

1

(𝑙 + 1/2) 𝑛
3𝑎
2

0

) .

(31)

Using 𝑎
0
= ℏ
2
/𝑚𝑘 and𝐸

𝑛
= 𝑚𝑘
2
/2ℏ
2
𝑛
2, we obtain the relative

change in energy

Δ𝐸
(1)

𝑛(GUP1)

𝐸
𝑛

= 4𝛽𝑚𝐸
𝑛
(
4𝑛

𝑙 + 1/2
− 3) , (32)

which agrees with the expression derived in [15]. Equation
(32) is maximum when 𝑛 = 1, 𝑙 = 0 giving:

Δ𝐸
(1)

1(GUP1)

𝐸
1

≈ 9.3 × 10
−49
𝛽
0
. (33)

TheGUP2-correctedHamiltonian forHydrogen takes the
form

𝐻 =
𝑝
2

0

2𝑚
−
𝑘

𝑟
−
𝛼

𝑚
𝑝
3

0
+
5𝛼
2

2𝑚
𝑝
4

0
. (34)

The change in energy due to the 𝑝3
0
term to first order is zero,

because 𝑝3
0
is an odd parity function; thus, its integral over all

space is zero.
The effect of the 𝑝4

0
term is the same as (32) with 𝛽 →

5𝛼
2
/2,

Δ𝐸
(1)

𝑛(GUP2)

𝐸
𝑛

= 10𝛼
2
𝑚𝐸
𝑛
(
4𝑛

𝑙 + 1/2
− 3) . (35)

For 𝑛 = 1, 𝑙 = 0:

Δ𝐸
(1)

1(GUP2)

𝐸
1

≈ 2.3 × 10
−48
𝛼
2

0
. (36)

The second order correction for the 𝑝3
0
term can be found

numerically, for the ground state 𝜓
100

:

Δ𝐸
(2)

1(GUP2)𝑝3
0

=

∞

∑

𝑛𝑙𝑚 ̸= 100


⟨𝑛𝑙𝑚| 𝐻


| 100⟩



2

𝐸
(0)

1
− 𝐸
(0)

𝑛

,

𝐻

=
−𝛼

𝑚
𝑝
3

0
=
𝛼𝑖ℏ
3

𝑚
∇(∇
2
) .

(37)

From selection rules [13, Page 360] ⟨𝑛𝑙𝑚|𝑝|𝑛𝑙𝑚⟩ = 0 except
when Δ𝑚 = ±1, 0 and Δ𝑙 = ±1, which means that the sum
should be taken for 𝑙 = 1,𝑚 = −1, 0, 1. Summing for all states
adjacent to |100⟩ (e.g., up to 𝑛 = 10), since their contribution
is greater

Δ𝐸
(2)

1(GUP2)

=
𝛼
2
ℏ
6

𝑚2𝐸
1

𝑛=10

∑

𝑛=2,𝑙=1,

𝑚=0,±1

1

1 − 1/𝑛2

×



∫

2𝜋

0

∫

𝜋

0

∫

∞

0

𝜓
𝑛𝑙𝑚
∇∇
2
(𝜓
100
) 𝑟
2

× sin 𝜃𝑑𝑟 𝑑𝜃 𝑑𝜙


2

.

(38)

The gradient of the Laplacian of 𝜓
100

in spherical coordinates
is

∇∇
2
(𝜓
100
) =

1

√𝜋𝑟2
(
1

𝑎
3

0

)

3/2

𝑒
−𝑟/𝑎
0 (2𝑎
2

0
+ 2𝑎
0
𝑟 − 𝑟
2
) r̂.

(39)

Substituting in (38) and taking into consideration that r̂ =
sin 𝜃 cos𝜙x̂ + sin 𝜃 sin𝜙ŷ + cos 𝜃ẑ leads to

Δ𝐸
(2)

1(GUP2)

𝐸
1

≃ 6.2 × 10
−52
𝛼
2

0
(40)
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Table 1: GUP-corrections to the energy of the harmonic oscillator.

𝑛 Δ𝐸
𝑛(GUP1)/𝐸𝑛 Δ𝐸

𝑛(GUP2)/𝐸𝑛

0 4.9 × 10
−52
𝛽
0
− 3.6 × 10

−103
𝛽
2

0
3.2 × 10

−52
𝛼
2

0
− 2.7 × 10

−102
𝛼
4

0

2 1.3 × 10
−51
𝛽
0
− 2.3 × 10

−102
𝛽
2

0
6.5 × 10

−53
𝛼
2

0
− 1.6 × 10

−101
𝛼
4

0

5 2.7 × 10
−51
𝛽
0
− 9.9 × 10

−102
𝛽
2

0
3.0 × 10

−53
𝛼
2

0
− 7.1 × 10

−101
𝛼
4

0

10 5.1 × 10
−51
𝛽
0
− 3.5 × 10

−101
𝛽
2

0
1.5 × 10

−53
𝛼
2

0
− 2.5 × 10

−100
𝛼
4

0

100 4.9 × 10
−50
𝛽
0
− 3.2 × 10

−99
𝛽
2

0
1.6 × 10

−54
𝛼
2

0
− 2.3 × 10

−98
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Figure 2: GUP-corrections to the spectrum of the hydrogen atom.

which is much less than (36), and thus can be neglected; this
also happens to all other states.

Figure 2 is a plot of (32) and (35) as a function of 𝑛 for
different 𝑙; we see that the two GUPs have almost the same
effect on the spectrum of hydrogen. The best experimental
measurement of the 1S-2S transition in hydrogen [16] reaches
a fractional frequency uncertainty of 𝛿𝑓/𝑓 = 4.2 × 10

−15

which sets an upper bound on 𝛽
0
of 𝛽
0
< 4.5 × 10

33 and on
𝛼
0
of 𝛼
0
< 4.2 × 10

16.

4. Modified Lorentz Force Law

Because the GUPmodifies the Hamiltonian, one expects that
any system with a well-defined Hamiltonian is perturbed
[9], perhaps even classical Hamiltonians. The impact of the
GUP2-corrected classical Hamiltonian on Newton’s gravi-
tational force law was examined in [17]; here, we derive a
modified Lorentz force law.

For a particle in an electromagnetic field, the GUP1-
modified Hamiltonian is [5]

𝐻 =
1

2𝑚
(p
0
− 𝑞A)2 + 𝛽

𝑚
(p
0
− 𝑞A)4 + 𝑞𝜑, (41)

differentiating with respect to p
0
, we get

̇r = 𝜕𝐻
𝜕p
0

=
1

𝑚
(p
0
− 𝑞A) + 4𝛽

𝑚
(p
0
− 𝑞A)3. (42)

Using inversion of series, we get

p
0
= 𝑞A + 𝑚 ̇r − 4𝛽(𝑚 ̇r)3 + 𝑂 (𝛽2) . (43)

Substitution inL = p
0
⋅ ̇r − 𝐻 leads to

L = (𝑚 ̇r − 4𝛽(𝑚 ̇r)3 + 𝑞A) ⋅ ̇r − 1

2𝑚
(𝑚 ̇r − 4𝛽(𝑚 ̇r)3)

2

−
𝛽

𝑚
(𝑚 ̇r − 4𝛽(𝑚 ̇r)3)

4

− 𝑞𝜑.

(44)

which simplifies to:

L =
𝑚 ̇r2

2
− 𝛽𝑚
3
̇r4 + 𝑞A ⋅ ̇r − 𝑞𝜑. (45)

Applying the Euler-Lagrange equation (𝑑/𝑑𝑡)(𝜕L/𝜕 ̇𝑟) −
(𝜕L/𝜕𝑟) = 0 we obtain

𝑚 ̈r − 12𝛽𝑚3 ̇r2 ̈r = 𝑞∇ (A ⋅ ̇r) − 𝑞𝑑A
𝑑𝑡
− 𝑞∇𝜙. (46)

The RHS is 𝑞(E + k × B), which means that the Lorentz force
law becomes

F ≡ 𝑚 ̈r = 𝑞 E + k × B
1 − 12𝛽𝑚2V2

, (47)

which is approximately

F ≃ 𝑞 (E + k × B) (1 + 12𝛽𝑚2V2) . (48)

Using the same method as above, the GUP2-corrected
Hamiltonian takes the form [8]

𝐻 =
1

2𝑚
(p
0
− 𝑞A)2 − 𝛼

𝑚
(p
0
− 𝑞A)3 + 5𝛼

2

2𝑚
(p
0
− 𝑞A)4 + 𝑞𝜑,

(49)

differentiatingwith respect top
0
andusing inversion of series,

we get

p
0
= 𝑞A + 𝑚 ̇r + 3𝛼(𝑚 ̇r)2 + 8𝛼2(𝑚 ̇r)3 + 𝑂 (𝛼3) , (50)

leading to the Lagrangian

L =
𝑚 ̇r2

2
+ 𝛼𝑚
2
̇r3 + 2𝛼2𝑚3 ̇r4 + 𝑞A ⋅ ̇r − 𝑞𝜑. (51)

from which we obtain

F = 𝑞 E + k × B
1 + 6𝛼𝑚k + 24𝛼2𝑚2V2

, (52)
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Figure 3: A pendulum under the effect of gravitational and
electrostatic forces.

which is approximately

F ≃ 𝑞 (E + k × B) (1 − 6𝛼𝑚V) . (53)

The new term in (48) and (53) depends on 𝑚V, which
means that its effect in high energy physics will be too small
even at relativistic speeds. For example, in a proton-proton
scattering experiment:

Δ𝐹GUP1
𝐹

= 12𝛽𝑚
2V2 ∼ 10−38𝛽

0
. (54)

Experimental tests of Coulomb’s law use large, but
usually static, masses [18]. For example, coulomb’s torsion
balance experiment measures the torsion force needed to
balance the electrostatic force; Cavendish’s concentric spheres
experiment, and its modern counterparts, use two or more
concentric spheres, (or cubes, or icosahedra) [18] to test
Gauss’s law.

To test (48) and (53) we need largemasses, withmoderate
velocities. Suppose we have a pendulum with length 𝑅 and
a bob with charge 𝑞 and mass 𝑚 swinging above an infinite
charged plane with charge density −𝜎; the electric field will
be 𝐸 = −𝜎/2𝜀

0
(See Figure 3). Without the GUP effect, the

bob will experience a force

F
0
= −(𝑚𝑔 +

𝑞𝜎

2𝜀
0

) ŷ. (55)

If 𝜃 is the angle between the vertical and the string, the
equation of motion for small 𝜃 is

𝑚𝑅 ̈𝜃 ≃ −(𝑚𝑔 +
𝑞𝜎

2𝜀
0

)𝜃. (56)

Thus, the angular frequency is

𝜔
2

0
=
𝑔

𝑅
+

𝑞𝜎

2𝜀
0
𝑚𝑅
. (57)

However, if we used (48) for the electrostatic force, then
the equation of motion will be

𝑚𝑅 ̈𝜃 ≃ −(𝑚𝑔 +
𝑞𝜎

2𝜀
0

(1 + 12𝛽𝑚
2V2)) 𝜃. (58)

The velocity can be found from conservation of energy, taking
the gravitational and electrical potentials to be zero on the
plane

1

2
𝑚V2 + (

𝜎𝑞

2𝜀
0

+ 𝑚𝑔)𝑅 (1 − cos 𝜃)

= (
𝜎𝑞

2𝜀
0

+ 𝑚𝑔)𝑅 (1 − cos 𝜃
0
) ,

(59)

where 𝜃
0
is the initial angle, assuming it starts with zero initial

velocity. Equation (59) simplifies to:

V2 ≃ (
𝜎𝑞

2𝑚𝜀
0

+ 𝑔)𝑅 (𝜃
2

0
− 𝜃
2
) . (60)

The equation of motion will be

𝑚𝑅 ̈𝜃 ≃ −(𝑚𝑔 +
𝑞𝜎

2𝜀
0

+
6𝑞𝜎𝛽𝑚

2

𝜀
0

(
𝜎𝑞

2𝑚𝜀
0

+ 𝑔)𝑅𝜃
2

0
)𝜃. (61)

Thus, the angular frequency is

𝜔
2

1
=
𝑔

𝑅
+

𝑞𝜎

2𝑚𝑅𝜀
0

+
6𝑞𝜎𝛽

𝜀
0

(
𝜎𝑞

2𝜀
0

+ 𝑚𝑔)𝜃
2

0
. (62)

And for GUP2

𝜔
2

2
=
𝑔

𝑅
+

𝑞𝜎

2𝑚𝑅𝜀
0

−
3𝑞𝜎𝛼

𝜀
0

𝜃
0√

𝜎𝑞

2𝑚𝑅𝜀
0

+
𝑔

𝑅
. (63)

Using the values 𝜃
0
= 𝜋/12, 𝜎 = 1 𝜇C/m2, 𝑞 = 2 𝜇C, 𝑅 = 1m,

𝑚 = 0.1 kg and 𝑔 = 9.807m/s2,

𝜔
0
= 3.307 rad/sec, 𝐹

0
= 1.094N,

𝜔
1
= 3.307 + 3.6 × 10

−4
𝛽
0
, 𝐹
1
= 1.094 + 2.3 × 10

−3
𝛽
0
,

𝜔
2
= 3.307 − 1.4 × 10

−2
𝛼
0
, 𝐹
2
= 1.094 − 8.6 × 10

−2
𝛼
0
.

(64)

These values, I believe, are accessible with current tech-
nology and thus can be used to set much lower bounds on the
GUP parameters than the best bound [19] of 𝛼

0
< 10
8 from

the anomalous magnetic moment of the muon. However, the
GUP might not be applicable on large scale; maybe the GUP
parameters 𝛼

0
and 𝛽

0
are mass dependent.

5. Generalized Time-Energy Uncertainty

Suppose a light-clock consists of two parallel mirrors a
distance 𝐿 apart, the time a photon takes to travel from one
mirror to the other is𝑇 = 𝐿/𝑐, but length cannot bemeasured
more accurately than the Planck length so

𝑇 =
𝐿 ± 𝑙
𝑃

𝑐
=
𝐿

𝑐
± 𝑡
𝑃
, (65)

where 𝑡
𝑃
≡ √𝐺ℏ/𝑐5 ≃ 5.4 × 10

−44 sec is the Planck time.
This shows that the existence of a minimal length scale
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Table 2: Effect of the modified time-energy uncertainty principle on the mean life of particles.

Particle Mass𝑚 (MeV) Full width Γ (MeV) Mean life 𝜏 (sec.) Δ𝜏GUP1/𝜏 Δ𝜏GUP2/𝜏

𝑍 91.19 × 10
3

2.49 × 10
3

2.64 × 10
−25

1.7 × 10
−34
𝛽
0

−2.3 × 10
−17
𝛼
0

𝜂 547.85 1.30 × 10
−3

5.06 × 10
−19

6.1 × 10
−39
𝛽
0

−8.9 × 10
−20
𝛼
0

𝜇 105.66 2.99 × 10
−16

2.197 × 10
−6

2.2 × 10
−40
𝛽
0

− 1.7 × 10
−20
𝛼
0

limits the precision of time measurements. A more rigorous
analysis using general relativity and taking into account the
gravitational attraction between the photon and the mirrors
leads to the same conclusion [1, 20].

The time-energy uncertainty relation can be obtained
from the position-momentum uncertainty relation by using
𝑝 = 𝐸/𝑐 and 𝑡 = 𝑥/𝑐 to give

Δ𝐸Δ𝑡 ≥
ℏ

2
. (66)

GUP1 leads to the generalized time-energy uncertainty
relation

Δ𝐸Δ𝑡 ≥
ℏ

2
[1 + 3

𝛽

𝑐2
((Δ𝐸)

2
+ ⟨𝐸⟩

2
)] , (67)

which implies Δ𝑡 ≥ Δ𝑡min = √𝛽0𝑡𝑃. GUP2 leads to

Δ𝐸Δ𝑡 ≥
ℏ

2
[1 − 2

𝛼

𝑐
⟨𝐸⟩ + 4

𝛼
2

𝑐2
((Δ𝐸)

2
+ ⟨𝐸⟩

2
)] , (68)

which implies Δ𝑡 ≥ Δ𝑡min = 𝛼0𝑡𝑃.
An important application of the time-energy uncertainty

is calculating the mean life 𝜏 of short-lived particles, by using
the full width Γ divided by two as ameasure ofΔ𝐸 [21]; that is,
𝜏 = ℏ/Γ, because Γ is easier to determine experimentally than
𝜏. Applying (67) and (68) instead of (66) leads to an extremely
small change in the mean life of particles.

In Table 2, the mass 𝑚 and the full width Γ are from
[22]. The mean life was calculated via (66), while Δ𝜏GUP1 and
Δ𝜏GUP2 were calculated via (67) and (68), respectively. The
rest mass was used as a measure of ⟨𝐸⟩.

The effect of the generalized time-energy uncertainty
principle on the mean life is too small to measure experi-
mentally, but it might affect the Planck era cosmology [23].
In [23] the authors investigate the effect of similar relations
to (67) and (68) on the values of the main Planck quantities,
like 𝑡
𝑃
, and reach the conclusion that they were larger at the

Planck era than now by a factor of (10 − 104) under specific
conditions. If true, then the effect of (67) and (68) on the
mean life of particles was greater at the early universe and
might leave traces in present day cosmology.

6. Conclusions

In this paper, we investigated some implications of the GUP1
and GUP2. We calculated the GUP-corrections to the energy
of the quantum harmonic oscillator for all energy levels
to first and second order perturbation, and although the
corrections are small, current and future experiments can be
used to set bounds on the values of the GUP parameters.

We also found that the difference between corrections due
to GUP1 and GUP2 gets bigger with increasing 𝑛; this may
provide a way to experimentally determine which GUP is
correct.

Then, we investigated the GUP-effect on the spectrum of
atomic hydrogen, because spectroscopy provides increasingly
more precise measurements for transition frequencies in
atoms. We also found that GUP1 and GUP2 have almost the
same effect on the spectrum of hydrogen.

After that, we investigated how the GUP-corrected clas-
sical Hamiltonian leads to a modified Lorentz force law. We
also found that it might be possible to detect the effect of the
modified Lorentz force law with current technology, unless
the GUP is only applicable near the Planck scale.

Finally, we saw how the GUP leads to a generalized time-
energy uncertainty principle and considered its effect on the
mean life of some particles, which was too small to measure
experimentally. However, its effect in the early universemight
be detectable in present day cosmology.
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