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Video panoramic image stitching is in general challenging because there is small overlapping between original images, and
stitching processes are therefore extremely time consuming. We present a new algorithm in this paper. Our contribution can be
summarized as a multiple-constraint corner matching process and the resultant faster image stitching. The traditional Random
Sample Consensus (RANSAC) algorithm is inefficient, especially when stitching a large number of images and when these images
have quite similar features. We first filter out many inappropriate corners according to their position information. An initial set of
candidate matching-corner pairs is then generated based on grayscales of adjacent regions around each corner. Finally we apply
multiple constraints, e.g., their midpoints, distances, and slopes, on every two candidate pairs to remove incorrectly matched pairs.
Consequently, we are able to significantly reduce the number of iterations needed in RANSAC algorithm so that the panorama
stitching can be performed in amuchmore efficientmanner. Experimental results demonstrate that (i) our cornermatching is three
times faster than normalized cross-correlation function (NCC) roughmatch in traditional RANSAC algorithm and (ii) panoramas
generated from our algorithm feature a smooth transition in overlapping image areas and satisfy human visual requirements.

1. Introduction

To stitch images and form a video panoramic image, the
similarity of overlapping regions among adjacent images
needs to be calculated in the first place. State-of-the-art
algorithms for image registration (sometimes also referred
to as “image alignment”) can be classified into intensity-
based, frequency domain-based, and feature-based ones [1–
7]. Intensity-based algorithms usually involve a large amount
of computation and therefore are not appropriate for image
alignment when there is image rotation and scaling. On
the other hand, algorithms based on frequency-domain are
in general faster and can handle well small translation,
rotation, and scaling. Unfortunately, the performance of
frequency domain-based algorithms will be degraded when
dealing with scenarios where smaller overlapping regions
exist. Feature-based algorithms utilize a small number of
invariant points, lines, or edges to align images. One signifi-
cant advantage of these algorithms is that the computational

complexity will be reduced due to less information that needs
to be processed. Additionally, feature-based algorithms are
robust to changes in image intensity. However, there is one
serious issue identified for many existing algorithms. Most
of these algorithms make use of an exhaustive search that is
based on template matching. As a result, the computation,
although already decreased to some extent, is still intensive,
which does notmeet the real-time requirement usually found
in video panorama stitching.

We present in this paper a new algorithm to handle the
aforementioned challenge. Our algorithm is motivated by the
observation that adjacent images usually have small overlap-
ping and small difference of translation, rotation, and scaling
between each other. The proposed algorithm is based upon
our innovativemultiple-constraint cornermatching. First, we
filter out large numbers of candidate corners according to
their position information. We then generate an initial set of
matching-corner pairs based on grayscales of each corner’s
adjacent regions. Finally, multiple constraints, for example,
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their midpoints, distances, and slopes, will be applied on
every two candidate pairs to remove incorrectly matched
pairs. Consequently, we are able to significantly reduce the
number of iterations that are needed in conventional Random
Sample Consensus (RANSAC) algorithm [8]. As a result, the
video panoramic image stitching can be performed a lotmore
efficiently.

The rest of this paper is organized as follows. Section 2
introduces in detail our methodology; Section 3 describes
experimental results; and Section 4 concludes with future
research directions.

2. Methodology

2.1. Corner Selection. Harris algorithm [2] detects corners
through the differential of the corner score and the autocor-
relation matrix. Suppose that an image has an intensity of
𝐼(𝑥, 𝑦) and an image patch over the area 𝑤(𝑥, 𝑦) is shifted
by (𝑢, V) the intensity change, 𝐸(𝑢, V), of the pixel (𝑥, 𝑦) can
then be calculated by (1) where 𝑀 = [
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] (𝐼(𝑥) and 𝐼(𝑦) are partial derivatives of the pixel,
respectively, and 𝑤 is the Gaussian function to filter noises).
One has

𝐸 (𝑢, V) = [𝑢V] 𝑀[
𝑢

V] . (1)

The corner response function is defined in (2) with 𝑘 in the
range of [0.04, 0.06]. Any pixels whose𝑅 value is greater than
a threshold, 𝜆, can be selected as candidate corners:

𝑅 = det (𝑀) − 𝑘(trace (𝑀))
2
. (2)

Note that 𝜆 depends on characteristics of actual images, size
and texture for example; Usually 𝜆 is determined indirectly:
pixels are sorted in a descending order of their 𝑅 values; then
the first Sum pixels are selected as corners.

Harris detector only involves the first order difference and
filtering operations of pixel grayscale, with low computational
complexity. A large number of corners can be detected in
regions with rich texture, whereas fewer corners will be
selected in regions with less texture information. Therefore,
selected corners are not evenly distributed; that is, corners
tend to cluster around regions with richer texture. Zhao et
al. proposed an algorithm in [9] where they fragmented the
original image into several regions. A fixed number of corners
with top 𝑅 values were selected in each region as candidate
corners; all such candidate corners (a total of Sum) were then
sorted in their 𝑅 values. Finally a scaling parameter, 𝑘, whose
range is (0, 1), was applied to finalize the corner selection,
that is, generating a total of 𝑘 × Sum corners. To assure that
each region contains some finalized corners, this algorithm
iteratively applied different 𝑘 values in an ascending order and
the iteration was terminated as soon as there was at least one
finalized corner for each region. Because of its ability to select
corners with relatively high quality, we adopt this algorithm
when selecting Harris corners from adjacent images to be
stitched.

2.2. Multiple-Constraint Corner Matching. The traditional
RANSAC algorithm is inefficient, especially when stitching
a large number of images and when these images have
quite similar features. Thus, it does not meet the real-time
requirement commonly found in video panorama stitching.
Note that in the field of video panorama stitching, more often
than not, adjacent images have highly similar features with
each other, that is, small difference of translation, rotation,
and scaling between each other. Based on this insight, we
propose to applymultiple constraints on candidatematching-
corner pairs to remove incorrectlymatched pairs. As such, we
can significantly reduce the number of iterations needed in
RANSAC algorithm.

2.2.1. Create a Corner Similarity Matrix between Adjacent
Images. Suppose that the image 𝐼 has a resolution of𝑊×𝐻,
and the 𝑘th corner in 𝐼 is denoted by 𝐼

𝑘
(with coordinates

𝐼
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⋅ 𝑥 and 𝐼
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⋅ 𝑦, and intensity 𝐼(𝑥
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)). One corner from the

left image (𝐼
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𝑖
) and another corner from the right image (𝐼

𝑟

𝑗
)

can be matched with each other if the following conditions
are satisfied: (i) the difference between 𝑦 coordinates of these
two corners is no greater than 𝐻/3; (ii) the 𝑥 coordinate of
the left corner is greater than or equal to that of the right
corner; and (iii) there is a high intensity correlation between
two corners. Accordingly, we utilize (3) to calculate pairwise
corner similarity and create a similarity matrix between
adjacent images 𝐼𝑙 and 𝐼

𝑟:
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In (3), 𝜆
ℎ
is the threshold of the difference between 𝑦

coordinates of two corners, and normalized cross-correlation
(NCC) function is the one described in [10]. Suppose that the
similarity window size is (2𝑤 + 1) × (2𝑤 + 1); NCC is then
calculated as
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where
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and 𝐼
𝑙

𝑖
and 𝐼

𝑟

𝑗
are the mean intensity of windows around
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, respectively. In addition, we further filter

out corner pairs with low similarity using (6), where 𝜆
𝑛
is the

similarity threshold (a real number that is greater than 0.5):

sim (𝑖, 𝑗) = {
sim (𝑖, 𝑗) if sim (𝑖, 𝑗) > 𝜆

𝑛
,

0 else.
(6)
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In brief, we use (3) and (6) to calculate pairwise corner
similarity, sim(𝑖, 𝑗), resulting in a similarity matrix between
two adjacent images.

2.2.2. Generate an Initial Set of Matching-Corner Pairs. A
set of indexes of matching-corner pairs is generated by the
following procedure: in each row of the similarity matrix
obtained previously, we find the column index so that the
corresponding cell in the matrix has the maximum value for
that row, and the pair of (row index, column index) is added
into the set. After we process all rows in the matrix, we will
obtain a set of index pairs, 𝐿𝑙. Such a procedure is formally
described in (7), where Sum

𝑙
is the predefined total number

of corners in the left image 𝐼𝑙:

𝐿
𝑙
= {(𝑖, 𝑗) | ∀𝑖 ∈ [1, Sum

𝑙
] ,

𝑠 (𝑖, 𝑗) = max (𝑠 (𝑖, :)) , 𝑠 (𝑖, 𝑗) ̸= 0} .

(7)

Similarly, we can obtain another set of index pairs, 𝐿
𝑟,

by searching the maximum row index for each column.
Equation (8) is a formal description of this procedure, where
Sum
𝑟
is the predefined total number of corners in the right

image 𝐼𝑟:

𝐿
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In general, Sum
𝑙
in (7) and Sum

𝑟
in (8) can take different

values. In our algorithm we use the same value for these two
parameters. Now we compare two sets, 𝐿𝑙 and 𝐿

𝑟. If a row
index and a column index happen to have each other as the
other component in a pair, their similarity will be adjusted
to 1. That is, if two corners mutually find their “best” match
as each other, such a pair will have an updated similarity
value of 1. Equation (9) formalizes this procedure of similarity
adjustment:

simupdated (𝑖, 𝑗) = {
1 if (𝑖, 𝑗) ∈ 𝐿

𝑙
∩ 𝐿
𝑟
,

sim (𝑖, 𝑗) else.
(9)

Finally we generate an initial set of matching-corner pairs, 𝐿,
by a union of 𝐿𝑙 and 𝐿

𝑟, shown in (10). Note that this initial set
of pairs is already reduced in size compared with NCC rough
match in traditional RANSAC algorithm because as shown in
(3) we have already filtered out some inappropriate corners
according to their positions in respective regions (i.e., their
coordinate values). One has
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Figure 1: Two initially matching-corner pairs.

three constraints to be applied to these two matching-corner
pairs, as follows:

constraint 1: 󵄨󵄨󵄨󵄨𝛿𝑚 − 𝛿
𝑛

󵄨󵄨󵄨󵄨 < 𝜆
𝛿
,

constraint 2: |𝑚 − 𝑛| < 𝜆
𝑑
,

constraint 3: 󵄨󵄨󵄨󵄨󵄨NCC (𝐼
𝑙

𝑙
𝑚𝑛

, 𝐼
𝑟

𝑟
𝑚𝑛

)
󵄨󵄨󵄨󵄨󵄨
> 𝜆
𝑛
.

(11)

The intuition of (11) is that, between two matching pairs, not
only the intensity of their respective midpoints (constraint
3) should be correlated, but also the slope (constraint 1) and
length (constraint 2) of the segments formed between these
two pairs should be similar with each other as well. According
to multiple constraints specified in (11), we calculate pairwise
similarity between every two initial matching pairs using (12)
and generate a matrix 𝐷 of size 𝐾 × 𝐾, with 𝐾 being the
cardinality of 𝐿 generated in (10). One has

𝐷 (𝑚, 𝑛)

=

{{{

{{{

{
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,

if satifying all 3 constraints
0 else.

(12)

2.2.4. Generate the Final, Reduced Set of Matching-Corner
Pairs. Among a total of 𝐾 initial matching-corner pairs,
according to (13), we search for a special pair, 𝑡, which has
the strongest correlation with all other pairs:

𝑡 = argmax
𝑖∈[1,𝐾]

(

𝐾

∑

𝑗=1

𝐷(𝑖, 𝑗)) . (13)

Then we refer back to the matrix𝐷 generated previously and
find out all initial matching pairs that have some correlation
with the aforementioned special pair, 𝑡; that is, an initial
matching-corner pair will be output to the final, further
reduced set as long as the cell in 𝐷 corresponding to this
pair and the special pair 𝑡 has a nonzero value. Equation (14)
formally specifies this final selection step, and the resultant
set 𝑇 is the finalized, reduced set of matching-corner pairs.
Note that the size of 𝑇 is further reduced from that of 𝐿,
and we explained earlier that 𝐿 is already reduced in size
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Figure 2: Experiments on corner matching.

compared with NCC rough match in traditional RANSAC
algorithm:

𝑇 = {𝑙 | ∀𝑙 ∈ 𝐿,𝐷 (𝑡, 𝑙) ̸= 0} . (14)

2.3. Image Stitching. After we obtain a reduced set of
matching-corner pairs between two original images to be
stitched, we select one as the reference image and calculate the
affine transformation parameters using RANSAC algorithm.
Based on these parameters we map pixel coordinates in
the other image into the coordinate system of the refer-
ence image. The light conditions may vary among different
cameras; therefore, the panorama to be generated may be
inconsistent in terms of its intensity. To obtain a smooth

transition in overlapping areas among images to be stitched,
we utilize the weighted-sum method introduced in [10] to
perform a gradual fading-in and fading-out image stitching
process to generate the final video panoramic image.

3. Experimental Results and Analysis

3.1. Experimental Environment and Parameter Setup. Exper-
imental Environment and Parameter Setup are as follows:
PC: CPU E2200 + 2.2GHz, 4GB memory, Matlab 7.0; image
resolution: 1280 × 720.

Various parameters described earlier in Section 2 were
set as follows. Note that the setting of these experimental
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Figure 3: Experiments on image stitching.

parameters was based upon our previous experience from
numerous experiments.

(i) The difference of 𝑦 coordinates of adjacent cameras
was not greater than 𝐻/3; that is, 𝜆

ℎ
in (3) was set to

𝐻/3;
(ii) The horizontal overlapping was not great than𝑊/3;
(iii) The original image was segmented into regions of size

80 × 80, and the number of corners for each region
was set to six;

(iv) The similarity threshold, 𝜆
𝑛
, in (6) was set to 0.75, and

the similarity window size in (4) was set to 7 × 7; that
is, 𝑤 was set to three.

3.2. Evaluation onCornerMatching. Theexperimental results
are demonstrated in Figure 2. Two original images with
corners selected using algorithm in [9] are exhibited in
Figure 2(a). We chose the right one-third region of the left
image and the left one-third region of the right image as two
regions to perform corner matching. So we had a total of
45 (= (𝐻/80)×((𝑊/3)/80)) segmented regions, and the total
number of corners is 270 (= 6 × 45). The total number of
matching-corner pairs fromNCC rough match in traditional
RANSAC algorithm was 388 (Figure 2(b)), whereas the total
numbers of initial and finalized matching-corner pairs from
our algorithm were 332 (Figure 2(c)) and 35 (Figure 2(d)),
respectively. This result verified our earlier discussion in
Section 2.2; that is, the initial set of pairs is already reduced
in size compared with NCC rough match in traditional
RANSAC algorithm because as shown in (3) we have already
filtered out some corners according to their positions in
respective regions (i.e., their coordinate values). Note that
most of the 35 matching pairs in Figure 2(d) were correct
ones. In addition, as demonstrated in Table 1, our multiple-
constraint corner matching was three times faster than NCC
rough match in traditional RANSAC algorithm. The reason

Table 1: Efficiency comparison between traditional RANSAC and
our algorithm.

NCC rough match
in traditional
RANSAC

Our initial
matching

Multiple-
constraint
matching

Number of
matching pairs 388 332 35

Time spent (s) 8.74 2.30 2.94

for us to obtain a much shorter matching process is that
traditional RANSAC algorithm needs to calculate the NCC
function, which is very time consuming, for all pairwise com-
binations of corners, whereas in our algorithm only a small
number of combinations need to be considered. To be more
specific, (3) ignores all corners that do not meet the position
requirement, and we further avoid NCC calculation if two
initial pairs do not satisfy the first two constraints specified
in (11). More experimental results can be found at the follow-
ing project Web link: http://www.soc.southalabama.edu/∼
huang/ImageStitching/ExperimentResults.rar.

3.3. Evaluation on Image Stitching. The experimental results
are demonstrated in Figure 3. We performed both the
regional Harris corner selection and multiple-constraint
corner matching between Figures 3(a) and 3(b) and between
Figures 3(b) and 3(c), respectively. After we obtained
two finalized sets of matching-corner pairs, we selected
Figure 3(b) as the reference image and calculated the
affine transformation parameters as discussed earlier in
Section 2.3. We then mapped pixel coordinates in Figures
3(a) and 3(c) into the coordinate system of Figure 3(b),
respectively. Finally we performed a gradual fading-in and
fading-out image stitching process. The final result in
Figure 3(d) clearly demonstrated that (i) our corner match-
ing was accurate; (ii) we obtained a smooth transition in
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overlapping areas among images to be stitched; and (iii)
the panorama generated satisfied human visual require-
ments. Similarly, more experimental results can be found
at the following link: http://www.soc.southalabama.edu/∼
huang/ImageStitching/ExperimentResults.rar.

4. Conclusions

We presented an innovative algorithm to handle challenges
in video panoramic image stitching, for example, small
overlapping regions and extremely time-consuming stitching
processes. Our contribution can be summarized as (i) a
multiple-constraint corner matching and (ii) a more efficient
image stitching process. To overcome the inefficient corner
matching in traditional RANSAC algorithm, we first filtered
out a large number of corners according to their position
information. We then generated an initial set of matching-
corner pairs based on grayscales of adjacent regions around
each corner. Finally we applied multiple constraints on every
two candidate pairs to remove incorrectly matched pairs. We
were able to significantly reduce the number of iterations
needed in RANSAC algorithm, resulting in a much more
efficient panorama stitching process. Experimental results
(both those that were detailed in this paper itself and those
additional ones in the Web link provided) demonstrated that
(i) our corner matching is three times faster than traditional
RANSAC matching and (ii) panoramas generated from our
algorithm feature a smooth transition in overlapping image
areas and satisfy human visual requirements.

One possible future research direction is to investigate
on automatically determining the total number of corners
according to the image texture information. Another inter-
esting future work is to handle the motion ghost challenge
during image stitching.
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