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We consider viscoelastic wave equations of the Kirchhoff type utt − M(‖∇u‖22)Δu +
∫ t
0 g(t −

s)Δu(s)ds + ut = |u|p−1u with Dirichlet boundary conditions, where ‖ · ‖p denotes the norm in
the Lebesgue space Lp. Under some suitable assumptions on g and the initial data, we establish
a global nonexistence result for certain solutions with arbitrarily high energy, in the sense that
limt→ T∗−(‖u(t)‖22 +

∫ t
0 ‖u(s)‖22ds) = ∞ for some 0 < T ∗ < +∞.

1. Introduction

In this paper we consider the following problem:

utt −M
(
‖∇u‖22

)
Δu +

∫ t

0
g(t − s)Δu(s)ds + |ut|m−1ut = |u|p−1u, (x, t) ∈ Ω × (0,∞),

u(x, t) = 0, (x, t) ∈ ∂Ω × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

(1.1)

where Ω is a bounded domain in R
n (n ≥ 1) with a smooth boundary ∂Ω, p > 1, M(s) is a

nonnegative C1 function like M(s) = a + bsγ for s ≥ 0, a ≥ 0, b ≥ 0, a + b > 0, γ > 0 and g(t)
represents the kernel of memory term.
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Problem (1.1) without the viscoelastic term (i.e., g = 0) has been extensively studied
and many results concerning global existence, decay, and blowup have been established. For
example, the following equation:

utt −M
(
‖∇u‖22

)
Δu + g(ut) = f(u), (x, t) ∈ Ω × (0,∞), (1.2)

has been considered by Matsuyama and Ikehata in [1] for g(ut) = δ|ut|p−1ut and f(u) =
μ|u|q−1u. The authors proved existence of the global solutions by using Faedo-Galerkin
method and the decay of energy based on the method of Nakao [2–4]. Later, Ono [5]
investigated (1.2) for M(s) = bsγ and f(u) = |u|p−2u. When g(ut) = −Δut, ut or |ut|βut, the
author showed that the solutions blow up in finite time with E(0) ≤ 0. ForM(s) = a+bsγ and
g(ut) = ut, this model was considered by the same author in [6]. By applying the potential
well method he obtained the blow-up properties with positive initial energy E(0). Recently,
Zeng et al. [7] studied (1.2) for the case g(ut) = ut with the same initial and boundary
conditions as that of problem (1.1). By using the concavity argument, they proved that the
solutions to (1.2) blow up in finite time with arbitrarily high energy.

In the case of M ≡ 1 and in the presence of the viscoelastic term (i.e., g /= 0), the
equation

utt −Δu +
∫ t

0
g(t − s)Δu(s)ds + |ut|m−1ut = |u|p−1u, (x, t) ∈ Ω × (0,∞), (1.3)

was studied by Messaoudi in [8], where the author proved that any weak solution with
negative initial energy blows up in finite time if p > m and

∫∞

0
g(s)ds ≤ p − 1

p − 1 + 1/
(
p + 1

) , (1.4)

while the solution continues to exist globally for any initial data in the appropriate space
if m ≥ p. This blow-up result was improved by the same author in [9] for positive initial
energy under suitable conditions on g, m, and p. More recently, Wang [10] investigated (1.3)
and established a blow-up result with arbitrary positive initial energy. In the related work,
Cavalcanti et al. [11] studied the following equation:

utt −Δu +
∫ t

0
g(t − s)Δu(s)ds + a(x)ut + |u|γu = 0, (x, t) ∈ Ω × (0,∞), (1.5)

where a : Ω → R+ is a function which may be null on a part of Ω. Under the condition that
a(x) ≥ a0 > 0 on ω ⊂ Ω, with ω satisfying some geometric restrictions and −ξ1g(t) ≤ g ′(t) ≤
−ξ2g(t), t ≥ 0 to guarantee that ‖g‖L1((0,∞)) is small enough, they proved an exponential decay
rate.
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When g /= 0 and M is not a constant function, problems related to (1.1) have been
treated by several authors. Wu and Tsai [12] considered the global existence, asymptotic
behavior, and blow-up properties for the following equation:

utt −M
(
‖∇u‖22

)
Δu +

∫ t

0
g(t − s)Δu(s)ds −Δut = f(u), (x, t) ∈ Ω × (0,∞), (1.6)

with the same initial and boundary conditions as that of problem (1.1). They obtained the
blow-up properties of local solution with small positive initial energy by using the direct
method of [13]. Global existence and decay properties of the solutions were also obtained
there. In [14], Wu then extended the decay result of [12] under a weaker condition on g.

For other papers related to existence, uniform decay and blowup of solutions of
nonlinear wave equations, see [15–33] and references therein.

Motivated by the above research, we consider problem (1.1) for m = 1 in this paper
and establish a global nonexistence result for certain solutions with arbitrarily high energy by
using concavity technique. In this way, we can extend the result of [7] to nonzero term g and
the result of [10] to nonconstant M(s). Throughout the rest of this paper, we always assume
that m = 1.

The structure of this paper is as follows. In Section 2, we present some assumptions,
notations and the main result. In Section 3, we give the proof of the main result. Some further
remarks are stated in Section 4.

2. Preliminaries and Main Result

In this section, we will give some assumptions, notations and state the main result. We first
give the following assumptions:

(A1) g ∈ C1([0,∞)) is a nonnegative and non-increasing function satisfying

1 −
∫∞

0
g(s)ds = l > 0. (2.1)

(A2) The function et/2g(t) is of positive type in the following sense (see [10]):

∫ t

0
v(s)

∫s

0
e(s−z)/2g(s − z)v(z)dzds ≥ 0, ∀v ∈ C1([0,∞)), ∀t > 0. (2.2)

Remark 2.1. Assumption (A2) is needed to prove Lemma 3.1 below.

In order to prove our result, we make the following assumption on M and g:

(A3) there exists a positive constant m1 such that

p + 1
2

M(s) −
[
M(s) +

p + 1
2

∫∞

0
g(τ)dτ

]
s ≥ m1s, ∀s ≥ 0, (2.3)

where M(s) =
∫s
0 M(τ)dτ .
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Remark 2.2. It is clear that when M(s) = a + bsγ for s ≥ 0, a ≥ 0, b ≥ 0, a + b > 0, γ > 0 and
p > 1 + 2γ , condition (A3) can be replaced by

∫∞

0
g(τ)dτ <

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p − 1
p + 1

a, if a > 0, b ≥ 0,

(
p − 1 − 2γ

)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2 , if a = 0, b > 0,
(2.4)

which is the same as the one in [10, Theorem 1.1] for the case a = 1 and b = 0, where Cp is the
constant from the Poincaré inequality ‖u(t)‖22 ≤ Cp‖∇u(t)‖22. Then, the possible choice of the
positive constant m1 in (A3) can be easily obtained (see Section 4.1 for details).

It is necessary to state the local existence theorem for problem (1.1), whose proof
follows the arguments in [12, 34].

Theorem 2.3. Assume that (A1) holds, and 1 < p ≤ n/(n − 2) when n ≥ 3, 1 < p < ∞ when
n = 1, 2. For u0 ∈ H1

0(Ω) ∩ H2(Ω), u1 ∈ H1
0(Ω), and M(‖∇u0‖22) > 0, problem (1.1) has a unique

local solution

u ∈ C
(
[0, T);H1

0(Ω) ∩H2(Ω)
)
, ut ∈ C

(
[0, T);L2(Ω)

)
∩ L2

(
[0, T);H1

0(Ω)
)
, (2.5)

for the maximum existence time T > 0.

The energy functional E(t) and an auxiliary functional I(u) of the solution u(t) of
problem (1.1) are defined as follows:

E(t) := E(u(t))

=
1
2
‖ut‖22 +

1
2
M
(
‖∇u‖22

)
− 1
2

∫ t

0
g(s)ds‖∇u‖22 +

1
2
(
g ◦ ∇u

)
(t) − 1

p + 1
‖u‖p+1p+1,

(2.6)

I(u) = M
(
‖∇u‖22

)
‖∇u‖22 − ‖u‖p+1p+1, (2.7)

where

(
g ◦w)(t) =

∫ t

0
g(t − s)‖w(t, ·) −w(s, ·)‖22ds. (2.8)

As in [7, 10], we can get

d

dt
E(t) = −‖ut‖22 −

1
2
g(t)‖∇u‖22 +

1
2
(
g ′ ◦ ∇u

)
(t) ≤ 0, ∀t ≥ 0. (2.9)

Then we have

E(t) = E(0) −
∫ t

0
‖us‖22ds +

1
2

∫ t

0

(
g ′ ◦ ∇u

)
(s)ds − 1

2

∫ t

0
g(s)‖∇u(s)‖22ds. (2.10)

Now we are in a position to state the main result.
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Theorem 2.4. Assume that (A1) holds and 1 < p ≤ n/(n − 2) when n ≥ 3, 1 < p < ∞ when
n = 1, 2. Let u be a solution of problem (1.1) with initial data u0 ∈ H1

0(Ω) ∩ H2(Ω), u1 ∈ H1
0(Ω)

and M(‖∇u0‖22) > 0, and further assume that

E(0) > 0, (2.11)

I(u0) < 0, (2.12)
∫

Ω
u0u1dx > 0, (2.13)

‖u0‖22 >
(
p + 1

)
Cp

m1
E(0). (2.14)

Then the solution of problem (1.1) blows up in finite time 0 < T ∗ < +∞, which means that

lim
t→ T∗−

(

‖u(t)‖22 +
∫ t

0
‖u(s)‖22ds

)

= ∞, (2.15)

where Cp is a constant from the Poincaré inequality and m1 comes from condition (A3).

Remark 2.5. We note that the set of the initial data which satisfy conditions (2.11)–(2.14) is not
empty (see Section 4.2 for details).

3. Proof of the Main Result

In this section we prove our main result, Theorem 2.4, whose proof follows the ideas already
used in [7, 10] and relies on the following lemmas.

Lemma 3.1 (see [10, Lemma 2.1]). Assume that g(t) satisfies assumptions (A1)-(A2), and H(t)
is a function which is twice continuously differentiable satisfying

H ′′(t) +H ′(t) >
∫ t

0
g(t − s)

∫

Ω
∇u(s)∇u(t)dx ds,

H(0) > 0, H ′(0) > 0,
(3.1)

for every t ∈ [0, T), where u(t) is the corresponding solution of problem (1.1) with u0 and u1. Then
the function H(t) is strictly increasing on [0, T).

Lemma 3.2. Suppose that u0 ∈ H1
0(Ω) ∩H2(Ω) and u1 ∈ H1

0(Ω) satisfy
∫

Ω
u0u1dx > 0. (3.2)

If the solution u(t) of problem (1.1) exists on [0, T) and satisfies

I(u(t)) < 0, (3.3)

then ‖u(t)‖22 is strictly increasing on [0, T).
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Proof. Since u(t) is the solution of problem (1.1), by a simple computation, we have

1
2
d2

dt2

∫

Ω
|u(x, t)|2dx =

∫

Ω

(
|ut|2 + uutt

)
dx

= ‖ut‖22 −M
(
‖∇u‖22

)
‖∇u‖22 + ‖u‖p+1p+1

+
∫ t

0
g(t − s)

∫

Ω
∇u(s)∇u(t)dxds −

∫

Ω
uutdx

> −
∫

Ω
uutdx +

∫ t

0
g(t − s)

∫

Ω
∇u(s)∇u(t)dxds,

(3.4)

where the last inequality is derived by (3.3). Then we get

d2

dt2

∫

Ω
|u(x, t)|2dx +

d

dt

∫

Ω
|u(x, t)|2dx >

∫ t

0
g(t − s)

∫

Ω
∇u(s)∇u(t)dxds. (3.5)

Therefore, by using Lemma 3.1, we finish our proof.

Lemma 3.3. If u0 ∈ H1
0(Ω) ∩H2(Ω) and u1 ∈ H1

0(Ω) satisfy the assumptions in Theorem 2.4, then
the solution u(t) of problem (1.1) satisfies

I(u(t)) < 0, (3.6)

‖u‖22 >
(
p + 1

)
Cp

m1
E(0), (3.7)

for all t ∈ [0, T).

Proof. We will prove the above lemma by contradiction. First we assume that (3.6) is not true
over [0, T), it means that there exists a time t0 such that

t0 = min{t ∈ (0, T) : I(u(t)) = 0}. (3.8)

Since I(u(t)) < 0 on [0, t0), by Lemma 3.2, we see that
∫
Ω u2dx is strictly increasing over [0, t0),

which implies

∫

Ω
u2dx >

∫

Ω
u2
0dx >

(
p + 1

)
Cp

m1
E(0). (3.9)

And by the continuity of
∫
Ω u2dx on t, we note that

∫

Ω
u2(t0)dx ≥

(
p + 1

)
Cp

m1
E(0). (3.10)
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On the other hand, by (2.6) and (2.9), we get

M
(
‖∇u(t0)‖22

)
−
∫ t0

0
g(s)ds‖∇u(t0)‖22 +

(
g ◦ ∇u

)
(t0) − 2

p + 1
‖u(t0)‖p+1p+1 ≤ 2E(0). (3.11)

Combining (3.11) with (3.8) yields

p + 1
2

M
(
‖∇u(t0)‖22

)
− p + 1

2

∫ t0

0
g(s)ds‖∇u(t0)‖22 +

p + 1
2
(
g ◦ ∇u

)
(t0)

−M
(
‖∇u(t0)‖22

)
‖∇u(t0)‖22 ≤

(
p + 1

)
E(0).

(3.12)

By (A3), we get

‖∇u(t0)‖22 <
p + 1
m1

E(0). (3.13)

By Poincaré’s inequality, we have

‖u(t0)‖22 <
(
p + 1

)
Cp

m1
E(0). (3.14)

Obviously, there is a contradiction between (3.10) and (3.14), thus we prove that

I(u(t)) < 0, (3.15)

for every t ∈ (0, T). By Lemma 3.2, it follows that
∫
Ω u2dx is strictly increasing on [0, T), which

implies that

∫

Ω
u2 dx ≥

∫

Ω
u2
0 dx >

(
p + 1

)
Cp

m1
E(0), (3.16)

for every t ∈ [0, T). This completes the proof of Lemma 3.3.

Proof of Theorem 2.4. We prove our main result by adopting concavity method. We assume by
contradiction that the T is sufficiently large. Then we consider the auxiliary function

G(t) = ‖u(t)‖22 +
∫ t

0
‖u(s)‖22ds + (T0 − t)‖u0‖22 + β(t2 + t)2, t ∈ [0, T0], (3.17)

where T0, t2, and β are positive constants, which will be chosen later.
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A straightforward calculation gives

G′(t) = 2
∫

Ω
uutdx + ‖u(t)‖22 − ‖u0‖22 + 2β(t2 + t)

= 2
∫

Ω
uutdx + 2

∫ t

0
(u(s), us(s))ds + 2β(t2 + t),

(3.18)

consequently,

G′′(t) = 2
∫

Ω
|ut|2dx + 2

∫

Ω
uuttdx + 2

∫

Ω
uutdx + 2β

= 2‖ut‖22 − 2M
(
‖∇u‖22

)
‖∇u‖22 + 2

∫ t

0
g(t − s)

∫

Ω
∇u(s)∇u(t)dxds

− 2
∫

Ω
uutdx + 2

∫

Ω
uutdx + 2‖u‖p+1p+1 + 2β

= 2‖ut‖22 − 2M
(
‖∇u‖22

)
‖∇u‖22 + 2‖u‖p+1p+1 + 2

∫ t

0
g(t − s)ds‖∇u‖22

+ 2
∫ t

0
g(t − s)

∫

Ω
∇u(t)(∇u(s) − ∇u(t))dxds + 2β.

(3.19)

By using Young’s inequality, we obtain

∫ t

0
g(t − s)

∫

Ω
|∇u(t)||∇u(s) − ∇u(t)|dxds ≤

∫ t

0
g(s)ds‖∇u(t)‖22 +

1
4
(
g ◦ ∇u

)
(t). (3.20)

Substituting (2.6) and (3.20) for the third and the fifth terms of the right hand side of (3.19),
respectively, we have

G′′(t) ≥ (p + 3
)‖ut‖22 +

(
p + 1

)
M
(
‖∇u‖22

)
− 2M

(
‖∇u‖22

)
‖∇u‖22 −

(
p + 1

)
∫ t

0
g(s)ds‖∇u‖22

− 2
(
p + 1

)
E(t) +

(
p +

1
2

)
(
g ◦ ∇u

)
(t) + 2β.

(3.21)

By (A3), we deduce

G′′(t) >
(
p + 3

)‖ut‖22 + 2m1‖∇u‖22 − 2
(
p + 1

)
E(t) +

(
p +

1
2

)
(
g ◦ ∇u

)
(t) + 2β. (3.22)

Noting that (2.10), we obtain that

−E(t) ≥ −E(0) +
∫ t

0
‖us‖22ds. (3.23)
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Combining (3.22)-(3.23) yields

G′′(t) >
(
p + 3

)‖ut‖22 + 2m1‖∇u‖22 − 2
(
p + 1

)
E(0)

+
(
p +

1
2

)
(
g ◦ ∇u

)
(t)

+ 2
(
p + 1

)
∫ t

0
‖us‖22ds + 2β.

(3.24)

By Poincaré’s inequality, Lemma 3.2, and (2.14), we see that

2m1‖∇u‖22 − 2
(
p + 1

)
E(0) +

(
p +

1
2

)
(
g ◦ ∇u

)
(t)

>
2m1

Cp
‖u0‖22 − 2

(
p + 1

)
E(0) > 0,

(3.25)

by (3.24)-(3.25), we get

G′′(t) >
(
p + 3

)‖ut‖22 +
2m1

Cp
‖u0‖22 − 2

(
p + 1

)
E(0) + 2

(
p + 1

)
∫ t

0
‖us‖22ds + 2β, (3.26)

which means that G′′(t) > 0 for every t ∈ [0, T0]. Thus, by G
′
(0) > 0 and G(0) > 0, we get G

′

and G(t) are strictly increasing on [0, T0].
We first choose β small enough satisfying

(
p + 1

)
β <

2m1

Cp
‖u0‖22 − 2

(
p + 1

)
E(0), (3.27)

consequently,

G′′(t) >
(
p + 3

)‖ut‖22 + 2
(
p + 1

)
∫ t

0
‖us‖22ds +

(
p + 3

)
β. (3.28)

As far as β is fixed, we select t2 large enough satisfying

p − 1
2

(∫

Ω
u0u1dx + βt2

)
> ‖u0‖22. (3.29)

From (3.17), (3.18), and (3.29), we now choose T0 such that T0 > (‖u0‖22 + βt22)/(((p −
1)/2)(

∫
Ω u0 u1dx + βt2) − ‖u0‖22) > 0, which ensures that

T0 >
4

p − 1
G(0)
G′(0)

. (3.30)
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Letting

A := ‖u(t)‖22 +
∫ t

0
‖u(s)‖22ds + β(t2 + t)2,

B :=
1
2
G′(t),

C := ‖ut(t)‖22 +
∫ t

0
‖us(s)‖22ds + β.

(3.31)

Since we have assumed that the solution u(t) to problem (1.1) exists for every t ∈ [0, T),
where T is sufficiently large, we have

G(t) ≥ A,

G′′(t) ≥ (p + 3
)
C,

(3.32)

for every t ∈ [0, T0]. Then it follows that

G′′(t)G(t) − p + 3
4
(
G′(t)

)2 ≥ (p + 3
)(

AC − B2
)
. (3.33)

Furthermore, we have

Ar2 − 2Br + C =
∫

Ω
(ru(t) − ut(t))2dx +

∫ t

0
‖ru(s) − us(s)‖22ds + β[r(t2 + t) − 1]2 ≥ 0, (3.34)

for every r ∈ R, which implies that B2 −AC ≤ 0. Thus, we obtain

G′′(t)G(t) − p + 3
4
(
G′(t)

)2 ≥ 0. (3.35)

As (p + 3)/4 > 1, letting θ = (p − 1)/4, we have

G′′(t)G(t) − (1 + θ)
(
G′(t)

)2 ≥ 0. (3.36)

According to concavity technique, there exists a real number T ∗ such that T ∗ ≤ G(0)/θG′(0) <
T0 and we have

lim
t→ T∗−

G(t) = ∞, (3.37)

that is,

lim
t→ T∗−

(

‖u(t)‖22 +
∫ t

0
‖u(s)‖22 ds

)

= ∞, (3.38)

which contradicts the assumption that the T is sufficiently large.
This completes the proof of Theorem 2.4.
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4. Some Further Remarks

4.1. The Possible Choice of the Positive Constant m1 in (A3)

WhenM(s) = a+bsγ for s ≥ 0, a ≥ 0, b ≥ 0, a+b > 0, γ > 0 and p > 1+2γ , by straightforward
calculation, we obtain

p + 1
2

M(s) −
[
M(s) +

p + 1
2

∫∞

0
g(τ)dτ

]
s

=
p + 1
2

(
as +

b

γ + 1
sγ+1
)
− as − bsγ+1 −

(
p + 1

)
s

2

∫∞

0
g(τ)dτ

=
p − 1
2

as +

(
p − 1 − 2γ

)
b

2
(
γ + 1

) sγ+1 −
(
p + 1

)
s

2

∫∞

0
g(τ)dτ.

(4.1)

If a > 0 and b ≥ 0, it follows from (2.4) that
∫∞
0 g(τ)dτ < ((p − 1)/(p + 1)) a. Thus, we have

p + 1
2

M(s) −
[
M(s) +

p + 1
2

∫∞

0
g(τ)dτ

]
s

>
p − 1
2

as +

(
p − 1 − 2γ

)
b

2
(
γ + 1

) sγ+1 −
(
p + 1

)
s

2

[
p − 1
p + 1

a −
((
p − 1

)
/
(
p + 1

))
a − ∫∞0 g(τ)dτ

2

]

=

(
p − 1 − 2γ

)
b

2
(
γ + 1

) sγ+1 +
p + 1
4

[
p − 1
p + 1

a −
∫∞

0
g(τ)dτ

]
s ≥ p + 1

4

[
p − 1
p + 1

a −
∫∞

0
g(τ)dτ

]
s,

(4.2)

where we have used a obvious conclusion: m < n ⇒ m < n − (n − m)/2. Therefore, we can
choose m1 = ((p + 1)/4)[((p − 1)/(p + 1)) a − ∫∞0 g(τ)dτ] in condition (A3).

If a = 0 and b > 0, then

p + 1
2

M(s) −
[
M(s) +

p + 1
2

∫∞

0
g(τ)dτ

]
s

=

(
p − 1 − 2γ

)
b

2
(
γ + 1

) sγ+1 −
(
p + 1

)
s

2

∫∞

0
g(τ)dτ >

(
p − 1 − 2γ

)
b

2
(
γ + 1

) sγ+1 −
(
p + 1

)
s

2

×

⎡

⎢⎢⎢⎢
⎣

(
p − 1 − 2γ

)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2
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−

((
p − 1 − 2γ

)
b/
(
C

γ
p

(
p + 1

)(
γ + 1

)))‖u0‖2γ2 − ∫∞0 g(τ)dτ

2

⎤

⎥
⎦

=

(
p − 1 − 2γ

)
b

2
(
γ + 1

) s

(

sγ − 1

C
γ
p

‖u0‖2γ2
)

+

(
p + 1

)
s

4

[ (
p − 1 − 2γ

)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2 −
∫∞

0
g(τ)dτ

]

.

(4.3)

Taking s = ‖∇u(t)‖22, applying Lemma 3.2 and Poincaré’s inequality, we can get

p + 1
2

M
(
‖∇u(t)‖22

)
−
[
M
(
‖∇u(t)‖22

)
+
p + 1
2

∫∞

0
g(τ)dτ

]
‖∇u(t)‖22

>

(
p − 1 − 2γ

)
b

2
(
γ + 1

) ‖∇u(t)‖22
(

‖∇u(t)‖2γ2 − 1

C
γ
p

‖u0‖2γ2
)

+
p + 1
4

‖∇u(t)‖22
[ (

p − 1 − 2γ
)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2 −
∫∞

0
g(τ)dτ

]

≥
(
p − 1 − 2γ

)
b

2
(
γ + 1

) ‖∇u(t)‖22
(

‖∇u(t)‖2γ2 − 1

C
γ
p

‖u(t)‖2γ2
)

+
p + 1
4

‖∇u(t)‖22
[ (

p − 1 − 2γ
)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2 −
∫∞

0
g(τ)dτ

]

≥
(
p − 1 − 2γ

)
b

2
(
γ + 1

) ‖∇u(t)‖22
(
‖∇u(t)‖2γ2 − ‖∇u(t)‖2γ2

)

+
p + 1
4

‖∇u(t)‖22
[ (

p − 1 − 2γ
)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2 −
∫∞

0
g(τ)dτ

]

=
p + 1
4

[ (
p − 1 − 2γ

)
b

C
γ
p

(
p + 1

)(
γ + 1

)‖u0‖2γ2 −
∫∞

0
g(τ)dτ

]

‖∇u(t)‖22.

(4.4)

So, we can choose m1 = ((p + 1)/4) [(p − 1 − 2γ)b/(Cγ
p (p + 1)(γ + 1)‖u0 ‖2γ2 ) − ∫∞0 g(τ)dτ] in

condition (A3).

4.2. The Set of the Initial Data Satisfying
Conditions (2.11)–(2.14) Is Not Empty

For any real value of the initial energy E(0) = d > 0, there exists such initial data which leads
to blow up in finite time.

For instance, in the caseM(s) = 1+sγ , then for any (u0, u1) ∈ (H1
0(Ω)∩H2(Ω))×H1

0(Ω)
with

∫
Ω u0u1dx > 0, wemay take some λ, α > 0, such that (u0, u1) satisfies the above conditions

(2.11)–(2.14).
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Indeed, for M(s) = 1 + sγ , conditions (2.11)–(2.14) become

E(0) =
1
2
‖u1‖22 +

1
2
‖∇u0‖22 +

1
2
(
γ + 1

)‖∇u0‖2(γ+1)2 − 1
p + 1

‖u0‖p+1p+1 > 0,

I(u0) = ‖∇u0‖22 + ‖∇u0‖2(γ+1)2 − ‖u0‖p+1p+1 < 0,
∫

Ω
u0u1dx > 0,

‖u0‖22 >
(
p + 1

)
Cp

m1
E(0).

(4.5)

Now taking (v0, v1) ∈ (H1
0(Ω)∩H2(Ω))×H1

0(Ω) such that
∫
Ω v0v1dx > 0, and letting (u0, u1) =

(λv0, αv1) for any scaling parameter λ > 0 and α > 0, then we have

E(0) =
1
2
α2‖v1‖22 +

1
2
λ2‖∇v0‖22 +

1
2
(
γ + 1

)λ2(γ+1)‖∇v0‖2(γ+1)2 − 1
p + 1

λp+1‖v0‖p+1p+1,

I(u0) = λ2‖∇v0‖22 + λ2(γ+1)‖∇v0‖2(γ+1)2 − λp+1‖v0‖p+1p+1,

‖u0‖22 = λ2‖v0‖22.

(4.6)

We suppose that λ2(γ+1) < λp+1(i.e., p > 1 + 2γ) for λ > 1, so we can choose sufficiently large λ
such that

1
2
λ2‖∇v0‖22 +

1
2
(
γ + 1

)λ2(γ+1)‖∇v0‖2(γ+1)2 − 1
p + 1

λp+1‖v0‖p+1p+1 < 0,

I(u0) = I(λv0) = λ2‖∇v0‖22 + λ2(γ+1)‖∇v0‖2(γ+1)2 − λp+1‖v0‖p+1p+1 < 0,

‖u0‖22 = λ2‖v0‖22 >
(
p + 1

)
Cp

m1
E(0).

(4.7)

And when λ is fixed, we may choose α such that E(0) = d.
Similarly, in the case M(s) = sγ , we can also take initial data (u0, u1) satisfying the

above conditions (2.11)–(2.14) (see [7, Remark 1.4]).
Thus the set of the initial data which satisfy conditions (2.11)–(2.14) is not empty.
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