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Generally, the inconvenience of establishing the mathematical optimization models directly and the conflicts of preventing
simultaneous optimization among several objectives lead to the difficulty of obtaining the optimal solution of a practical engineering
problem with several objectives. So in this paper, a generate-first-choose-later method is proposed to solve the multiobjective
engineering optimization problems, which can set the number of Pareto solutions and optimize repeatedly until the satisfactory
results are obtained. Based on Frisch’s method, Newton method, and weighed sum method, an efficient hybrid algorithm for
multiobjective optimization models with upper and lower bounds and inequality constraints has been proposed, which is especially
suitable for the practical engineering problems based on surrogate models. The generate-first-choose-later method with this hybrid
algorithm can calculate the Pareto optimal set, show the Pareto front, and provide multiple designs for multiobjective engineering
problems fast and accurately. Numerical examples demonstrate the effectiveness and high efficiency of the hybrid algorithm. In
order to prove that the generate-first-choose-later method is rapid and suitable for solving practical engineering problems, an
optimization problem for crash box of vehicle has been handled well.

1. Introduction

Most of the practical engineering optimization problems
are multiobjective. For example, an airplane design prob-
lem might require maximizing fuel efficiency and payload,
while minimizing the weight of the structure [1]. Moreover,
in automotive industry, people pay more attention to the
optimization of occupant restraint systems. In order to meet
the design requirements, such as the chest displacement
and head injury criterion, the design can be treated as a
multiobjective optimization problem [2]. With the increasing
demand of multiobjective optimization in engineering prob-
lems, researches of multiobjective optimization algorithms
are necessary and valuable.

Recently, researchers have proposed various methods
with the fast development of multiobjective optimization.

Generally, these methods can be divided into scalar methods
and evolution methods by way of solving the optimization
problems.

Scalar methods transform the vector optimization prob-
lems into adaptive scalar ones. Combining with some gradi-
ent methods, a scalar method can easily obtain the optimum
by iterations. Typical multiobjective scalar methods include
traditional weighted sum method [3, 4], constraint method
[5], NBI [6], and multiobjective automatic weighted sum
method [7]. With the continuous development, more and
more new scalar methods have emerged in this field [8-11].

The idea of evolutionary methods is similar to the
biological evolution process, established by Darwin’s theory
of natural selection. Referring to the biological evolution pro-
cess, evolutionary methods make use of crossover, mutation,
or inheritance operations during iterations to obtain better



results. Evolutionary methods have developed rapidly in the
field of multiobjective optimization, such as Multiobjective
Genetic Algorithm [12], NSGA-II [13], improving strength
Pareto evolutionary algorithm [14], multiobjective particle
swarm optimization method [15], and multiobjective artifi-
cial immune system optimization algorithm [16]. Recently,
some new multiobjective evolutionary methods have been
proposed [17, 18].

In recent years, the multiobjective optimization meth-
ods are widely used in the engineering problems, such as
aerospace [19], automobile [20], information [21], health care
[22], and robot and control [23]. The methods can solve
specific problems, such as the development of prototype,
structural design, and control system design. Most references
relative to these fields adopted evolutionary methods. This is
because the derivatives of practical engineering optimization
problems may not always be obtained, which leads the scalar
methods out of work [24]. But the process of converging to
the Pareto front by evolutionary methods is slow, random,
and difficult to control [25]. According to the analysis of
Coello et al,, it is hard to determine the stopping criterion
definitely. Some researchers often define the iterations as the
termination condition of methods [26]. In order to get a
satisfactory result, the number of iterations is always defined
so large, which means the computation time and efficiency
are unacceptable [27].

The purpose of the method proposed in this paper is
to provide the design advice to designers quickly. So we
hope that, during the process of calculation, the method can
rapidly get the Pareto optimal solutions and Pareto front of
the multiobjective optimization problems. Meanwhile, if the
results are not satisfactory, it is necessary to increase the num-
ber of the solutions or reconstruct the models of multiob-
jective optimization problems. Doubtlessly, the low calcula-
tion efficiency of multiobjective evolutionary algorithms dis-
satisfies this need.

Usually, the engineering optimization problems cannot
be solved directly. They can be described approximately by
surrogate models and then can be optimized. The surrogate
models are always constructed by polynomial response sur-
face method [28], radial basis function method [29], Kriging
method [30], and so on, which are generally expressed as sec-
ondary or higher order polynomial functions. Obviously, the
first-order and second-order derivatives of these functions
can be obtained easily, so we take Newton method as basic
theory for the proposed method in this paper, which has a
fast rate of local convergence.

We should consider that the surrogate models are mean-
ingful only in the constraint interval. So in order to keep the
computational accuracy, this paper takes Frisch’s method [31]
to deal with the constraints, which is one of the interior point
methods and can easily obtain the second-order derivatives.
Though weighted sums method makes it hard to obtain the
uniform Pareto optimal solutions and the Pareto front for
nonconvex regions, it is still convenient and effective, as the
most commonly used multiobjective scalar method [32]. This
paper takes weighted sums method to solve the multiobjec-
tive optimization problems, in order to get satisfactory Pareto
optimal solutions rapidly.
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For obtaining excellent crashworthiness performance of
vehicles, some researchers studied about the structural opti-
mization problems. Acara et al. took CFE and SEA as opti-
mization objectives and got a tradeoff solution by sequential
quadratic programming [20]. Gu et al. constructed the sur-
rogate models of restraint system by Kriging method,
obtained the Pareto front of each objective by NSGA-II, and
finally determined the best design points [2]. In this paper, the
surrogate models of vehicle’s crash box have been constructed
and optimized by the proposed method, in order to provide
detailed advice for designers rapidly.

The outline of this paper is as follows. Section 2 estab-
lishes a generate-first-choose-later method for multiobjec-
tive engineering optimization problem, which offers design
advice to designers as a reference. Section 3 proposes a hybrid
algorithm for multiobjective optimization problems with
upper and lower bounds. In Section 4, two numerical exam-
ples are calculated by the proposed hybrid algorithm to prove
the accuracy and efficiency. In Section 5, a surrogate model
of vehicle’s crash box is optimized by the proposed method
in order to prove the validity for dealing with engineer-
ing problems.

2. Strategy for Solving Multiobjective
Engineering Optimization Problems

Generally, in engineering optimization problems there are
many objectives which are always conflicting with each other.
Because of the complex conditions and structural shape, the
relationship among objective functions, design variables, and
constraint functions is hard to construct directly. Sometimes,
in practical engineering problems, numerical simulation
and experiments are adopted, but these ways rely on the
experience of designers and make it hard to achieve the
optimal design globally.

Surrogate models are widely used to improve the efhi-
ciency of engineering design and optimization. In this paper,
a valid method for solving the engineering optimization
problems based on surrogate model is proposed, which is
a generate-first-choose-later method. After constructing the
surrogate models of multiobjective engineering optimization
problems with constraints, the proposed method can calcu-
late the Pareto optimal solutions and Pareto front. The Pareto
front is shown intuitively to provide lots of suggestions for
designers as a reference. Meanwhile, designers can reset the
number of solving Pareto optimal solutions and calculate
again, in order to get better results. The flow chart of the
proposed method is shown in Figure 1.

In the proposed method, constructing the surrogate
models of engineering problems is very important, which will
highly influence the accuracy of optimization results. After
determining the optimization problem, the surrogate models
of objective functions and constraint functions can be con-
structed by response surface method, radial basis function
method, Kriging method, and so on.

It is worth noting that the magnitudes of different objec-
tive functions are often different. So we have to unify the
expression and normalize the functions before optimization.
The theory of the proposed method will be stated in Section 3.
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FIGURE 1: The generate-first-choose-later method for multiobjective optimization engineering problems.

3. The Hybrid Algorithm for
Multiobjective Optimization Models with
Upper and Lower Bounds

3.1. Disadvantage of Evolutionary Methods. Evolutionary
methods are widely used in engineering multiobjective opti-
mization problems recently. Moreover, the derivative of some
engineering problems does not exist or cannot be obtained
easily. So the evolutionary methods are more suitable for
solving these problems. However, the disadvantages of evolu-
tionary methods should not be neglected [33]. In particular,
the slow convergence rate and lack of effective convergence
criterion influence the calculation efficiency seriously.

The randomness of searching in the iterative directions
leads to the slow convergence rate of evolutionary methods.
When the individuals are far from the Pareto optimal solu-
tions, both the field which can be Pareto improved and the
opportunity to generate a descent direction randomly are
large. With the approach to Pareto optimal solutions, the

Do the results meet the

of the designer?

conflict among objective functions increases, which leads to
the difficulty of finding the descent directions for each objec-
tive function. When the individuals are close to the Pareto
optimal solutions, both the proportion of the fields which
can be Pareto improved and the opportunity to generate a
descent direction randomly are small. These are the reasons
that convergence rate of evolutionary methods solving the
multiobjective optimization problems is fast during the initial
stage and slow during the final stage.

Compared with multiobjective evolutionary methods, the
advantage of local search methods in efficiency is remarkable,
such as Newton method.

3.2. Newton Method. The models of multiobjective engi-
neering optimization problems in this paper are established
by response surface methods, and also the constraints are
handled by log functions. So the optimization models are
derivable and the second derivative can be obtained by
gradient methods. Meanwhile, the method proposed in this



paper may calculate Pareto optimal solutions more than once
in order to provide satisfying advice for designers. Hence, the
computational efficiency of the method is very important.

Although evolutionary methods are widely used in mul-
tiobjective engineering optimization problems, the computa-
tional efficiency is not satisfactory. In this paper, a multiob-
jective scalar method is researched, which has the advantage
of fast convergence. Newton method has been chosen to
calculate Pareto optimal solutions in this paper, for its high
computational efficiency.

The iteration direction of Newton method includes the
gradient and Hessian matrix information of objective func-
tions, so the iteration point can be definitely close to the
optimal point. When the iteration point is near the optimal
point, the rate of convergence is rapid [34]. If the objective
functions satisfy some conditions, it can achieve superlinear
convergence or quadratic convergence [10]. In rare cases,
the obtained Newton directions are not descent reducing
the computational efficiency. This paper adopted a decision
mechanism to solve this problem and improve calculation
efficiency, which chooses the negative gradient direction as
descent direction to replace the nondescent Newton direc-
tions.

3.3. Establish the Hybrid Algorithm. Newton method is cho-
sen as the main calculation algorithm for searching the
solutions. The process of solving multiobjective engineering
optimization problems with upper and lower bounds is
described in detail. And the overall construction course of the
hybrid algorithm is in the following.

3.3.1. Mathematical Model and Pareto Optimal Solution. In
practical engineering optimization problem, there are always
several objects which are conflicting to prevent simultaneous
optimization of each other. There is no one optimal solution
satisfying all the minima of objects. So searching for the
Pareto optimal set of these objects is one of the most
effective ways. Meanwhile, there are some constraints in
the engineering optimization problems, generally about the
upper and lower bounds of design variables. In this section, a
valid method will be proposed, in order to fast calculate the
multiobjective optimization problem with upper and lower
bounds.

The m objects of engineering optimization problem can
be denoted as

Fx) = (F,(x),F(x),....F, x)", a)

where the n-dimensional vector is x = (x,,X,,...,x,) . The
upper and lower bounds of the design variables are always
constrained as

I<x;<u, i=1,...,n 2)

For convenient calculation, the upper and lower bounds
can be transformed into upper and lower bounds; that is,

—x;” b +ux; —lu > 0. (3)
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So the multiobjective optimization engineering problem
with # constraints of upper and lower bounds can be
uniformly written as

min  F(x)

(4)

st. = x4+ Ix;+ux; —lu > 0,

where F(x) is vector function with m objects and x is a
vector with 7 variables. All the design variables satisfying the
constraints construct the feasible region of the optimization
problem, denoted as X.

The aim of solving multiobjective optimization problems
is to obtain the Pareto optimal set. For two design variables
x" and x*, it is said that x* is Pareto dominant, if and only if

(Vie{l,2,...,m} : F; (x") < F; (x)) 5
A(Fke{l,2,...,m}: F (x")<F (%)),

denoted as x* > x. The vector x* € X is a Pareto opti-
mal solution only under the condition that there does not
exist x € X for x > x*. So a Pareto optimal solution means
the reasonable solution, which satisfies the objectives at an
acceptable level without being dominated by any other solu-
tion. The method proposed in this paper can obtain both the
Pareto optimal solutions and the Pareto fronts of the multi-
objective optimization problems with constraints.

3.3.2. Handling of the Constraints. The process of solving
multiobjective optimization problems with constraints is to
find the Pareto optimal set of all the objects in the feasible
region under the constraint conditions. The problem should
be transformed into an unconstrained one first and then be
solved. Hence, a penalty term can be added to the object
functions. When the penalty term is closer to zero, it means
the design variables satisfy the constraints. During the solving
process, the penalty term should be scaled down until it is
small enough and can be neglected relative to the object
values for meeting the stopping criterion. At the moment,
the obtained solution can not only be equivalent to the
optimal solution of the original problem but also satisfy the
constraints.

The optimization problems discussed in this paper are
based on surrogate models. So the interior point method
is chosen to deal with the constraints. For solving the
gradient and Hessian matrix conveniently, the penalty term
is constructed by Frisch’s method, which is expressed as

q(x) = —G_Iilog (I +ux; =" = u). ©)

i=1

3.3.3. Iteration Direction for Multiobjective Optimization.
Despite having deficiencies in depicting the Pareto optimal
set, the weighted sum method for multiobjective optimiza-
tion continues to be used extensively not only to provide
multiple solution points by varying the weights consistently
but also to provide the solutions that reflect the preference of
each object. In the proposed method of this paper, weighted
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sum method is chosen. After the designers set the number
of Pareto optimal solutions, the corresponding group of
weighting factors can be provided uniformly.

Because the gradient and Hessian matrices of object
and constraint functions can be obtained, Newton method
is selected for its rapid convergence. In order to improve
computational efficiency, the negative gradient direction is
considered when the Newton directions are not descent. In
this paper, the Pareto optimal solutions will be solved by itera-
tion. The process of deducing iteration direction is as follows.

First, the penalty functions should be constructed. The
logarithmic penalty function of the jth (; = 1,2,...,m)
object function can be denoted as

i) = F, () +q(x). ?)

Express p;(x + d) by Taylor expansion; that is,

pj(x+d)=p;(x)+Vp; (x)" d+ %dTVij x)d. (8)

For x;, the iteration direction d satisfies d = x — x;, and
the penalty function of the jth object function is

p; (x) = p; (% +d)

)
1
= p; (%) +Vp; (Xk)T d+ EdTVZPj (%) d.

Then, adding the penalty function of every object func-
tion together, a sum function can be expressed as

P(x) =) A;p; (%)
j=1
: (10)

[\/]s

A [y (50 + V0, (50" d+ 207V, ()]

1

~.
11

where Z;’Ll Ai=1(4;>0).
By calculating the derivative of P with respect to d, one
can get the iteration direction at x;; that is,

-1

j=1 j=1

This method combines Newton method and linear
weighted sum method, and the iteration direction d is equal
to Newton direction. The iteration direction of sum function
can be obtained only based on the gradient and Hessian
matrices of each penalty function. But Newton method is
locally convergent. When the sum function is not continuous
twice differentiable, the improper selection of the initial point
cannot ensure the iteration direction is descent, which affects
the computational efficiency of optimization greatly.

In order to ensure all the iteration directions are descend-
ing during the optimization, an identification process is
introduced. If Newton direction at some point is ascending,
take the negative gradient direction of sum function at this
point as the iteration direction. The criterion is the product

of Newton direction and negative gradient direction, denoted
as

—<i/\ijj (xk)>T<Z/\ Vo, ( xk)>_ i

j=1 j=1 j=1 (12)
“Vp; (%) -
So the iteration direction at x; is

dy

-1
_<;/\jv2p1 xk)> Z/\ Vp] xk) ifa, <0 13)

if ag > 0.

—Z)‘jVPj (%) »
st

During the process of calculation, the selection of iter-
ation step length is necessary. For the object functions are
based on surrogate models, the accuracy can be ensured
only if the design variables satisfy the constraint conditions.
Hence, a criterion is set to prevent that the design variables
dissatisty the constraint conditions. When the iteration point
is beyond the range of constraints, the step length will
be scaled down. Until the new iteration point satisfies the
constraints, output the current step length.

3.3.4. The Proposed Hybrid Method: Algorithm 1. In this
section, details of calculating Pareto optimal solutions then
forming the Pareto optimal set and Pareto front will be
described.

As in the introduction above, proposing a method to
obtain Pareto optimal solutions rapidly is the key of this
paper. In this paper, based on Frisch’s method, Newton
method, and weighted sum method, an effective algorithm
is put forward, named Algorithm 1. Not only the reason for
choosing these theories, but also the derivation process of
penalty term, iteration direction, and step length have been
given in the previous sections. Now the iteration steps of
Algorithm 1 are stated as follows.

Algorithm 1. The whole process of Algorithm 1 for calculating
a Pareto optimal solution is as follows.

Step 1. Establish the logarithmic penalty functions of each
objective Pj(x), j=1,2,...,m,and calculate P(x).

Step 2. Choose an initial point x, € X and give stopping
criteria € and # and coefficients & = 0.9, p = 0.5, and 0 = 2.

Step 3. Calculate the gradients of each logarithmic penalty
function VP;(x).

If | 2311 A iVP;(x)ll < &, stop the algorithm; go to Step 8.
Else, go to Step 4.

Step 4. Calculate the iterative direction d.
=27, A VPi(x)) (X7 A V2P (%)) ™ X, A VP (x)
<0, dy = =(X7L, A, V2P (x)) ™ X A VP (x).



Else, di = = Y A;VP;(x).
=1

Step 5. Calculate iteration step size .

If for all of the constraint functions g;(x,) > 0,i =
1,2,...,m,a = a, then go to Step 7.

Else, go to Step 6.

Step 6. Consider « = pa; go to Step 5.

Step 7. Tteratively calculate x;,; = x; + ad, definek =k + 1,
and go to Step 3.

Step 8. Calculate penalty term g(xy.); if |q(x;)| < #, stop and
output x;.
Else, 0 = 100; go to Step 1.

In the process, the small positive constants € and # are
stopping criteria and « is step length. p is the reduction scale
of step length and o is the coefficient of penalty term.

Algorithm 1 shows the process of solving one Pareto
optimal solution, which is the core of the proposed method
in this paper. However, in order to provide comprehensive
references for designers, one Pareto optimal solution is not
enough. So amethod for obtaining a Pareto optimal set is pro-
posed based on Algorithm 1. The designers should determine
L firstly, which is the number of Pareto optimal solutions.
Then, by giving L group of weighting factors uniformly, the
method can calculate the Pareto optimal solutions of different
weight factors in turn and form the Pareto optimal solutions
set. If the number of object functions is not more than 3,
the Pareto front can be expressed as a coordinate graph. The
whole process is shown in Figure 2.

According to this method, designers should only set the
number of solutions and initial point. By calculating auto-
matically, a Pareto optimal set will be output. In addition, the
Pareto front will be shown as a coordinate graph for design-
ers.

3.3.5. The Benefits and Shortcomings of the Present Method.
The solution of multiobjective function optimization prob-
lems obtained by the present method is always a local
solution, which converges to the real Pareto front when the
stopping criterion is close to zero. If the objective functions
are convex then the local solution is global one at the same
time. By the popular evolutionary algorithms, global solution
can be got, which turns out to be not close to the real Pareto
front in a short time. When the constrained and objective
functions are continuously differentiable and nonlinear, the
solution close to the real Pareto front can be got rapidly by
the proposed method. So, a more accurate solution can be
obtained by the proposed algorithm in a short time. However,
a good solution is hard to obtain by the algorithm when
the constrained and objective functions are not continuously
differentiable and nonlinear.

Another advantage by the present method is high effi-
ciency in converging to the Pareto front, and the shortcoming
is that the objective functions and inequality constraints must
be continuously differentiable and nonlinear [10]. All the
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benefits and shortcomings are because the Newton method
is used to calculate the iteration direction.

On one side, many multiobjective engineering optimiza-
tion problems can be established as the mathematical models
which are nonlinear and continuously differentiable, such
as the engineering problems described by surrogate models.
On the other side, the hybrid method provides references
to designers more rapidly than popular evolutionary algo-
rithms, which will improve working efficiency apparently. So,
the method proposed in this paper presents an applicable
value for actual engineering optimization problems.

The solutions by different algorithms are compared in
detail next.

4. Numerical Examples

Two benchmark numerical examples are chosen to check the
algorithm. One of them is an example in the user’s guide of
MATLAB [35] and the other one is from a published paper
[36]. The prototype implementations of them are executed by
MATLAB V7.12.0. Test 1 we deal with here is to minimize F; =
x,t =10, + %%, + x," — x2x,2 and F, = x,* — x.%x," +
x,* + x,x,, with =5 < x; < 5and -5 < x, < 5. Test 2 is
from the paper of Schaffer, which is to minimize the following
two objective functions as F, = x* and F, = (x — 2)%, with
—1000 < x < 1000.

For further evaluation, the tests are also executed by
Multiobjective Genetic Algorithm. Then, the results obtained
by the proposed method are compared with the one by Multi-
objective Genetic Algorithm. The methods’ performances are
evaluated from three aspects, which include the diversity of
solutions in Pareto front, the accuracy of the Pareto solutions,
and the computational efficiency. To keep things simple, the
Multiobjective Genetic Algorithm is written as MOGA for
short and the proposed algorithm is named as NSWFA. In
all tests, one hundred initial points are iterated for a Pareto
optimal set. The Pareto optimal fronts of the two tests are
shown in Figures 3 and 4.

Sometimes, the solutions of multiobjective optimization
problems, which are obtained by the algorithms based on
weighted sum method, are not well distributed in the Pareto
optimal front. Studies can be found in this field [4, 32].
However, the algorithm in this paper is for multiobjective
engineering optimization problems, which do not require
even-distributed Pareto optimal solutions in the Pareto opti-
mal front. With the purpose of offering reference to engi-
neers, some better designs can usually be obtained by this
algorithm, which is enough. In Figures 3 and 4, the dif-
ference between the Pareto fronts obtained by the MOGA
and NSWFA is clear. Although the Pareto optimal points
acquired by NSWFA are not distributed evenly, the spread is
much better than the solutions by MOGA. For studying the
accuracy of the results, the Pareto optimal fronts obtained by
the two algorithms are shown in the same figures. In Figures
5 and 6, the Pareto optimal fronts obtained by NSWFA are
closer to the real Pareto optimal fronts than MOGA. So the
results by the proposed algorithm have good accuracy.

Another important performance is the computational
efficiency, which is studied from the iterative number and
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FIGURE 2: The flow chart of the hybrid algorithm for constrained multiobjective optimization problems.
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FIGURE 3: The Pareto optimal front of test 1 obtained by the two algorithms.

the consumed CPU time. Facts have proved that the iterative
points cannot be convergent to the Pareto optimal front in a
short time by evolutionary algorithms.

In this paper, the maximum number of iterations is 2000,
and the results by MOGA at the 2000th iteration are recorded.
More detailed information is listed in Table 1. In all tests, the
calculations are executed ten times by each algorithm and the
data in Table 1 are the real results on average.

The stopping criterion is 10~ and the results by MOGA
are all not convergent. But the results by NSWFA are

convergent to the Pareto optimal front with less iterations
and CPU time. At each iteration, the whole population is
iterated at the same time by MOGA, but only one point
is iterated by NSWFA. The average iterations of one Pareto
optimal solution are only 7.3 and 6.15 times by NSWFA. That
is why the CPU time by NSWFA is far less than MOGA. In
addition, more Pareto optimal solutions are got by NSWFA
than MOGA with the same initial points.

Generally, the Pareto optimal solutions obtained by
NSWFA have better accuracy and spread than MOGA. Also,
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TaBLE 1: The detailed comparison of the two algorithms in computation efficiency.
Algorithm Stopping criteria Initial points Obtained points CPU time Iterations Convergence
Test 1 MOGA 107° 100 70 329.72s 2000 No
NSWFA 107° 100 100 13.23s 730 Yes
Test 2 MOGA 107 100 77 361.88's 2000 No
NSWFA 10 100 100 5255 615 Yes
POF of test 1 obtained by the two algorithms POF of test 2 obtained by the two algorithms
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far less CPU time is consumed by NSWFA than MOGA. All
the evidence suggests that NSWFA is perfect in the multi-
objective optimization problems whose mathematical models
and inequality constraints are nonlinear and continuous.

5. The Design of Crash Box

The crash box is an important part of car collision system,
which plays an important role in occupant protection during
the collision of vehicles at low speed. In the section, the
generate-first-choose-later method with the hybrid algorithm
proposed for multiobjective engineering optimization design
problems in this paper is adopted to finish the design of the
crash box.

5.1. The Multiobjective Engineering Optimization Problem.
The properties of energy absorption and maximum crushing
force must be considered simultaneously in designing the
crash box. The structure design becomes a problem of
complicated multiobjective optimization design. The crash
box is made of four cutting boards whose thickness can
be chosen as design variables to optimize. In the collision
of vehicles at low speed, the crash box should absorb the
collision energy as much as possible, but the peak force
should be small as soon as possible. So in this problem, energy
absorbing and the biggest impact are selected to be objectives,
and the four wall thickness values of the crash box are selected
as design variables. A car collision system with two crash
boxes is shown in Figure 7, and the wall thickness as the
design variables is shown in Figure 8.

5.2. Design of Experiment, Construct Surrogate Model, and
Variance Analysis. In order to effectively simulate the energy
absorption characteristic of crash box under axial load in the
vehicle frontal impact, choose the bumper and crash box as a
whole for research according to real crash process.

The rear part of crash box connecting vehicle body is
constrained, while the front part is struck by a rigid wall
weighing one ton with speed of 4m/s. In the simulation of
low-speed crash, the model could use elastoplastic material
without regard to strain-rate effect. The response surface
models are established referring to the paper of Li et al. [37].

t
T eSS

FIGURE 8: The 4 design variables of crash box.

Adopting quadratic regression orthogonal combination
design of experiment and distributing experiment point
reasonably, 25 simulation experiments are completed.

According to the result, the response surface models of
energy absorption E and maximum crushing force F with

respect to wall thickness t = [t,1,,15, t,]” are obtained by
polynomial response surface method:

E = —2127.7516 + 309.9367¢, +2072.4733t,
+1018.7752t, + 1434.2749¢, — 25.6145t,>

—71.5937t," — 13.4367t,> + 19.0837t,”
— 18.6774t,t, + 62.1497t 1, — 164747t 1,
—39.9887t,t, — 168.8719¢,t, — 204.2693t,t,,

(14)
F = 40.5927 +5.9920t, — 8.9279t, — 6.8074t,

—9.8654t, — 1.8214t, + 4.3488t,”

+4.2041t,> +5.2171t,” +0.4926t 1,
+1.3087t,t, — 1.7178t,t, +2.4475t,t,

+6.1385t,t, +0.9046t,1,.

After getting the surface functions, the variance analysis
is used to verify the fitting degree. In the process, the
determination coefficient R* and the adjusting determination
coefficient Rid. are calculated to check the fitting precision,

which are defined as follows:
A \2
AN
R* = < —
Yici (i )’i)
AN2
, =34 (o) m-p

W ng ()’i —71')2 (M—-k- 1)'

In the formula, M is the number of samples, k is the

(15)

number of design variables, and y;, )//\i, and y, are the
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measured value, predicted value, and the average of measured
value.

In general, if the determination coefficient and adjusting
determination coefficient are more close to 1, the response
surface function with respect to response variables is more
precise. The determination coefficients R? of E and F are
99.72% and 99.11%, respectively. The adjusting determina-
tion coeflicients Ridj are 99.37% and 98.12%, respectively.
Thus, the response surface functions in the paper can simulate
response variables accurately.

5.3. The Constrained Multiobjective Optimization Model of
Crash Box (The Method Is Proposed for Reference). In order
to reduce passenger injury, the crash box is desired to absorb
more energy and generate less maximum crushing force,
that is, maximize the objective function E and minimize the
objective function F.

The standard multiobjective optimization model should
be established firstly. When converting the objective function
to minimization problem, the magnitude of objective func-
tions should be comparable since large magnitude results in
large deviation. Based on simulation result, the minimum
energy absorption (3365.7]) and maximum crushing force
(144.129kN) are chosen to build corresponding objective
function. The constraint of crash box design is upper and
lower limitation of wall thickness. The blanking plate should
be between 1 mm and 3 mm due to processing factor, that is,
wall thickness t; € [t;5,t,Y],t" = 1,,Y =3,i=1,...,4. The
standard multiobjective optimization model is

min F(t)
teR*

st —t+4t,-3>0,

33657 (16)
| =
E T
F(t) = F t=[t,t5ts1,]
F=—,
144.129

To solve constrained multiobjective optimization prob-
lem by the proposed method, set 100 as the number of Pareto
optimal solutions and pick a random initial design variable
in accordance with constraint. The Pareto optimal front of
standard model by rapid calculation is shown in Figure 9.

According to Pareto optimal solution set, the correspond-
ing energy absorption and maximum crushing force are
obtained to form Pareto front of real crash problem, which
helps engineers choose design proposal more conveniently.
The Pareto front end of crash problem is shown in Figure 10.

The design of crash box mainly aims to improve per-
formance. However, the mass of structure is also a very
important factor. The mass of crash box varies according
to the design variables. Their relation is geometrical. It is
easy to get mass based on design variables in the simulation
software. The coordinates graph about the energy absorption,
maximum crashing force, and mass is shown in Figure 11.

Figure 11 provides designers with a more comprehensive
and intuitive reference. They can check the performance and
mass of crash box with different wall thickness. Designers
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FIGURE 9: The Pareto optimal front of the standard multiobjective
optimization model.
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FIGURE 10: The corresponding properties of the Pareto optimal
solutions.

could choose reasonable point based on actual needs and
find corresponding design variables as initial reference. The
Pareto optimal solutions set and their performance calculated
in this paper are shown in Table 2.

5.4. Choose the Design and Check the Properties by Simulation.
According to the results in Table 2, the maximum crashing
force increases with the increase of the energy absorption
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TABLE 2: The results of 100 pieces of design advice for reference.
8 A Ymm ) F/KN M/kg
A A, t, t, ts t,
1 0.01 0.99 3.0000 1.0000 1.0000 1.0000 2699.0 40.0865 2.4183
2 0.02 0.98 3.0000 1.0000 1.0000 1.0000 2699.0 40.0865 2.4183
3 0.03 0.97 3.0000 1.0000 1.0000 1.0000 2699.0 40.0865 2.4183
4 0.04 0.96 3.0000 1.0000 1.0000 1.0362 2737.0 40.1824 2.4250
5 0.05 0.95 3.0000 1.0000 1.0000 1.0937 27975 40.3628 2.4357
6 0.06 0.94 3.0000 1.0000 1.0000 1.1486 2855.4 40.5669 2.4458
7 0.07 0.93 3.0000 1.0000 1.0000 1.2011 2910.9 40.7920 2.4556
8 0.08 0.92 3.0000 1.0000 1.0000 1.2518 2964.5 41.0361 2.4650
9 0.09 0.91 3.0000 1.0000 1.0000 1.3007 3016.4 41.2977 2.4741
10 0.10 0.90 3.0000 1.0000 1.0000 1.3483 3066.9 41.5755 2.4829
40 0.40 0.60 3.0000 2.0071 1.0123 1.4285 4692.9 59.2051 3.0899
41 0.41 0.59 3.0000 2.0575 1.0298 1.3985 4753.4 60.1006 3.1171
42 0.42 0.58 3.0000 2.1092 1.0480 1.3664 4814.7 61.0222 3.1447
43 0.43 0.57 3.0000 2.1621 1.0668 1.3323 4876.9 61.9718 3.1728
44 0.44 0.56 3.0000 2.2164 1.0862 1.2958 4940.1 62.9514 3.2014
45 0.45 0.55 3.0000 2.2720 11064 1.2570 5004.4 63.9635 3.2305
46 0.46 0.54 3.0000 2.3291 11274 1.2158 5070.0 65.0103 3.2601
47 0.47 0.53 3.0000 2.3877 1.1492 11719 5137.0 66.0947 3.2903
48 0.48 0.52 3.0000 2.4478 11718 1.1252 5205.5 67.2194 3.3210
49 0.49 0.51 3.0000 2.5095 1.1952 1.0758 5275.7 68.3873 3.3522
50 0.50 0.50 3.0000 2.5729 1.2195 1.0235 53477 69.6017 3.3841
51 0.51 0.49 3.0000 2.6194 1.2400 1.0000 5414.4 70.7405 3.4107
52 0.52 0.48 3.0000 2.6526 1.2574 1.0000 5476.5 71.8186 3.4333
53 0.53 0.47 3.0000 2.6862 1.2751 1.0000 5539.2 72.9277 3.4562
54 0.54 0.46 3.0000 2.7202 1.2932 1.0000 5602.7 74.0695 3.4794
55 0.55 0.45 3.0000 2.7547 1.3117 1.0000 5667.0 75.2463 3.5030
85 0.85 0.15 3.0000 3.0000 3.0000 1.0000 7395.8 121.5131 3.9545
86 0.86 0.14 3.0000 3.0000 3.0000 1.0005 7396.0 121.5209 3.9546
87 0.87 0.13 3.0000 3.0000 3.0000 1.1523 7442.5 124.1540 3.9827
88 0.88 0.12 3.0000 3.0000 3.0000 1.3319 7498.7 127.5789 4.0160
89 0.89 0.11 3.0000 3.0000 3.0000 1.5455 75671 132.0896 4.0556
90 0.90 0.10 3.0000 3.0000 3.0000 1.8029 7651.9 138.1593 4.1034
91 0.91 0.09 3.0000 3.0000 3.0000 2.1180 7759.1 146.5312 4.1618
92 0.92 0.08 3.0000 3.0000 3.0000 2.5106 7898.0 158.4110 4.2346
93 0.93 0.07 3.0000 3.0000 3.0000 2.9999 8079.3 175.4670 4.3253
94 0.94 3.0000 3.0000 8079.4 175.4708 4.3253

0.06

3.0000

3.0000

capacity. A tradeoff design should be chosen so that the two
properties of the crash box are all satisfactory. The Pareto
optimal solution in the fifty-five group is chosen to be a

reference design, which is [3.0000 2.7547 1.3117 1.0000]T.
And the corresponding performance is [5667.0 75.2463]T.

Subjecting to the practical mechanical processing technology,
the approximate design variable of the chosen Pareto optimal

solution is adopted, which is [3.0 2.8 1.3 1.0]".

Computer simulation is employed to examine the design.
The obtained result of energy absorption is 5680.40 ] and the
maximum crashing force is 80.50kN. For having a strong
ability of energy absorption and accompanying acceptable
maximum crashing force, the simulation results demonstrate
that this design is fine. The simulation model before and after
the collision is shown in Figure 12.

In order to examine the efficiency of the generate-first-
choose-later method with the hybrid algorithm proposed in
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Solutions of the crashworthiness and quality
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FIGURE 11: The referable properties and the corresponding mass.

FIGURE 12: The structure comparison by crash simulation.

this paper, the engineering example is executed 20 times by
the computer whose CPU is P8400. All the results in Table 2
as well as the above Pareto fronts are obtained within an
average time of 4 minutes so that the method solves the
multiobjective engineering optimization problem efficiently.
Opverall, the method proposed in this paper for multi-
objective engineering optimization problems can offer many
effective suggestions to designer as a comprehensive refer-
ence, and the short computing time speeds up the design.

6. Conclusions

The proposed generate-first-choose-later method is an effec-
tive and efficient approach for multiobjective engineering
optimization problems. In the example of crash box, this
method gives some valuable reference to design the structure.
Relying on the generated reference, the designers can under-
stand the relationship between the design variables and the
properties of structures. In addition, the preliminary shape
design can be chosen from the optimal solutions.

According to the numerical examples and the engineering
example, Algorithm 1 proposed in this paper can solve the
multiobjective optimization problem with upper and lower
bounds with high efficiency, and the Pareto optimal solutions
as well as Pareto front are often obtained in a short time. So

Mathematical Problems in Engineering

the proposed method with Algorithm 1 can solve multiobjec-
tive engineering optimization problems rapidly.

For the weighted sum approach being adopted, this
method has difficulty in searching the solutions when the
Pareto curve is not convex. Improving Algorithm 1 to obtain
more entire Pareto optimal solutions is the future research, so
that more potential design advice can be offered.
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