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A plasma with two different particle types and at different temperatures has been considered, so that each type of ion withMaxwell-
Boltzmann distribution function is in temperature equilibrium with itself. Using the extracted nuclear elastic scattering differential
cross-section from experimental data, solving the Boltzmann equation, and also taking into account themobility of the background
particles, temperature equilibration rate between two different ions in a fusion plasma is calculated.The results show that, at higher
temperature differences, effect of nuclear elastic scattering is more important in calculating the temperature equilibration rate. The
obtained expressions have general form so that they are applicable to each type of particle for background (𝑏) and each type for
projectile (𝑝). In this paper, for example, an equimolar Deuterium-Hydrogen plasma with density 𝑛 = 5 × 10

25 cm−3 is chosen in
which the deuteron is the background particle with temperature (also electron temperature) 𝑇

𝑏
= 1 keV (usual conditions for a

fusion plasma at the ignition instant) and the proton is the projectile with temperature 𝑇
𝑝
> 𝑇
𝑏
. These calculations, particularly, are

very important for ion fast ignition in inertial confinement fusion concept.

1. Introduction

In a fusion plasma, because of interactions, collisions, and
gain and loss powers, we encounter an unstable plasma [1,
2]. The thermal equilibrium between charged particles is
crucial for understanding the overall energy balance in a
fusion plasma, where the ignition and burn of the plasma
are strongly temperature dependent [3]. Since a plasma is
composed of charged particles, they are affected by Coulomb
force in the plasma. Coulomb force is a long-range force and,
thus, may also be involved in the short-range collisions and
the long-range collective effects. The problem of temperature
equilibration was studied first by Landau [4, 5] and Spitzer
(LS) [6].TheLSmodel is applicable to dilute, hot, fully ionized
plasmas where the collisions are weak and binary. Recently,
there have been several theoretical and computational works
which aim to study temperature equilibration [7–12]. Among
the theoretical studies, Brown, Preston, and Singleton (BPS)
by solving the Boltzmann equation for short-range collisions
and the Lenard-Balescu equation for long-range collective

effects and also considering the quantum corrections have
achieved more accurate results [9]. In a hot and dense
fusion plasma, in addition to the Coulomb interactions, the
nuclear elastic scattering (NES) is able to role via short-range
interactions (hard collisions). The effect of the NES on the
stopping power of a charged particle has been investigated
in previous studies [13–15]. It has been indicated that the
stopping power due to NES is greater at the higher projectile
energies. This fact motivated us to study the effect of NES
on thermal equilibration rate for a fusion plasma. A fusion
plasma is formed from charged particles at high temperatures
in which they interact with each other to achieve balance.
In this paper, for the simplest case, a plasma with two
different ions at different temperatures has been considered,
so that each type of ionwithMaxwell-Boltzmann distribution
function is in temperature equilibrium with itself. Here,
for example, proton at higher temperature is considered as
projectile and deuteron at lower temperature is assumed as
background. By solving the Boltzmann equation and taking
into account the thermal motion of plasma ions, the thermal
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equilibration rate due to NES is calculated. The results are
compared with Coulomb calculations and the conditions in
which each contribution is dominated are discussed.

2. Elastic Collision

Consider a projectile with mass 𝑚
𝑝
and velocity k

𝑝
interact-

ing with a background particle with mass 𝑚
𝑏
and velocity k

𝑏

in laboratory frame. (Vectors are written in bold type and
nonbold letters indicate quantity magnitude.) In an elastic
collision, V

𝑐
= (𝑚

𝑝
k
𝑝
+ 𝑚
𝑏
k
𝑏
)/𝑀
𝑝𝑏

is the velocity of the
center of mass (C.M.) and relative velocity of the system is
k
𝑝𝑏

= k
𝑝
− k
𝑏
. After the collision, the projectile and target

velocities consider k
𝑝
and k

𝑏
, respectively. Therefore, k

𝑝𝑏
=

k
𝑝
− k
𝑏
is the relative velocity of two particles after collision.

These quantities are related to each other by

k
𝑝
= V
𝑐
+

𝑚
𝑏

𝑀
𝑝𝑏

k
𝑝𝑏
,

k
𝑝
= V
𝑐
+

𝑚
𝑏

𝑀
𝑝𝑏

k
𝑝𝑏
,

(1)

where 𝑀
𝑝𝑏

= 𝑚
𝑝
+ 𝑚
𝑏
is the total mass. The conservation

laws for linear momentum and kinetic energy in the C.M.
system indicate that the relative speeds of the particles do
not change before and after collision as a result of an elastic
collision |k

𝑝𝑏
| = |k

𝑝𝑏
| = V

𝑝𝑏
. As a result, the magnitude

of the relative velocities remains unchanged and only the
angle Θ (scattering angle in C.M. system) between k

𝑝𝑏
and

k
𝑝𝑏

is changed. Since the magnitude and direction of C.M.
velocities (before and after a collision) will not change, V

𝑐

can be selected as the reference. Using the above relations
between V

𝑐
and k
𝑝𝑏

velocities, the kinetic energy of the pro-
jectile is changed as follows:

𝐸


𝑝
− 𝐸
𝑝
=
1

2
𝑚
𝑝
(V2
𝑝
− V2
𝑝
) = 𝑚

𝑝𝑏
V
𝑐
⋅ (k
𝑝𝑏

− k
𝑝𝑏
) , (2)

where𝑚
𝑝𝑏

= 𝑚
𝑝
𝑚
𝑏
/𝑀
𝑝𝑏
is reducedmass of the projectile and

target system. If 𝜑 is the angle betweenV
𝑐
and k
𝑝𝑏
, according

to scattering angle in C.M. system Θ, then angle between V
𝑐

and k
𝑝𝑏

is (𝜑 − Θ). The change in kinetic energy of the pro-
jectile is equal to

𝐸


𝑝
− 𝐸
𝑝
= 𝑚
𝑝𝑏
𝑉
𝑐
V
𝑝𝑏
(cos𝜑 (cosΘ − 1) + sin𝜑 sinΘ) . (3)

Since the scattering in the C.M. frame is axially symmetric
about the relative speed k

𝑝𝑏
, transverse components average

is zero in the scattering process, and so the second term on
the right of this equation will be removed.

3. Temperature Equilibration Rate due to
Coulomb Interaction

The problem of temperature equilibration was first addressed
by Landau and Spitzer, who used the Fokker-Planck equation

to derive an equilibration rate for one ion species temperature
𝑇
𝑝
, given another ion species temperature 𝑇

𝑏
[4–6]:

𝑑𝜀
LS
𝑝𝑏

𝑑𝑡
= 𝐶

LS
𝑝𝑏
(𝑇
𝑝
− 𝑇
𝑏
) , (4)

where 𝐶LS
𝑝𝑏

is defined as

𝐶
LS
𝑝𝑏

= −
8

3
√2𝜋

√𝑚
𝑝
𝑚
𝑏
𝑍
2

𝑝
𝑍
2

𝑏
𝑛
𝑝
𝑛
𝑏
lnΛLS
𝑝𝑏

(𝑚
𝑝
𝑇
𝑏
+ 𝑚
𝑏
𝑇
𝑝
)
3/2

, (5)

where 𝑚
𝑝,𝑏

are the ion species masses, 𝑍
𝑝,𝑏

are the ion char-
ges, and 𝑛

𝑝,𝑏
are the number densities. The LS Coulomb log-

arithm lnΛLS
𝑝𝑏

is defined as follows:

lnΛLS
𝑝𝑏

= 23 − ln[

[

𝑍
𝑝
𝑍
𝑏
(𝑚
𝑝
+ 𝑚
𝑏
)

𝑚
𝑝
𝑇
𝑏
+ 𝑚
𝑏
𝑇
𝑝

(
𝑛
𝑝
𝑍
2

𝑝

𝑇
𝑝

+
𝑛
𝑏
𝑍
2

𝑏

𝑇
𝑏

)

1/2

]

]

.

(6)

Recently, there have been several theoretical and compu-
tational works which aim to study temperature equilibration
[7–9]. The computational studies have all been done with
classical molecular dynamics and have focused on temper-
ature equilibration in a multi-eV hydrogen plasma [10–12].
The results of these studies showed that deviations from
LS approach are to be expected, even for moderate values
of lnΛLS

𝑝𝑏
. Among the theoretical works, Brown, Preston,

and Singleton (BPS) produced an analytic calculation for
Coulomb energy exchange processes for a fusion plasma
[9, 16, 17]. These precise calculations are accurate to leading
and next-to-leading order in the plasma coupling parameter
and to all orders for two-body quantum scattering within the
plasma. In general, the energy density exchange rate between
the two charged particles 𝑝 and 𝑏 in a plasma can be written
as follows:

𝑑𝜀
Coul
𝑝𝑏

𝑑𝑡
= 𝐶

Coul
𝑝𝑏

(𝑇
𝑏
− 𝑇
𝑝
) , (7)

where 𝐶Coul
𝑝𝑏

is called the rate coefficient and it can be written
as a sum of three terms:

𝐶
Coul
𝑝𝑏

= (𝐶
𝐶

𝑝𝑏,𝑆
+ 𝐶
𝐶

𝑝𝑏,𝑅
) + 𝐶
𝑄

𝑝𝑏
, (8)

where the first two arise from classical short and long distance
physics and the latter term arises from short distance two-
body quantum diffraction. The first term in (8), the short-
distance classical scattering contribution, reads

𝐶
𝐶

𝑝𝑏,𝑆
= −𝑘
2

𝑝
𝑘
2

𝑏

(𝑚
𝑝
𝛽
𝑝
𝑚
𝑏
𝛽
𝑏
)
1/2

(𝑚
𝑝
𝑇
𝑝
+ 𝑚
𝑏
𝑇
𝑏
)
3/2

(
1

2𝜋
)

3/2

× [ln{
𝑍
𝑝
𝑍
𝑏
𝑒
2
𝐾

4𝑚
𝑝𝑏
𝑉2
𝑝𝑏

} + 2𝛾] ,

(9)
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where 𝛾 ≃ 0.57721 . . . is Euler constant. The second term
in (8), the long-distance, dielectric term that accounts for
collective effects in the plasma, is given by

𝐶
𝐶

𝑝𝑏,𝑅
=
𝑘
2

𝑝
𝑘
2

𝑏

2𝜋
(
𝑚
𝑝
𝛽
𝑝

2𝜋
)

1/2

(
𝑚
𝑏
𝛽
𝑏

2𝜋
)

1/2

× ∫

∞

−∞

𝑑VV2 exp {−1
2
(𝑚
𝑝
𝛽
𝑝
+ 𝑚
𝑏
𝛽
𝑏
) V2}

×
𝑖

2𝜋

𝐹 (V)
𝜌total (V)

ln {𝐹 (V)
𝐾2

} .

(10)

Here, 𝐾 is an arbitrary wave number so that the total result
does not depend upon 𝐾. However, sometimes choosing 𝐾

to be a suitable multiple of the Debye wave number of the
plasma simplifies the formula. We write the inverse temper-
ature of the projectile as 𝛽

𝑝
= 𝑇
−1

𝑝
and the plasma species 𝑏

as 𝛽
𝑏
= 𝑇
−1

𝑏
, which we measure in energy units. Debye wave

number 𝑘
𝑏
of this species is defined by

𝑘
2

𝑏
= 4𝜋𝛽

𝑏
𝑍
2

𝑏
𝑛
𝑏
, (11)

where 𝑛
𝑏
is the number density of species 𝑏. The total Debye

wave number 𝑘
𝐷
is defined by

𝑘
2

𝐷
= ∑

𝑏

𝑘
2

𝑏
. (12)

The function 𝐹(𝑢) is related to the leading-order plasma
dielectric susceptibility in which it may be expressed in the
dispersion form:

𝐹 (𝑢) = −∫

∞

−∞

𝑑V
𝜌total (V)
𝑢 − V + 𝑖𝜂

, (13)

where the limit 𝜂 → 0
+ is understood. The spectral weight,

𝜌total(V) is defined by

𝜌total (V) = ∑

𝑏

𝜌
𝑏
(V) , (14)

where

𝜌
𝑏
(V) = 𝑘

2

𝑏
V√

𝛽
𝑏
𝑚
𝑏

2𝜋
exp(−1

2
𝛽
𝑏
𝑚
𝑏
V2) . (15)

According to the BPS calculations, the general case is
obtained by adding a quantum correction, which is related
to the short distance two-body quantum diffraction and to
the classical result. Therefore, the third term in (8), 𝐶𝑄

𝑝𝑏
is a

coefficient which is calculated from the quantum correction
and is defined as follows:

𝐶
𝑄

𝑝𝑏
= −

1

2
𝑘
2

𝑝
𝑘
2

𝑏

(𝑚
𝑝
𝛽
𝑝
𝑚
𝑏
𝛽
𝑏
)
1/2

(𝑚
𝑝
𝑇
𝑝
+ 𝑚
𝑏
𝑇
𝑏
)
3/2

(
1

2𝜋
)

3/2

∫

∞

0

𝑑𝜁 exp(−𝜁
2
)

× [Re𝜓(1 + 𝑖
𝜂
𝑝𝑏

𝜁1/2
) − ln{

𝜂
𝑝𝑏

𝜁1/2
}] ;

(16)

the strength of the quantum effects associated with the scat-
tering of two plasma species 𝑝 and 𝑏 is characterized by the
dimensionless parameter:

𝜂
𝑝𝑏

=
𝑍
𝑝
𝑍
𝑏

ℏ𝑉
𝑝𝑏

, (17)

where the square of the thermal velocity in this expression is
defined by

𝑉
2

𝑝𝑏
=

𝑇
𝑝

𝑚
𝑝

+
𝑇
𝑏

𝑚
𝑏

, (18)

and𝜓(𝑧) is the logarithmic derivative of the gamma function.

4. Temperature Equilibrium due to Nuclear
Elastic Scattering

Since nuclear force is a short-range force, it can only be
involved in short-range collisions and, therefore, does not
contribute to long-range cumulative effects of plasma. Boltz-
mann equations are described generally as short-range
encounters. The equation for the phase-space density 𝑓

𝑝
(P
𝑝
)

of species 𝑝 is [18]

[
𝜕

𝜕𝑡
+ k
𝑝
⋅ ∇]𝑓

𝑝
(r, p
𝑝
, 𝑡) = ∑

𝑏

𝐾
𝑝𝑏
(r, p
𝑝
, 𝑡) . (19)

We suppress the common space and time coordinates r, 𝑡 and
write the collision term involving species 𝑏 in the following
form:

𝐾
𝑝𝑏
(r, p
𝑝
, 𝑡)

= ∫
𝑑
3p
𝑏

(2𝜋ℏ)
3

𝑑
3p
𝑝

(2𝜋ℏ)
3

𝑑
3p
𝑏

(2𝜋ℏ)
3


𝑇 (𝑊, 𝑞

2
)


2

(2𝜋ℏ)
3
𝛿
3

× (p
𝑏
+ p
𝑝
− p
𝑏
− p
𝑝
) (2𝜋ℏ) 𝛿

× (
1

2
𝑚
𝑏
V2
𝑏
+
1

2
𝑚
𝑎
V2
𝑝
−
1

2
𝑚
𝑏
V2
𝑏
−
1

2
𝑚
𝑎
V2
𝑝
)

× [𝑓
𝑏
(p
𝑏
) 𝑓
𝑝
(p
𝑝
) − 𝑓
𝑏
(p
𝑏
) 𝑓
𝑝
(p
𝑝
)] .

(20)

This relation describes the scattering of the particles ofmasses
𝑚
𝑝
and 𝑚

𝑏
and the scattering from the initial momenta

p
𝑝
= 𝑚
𝑝
k
𝑝
, p
𝑏
= 𝑚
𝑏
k
𝑏
to the final momenta p

𝑝
= 𝑚
𝑝
k
𝑝
,

p
𝑏
= 𝑚
𝑏
k
𝑏
with the scattering amplitude 𝑇(𝑊, 𝑞

2
) depending

on the center-of-mass energy, 𝑊, and the squared momen-
tum transfer, 𝑞2. It is convenient to employ this quantum-
mechanical notation for several reasons. It explicitly displays
the complete kinematical character of a scattering process,
including the detailed balance symmetry. Furthermore, it
shows that the collision term (19) vanishes when all the
particles are in thermal equilibriumwith the generic densities
𝑓(p) ∼ exp[−𝛽𝑚V2/2] because of the conservation of energy
enforced by the delta function. In case we have a spatial
uniformity (homogeneity), include the gradient removed
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from (19) and, thus, the rate of change of energy is obtained
as follows:

𝑑𝜀
𝑝𝑏

𝑑𝑡
= ∫

𝑑
3p
𝑝

(2𝜋ℏ)
3

𝑝
2

𝑝

2𝑚
𝑝

𝜕𝑓
𝑝
(p
𝑝
, 𝑡)

𝜕𝑡

= ∫
𝑑
3p
𝑝

(2𝜋ℏ)
3

𝑝
2

𝑝

2𝑚
𝑝

𝐾
𝑝𝑏
(p
𝑝
) .

(21)

Placement of relation (20) in (21) and rate of change of energy
density of species 𝑝 in collisions with plasma species 𝑏will be
written as follows:

𝑑𝜀
𝑝𝑏

𝑑𝑡

= ∫
𝑑
3p
𝑏

(2𝜋ℏ)
3

𝑑
3p
𝑝

(2𝜋ℏ)
3

𝑑
3p
𝑏

(2𝜋ℏ)
3

𝑑
3p
𝑝

(2𝜋ℏ)
3
(

𝑝
2

𝑝

2𝑚
𝑝

−
𝑝
2

𝑝

2𝑚
𝑝

)

× |𝑇|
2
(2𝜋ℏ)

3
𝑓
𝑏
(P
𝑏
) 𝑓
𝑝
(P
𝑝
) 𝛿
(3)

× (p
𝑏
+ p
𝑝
− p
𝑏
− p
𝑝
) (2𝜋ℏ) 𝛿

× (
1

2
𝑚
𝑏
V2
𝑏
+
1

2
𝑚
𝑝
V2
𝑝
−
1

2
𝑚
𝑏
V2
𝑏
−
1

2
𝑚
𝑝
V2
𝑝
) .

(22)

Now, in general, the cross section for the scattering of par-
ticles 𝑝 and 𝑏 into a restricted momentum interval Δ is given
by

V
𝑝𝑏
∫
Δ

𝑑Ω(
𝑑𝜎
𝑝𝑏

𝑑Ω
)

= ∫
𝑑
3p
𝑏

(2𝜋ℏ)
3

𝑑
3p
𝑝

(2𝜋ℏ)
3


𝑇 (𝑊, 𝑞

2
)


2

(2𝜋ℎ)
3
𝛿
3

× (p
𝑏
+ p
𝑝
− p
𝑏
− p
𝑝
) (2𝜋ℏ) 𝛿

× (
1

2
𝑚
𝑏
V2
𝑏
+
1

2
𝑚
𝑝
V2
𝑝
−
1

2
𝑚
𝑏
V2
𝑏
−
1

2
𝑚
𝑝
V2
𝑝
) .

(23)

We can write (23) in terms of the speed of the center of mass
V
𝑐
and relative speed k

𝑝𝑏
. We use the conversion 𝑑k

𝑝
𝑑k
𝑏
=

𝑗(k
𝑝
, k
𝑏
;V
𝑐
, k
𝑝𝑏
)𝑑V
𝑐
𝑑k
𝑝𝑏
, where (𝑗(k

𝑝
k
𝑏
,V
𝑐
k
𝑝𝑏
) = 1) is the

Jacobian. Using these definitions, we find that

𝑑𝜀
𝑝𝑏

𝑑𝑡
= ∫

𝑑
3p
𝑏

(2𝜋ℏ)
3

𝑑
3p
𝑝

(2𝜋ℏ)
3
𝑓
𝑏
(P
𝑏
) 𝑓
𝑝
(P
𝑝
) V
𝑝𝑏

× ∫𝑑Ω(
𝑑𝜎
𝑝𝑏

𝑑Ω
) [𝐸


𝑝
− 𝐸
𝑝
] .

(24)

Equation (24) represents the rate of change of energy density
of projectile particles 𝑝 in collisions with plasma species 𝑏.
Now, consider the particles distribution functions 𝑝 and 𝑏,
𝑓
𝑝
(p
𝑝
), and 𝑓

𝑏
(p
𝑏
) where

𝑓
𝑗
(p
𝑗
) = 𝑛
𝑗
(
2𝜋ℏ
2
𝛽
𝑗

𝑚
𝑗

)

3/2

exp(−1
2
𝛽
𝑗
𝑚
𝑗
V2
𝑗
) (25)

is the Maxwellian distribution function. Then temperature
Equilibration rate can be calculated as follows;

𝑑𝜀
NI
𝑝𝑏

𝑑𝑡
= 𝐶

NI
𝑝𝑏
(𝑇
𝑏
− 𝑇
𝑝
) , (26)

where the coefficient 𝐶NI
𝑝𝑏

is given by

𝐶
NI
𝑝𝑏

= −𝑛
𝑝
𝑛
𝑏
𝜋
1/2

2
7/2

(𝑚
𝑝
𝑚
𝑏
)
1/2

𝑀
𝑝𝑏

(𝑚
𝑝
𝑇
𝑝
+ 𝑚
𝑏
𝑇
𝑏
)
5/2

× ∫

∞

0

𝐸
2

𝑐
𝑑𝐸
𝑐
exp(−

𝑀
𝑝𝑏

𝑚
𝑝
𝑇
𝑏
+ 𝑚
𝑏
𝑇
𝑝

𝐸
𝑐
)

× 𝐼
NI
(𝐸
𝐶
) ,

(27)

where the integral

𝐼
NI
(𝐸
𝐶
) = ∫

𝜋

0

(
𝑑𝜎

NI
𝑝𝑏

𝑑Ω
) (cosΘ − 1) sinΘ𝑑Θ, (28)

and 𝐸
𝑐

= 1/2𝑚
𝑝𝑏
V2
𝑝𝑏

is the total energy of the projectile
and the target is in the center of mass system. Extracting
of NES differential cross-section from experimental values,
(𝑑𝜎

NI
𝑝𝑏
/𝑑Ω) rate of temperature equilibration is archived. It

is seen that (26) when the two types of ion temperature
are equal, 𝑑𝜀NI

𝑝𝑏
/𝑑𝑡 = 0 which indicates the temperature

equilibrium.

5. Results and Discussion

Now, we will consider the thermal equilibration rate between
the proton and deuteron in an equimolar plasma with
density 𝑛 = 5 × 10

25 cm−3. The deuteron is considered
as the background at temperature 𝑇

𝑏
= 1 keV and the

proton is the projectile at temperature 𝑇
𝑝
, greater than the

background temperature (𝑇
𝑝

> 𝑇
𝑏
). It is assumed that

each type of particle is in equilibrium with itself so that the
equilibrium is described byMaxwell-Boltzmann distribution
function. The density and temperatures are chosen so that
the their values are close to initial conditions of an inertial
confinement fusion fuel at ignition moment. The thermal
equilibration rate due to Coulomb interactions is obtained
from (5) and (7) for LS and BPS relations, respectively
(Figure 1). The portions of singular term (see (9)), regular
term (see (10)), and quantum term (see (16)) of BPS relation
are shown, separately. It is seen that the values obtained
from the BPS calculations would give lower values than
LS calculations. However, the most important point is that
both equilibration rates are further reduction at the higher
temperature differences. This event is predictable of course,
because the Coulomb differential cross section (Rutherford’s
differential cross section) is proportionalwith the total energy
in center of mass system (𝐸

𝐶
) as 𝑑𝜎Coul

/𝑑Ω ∝ 𝐸
−2

𝐶
. The total

energy in the center of mass system increases with increasing
the temperature difference between the two ions, and, thus,
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Figure 1: The thermal equilibration rate due to Coulomb interac-
tions is obtained from (4) and (7) for LS and BPS relations, respec-
tively.
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𝜎/𝑑Ω)
is plotted versus the scattering angle in the center of mass system
(Θ) for different energies 𝐸

𝐶
, for proton-deuteron elastic scattering.

the rate of Coulomb interaction decreases due to reduction
of its cross-section.

In Figure 2, the ratio of the experimental differential
cross-section (𝑑exp

𝑝𝑏
𝜎/𝑑Ω) to the Coulomb differential cross-

section (𝑑Coul
𝑝𝑏

𝜎/𝑑Ω) is plotted versus the scattering angle
in the center of mass system (Θ) for different energies, for
proton-deuteron elastic scattering. The labeled energies in

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

−0.01
0 1 2 3 4 5 6 7 8 9 10 11 12

EC (MeV)

IN
I (E

C
)

Figure 3:The integral 𝐼NI(𝐸
𝐶
) (see (28)) versus the total energies in

the center of mass coordinate 𝐸
𝐶
.

the figure are the total energy in the center of mass system
(𝐸
𝐶
). As can be seen, this ratio is different for different

energies and also is associated with fluctuations. However, in
general, this ratio is increased more by increasing the energy
and this means that the experimental differential cross-
section ismore deviated from the Coulomb differential cross-
section. Deviation increase reflects the growth of the contri-
bution of NES differential cross-section (𝑑NI

𝑝𝑏
𝜎/𝑑Ω) at higher

energies (the superscript NI denotes the sum of nuclear
and interference terms that, for simplicity, are called nuclear
elastic scattering (NES)).

By extracting the NES differential cross-section from
experimental data (𝑑NI

𝑝𝑏
𝜎/𝑑Ω = 𝑑

exp
𝑝𝑏

𝜎/𝑑Ω − 𝑑
Coul
𝑝𝑏

𝜎/𝑑Ω),
the integral 𝐼NI(𝐸

𝐶
) (see (28)) can be calculated (Figure 3).

The integral 𝐼NI(𝐸
𝐶
) is submitted in (27) and the thermal

equilibration rate due toNES can be obtained. Figure 4 shows
the thermal equilibration rate due to NES (NI) and Coulomb
interaction (LS and BPS) and also the total term that is
obtained from sum of nuclear and Coulomb contributions
(NI +BPS). It is seen that the thermal equilibration rate due to
Coulomb interaction has the main contribution in the lower
temperature differences. With increasing temperature, the
Coulomb interaction contribution decreases and increases in
the share of NES. Thus, at temperature differences, Δ𝑇 ≥

3.278MeV; the NES is the dominant contribution to the
thermal equilibration rate.

The rapid development of laser-accelerated ion beams
is developing the ion fast ignition (IFI) scheme in inertial
confinement fusion concept [19]. In the IFI scheme, an
intense laser pulse accelerates an ion beam to multi-MeV
temperatures. The accelerated ion beam deposits its energy
in the ignition region of fuel pellet that is named “hot spot”
and provides the required energy for ignition [20, 21]. For
this reason, the diver ion beam is named ignitor. The power
is deposited through an ion beam energy exchange with
the background plasma particles with few-keV temperatures.
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Figure 4: The thermal equilibration rate due to NES (NI) and
Coulomb interaction (LS and BPS) and also the total term that is
obtained from the sum of nuclear and Coulomb contributions (NI +
BPS).

In the energy exchange process, some of the ion beam energy
is delivered to the plasma ions, and another part of energy is
delivered to the plasma electrons.The electrons are the source
of power loss in a fusion plasma that it is better to be kept at
low temperature. At the high temperature difference (multi-
MeV) between ion beam and background plasma particles,
the rate of energy exchange via Coulomb interaction is
reduced and, in turn, the rate of energy exchange via NES is
increased. The NES causes the ion temperature to be further
increased, resulting in reduced power loss.

The laser-accelerated ion beams can be produced with
different distribution functions, such as exponential, Max-
wellian, and quasimonoenergy distribution functions [22,
23]. Furthermore, some of ion beams, such as the deuteron
beam can be on their way to interact with the background
ions [24, 25]. Therefore, research in this area requires more
detailed calculations that will be covered in the future.
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